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Summary

Plates can have more than one buckled solution for a fixed set of boundary conditions. The theory
for the identification and the computation of multiple solutions in buckled plates is examined in this
paper. The theory is used to predict modal interaction, which is also called change in buckle pattern
or secondary buckling, in ~xperiments on certain plates with multiple theoretical solutions. A set of
coordinate functions for Galerkin’s method are defined so that the Von Karman plate equations are
reduced to a coupled set of cubic equations in generalized coordinates that are uncoupled in the linear
terms. An iterative procedure for solving modal interaction problems is suggested in the paper based
on this cubic form.

Introduction

Modal interaction in plites is a nonlinear boundary-value problem. The plates considered here are
loaded by edge loads in the plane of the undeformed plate. The edge loads are defined so that they
appear in the theory as a linear boundary condition. The nonlinear part of the problem is the set of
nonlinear partial differential equations of Von Karman plate theory. Modal interaction is concerned
with identifying and computing all the solutions of the plate equations for a fixed set of boundary
conditions.

The theory for modal interaction is examined in this paper. The theory shows why problems
with multiple postbuckliny solutions require more care in computations than problems with unique
postbuckling solutions and provides insight into a proposed algorithm for handling such problems.

The theory for unique postbuckling solutions is often presented in the context of perturbation theory
(ref. 1). The assumptions :mplied in expansions in a single perturbation parameter do not necessarily
hold true for modal interaction problems. Continuation methods that treat the load parameter as a
dependent variable have teen implemented in finite-element codes (refs. 2 to 4). The algorithms in
these codes assume contiruity of the solutions that may lead to poor convergence properties when
applied to modal interaction problems.

For discrete mechanicsl systems, the theory (refs. H and 6) is general enough to treat modal
interaction problems. In the current paper, a discrete system for the plate problem is derived in
generalized coordinates. Newton’s method is the connection between the nonlinear partial differential
equations of plate theory and the discrete theory. The analysis in the paper starts with the linear
form of Newton's method. This form of Newton’s method has convergence problems for modal
interaction problems. However, the source of the poor convergence in the linear method is clear, and a
modification to the linear algorithm is printed in this paper, so that rapid convergence is maintained.
The modification is an ex:tension of previous work on postbuckling analysis using Newton’s method
(ref. 7) for problems with solated bifurcation points or limit points.

Newton's method is started by reducing the nonlinear problem to a sequence of linear boundary-
value problems. Two difficulties arise in the application of Newton's method. First, the linear boundary-
value problems do not have closed-form solutions; therefore, the computation requires some kind of
an approximate solution. The second difficulty is the lack of convergence of the sequence of linear
problems near bifurcation points, where the different nonlinear solutions intersect. Because the linear
boundary-value problems :nust be solved by approximate methods, one approach is to discretize the
nonlinear problem from the beginning and then apply Newton’s method to the resulting set of nonlinear
algebraic equations.

The completely algebraic approach is not followed here because of the second difficulty of ensuring
convergence of Newton's method. Convergence is obtained here by converting the linear partial
differential equations to a Sturm-Liouville problem with orthogonal eigenfunctions. The nonlinear
problem is then discretized by a Galerkin solution with the eigenfunctions as coordinate functions.
The resulting set of nonlinear algebraic equations with unknown generalized coordinates is uncoupled
in the linear terms. The sclution procedure can be summarized as a Galerkin solution of the nonlinear
boundary-value problem for the plate. However, the choice of coordinate functions is not arbitrary;
the coordinate functions are determined by the problem itself. The second, more subtle, difficulty
of convergence is overcom~ directly before addressing the first difficulty, that of computing accurate
approximate solutions for linear boundary-value problem:.



The final result in this paper is a set of nonlinear algebraic equations in generalized coordinates.
The equations are in the form postulated by Thompson and Hunt (ref. 6) in their studies of stability
theory. The coefficients in the algebraic equations are defined explicitly for the plate problem. The
process of defining the coefficients suggests algorithms for numerical solutions of the plate problem.
Newton’s method applied to the continuous formulation of Von Karman plate theory provides a direct

connection with the theory for discrete approximations.

Symbols

Aq1, A9, Ago, Agg stretching stiffness terms, force per unit length

a; coefficient in infinite series for wy

D discriminant of cubic equation in ¢;

Dy1, Dy9, D9y, Degg bending stiffness terms, force times length

(E1, Eq, E3) residual error in plate equations for current approximation
€z, €y, €xy membrane strains

< f,g> integral of product of functions f and g over area of plate
i,j,n unit vectors

Ly1(u), L12(u)
Lya(v), Lao(v)

linear terms in partial derivatives of u

linear terms in partial derivatives of v

L3z(w) linear terms in partial derivatives of w
My, My, My, moment stress resultants, force
Nz, Ny, Ngy membrane stress resultants, force per unit length

Ni(w, w), Ng(w,w)
N3(N:L'1 Nyw N:cya ‘U))

bilinear terms in partial derivatives of w

bilinear terms in stress resultants and partial derivatives of w

Qi generalized coordinate in Galerkin solution of plate equations
u, v in-plane components of plate displacements
ur, vy, solution of linear in-plane equilibrium equation
(ug, vg, wp) current approximation for a solution of the plate equations
w transverse plate displacement
{6u, 6v, 8w) correction to current approximation of the plate equations
A load parameter that multiplies displacements on plate boundary
Ai ith eigenvalue of Sturm-Liouville problem
(& miy &5) ith eigensolution of Sturm-Liouville problem
A subscript following a comma indicates partial differentiation with respect to the subscripted
variable.

Nonlinear Equations for Plate Problem

The nonlinear theory (ref. 8) is summarized here first, and the linear form of Newton’s method is

then applied to the three equilibrium equations written in terms of the displacement components u,
v, and w. The linear problem is then transformed into a Sturm-Liouville problem that shows why the
linear form of Newton’s method can fail to converge for modal interaction problems. The next section
of the paper contains the modification of the linear form of Newton's method using the eigenfunctions
of the Sturm-Liouville problem.
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The nonlinear plate equations for a specially orthotropic plate are summarized as follows:

1. Constitutive relation::

Nz = Ar1ez + Aoey (1a)
Ny = Ajoez + Axey (1b)
Nzy = Agsezy (1c)
M; = Dyyw ez + Digw gy (2a)
My = Diow 2z + Dagw yy (2b)
Mzy = Degw,zy (2¢)

2. Strain-displacement 1¢lations:
er = uz + (1/2)w (3a)
ey = vy + (1/2)w), (3b)
ry = Uy + Uz +ULWy (3¢)

3. Equilibrium equations:

Nzz+ Nzyy =0 (4a)
Nyyz +Nyy=0 (4b)
Mgz 2z +2M oy oy + My yy = (Nzw z + Npyw y) 2 + (Nyw y + Neyw z) g (4c)

4. Boundary conditions

The plate problems considered here have boundary arcs where u and v are prescribed. The plate
may or may not have addit:onal arcs that are free of membrane stresses. The boundary conditions are
indicated schematically by the loaded boundary C; and the unloaded boundary Cy in figure 1. In the
figure, the displacements ou the boundary C) are of the form

u = Aug, {on C1) (5a)
v =Avg (on Cy) (5b)

where uy, and vy, are functions of arc length on the boundary, and the load factor A is a scalar multiplier.
On the other hand, the stress resultants vanish on the Cy boundary defined as follows:

Nn = an = O (Oll C2) (SC)

The boundary conditions on the transverse displacement w: are homogeneous and correspond to simply
supported or clamped conditions in linear-plate bending theory and are of the following form:

w=00onC; wy=0; or wp, =00nC (5d)

The boundary conditions on w could be more general, but the method of analysis is illustrated with
less complexity by the choice made here. The load paramneter () is also introduced in the in-plane
boundary conditions to simplify the analysis.

Substituting the strain-displacement relations (eqgs. (3)) into the constitutive relations (egs. (1)) and
the resulting equations into the equilibrium equations (eqs. (4)) allows the equilibrium equations to be
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written as nonlinear partial differential equations in terms of the displacement components u, v, and

w. The equations, written here in operator notation for brevity, are

Lyi(u) + Li2(v) + Ni(w,w) = 0
Li2(u) + Log(v) + No(w,w) =0
L33(w) — N3(Nz, Ny, Ngy, w) =0

The linear operators, labeled L;;, are

L11(u) = An1u gz + Asett gy

L12(f) = (A12 + Age) f 2y

Logg(v) = Agguyy + A66V,z2

L33(w) = D11w zzzz + (2D12 + Deg)w zzyy + D2ow yyyy

The nonlinear operators are

Ni(f,9) = A11f 292z + (A12 + Age) f y9,2y + A6 f 29,4y
Nao(f,9) = A22f,y9,yy + (A2 + A66)f,xg,xy + A66f,y9,zx
N3(NI’ Ny, Nzy, w) = (wa’z + Nzywﬂy)ﬂz + (Nywvy + Nzywvm)vy

Linear Form of Newton’s Method for Plate Problem

Linear Form of Newton’s Method for Displacement Formulation

(6a)
(6b)

Newton’s method starts with an approximate solution (ug, vy, wg) for the nonlinear system (eqs. (6))

plus the boundary conditions. The zeroth approximation is corrected by letting

u=ug+6u, v=1v9+ v, w=wy+ éw

(9)

The linear form of Newton’s method seeks the correction (§u, év, Sw) by substituting equations (9) into
the nonlinear equations (6) and dropping nonlinear terms in the corrections to arrive at the following

linear variational equations:
Ly1(6u) + L1g(6v) + N1 (6w, wo) + Ny(wp, bw) = —E;
Lyo(6u) + Log(6v) + No(bw, wp) + No(wp, bw) = —Ey
L33(6w) - N3(6N.‘E, 6Ny, 5Nzy» ’LU()) - N3(N1:05 NyOa Nzy01 6'LU) = _E3
where the residual-error terms are known functions of the zeroth approximation; that is,
Ey = L1 (uo) + L12(vo) + N1(wo, wo)
Ey = Lia(uo) + La2(vo) + Na(wo, wo)

E3 = L33(wo) — N3(Nzo, Nyo, Nzyo, wo)

Nz = A [uo,x + (1/2)w3~$] + Aj9 [vg,y + (1/2)w(2),y]

(10a)
(10b)
(10c¢)

(11a)
(11b)
(11c)

(12)



with similar expressions for Ny and Nzyo in terms of the zeroth approximation for u, v, and w. The
corrections to the membrar ¢ stress resultants are linear in §u, év, and dw. For example,

SNy = Agp (buy + 6v g +w zodwy + bw zwo y) (13)

Linear Sturm-Liouville Theory

The linear variational e juations of Newton’s method (egs. (10)) have variable coefficients and, in
general, cannot be solved in closed form. However, the linear problem can be reduced to a Sturm-
Liouville problem, which can be solved by approximate methods. The reduction to a Sturm-Liouville
problem is achieved by defi-iing the zeroth approximation for the in-plane displacements as the sum of
two pairs of functions as fo'lows:

up = Aug + Uy (14a)
vy = AV + Uyt (14b)
The sums are defined by requiring that u; and vy, satisfy the linear boundary-value problem,
Lyy(up) + Lig(vr) =0 (15a)
Lyg(ug) + Lao(vr) =0 (15b)

plus nonhomogeneous boundary conditions. The functions Auz, and Avy that satisfy equations (15) are
also required to satisfy the boundary conditions on u and v in equations (5).

The functions uyg and «,g in the zeroth approximation for u and v (egs. (14)) are then defined as
the solution of the boundaiy-value problem as follows:

Ly (uwo) + Li2(vwo) + N1 (wo, wo) = 0 (16a)
Lia(uwo) + La2(vwo) + Na(wo, wo) = 0 (16b)
with the homogeneous bou dary conditions
Uyo =0 (on Cq) (17a)
Uy =0 (on ) (17b)

Finally, the definition of the zeroth approximation for u and v as sums of solutions of two boundary-value
problems is completed by partitioning the zeroth approximation for the membrane stress resultants
(eq. (12) and appendix) as follows:

Nzo = ANzp + Nowo (18a)
Nyo = ANy + Nywo (18b)
N:vyO = ’\NzyL + NzywO (18c)

where the functions multipied by the load parameter A and with the subscript L satisfy the boundary
conditions on Cy (eq. (5¢c)) The functions with the subscript w0 also satisfy the conditions on Cy and
are completely independent. of the value of A.

Splitting the zeroth approximation for u and v reduces the linear variational equations (egs. (10)) to
a boundary-value problem with homogeneous boundary conditions and with the load factor A appearing
as a parameter in the following partial differential equaticns:

Ly (6u) + Lya{6v) + V1 (6w, wg) + Ni(wg,dw) =0 (19a)
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Ly2(6u) + Lao(bv) + No(bw, wp) + Na(wq, dw) =0 (19b)

L33(6w) - N3(6NI, (SNy, 6N1y, w()) - Na(Nl-wg, Nyw(], NzywOa 6w) - /\N3(.NIL, NyL, nyL,éw) = —E3 (19C)

Eigenfunctions of Sturm-Liouville Problem

The solution for the linear system (eqgs. (19)) can be formally written as an expansion in eigenfunc-
tions &;, n;, and ¢; of the Sturm-Liouville system:

L11(&) + L12(m) + N1(éi, wo) + N1(wo, ¢;) =0 (20a)
L12(&) + Loa(mi) + Na(¢i, wo) + No(wo, ¢;) = 0 (20b)
L3(#i) = N3(nzwi, Toywis Raywis o) — N3(Nzwos Nywo, Neywo, 6i)

— MN3(N, L, NyLyNzyL7¢i) =0 (i=1,2 3, ..., 00) (20c)

where the functions nzy;, Ny, and ngy,,; are defined in equations (A7a) to (A7c). The notation for
equations (20) is somewhat cumbersome, but the final result is simple. The eigenfunctions that are
solutions of equations (20) obey the following orthogonality relation that is derived in the appendix:

(A = X)) / (67, N3 (Nap» Nyp Noyr, 6:)] dA = 0 (21)

The orthogonality relation suggests seeking the solution of the linear variational equations as a modal
expansion as follows:

o0
bu=1uy = Y gié; (22a)
i=1
o
b=y = gin; (22b)
=1
o
bw =" qi¢i (22c)
i=1
o
0Ny = Ngy1 = Z‘H"zwi (23a)
i=1
oc
6Ny = Nywl = Z‘Iinywi (23b)
i=1
o
ONgy = Nryu1 = Z(h‘"mywi (23c)
i=1

The generalized coordinates g; are unknown. They are determined by Galerkin’s method. The assumed
solution satisfies equations (19a) and (19b) term by term. Equation (19c) is satisfied in the least-squares
sense by multiplying the equation by each eigenfunction ¢; in turn, integrating over the area of the
plate, and equating the results from each side of the equation. Because of the orthogonality condition
(eq. (21)), the resulting equations take the form

_ < —E3,¢j >

g = G-y (G1=123, ..., ) (24)



where < f, g > represents the integral over the area of the product of the functions f and g. That is,

<f.9>=[(f9) da (25)
It is also assumed in equat ons (24) that the eigenfunctions have been normalized so that
< ¢iaN3(N:L'1/'NyL7N.’I:yLa¢i) >=-1 (?": L 23 ..., OO) (26)

Equation (24) is a canonical form for the edge-loaded plate problem. The solution of the linear
variational equations of N-wton’s method is completed by substituting the generalized coordinates
g; from equations (24) into equations (22) to determine the correction (6u, 8v,8w). If the correction is
small compared with the z-roth approximation (ug,v0,wg), then an iterative solution of the nonlinear
plate equations based on the linear form of Newton’s method can be expected to converge. The linear
iterative sequence is contirued by going back to equations (9), letting w; = wo + dw, and repeating
the analysis through equations (24) with w; as the zeroth approximation wg for w during the second
iteration cycle.

For the iterative procedure in the linear form of Newton’s method to converge, the corrections from
successive iteration cycles must approach zero as the iteration continues. A quantitative measure of
the correction éw from any iteration cycle is the magnitudes of the generalized coordinates g;, which
are modal amplitudes, as determined by equations (24). The current solution for w can be expanded
in a least-squares sense as « series in the eigenfunctions of the Sturm-Liouville problem

w= Z a;d; (27)
=1

A measure of convergence is the set of ratios of the absolute values of ¢; to the largest coefficient
in absolute value in the series for w. Each ¢; in turn depends on the numerators and denominators
in equations (24). The denominators are a function of the load parameter A and the eigenvalues A;.
Obviously, a large value for the corresponding g¢; is the result of dividing by a denominator that is zero
or small in absolute value, unless the numerator is also siall.

The numerators are als» linear in A and can be written as

< E3,¢; > = E3; —a;A (28)

The coefficient a; in equation (28) is the same as the coefficient of ¢; in the expansion for w = wy in
equation (27). (See appendix.) Therefore, equations (24) can be rewritten as

q; = (E3,' - ai/\)/(/\ - ’\i) (i = 1, 2, 3, eeey OO) (29)

The load parameter can be prescribed to make one of the generalized coordinates, for example g,
vanish if the corresponding; coefficient aj is not zero, that is,

A= Egr/ag (30)

If X — s is also zero, g can still be set to zero arbitrarily during any given iteration cycle. Then, if
X is not too close to the remaining );, the iteration using the linear form of Newton’s method can be
continued. If one of the equations is indeterminate, for example,

g = (Esg —axA)/(A = Ap) = (0+00)/0 (i #k) (31)

the iteration can be continued after setting gx equal to zero. However, the indeterminate form is an
indication of modal interaction with other solutions to the nonlinear problem for which g is not zero.
A bifurcation point or limit point, where a second nonlinear solution intersects the current solution, is
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a limiting case of the indeterminate form in which the expansion is about an exact solution, so that
the residual error function E3 =0 for A = X and X = A.

In cases where some of the g; determined by equations (29) are not small or are indeterminate,
the linear form of Newton’s method must be modified either to speed convergence of the current
approximation or to obtain convergence for solutions that intersect the current solution at bifurcation
points.

Modified Newton Method for Modal Interaction Problems

The analysis of the preceding section shows that the linear form of Newton’s method for buckled
plates may diverge or miss solutions when the load parameter A is near one or more eigenvalues \; of
the Sturm-Liouville problem associated with the linear variational equations. A modification of the
iteration that has better convergence properties is derived in this section.

The linear variational equations (egs. (10)) were derived by dropping nonlinear terms in the
correction dw. The exact nonlinear equations that result from substituting equations (9) into the
nonlinear boundary-value problem (egs. (6)) are

Lyi(6u) + Li2(6v) + Ny (6w, wo) + Ni{wy, w) = —E; — N1 (6w, bw) (32a)
Lyz(6u) + Lao(8v) + Na(bw, wp) + Na(wy, 6w) = —E; — No(bw, bw) (32b)
L33(6w) - N3(6N1v6Ny’ 6N1‘y’ IU[)) - N3(N1'0’ Ny(]»nyOv 6‘!!1) = _E3 - N3(6N1'»6Ny’ 6N1‘y1 6‘!0) (32C)

The nonlinear terms in §w are placed on the right-hand sides of equations (32) to indicate that an
iteration sequence can be devised in which the nonlinear terms in dw are based on some current
approximation. The form of that iteration sequence is suggested by examining the exact nonlinear
equations in the generalized coordinates g;.

Nonlinear Problem in Generalized Coordinates

In equations (14), the initial approximation for the in-plane displacements (ug,vp) was partitioned
into two sets of functions. This partitioning remains the same for the complete nonlinear problem. The
corrections (éu, év) are further partitioned for the nonlinear problem as follows:

OU = Uy + Uy (33a)

6v = vy + vy (33b)

where (uy1, vy1) is the first approximation for (éu, §v) defined by equations (22). The additional terms
Uw2 and vy in éu and év are defined by quadratic terms in fw. Formally, they satisfy the differential
equations

Ly1(uw2) + L12(vew2) + N1(bw, 6w) =0 (34a)
Lya(uy2) + Lao(vyg) + No(bw,dw) =0 (34b)

The nonlinear operators Nj(§w, éw) and Nap(éw,dw) are quadratic in éw. The series solution for dw
in equation (22c) is unchanged in the complete nonlinear formulation, and the generalized coordinates
g; in the series for 6w remain to be determined. Equations (34) are solved in terms of the generalized
coordinates to obtain

o oo

uw2 = Y ¢iakéjk (35a)
j=1k=1
o el o]

Vw2 = D Y Gk (35b)
j=lk=1



where the functions §;; and n;; are defined as solutions of the following equations:
L11(&k) + Li2(nse) + Ni(dj, ¢k) =0 (35¢)
Lya(&k) + Laz(njx) + Naldj, dk) =0 (35d)

The complete corrections t.» the stress resultants in terms of the generalized coordinates are obtained
by adding quadratic terms to the linear terms already defined in equations (23). That is,

oo oo 00
8Nz = Nyt + Nowz = 3 Gifzwi + 9 D 4j4kNzwj (36a)
i=1 j=1k=1
o) 00 00
Ny = Nyw1 + Vyw2 = ZQinywi 1 Z Z i A Nywjk (36b)
i=1 1=lk=1
oo o 00
ONzy = Neyu1 + Nzyw2 = Z QiNgywi T Z Z 959k zywik (36¢)
i=1 j=1k=1

The terms in the double siinmations are defined explicitly in the appendix.

The final step is to substitute the partitioned form for the stress resultants into the transverse
equilibrium equation (eq. (19c)) and to solve the resulting equation by Galerkin’s method. The
equilibrium equation is

L33(6w) — N3(Nzw1, Nywis Neyw1, o)
~ N3(Nzwo, Nywo> Nrywo, 6w)
— AN3(Ngp, Nyps Noyr, 6w)
= — E3+ N3(Nzw1, Nyw1 Nzyw1, 0w)
+ N3(Nzw2, Nyw2s Nzyw2s wo)
+ N3(Nzw2, Nyw2, Nzyw2, 6w) (37)

The left-hand side of equation (37) is identical to equation (19¢c). The quadratic and cubic terms in the
generalized coordinates have been added to the right-hand side of the equation. The formal Galerkin
solution of equation (37) is an infinite set of cubic equations in the g; as follows:

(A = A)gi = Coi + Coijrjdk + Caijkm@i@idm  (i=1, 2,3, ..., 00) (38)

In equations (38), repeated subscripts j, k, and m are summed. The integrals that define the coefficients
in equations (38) are listed in the appendix. Equations (38) are the final results of reducing the nonlinear
plate problem to a nonlinear algebraic problem in the generalized coordinates g;.

Equations (38) are similar to the equations in generalized coordinates postulated by Thompson
and Hunt (ref. 6) for couservative systems. The analysis in the body of this paper and in the
appendix gives a precise formulation for determining the coefficients in the cubic equations. The
displacement formulation of the Von Karman equations and the choice of boundary conditions allow
exact determination of the role of the load parameter A. 'The equations for the plate problem are cubic
in the generalized coordinates and linear in the load parameter A

Only the real roots of the cubic equations correspond to real solutions of the plate equations. The
number of real roots is affected by the algebraic signs of the coefficients. Therefore, in the theoretical
analysis, much qualitative information is available when it is known how the coefficients vary with
the load parameter A. Tke equations are uncoupled in the linear terms for the values of ¢; with the
coefficients (A— ;). The sign of each coefficient of a linear term depends on whether A exceeds A;, which
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in turn is a function of wy. The coefficients Cijr and Cjjiy are independent of the load parameter A
for the edge-loaded plate. The residual-error terms Cp; are exactly the same terms that appeared in
the linear form of Newton’s method as follows:

Coi = < E3,¢;> = E3; + a;A (i=1,2,3,..., o) (39)

The form of the complete set of cubic equations in generalized coordinates suggests a modification
of the linear form of Newton’s method that will improve convergence.

Modification of Linear Form in Generalized Coordinates

The linear form of Newton’s method corresponds to dropping quadratic and cubic terms in
equations (38) to obtain equations (22). This procedure breaks down when the load factor A is nearly
equal to one of the eigenvalues (e.g., the Ith eigenvalue). A modification of the linear form is to retain
only nonlinear terms in the modal amplitude ¢y during a given iteration cycle. The modified form of
equations (38) is then

(A= X)gi = (B3 + a;A) + Coirraf + Cairrrgd - (i=1,2,3, ..., o) (40a)
The Ith equation of this modified set is the cubic equation
(A= Angr = (Es; + agA) + Corpra + Carrrray (40b)

If the coefficient C37yy is not zero, the cubic equation has at least one real solution for ¢;. In some
cases, there can be three real roots. The discriminant of the cubic equation is

D =3+ (3b%/4)c? — (3bd/2)c — d(b® + d/4) (41)

where
c= (A= Apr)/(8Csr1r), b= Car11/(3Cs1r11), and d = (E3; —ayA)/Capy

When the discriminant D is positive, the cubic equation has three real roots. The real roots qr of
the cubic equation in g7 are then substituted in the remaining equations (40), which are linear in the
remaining ¢;. The solution of equations (40) for any root of the cubic equation completes an iteration
cycle in the modified form of Newton’s method.

This solution of equations (40) can be the basis of a second iteration cycle to compute a solution
of the complete set of nonlinear algebraic equations (eqgs. (38)). The solution of equations (38) can be
assumed as

s =aV + bq (i=1,23, ..., ) (42)

where qz(l) denotes the g; from a solution of equations (40) and the values of ég; are corrections to be
determined. Substitution of equations (42) into equations (38) results in a new set of coupled cubic
equations in the unknown é¢;. An approximate solution of this set is obtained by truncating the new
set of equations; this truncation is accomplished by retaining only nonlinear terms in 8g; to obtain an
updated set of equations (40); these equations are solved to complete the second modified iteration

cycle. The modified iteration can be continued until an accurate solution or solutions are obtained

for ¢; in equations (38). When the absolute values of q(l)

; ~ are all small, the iteration can be expected
to converge; this convergence is expected, since the residual-error vector for any iteration cycle after
the first is equal to the summation of the quadratic and cubic terms dropped in going from the full
nonlinear set of equations (egs. (38)) to the truncated set (eqgs. (40)).

This direct iterative solution of equations (38) is straightforward in theory but has disadvantages
for actual computations. The large number of coefficients of quadratic and cubic terms are defined
by integrals that must be evaluated numerically or in closed form. An alternative approach, which
is equivalent to summing the quadratic and cubic terms into an updated error vector, is to update
the zeroth approximation for wg after solving equations (40) for the first time. The current correction

dw is computed from equation (22c). Examining the details of updating wg is beyond the scope
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of the present paper. However, if the numerical analysis is also connected with a Galerkin solution
for the linear eigenvalue problem, updating wgy becomes a part of an iterative procedure whose rapid
convergence makes it a practical numerical algorithm. In this procedure, it is also necessary to compute
only a few of the eigenvalues A; and the corresponding eigenfunctions ¢;. An equivalence transformation
can be used in the numerical analysis (ref. 9). The equivalence transformation is derived by going back
to equations (22) and letting the correction éw be a series of admissible functions g;, of which only a
small number are eigenfunctions ¢;.

Modification for Mod:al Interaction

The modified form of Newton’s method can be externled to the cases where two eigenvalues (e.g.,
A1 and Ag) are close together. In those cases, equations (38) are truncated during an iteration cycle to
contain only nonlinear terms in ¢; and g2. The pair of equations for i = 1 and ¢ = 2 are simultaneous
cubic equations. Real solutions for ¢; and g9 are then substituted in the remaining linearized equations
for the rest of the g;.

Conclusions

Newton’s method has been applied to the nonlinear postbuckling problem for plates. The method
reduces the nonlinear partial differential equations of plate theory to a set of simultaneous cubic
equations in generalized coordinates. The cubic equations are uncoupled in the linear terms. The
uncoupling is achieved by solving the linear variational equations of Newton’s method as a Sturm-
Liouville problem. The eigenfunctions of the Sturm-Licuville problem are then used in a Galerkin
solution of the full nonlinear plate equations to derive the set of cubic equations.

By specifying boundarv conditions on displacements, instead of on the in-plane stress resultants,
the coefficients in the cubi: equations are linear in the ioad parameter, which is a multiplier of the
boundary conditions. The analysis also shows that coefficients of quadratic and cubic terms in the
generalized coordinates of the cubic equations are independent of the load parameter.

The special form of the cubic equations suggests a method of solution for modal interaction problems.
The method is a modification of the linear form of Newton's method. The solutions of the plate
equations derived by the method can be either approximate or very accurate, depending on the number
of generalized coordinates retained in the solution.

NASA Langley Research Center
Hampton, VA 23665-5225
July 27, 1989
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Appendix
Definitions of Sums of Functions and Integrals That Appear in the Analysis

Green’s Theorem and Properties of Bilinear Operators

The analysis in the body of the paper is an examination of a formal Galerkin solution for the
Von Karman plate equations. The integrals in the Galerkin solution make repeated use of Green's
theorem for integration in a plane. The form of the theorem used here is

/ z(rz+sy)dA= /C z(ri+sj) - nds— /A (rzg +szy) dA (A1)
A

The area integrals are over the area of the plate indicated schematically in figure 1, and the line integral
is over the boundary of the plate.

The plate equations are nonlinear and contain a number of bilinear operators. The analysis in the
paper uses the properties of bilinear operators of the general form N (f,9). The operators N (w, w) and
Ny(w, w), defined in equations (6), are bilinear operators; each is a sum of products of linear operators.
The operator N3(Ng, Ngy, Ny, w) is a sum of bilinear operators. The property of the bilinear operators
that is used repeatedly here is that if a, b, ¢, and d are constants, and if

f=afi +bfy and g = cg; +dg2

then
N(f,g) = acN(f1,91) + adN(f1,92) + becN(f2,91) +bdN(f2, g2) (A2)

For example,
Ni(w,w) = Ny(wg + dw,wp + dw)

Ni(w,w) = Ny(wo, wo) + N1(wo, bw) + N1(6w, wo) + N1 (6w, w)

and

Ni(wp, bw) = Ny (wo,zthdh‘) =Y qiN1(wo, ¢:)
i=1

i=1

Ni(8w,bw) = Ny (Zqz‘fbi, Z‘Jj¢j) =3 qigiN(#i, ¢5)
i=1 j=1 i=1j=1

A bilinear operator on a single sum results in a quadratic form with double subscripts. The double
sums in the quadratic forms for the bilinear operators on w = wo + éw are the main factors in defining
the solutions for u and v in the analysis of the plate equations leading to the cubic equations in the
generalized coordinates g;. Since the operators on u and v are linear in the first two equations of
equations (6) and the boundary conditions on v and v are also linear, the linear partial differential
equations whose solutions determine u and v can be solved by solving equations (15), (16), (20),
and (35) separately and superposing the results. The superposition on u and v is summarized in the

following section.

Definitions of Sums of Functions

The in-plane displacements are defined in the form

U = Aup + Uyo + Ul + U2 (A3a)

v = AUL + Uy + Uyl + Vg2 (A3b)
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The membrane strains are summed as

€z = Aezp + €gwo + €zwl + €zw2 (Ada)
ey = AeyL + eyuwo + eywl T eyu2 (A4b)
€xy = /\@zyL + €zywd T erywl + €ryw? (Adc)
where
€rL = ULz
€yL = VL y

€xyl = ULy + VL ¢
2
€rw0 = U0,z + (1/2)w0,z
Ezyw0d = U0,y + Ywo,z + W0 2100y
€zwl = Uyl g + wO,x‘Sw,m
erywl = Uyly + Vylz + Woz 6w,y + §w‘$w0‘y

Individual strain terms not listed can be derived by permutations of « and v and z and y in the terms
listed above.
Membrane stresses follow the same notation pattern as the strains

Nz = ANgL + Nzwo + Nzwi + Nz (Aba)
Ny = ’\NyL + Nywo + Nyu}l + Nyw2 (ASb)

where

Ngp = Anegy, + Aizeyr, Npwk = Allegyk + A12€yuk (k=0, 1, or 2)
Ny = Aneyr + Ar2eyr, Nyyr = A12€zuk + A22eyui (k=0, 1, or 2)

nyL = Agger,L, and Nzywk = Aﬁﬁezywk (k=0, 1, or 2)

Boundary Conditions

The solution (uy,vy) satisfies the linear partial differential equations (egs. (15)) plus the boundary
conditions (eqgs. (5)). The functions Nz, Ny, and Ny satisfy the stress-free boundary conditions
on the Cy arcs.

Since the solution (uy,/r) satisfies the nonhomogeneous boundary conditions, the solutions that
are added must vanish on the boundary. They are defined here to vanish term by term as follows:

Uyt = 0 on arc C (k=0,1, or 2) (A6a)
vyt = 0 on arc C; (k=0,1, or 2) (A6b)

The stress resultants with the subscripts wk satisfy the stress-free boundary conditions on arc Cy. These
boundary conditions appear in the derivation of the orthogonality conditions for the Sturm-Liouville
problem that is derived from the linear variational equations of Newton’s method (egs. (10)).
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Orthogonality Relation for the Sturm-Liouville Problem

The orthogonality relation for the Sturm-Liouville problem (eq. (21)) follows from the boundary
conditions, the definition of terms in the subscript wl, and Green’s theorem. In equations (22), the
functions u,; and v, are written as sums of functions that satisfy the linear partial differential
equations (20). From the definition of the strains in equations (A4) and the stress resultants in
equations (A5), the terms in the summation in equations (23) are also defined as follows:

newi = A11(Eiz + wozPic) + A12(miy + woydiy) (ATa)
Nywi = A12(&iz + wozbiz) + A22(niy + woydiy) (A7b)
Nyywi = A66(§i,y + izt wO,z¢i,y + ¢i,mw0,y) (ATc)

Equations (20a) and (20b) have the alternate form

Ngwix T Nzywi,y = 0 (i=1,2 3, ..., 00) (A8a)

Nzywiz T Mywiy =0 (i=1,2 3, ..., ) (A8Db)

The orthogonality relation is derived by applying Green’s theorem to the above equations and to
equation (20c). For equations (A8), the result is

f . .
jA Ej(nxwi,:c + nxywi,y) dA = L gj(n:cwil + na:ywi.l) . nds — A(nxwifj,z + nxywi&j,y) dA =0 (A9a)

Anj(nxywi,z + nywz‘,y) dA = /;‘ nj(nxywz'i + nywij) . nds — A(nzywinj,x + nzwi’?j,y) dA =0 (A9b)

The boundary conditions on the solutions of equations (20) are that each eigenfunction §; and 7; must
vanish on the boundary Cj and that the dot products in the line integrals in equations (A9) vanish on
the boundary Co. Therefore, in the notation of equation (25) for integrals of products,

A(nxwifj,x + n.rywi&j,y) dA = < nzyi;§jz >+ < n:cywiwfj,y >=0 (A10a)

< Ngywis Nz > + < Ngwi> My > = 0 (i=1,23, ...,00,5=1,2,3, ..., oo} (Al0b)

It is assumed that each of the functions ¢; in the solutions of equations (20) satisfies the same
boundary conditions as w. Green’s theorem applied to any N3 operator in equation (20c) then has the

general form

< ¢], N3(N1-, Ny,ny, '(U) > = - < (wa'z + Nzyw‘y),(bj’z > — < (Nyw'y + Nzyw’z),q&j,y >

where
N3(Ng, Ny, Ngy,w) = (Newz + Npywy) o + (Nywy + Ngywz) y
Specifically,
< ¢ja NS(nrwianywi» Nzywis w[]) >=-Z< ("Iwiwo,x +nzywiw0,y)s¢j,z >-< (nywiwo,y +nxywiw0.x)s¢j,y > (Alla)

< ¢j1N3(NzwDaNyw07 nyw(]v ¢1) >=-< (Nzw0¢i.z + Nzyw0¢i.y)y¢j.x >-< (Nyw0¢‘i.y + Nzyw0¢i.z)v ¢j,y > (Allb)

< ¢, N3(Nop, Nyr Noyr, ¢i) > = — < (Nzpdiz + NoyLoiy) bz > — < (Nyrdiy + Nryrdiz) b5y > (Allc)

The orthogonality relation (eq. (21)) is proven by multiplying the jth equation of equations (20c)
by ¢;, integrating over the area of the plate, and subtracting the result from the integral of the ith
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equation multiplied by ¢;. Considering one operator at a time in equations (20c), it can be shown first
that

< ¢j, Lag(¢i) > — < ¢;, L3z(¢;) > = 0 (Al2a)

Next, by inspection of the right-hand sides of the last two of equations (A11), it is apparent that

< ¢jsN3(Nzw0~ VywOwNzyw(la ¢z) >-< ¢ivN3(Nzw0sNyw0aNzyw0» ¢J) =0 (A12b)

< @5, N3 Npp, Nyp, Npyp, #i) > = < ¢ N3(Ngp, Nyp, Neyr 65) > (Al2c)

If equations (A10) are -ubtracted from the right-hand side of equation (Alla) and the terms are
rearranged, the result is

< ¢j7 N3(n$wi7nywi7”1ywis wp) > = — < Ngyy, (fj,x + U’O,Id)j,z) > = < Nyui, (nj,y + U’O.yd’j.y) >
= < Ngywi; (fj,y + 1z + wD,yd’j,z + w(),xd’j,y) >

Finally, comparison of the above equation with equations (A7) shows that the subscripts ¢ and j can
be interchanged with the r-sult that

< ¢ij3(nxwianyw ﬂnywz’snzywiw"UO) >-< ¢iaN3(nrwjvnysznxywja wp) > =10 (Al2d)

Equations (A12), based o1 the solutions of equations (2)), are sufficient to derive the orthogonality
relation (eq. (21)).
Expansion of w in Terms of Eigenfunctions ¢;

In equation (27), the current approximation wy for w is expressed as a series of eigenfunctions. The
coefficients a; in the series are computed from the orthogonality relation (eq. (21)) and the normalizing
equation (eq. (26)) as follows:

oc
< @i, N3(Ngp, Nyp, INpyp,wo) > = < ¢4, N3 | Npp, Nyp, Npyp, Y ajoj | > = —a; (A13)
j=1

The formal expansion of w as a series of eigenfunctions appears again in the analysis in equations (28)
and is repeated in equations (39). Using equations (18), the residual error E3 is written as

Ej3 = Laz(wi) = N3(Nzwos Nywos Nrywos wo) — AN3(Npp, Nyp, Nyyr,, wo) (Al4)
Equations (A14) and (A13’ are used to derive equation (28); also, the term
E3; = < ¢y, Laz(wo) > — < ¢y, N3( N0, NywOsNIyW()7w0) >

is independent of the load factor A.

Coeflicients of Higher {)rder Terms in Generalized Coordinates

The coefficients of quadratic and cubic terms in the generalized coordinates that appear in
equations (38) are defined s follows:
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< ¢ivN3(wa1aNywlaNzywla6w) >+ < ¢iaN3(wa27Nyw2aN1:yw2aw0) >

= 2jqk < bir N3(Ngwj Nywjs Rayws> Pk) >
oo o
+ E Z g9k < éis N3(n:cwjkv Rywjks Nzywjk: ¢k) >

o0 oC
= Z > Caijraiar (A15)

o0 oo o0
= Z > 3" 409mCsijem (A16)

~
Il
-
s
il
—
I
—_

When equations (A15) and (A16) are substituted into equations (38), the summation signs are
suppressed to condense the notation.
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C,: Prescribed u, v displacements
C,: Free of membrane stress resultants

Co
\01 u=Au
v=K%

Figure 1. Schematic of C; and C boundary arcs of a plate.
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