
N90-27317

AN ENGINEERING APPROACH TO AUTOMATIC

PROGRAMMING

by

STUART H. RUBIN *

(3T4U5FH@CMUVM)

Department of Computer Science

Central Michigan University, Mt. Pleasant, MI 48859

ABSTRACT

An exploratory study of the automatic generation and optimization of symbolic
programs using DECOM - a prototypical requirement specification model implemented in
pure LISP was undertaken. It was concluded, on the basis of this study, that symbolic
processing languages such as LISP can support a style of programming based upon formal
transformation and dependent upon the expression of constraints in an object-oriented
environment. Such languages can represent all aspects of the software generation process
(including heuristic algorithms for effecting parallel search) as dynamic processes since

data and program are represented in a uniform formal

Keywords - Constraint-based programming, object-oriented programming, software
automation, transformation

1. INTRODUCTION

Software is currently the major cost in information processing systems. It is estimated
that information processing systems will account for 13% of the U.S. GNP in 1990 [9].
Higher level languages are necessary in order to obtain significant improvements in the
software automation and support process. They also provide substantial decreases in the
time and cost of software development, as well as provide major reductions in the cost and
time for maintenance and modification of software. Moreover, higher level languages

make the management of the software development activity easier and represent a step in

the direction of automatic programming.

* Funding for this project, carded out at NOSC, was provided by the Office of Naval Technology (ONT)
Summer Postdoctoral Fellowship Program, Projects Office, ASEE, 11 Dupont Circle, Suite 200,
Washington, DC 20036 U.S.A.

PRECEDING PAGE BLANK NOT F.,.,M.D-_' r

383

2. WHY PURE LISP?

There are three good reasons for choosing a functional language like LISP: firstly,
functional programs are invariably much shorter, more abstract, and easier to understand

than their procedural language counterparts; secondly, pure functional programs are
amenable to formal analysis and manipulation, and thirdly they are naturally amenable to
implementation on a parallel machine [4]. In addition, functional programs describe the
transformation of input values to output values - making it possible to establish properties
about them and to transform them into more efficient forms through the apparatus of
conventional mathematics.

LISP is the oldest and most widely used symbolic language [13]. In it, a list can
contain different types of objects. LISP is more flexible than statically typed languages like
PASCAL and C because it supports dynamic typing. In LISP, function calls, control
structures, and built-in operators have the same syntax - facilitating extensibility.

Moreover, LISP macro expansion is performed by user-defined functions, thus letting an
arbitrary computation compute the result of the expansion [13]. Hence, it follows that

LISP is an excellent language for implementing a transformational synthesizer.

Pure LISP is a universal orthogonal subset of LISP composed of basic functions for
constructing pairs, lists, and numbers; namely CAR, CDR, CONS, EQ, and ATOM. It
also incorporates the control structures using COND, recursion, and functional composition
(including some means for function definition). In fact, the pure dialect requires list
structures containing only atoms and sublists - without numbers or property lists.

Pure LISP is declarative in nature. Thus, it helps to avoid unnecessary sequentiality in
a specification, which in turn facilitates introduction of parallelism [2]. This is because the
order of evaluating the arguments of a multiple-variable lambda-expression is not defined.
Hence, such lambda-expressions are a source of parallelism. Moreover, the referential
transparency of the language (i.e., variables are bound to expressions) eliminates the need
to access complicated data flow analyses and the rules of Church's lambda-calculus can be

used as the basis for transformations that manipulate it [2].

Graham has implemented a database system which stores information in the form of
LISP lists and responds to queries about the information it has stored [5]. Rubin has

characterized learning as a process for the compression of information in order to yield
knowledge (i.e., theory formation and revision) [12]. Hence, the approach to higher level
languages advocated herein extends to higher level data and knowledge bases too. It
follows that expert systems (and hence their explanation facilities, the knowledge
acquisition bottleneck, and control problems) stand to be enormously and favorably
impacted by this technology, since their operation depends upon effectively interfacing with
one or more knowledge bases.

3. REUSABLE PROGRAM SPECIFICATIONS

The DOD has invested $300 million in the STARS (Software Technology for
Adaptable, Reliable Systems) project to investigate software reuse [10]. NASA recognizes
that the United States needs a flight-research facility dedicated to rapid avionics
prototyping. The Agency is now developing the Ames-Dryden facility to meet that need
through reusable software [3].

A higher form of software reuse is needed to overcome the limitations of code reuse.

Software reuse becomes more feasible if program specifications are reused instead of

384

programcode.Hence,programspecificationsshouldbeformally definedin orderthatthey
may undergoautomaticand formal correctness-preservingtransformations. Note that
programspecificationsconvenientlyservethepurposeof verificationandtesting. Finally,
Sellis et. al. note that the scaleof a transformationalsystemis an important design
considerationsince future expert databasesystemswill contain knowledgebasesof
significantsizewhichmakesmainmemoryinsufficientandtheuseof adatabasesystema
necessity[12].

4. AN ALGEBRAIC APPROACH TO FUNCTIONAL SYNTHESIS

The algebraic transformation method is based upon a collection of theorems which state
generic equivalences, i.e., semantic equalities, between classes of functions. Then in a
functional program, expressions may be rewritten by more efficient, equivalent expressions
which are given by one of these theorems. In this way, the process of transformation
becomes that of the identification and application of instances of theorems, and the
algebraic approach is therefore particularly conducive to mechanization [4]. Optimization is
thus a consequence of some underlying analysis which establishes theorems equating an
'original', user-defined function with a more efficient version. As a general definition of
an algebraic approach to specification transformation, suppose that the user has defined a
pair of abstract data types/1, 13,and the corresponding concrete pair /1", 13" which provide
realizations of /1, 13 respectively. Then, given any function f: ,_i-->13,it is desired to
synthesize a corresponding function, say f':/1"-->13", which performs operations on objects
of type/1" which are isomorphic to the operations performed by f on corresponding objects
of type/1. The function f" is then the concrete, implementation version of f that was
sought.

Many functions f':/1"-->13" corresponding to f:/t-->13 supplied by the programmer may
be synthesized by process of algebraic transformation [4]. Each abstract or complex
transformation within a system results in a new lower level subsystem.

Functional synthesis may be applied not only to generating programs but also to
constructing other complex objects such as relational database implementations of first-
order logic queries, VLSI circuit designs, and detailed plans for robotic vehicles to achieve
a set of military reconnaissance goals [8]. Hence, it follows that the pursuit of
transformative synthesizers has the potential for very broad impact.

5. RESULTS WITH THE DECOM SYSTEM

The DECOM or program decomposition system is intended to minimize the occurrence
of software bugs through the use of a top-down structured approach to software reuse.
The current version uses a subset of Common LISP as its implementation language. Note
that DECOM, version 1, while only a prototype, serves to illustrate the potential of the

concept of software reuse through knowledge-based design in an object-oriented
environment. It also serves as a model for human learning through the use of function(al)

composition.

To begin with, consider the programmer working in an object-oriented environment
(i.e., without loss of generality). Let

((FUNC) (((IN1) (OUT1)) ((IN2) (OUT2))... ((INn) (OUTn)))) (1)

385

def'me an arbitrary LISP function which satisfies all of the specified distinct I/O constraints
(i.e., at least one pair required). DECOM will take such a specification and through the use
of knowledge-based heuristic search and user assistance define a function(al), FUNC, such
that it satisfies all specifications.

FUNC may be viewed as a procedural knowledge source representing the compressed
declarative information contained in all of its constraining I/O pairs. Moreover, the I/O
pairs may be viewed as production rules. It then follows that DECOM functions as a fully
general rule-inducing system having demonstrable/provable convergence properties. It is
worth noting that if FUNC is defined to be a functional, then a knowledge base segment of
optimizing transforms may be inductively generated (and tested). Naturally, these
functionals will be maintained as fixed points with respect to the contents of the appropriate
optimizing knowledge base segment. Different knowledge base segments are represented
by different sublists - that's part of the overall beauty of the scheme.

First, DECOM searches the existing knowledge base segment, shown by (2) below,
for an exact match of the I/O specification pairs (where m < the number of concurrent
processors). If the knowledge base segment is empty, then proceed to the next step.

[((FUNC1) (((IN1,1) (OUT1,1)) ((INI,2)

((FUNC2) (((IN2,1) (OUT2,1)) ((IN2,2)

((FUNC3) (((IN3,1) (OUT3,1)) ((IN3,2)

(OUTI,2)) ...((INl,nI) (OUTI,nl)))) (2)

(OUT2,2)) ...((IN2,n2) (OUT2,n2))))

(OUT3,2)) ...((IN3,n3) (OUT3,n3))))

((FUNCm) (((INm,1) (OUTm,1)) ((INm,2) (OUTm,2)) ... ((INm,n m) (OUTm,nm))))l

If an exact match of the I/O specifications is found, then FUNCi is returned as the desired

LISP function. If however the knowledge base segment is empty, then the user is asked to
specify a reduction(s) (if necessary) and proceed with the component derivation as
described above - storing their interrelations in the knowledge base in the form of a
"macro"-function(al).

If an exact match cannot be found, then a heuristic means-ends analysis attempts to
locate the closest match. The heuristic (a dynamic objecO is a search function(s) saved in a

knowledge base segment. Note that more than one 'closest' match may be explored in
parallel. Alternatively, if no I/O specification pairs in the knowledge base satisfy the
defined matching metric, then the case is handled as though the knowledge base were
empty.

Now, for each closest match found above, a function FUNCi is searched for such that

it distinctly maps each of the given inputs to a corresponding input, INk,n, where the single
function FUNCk is known by the knowledge base. That is, the knowledge base attempts
to map the specification by process of forward composition (i.e., state-space heuristic
search).

Much like a genetic approach [6,7], the current approach entails the use of combinatoric
search. However, it surpasses the capabilities of a genetic approach in that the powerful
technique of means-ends-analysis is fully utilized. Besides, it should be noted, lest the

reader struggle with the question as to which approach to take, that genetic algorithms can

386

beembeddedwithin DECOM. Again, eachgiven specificationpair must bedistinctly
mapped onto the sameFUNCk if the composition is to be successful(extraneous
specificationpairsareignoredasin theproofof theprogramform of theparametization or
s-m-n theorem which underpins most of computability theory [1]). Furthermore, this

mapping must be effected by the same FUNCi (which itself may be a specified
composition). Then, the desired function (3) is given by the forward composition fkofi

(FUNCk (FUNCi (IN))) (3)

The use of composition may be extended to an arbitrary level, fm*fm_l°...*f2*fl , subject to

the number of available concurrent processors. The application of optimization rules can
prune the search tree and/or compress the result.

The mapping of outputs is analogous to the case for inputs - except that here, the

desired function (4) is given by the backward or inverse composition fk'fi "-1 (i.e., goal-

driven heuristic search)

(FUNCk (FUNCi "'1 (OUT))) (4)

where FUNCi -1 maps the outputs as described above for the case of the inputs. Note that

(FUNCi ''1(OUT)) = (FUNCk (FUNCi (IN))) (5)

Moreover, there is no reason that an inverse composition, fm'-l°fm_l'-l"...'f2"-l"fl"-l,

cannot be combined with a forward composition for greater efficiency (i.e., bidirectional

heuristic search).

New functions (i.e., functions defined by composition as per above) are saved in the

knowledge base if and only if they have accepted optimization or have been manually
specified due to failure, for whatever reason, to be the result of composition. (Frequently
referenced functions should be copied, in expanded form, into a cache.) This is not unlike
case-based reasoning, since the larger the knowledge base, the more likely the matching
metric is to succeed. Also, it is clear that the matching metric should be a dynamic

object(s), saved in the knowledge base, although this aspect has not yet been explored.

Note that erroneous functions may be pulled from the knowledge base at any time -

independent of any other functions. They can subsequently be re-synthesized from the
(updated) specifications. Hence, the DECOM system, like a neural net or even a DNA
program, exhibits a capability for self-repair.

IN and OUT can specify LISP functions since again LISP makes no syntactic
distinction between program and data. It follows that FUNC can serve as a functional -

mapping LISP functions, meta-functions, or even entire knowledge base segments, and so
on. This is vitally important to the efficient working of the described transformational
synthesizer (even on a connection machine) because functions carded as specifications
define optimizing rewrite rules. Hence, it is generally more efficient to maintain them in a
separate knowledge base segment consisting of fixed-point functionals. Note that
function(al)s can be recursively defined using a push-down stack of pending tasks.

387

6. AN INTRODUCTION TO OPTIMIZING TRANSFORMS

One of the key results pertaining to optimizing transforms is that their effects often
enable subsequent optimizations. To see this, fast consider the following abstract function
sequence (6) and the three associated Type 0 rewrite rules:

FUNC: UVWXYZUVW

RI: VW --> X
R2: XX --> Z
R3: Z?Z -°> Z

(6)

A derivation sequence (7) is given by:

UVWXYZUVW .RI.> UXXYZUX .R2.> UZYZUX .R3.> UZUX (7)

Note that optimizing rewrite rules are saved as fixed points with respect to the segment in

which they reside. That is, the ith segment is such that for all contained rules, there does

not exist a contracting rule, Rj, whose antecedent matches any of the patterns found in the

ith segment - itself excluded. Note that the use of the term "fixed point" here applies only

so far as a one-step derivation is concerned. It does not contradict the undecidability of the
minimalization problem [1].

The question arises as to how many different ways the optimizing rules can be applied
and with what result. The above example provided no branching in the derivation tree.
However, this is obviously a special case. In general, given Type 0 (i.e., universal

program or context sensitive contracting) rewrite rules, a derivation can be arbitrarily long
and include multiple applications of the same rewrite rules. What this means in a practical
context is that abstract program specifications can, in general, derive an arbitrary number of
concrete programs. Providing additional specifications may limit this number if the
functions defining sequence is altered with respect to the applicable rewrite rules as a result.

Hence, it becomes necessary, in general, to provide an agenda mechanism to order the
potential application of the rewrite rules. This agenda is represented in the form of a meta-
rulebase segment. An initial sample meta-rulebase segment (8) for the given rulebase
follows:

MRI: U --> R1 (8)
MR2: UX --> R2
MR3: UZ --> R3

Meta-rules are treated the same as ordinary rules and thus are saved as fixed points.
Hence, (8) is saved as follows:

MRI: U --> R1 (9)
MR2: APPLY (R1)]l X --> R2

MR3: APPLY (R1) II z ..> R3

The .principal advantage of the fixed point format is that it is more readily amenable to

parametlzatlon (such as substituting Rk for R1 above), or in the general case,

transformation. This advantage applies to rule, meta-rule meta n -rulebase segments
alike. Note that the Type 0 characterization of the rewrite rules implies the absence of

hierarchy in the meta n -rulebase, n = 0,1, ... Hence, the distinction between rules and

meta-rules is merely an illusion which is well-adapted to the purpose of illustration.

388

Finally, theconcernrelatesto theacquisitionof all mannerof rules.A recursivemodel
of EBL [11], althoughnot yet implemented,is proposedwhich induces(meta)rulesfrom
their specifications.This ideais consistentwith themethodologypresentedin this paper
and will be formally analyzedin forthcoming works. Specificationsareoptimization
constraintswhich arediscoveredin retrospect(suchasthroughtheuseof backtracking).
Good (meta)rulestendto reinforcethediscoverymechanism;bad(meta)rulesachieve the
opposite effect. Again, backtracking is but one discovery mechanism - another is heuristic
search. The key point, at least at this level of discussion, is that all effective process are
given a uniform representation within the system and hence are equally subject to inductive
extension.

7. A SIMPLE EXAMPLE

The above exposition will be concretized here by way of a relatively tivial example
serving to illustrate the main points made above. To begin with, assume the existence of
the following knowledge base segment:

[((CAR (LAMBDA (X))) (NIL NIL) ('(A) A) ('(A B) A)) (10)
((CDR (LAMBDA (X))) (NIL NIL) ('(A) NIL) ('(A B) (B)))]

Notice that the constraints are ordered - in this case in order of nondecreasing sublist length

- in order to facilitate the search and match process. Also, while the number of constraint
pairs has been set at three for each function, it is recalled that the only requirement is that at
least one constraint pair be defined for each function - with each function allowed arbitrarily
more.

Next, a pair of constraints are specified and the sought after function is initialized to the
NIL value:

(NIL (NIL NIL) ('(A B) B)) (11)

Now, the knowledge base segment is heuristically searched in a forward direction (the
heuristics may reside in a distinct segment) for a function which distinctly maps each input
list in the I/O pairs of the unspecified function to the corresponding input lists of a single
function residing in the appropriate knowledge base segment. That is, the image under the
operation of the applied function will constitute a suitable preimage under the operation of
some known function(al) in the relevant knowledge base segment. In the current instance,
the images under the operation of the CDR function are NIL and (B), and the preimages
under the operation of composition with the CAR function are NIL and (A) respectively.

Hence, the following subgoal is attained:

((CDR (LAMBDA (X))) (NIL NIL) ('(A B) (B))) (12)

Next, the above process is iterated where the images under the operation of the CAR
function are found to be NIL and B - satisfying all constraints. Hence, the following is the

attained goal as desired:

((DEFUN HEADTAIL (X) (CAR (CDR X))) (NIL NIL) ('(A B) B)) (13)

Note that all LISP elrors are interpreted by convention to be the special atom - NIL, or
equivalently, the empty list - 0.

389

8. CONCLUSIONS

It follows from experience with the DECOM system that function(al)s can be
automatically induced in an extensible coherent environment through the use of a technique
for programming by example. The DECOM system also advances the suggestion that AI
and distributed computation are interdependent. These fields are unified through the use of

the LISP symbolic language - a representational vehicle where the data and the program
have the same list structure. Other languages may be employed if translated into a suitable

symbolic representation. That is, all programming constructs may be placed in bijective
correspondence with pure LISP constructs.

The use of constraint-based transformation in an object-oriented programming
environment promises to allow for the inductive extension of data and knowledge. It is
claimed that only then can a system for automatic programming - that is, one capable of
learning - be engineered. This claim follows from the evolutionary approach being equally
applicable to all effective processes within the system.

ACKNOWLEDGEMENTS

The author would like to express his gratitude to the ASEE, Irwin Goodman, NOSC,
Code 421, Alan Gordon, NOSC, Code 013, John H. Holland, Univ. of Mich., Linwood
Sutton, NOSC, Code 411, and Robert Wasilausky, NOSC, Code 411 for their time and
respective contributions which served to guide the preparation of this paper. A note of
appreciation is also accorded to my colleagues at CMU and my parents and brother.

REFERENCES

1. Arbib, M.A., A Programming Approach to Computability, Springer-Verlag, New York, NY,
1982.

. Biggerstaff, T.J. and Perlis, AJ. (eds.), Software Reusability Volume 1, Addison-Wesley Pub-
lishing Co., New York, New York, 1989.

. Duke, E.L., Brumbaugh, R.W., and Disbrow, J.D., "A Rapid Prototyping Facility for Flight

Research in Advanced Systems Concepts," Computer, Vol. 22, No. 5, May 1989, pp. 61-66.

, Field, A.J. and Harrison, P.G., Functional Programming, Addison-Wesley Publishing Company,
Inc., Menlo Park, CA, 1988.

5. Graham, P., "A LISP Query Compiler," A1 Expert, Vol. 4, No. 6, June 1989, pp. 21-26.

° Holland, J.H., "Adaptive Algorithms for Discovering and Using General Patterns in Growing
Knowledge-Bases," International Journal of Policy Analysis and Information Systems, Vol. 4,
No. 3, Plenum Press, New York, 1980, pp. 245-268.

. Holland, J.H., "Genetic Algorithms and Classifier Systems: Foundations and Future Directions,"
Genetic Algorithms and their Applications: Proceedings of the Second lnternational Conference
on Genetic Algorithms, L. Erlbaum Associates, Hillsdale, New Jersey, 1987, pp. 82-89.

, Linden, T.A. and Markosian, L.Z., Transformational Synthesis Using REFINE, Tech. Report
GH4-116847, Reasoning Systems, Inc., Palo Alto, CA, 1988.

. Markosian, L., Abraido-Fandino, L., and Katzman, S. Knowledge-Based Software Engineering

Using REFINE, Tech. Report, Reasoning Systems, Inc., Palo Alto, CA, 1988.

390

10.

11.

12.

13.

McClure, C., CASE is Software Automation, Prentice Hall, Englewood Cliffs, NJ, 1989.

Mitchell, T.M., Keller, R.M., and Kedar-Cabelli, S.T., "Explanation-Based Generalization: A
Unifying View," Machine Learning, Vol. 1, No. 1, 1986, pp. 47-80.

Rubin, S.H., "Modeling High-Level Knowledge: A Survey," Submitted to A/Review, June
1989.

Zorn, B., Ho, K., Larus, J., Semenzato, L., and Hilfinger, P., "Multiprocessing Extensions in
SPUR LISP," IEEE Software, Vol. 6, No. 4, July 1989, pp. 41-49.

391

