
N90-27286

A Knowledge-Based approach

to Configuration Layout,
Justification and Documentation

F.G. Craig, D. E. Cutts, & T.R. Fennel

Boeing Computer Services M/S JA-74
Huntsville Artificial Intelligence Center

C. Case & J. R. Palmer

Boeing Aerospace M/S JY-33
499 Boeing Blvd.

Huntsville, AL 35824-6402

COPYRIGHT 1990 THE BOEING COMPANY
PUBLISHED WITH PE,"d'IISSION

Abstract

This paper describes the design, development, and implementation of a prototype expert
system which could aid designers and system engineers in the placement of racks aboard
modules on Space Station Freedom. This type of problem is relevant to any program with
multiple constraints and requirements demanding solutions which minimize usage of limited
resources. This process is generally performed by a single, highly experienced engineer who
integrates all the diverse mission requirements and limitations, and develops an overall
technical solution which meets program and system requirements with minimal cost, weight,
volume, power, etc. This "systems architect" performs an intellectual integration process in
which the underlying design rationale is often not fully documented. This is a situation which
lends itself to an expert system solution for enhanced consistency, thoroughness,
documentation, and change assessment capabilities.

1.0 General Configuration Definition Issues

One of the major issues faced by any aerospace program is the need to consistently apply
requirements, constraints, and resources to optimize the layout of equipment in an end item deliverable

piece of hardware in the midst of changing environments. The change mandates can result from changing
customer requirements, newly derived requirements, reduced program budgets, technological influences
or personnel changes. All these changes tend to impact engineering processes, often rendering current
approaches inappropriate or current solutions inadequate. In the remainder of this section we present a
list (by no means exhaustive) of general issues which must be faced throughout a program's life cycle :

• Fleeting expertise : Turnover of domain experts represents a serious drain on program continuity
and often causes work to be adversely impacted since significant portions of domain knowledge and
program history often reside with individuals.

• Productive use of resources : Much layout work is both repetitive and resource intensive in nature.
Allowing for automation of such repetitive tasks to be accomplished early in the process results in
more resources being available for "real" engineering work to be performed later. This is usually a
direct result of complimenting engineering expertise with tools which allow problems to be solved at
a more abstract level and to off-load the repetitive portions of the task to the automated process.
For example, engineering resources may be diverted to cost proposed changes, document accepted
changes, and implement new procedures. Because of this type of required reaction, program
continuity and productivity can be affected.

95

• Documentation of engineering rationale : All major programs have periodic requirements to review

progress and to answer not only the question of "What has been done?', but also "Why was it done

this way?', and "Why can it not be done this way?'. The last two questions require the

documentation, presentation and defense of engineering rationale. The problem is to provide a sound

defense in areas where adequate documentation is generally missing, the expertise may have been

lost, or rules may not have been codified, consistently applied, or documented.

• Multi-discipline inputs : Decisions made during the configuration process typically originate across

several disciplines and organizational boundaries. Disciplines may or may not be aware of the impact

of their decisions on other disciplines. These multi-disciplinary inputs to the engineering process

highlight the need for a uniform approach to acquiring and representing those inputs.

• Explicit decision parameters and criteria : For engineering problems of any significant complexity,

there is a need for the consistent application of clearly defined problem parameters and dynamic

criteria to the engineering process. This is particularly true when these parameters and criteria
come from various disciplines.

• Limited alternatives : Often the iterative engineering process is not fully utilized beyond a baseline

"satisficing" solution (where the result is not optimal but merely satisfies most of the criteria).

Little time is left to consider alternative analyses, configurations, or development paths. Better

options may be overlooked because no tool/capability exists for quickly modelling and analyzing
engineering alternatives.

• Problem of scale : Unfortunately, major program setbacks often occur because engineering

solutions which worked well for small problems (or subsets of the larger problem) do not scale up

well. This is particularly true when manual engineering approaches which were controllable and

acceptable for the smaller problem are applied to large integrated programs.

As mentioned, the above list is not intended to be exhaustive, but is presented to serve as a
reference for the next section.

2.0 Rack Layout Problem Description

As an initial test problem we have selected the Space Station Freedom module configuration task.
This effort is similar to that required in many aerospace configuration layout applications in terms of

complexity, constraints, and resources. It is above average in the number of expected major changes

and long period of implementation. These factors make the configuration problem an ideal candidate for a
knowledge based system.

The particular test domain area is that of rack placement aboard station modules. The racks

provide the physical packaging for station services and functions. The objective of the rack placement
process is to position a group of racks aboard modules in a configuration that minimizes utilization of

resources, optimizes operational efficiency, and meets as many requirements and constraints as

possible. The rack layout problem is representative of various configuration layout problems faced

within many aerospace programs. Currently three other potential applications for this type of system
have been identified within Work Package 1 of the SSFP, and it is expected that a number of additional

spinoff applications will surface. Also, work performed on this project could be applied to areas

external to the SSFP (other suggested areas include the outfitting of Commercial Aircraft and the
Manned Mars Mission).

We are currently researching knowledge-based systems approaches to aid in this problem. The
purpose of the research is to attempt to overcome the following perceived problems.

96

FIQeting Expertise : Currently, only one person in the Space Station program is identified as an

"expert" on rack placement.

Claim : Development of an expert system to document the analysis, criteria, and engineering

processes used by the expert will allow knowledge needed to solve the problem to be preserved and

to be available for review by "non-experts".

productive use of resources : The current manual approach to this process is quite time consuming

and labor intensive. Rack layout reconfiguration for the station must be performed in step with

other changes to the program. Due to lack of time, changes to rack configuration often represents

an "acceptable" rather than an "optimal" solution.

Claim : The expert system is expected to significantly reduce the amount of time required to

produce a new configuration. Additionally, the rules and procedures used by the system will be

applied consistently through the automated program. Also, the expert system doesn't "forget" the

rules or procedures during periods when the expert is busy with other task. Indeed, such an expert

system could be used to train less skilled personnel to perform the task and can be used by the

expert to explain the required analyses and procedures for the rack placement process.

Defense of engineering rationale : SSFP has a requirement for periodic reviews where design

decisions must be justified.

Claim: In a rule-based system, the engineering rationale for a particular configuration is implicit in

the set of rules used to generate that configuration. This engineering rationale provides placement

justification and explanation. One of the objectives of the current work is to extract intelligible

rationale from the set of rules used to generate the configuration.

Mvlti-disciDline inouts: A large number of constraints exist between racks within and across

modules. When these constraints are imposed on a large number of racks, a difficult constraint

problem emerges. This problem is compounded by the fact that these constraints are imposed by
different domain areas (such as power, thermal, cost, safety, etc.) and may be physical, functional,

or operational in nature.

Claim : Experts from all applicable domain areas provide input to the rules and procedures used for

the automated placement process. An additional advantage is that a unified approach to the

acquisition, analysis, and representation of this domain knowledge can be developed and more easily

verified by the experts from the various disciplines.

Exolicit decision oarameters & criteria : The lack of a uniform approach to explicitly identify

applicable parameters and then consistently apply domain rules for rack placement hinders both the

ability to quickly produce optimal rack layouts, and the ability to provide justification for a

particular configuration.

Claim : The objects, rules, and associated parameters can be printed, queried interactively, and

dynamically changed. This makes explicit the answers to questions such as:

What Impact did the rule

"IF

the rack is rated as 'noisy',
THEN

don't place it near the crew
sleeping quarters."

... have on the decision to place the rack?

97

Limited alternatives : Currently, analysis of rack configurations takes anywhere from several

hours for the simplest changes to several weeks for more common changes. As expected, this does
not leave much time for analyzing "What if...? situations."

Claim : Once the applicable parameters have been identified, and domain expertise has been

captured, this expert system would support the ability to "tweak" priorities and constraints

allowing engineers to analyze alternative configurations. The comparative "goodness" of rack

configurations could be determined, and the tool could be used to suggest or support engineering

change requests. Obviously, this does not imply that human expertise would no longer be needed.
Rather it implies that more engineering analysis could be performed and human intuition could be

used to fuller advantage by allowing the engineer to work at a higher level of abstraction.

Problem of scalQ : Currently the Phase 1 SSFP calls for only two modules and 4 nodes on the

American portion of the program. Even this first phase of the program requires over 144 racks

which must be assigned within a full range of physical, functional, and operational constraints. The

multiplicity of constraints and the number of racks makes a manual approach to solving the problem
nearly intractable.

Claim : While the number of racks and other "real world" objects is expected to remain relatively

constant, it is anticipated that the number of constraint and control rules in the knowledge base will
expand. No reliable data was available to estimate the bounds on the number of these rules. The tool

selected for implementation set no upper bound on the size of the knowledge base (other than

memory limitations). Speed was not a primary issue in this application, but reasonable response

time was expected. The expert system incorporates domain expertise to control the focussing of

rules which helps to limit the solution search (see the control layer in figure 1). Additional

constraints can be easily added (or deleted) as knowledge about the racks and their interactions
increases.

3.0 Implementation

The Nexpert expert system building tool from Neuron Data was selected for this project because it

offered a number of desired features. Nexpert is a hybrid system supporting the representation of

knowledge in objects and rules. It supports full inheritance and procedural attachment of methods as

well as forward and backward rule chaining capabilities. It Interfaces to user developed external

routines as well as PC databases and spreadsheets. In addition, links to large databases such as Oracle

and Informix are supported. Within this project we are currently a beta test site for a

Hypercard/Nexpert "bridge" which allows communication between Nexpert and Hypercard facilities on

the Macintosh II platform. Much of the explanation and training research is currently being performed
using Hypercard. Nexpert is C based, runs on a wide range of hardware platforms, and offers a number

of relatively inexpensive delivery options.

The prototype system software was implemented using a layered architecture to represent system

knowledge (see figure 1). This layered architecture separates different types of knowledge and aids in

development, debugging and maintenance of the system. Chandrasekaran [Ref 3] proposes a similar

architecture in which tools might be developed for "problem classes" such as diagnosis or design. He

proposes that particular problems within these "problem classes" share similarities and that "generic"
approaches to solving them might be appropriate.

Data resides in the lowest layer. The data is currently stored in a spreadsheet format, but facilities

exist in the Nexpert tool to retrieve data from a number of sources including PC spreadsheets, PC

databases, Oracle and Informix. Data is used to support the next layer representing objects and their

associated attributes. These two bottom layers together might be thought of as Object-Attribute-Value

(O-A-V) triplets. "Real world" entities such as modules, racks, standoffs, utilities, etc., are

98

representedas objects in the system. Most of this type of knowledge was obtained directly from SSFP
documentation. It should also be noted that this data might be obtained during the inference process or

from some external source. This external source might well be an external routine which calculates a
value and returns it to the object. This is analogous to attaching a "method" to as object.

The constraint layer contains all the constraint knowledge about the particular domain under

consideration. This constraint knowledge is stored in rules and is a relatively "flat" knowledge base

since this type of knowledge is concerned primarily with only a few "focal" objects. This knowledge

base consists of a collection of "microscopic" rules to be used in solving the problem, and do not embody

higher level "control knowledge" which a human expert would follow in applying the constraints.

The control knowledge (or meta knowledge) at the next level controls the direction of focus for the

constraint knowledge. This level "prunes" the search space so that inappropriate constraint knowledge

is not considered. Control knowledge is used to apply the constraint knowledge in much the same way a

human expert would. An interesting offshoot of this project has been that the codification of this type of

knowledge often helps to better define the problem solving process. This layer is also important in the

explanation/justification of design decisions since explanations of design decisions made by the system

need to be conveyed in much the same manner as a human expert's explanation.

The user interfacerepresents the user'sview of the system. For thisapplicationwe have designed

a "pointand click"user interfacein which the user manipulates racks within a module configuration.

This interfaceprovides inputto the controllayer about rack(s)to be moved. The controllayer applies

appropriate constraint knowledge at the next level, The constraint layer, in turn, obtains needed

information from the lower levels. The final result (no constraints violated, "soft"

constraints violated or "hard" constraints violated) is passed to the user interface where the

user can query the system about the particular decision and what support was used in making the
decision.

Raok

R_onegum_n

CONSTR/UNTS

EMLS_Uvly
/ / suu_ur_ / u_rorB

/ /irllerferlmce _ RlngSuppons

/ s_ / _,-="_
/ / _ o.,,=t=

PHYSlC/d. _==_,C lampedAulg nments -- LAB
_raVtty

N--'_" (_/n p/ace) _TCS_Loop_Ord_

/ -=,_ c--_,
,.Connectb / -- Type _ WasleMgl

\\ \\- '=-.
Nc- \,--.,, ,<

<--7" - s:=._'_ Corr,monE:qulpmerl

\ / __.T_ofs=,., _.'_"_ Cr,,m_-t,,__H_N_,=

C._t_g_ar_Roo¢

Constraint rule hierarchy

99

The explanation/justificationlayersupports access to allthe lower levelsof the architecture.

Queriescan be made of objects,constraintknowledge or controlknowledge. Explanationsdifferin

contentforthese differentlayersand inlevelof detailbased on the levelof expertiseof the user. A
more detaileddiscussionofthislayercan be found in[RefI].

User Interface

Data Values

_s Ca__i_ anatj°n
KB

t,

/ & Decisions_,
1 "/,

i Y

Figure 1

4.0 Issues

As with any expert system project, there were a number of issues critical to success. Some of
these issues are described below:

ExDert availability: From the project's inception, a "domain expert" was identified and has been

available at every step in the development process. This expert understands the problem to be
solved and is able to articulate his method(s) for solving the problem.

Knowledae Acouisition: The data required for this project comes from both SSFP documents and

domain experts. Traditional interview techniques with the primary rack placement expert as well
as other experts in related fields have been very successful. Domain experts have recognized the

I00

potential utility of such an expert system and have supported it fully. In addition to interviews, the

domain experts submitted "test cases" for the system to solve along with their

conclusions/justifications as to why the move was good or bad (or could/could not be made). These

test cases helped identify many weak areas in the system and helped to build the explanation

facilities [Ref 1]. Early in the development process we began to use the system itself to acquire

domain knowledge by running test cases against the system. This approach uncovered weak areas in

the captured domain knowledge or incorrect assumptions. Thus, the tool itself has been used

extensively in the acquisition process.

Verification and Validation: Test cases supplied by the domain experts as well as "working"

interviews in which the system is used to test particular rack configurations have been used to test

the system for correctness as well as its ability to provide meaningful decision justification. No

work has been done to perform tests on the knowledge base for rule subsumption, rule contradiction,

or cycles. Much of the system testing will continue to be empirical in nature.

5.0 Future work

One result of both the data acquisition and validation activities was that a larger number of people

became aware of the project and began to look for ways to apply the work performed in the project to

particular problems in their domain. As a result we anticipate that a number of spinoff projects will

emanate from this IR&D work. Problems similar to the rack placement problem include resource

allocation problems in which rack resource requirements are matched with resources supplied in the

module to maximize the resource utilization. Another similar problem deals with the placement of

payload racks (experiments, etc) within the lab module. This task must be performed repeatedly since

experiments will continually be moved in and out. Another spinoff of this work may be in the training
area. Much of the work being done to provide intelligent design justification and explanation could carry

over into training new engineers on the SSF program.

As a component of a training system as well as design justification, we plan to interface this system
with simulation systems to provide "deeper" justification or explanation by allowing the user to

perform a simulation of a particular configuration during the design process. Adeli [Ref 2] reports on

efforts to couple AI techniques with traditional mathematical techniques to aid in the engineering

process.

6.0 Summary

Systems incorporating AI technologies to aid design will enhance the engineering process and will
ensure that the decisions (and rationale behind them) are available in an intelligible format for future

applications. Research in this area and prototype systems such as the one described here will help to

clarify and define the engineering design knowledge capture requirements.

References:

[1] Fennel, T.R., et.al, "Graphical Explanation in an Expert System for Space Station
Freedom Rack Integration', 5th Conference on Artificial Intelligence for
Space Applications, Huntsville, AI.., May 1990

[2] Adeli, H. & Balasubramanyam, K.V., "A Novel Approach to Expert Systems for
Design of Large Structures', AI Magazine, Winter 1988, pp. 54-63

[3] Chandrasekaran, B. "Generic Tasks in Knowledge-Based Reasoning: High-Level
Building Blocks for Expert System Design', IEEE Expert, Fall 1986, pp. 23-30

I01

