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ABSTRACT

The 'steady and uhsteady aerodynamics of a linear oscillating cascade are
investigated using experimental and computational methods. Experiments are
performed to quantify the torsion mode oscillating cascade aerodynamics of the
NASA Lewis Transonic Oscillating Cascade for subsonic inlet flow fields using two
methods: (1) simultaneous oscillation of all the cascaded airfoils at various values
of interblade phase angle, and (2) the unsteady aerodynamic influence coefficient
technique. Analysis of these data and correlation with classical linearized unsteady
aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the
cascade have, in some cases, a detrimental effect on the cascade unsteady
aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to
incorporate improved upstream and downstream boundary conditions and also the
unsteady aerodynamic influence coefficient technique. The new boundary conditions
are shown to improve the unsteady aerodynamic predictions of the code, and the
computational unsteady aerodynamic influence coefficient technique is shown to be

a viable alternative for calculation of oscillating cascade aerodynamics.
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CHAPTER 1
INTRODUCTION

Blade vibration problems continue to hinder the development of advanced
turbomachines and propellers. Blade flutter, a self-excited oscillation in which the
unsteady aerodynamic forces depend upon the blade motion, typically results in
failure of the blading. Costly re-design of the blading is then required, with
aerodynamic performance often compromised in the process.

Traditional design methodology, in which flutter boundaries based upon testing
of previous designs are applied to new designs, has been found to be inadequate even
for convéhtioﬁal turbofan engines [1]. When new propulsion concepts are
investigated, the use of past experience to avoid flutter is even more dubious. For
example, highly efficient advanced propellers currently under development are
characterized by thin, highly-swept blades of relatively high solidity operating with
supersonic tip relative Mach numbers. The novel design features of the advanced
propeller place it well outside the realm of previous experience: the solidity is too
large for it to be analyzed as an isolated airfoil but much smaller than a conventional
turbomachine, and it also has much greater aerodynamic sweep. Flutter of an
advanced propeller model [2] indicated that cascade effects had a destabilizing effect
on the flutter boundary. In addition, flutter was not encountered in tests of similar
propellers with less sweep, implying that sweep is a destabilizing influence. Thus the
features largely responsible for placing advanced propeller designs outside the realm

of previous experience had significant influences on the occurrence of flutter.



To improve the ability to predict flutter in turbomachines and propellers,
advanced analyses to predict oscillating cascade aerodynamics must be developed.
Classical unsteady aerodynamic models are based on fully linearized aerodynamic
theory in which the unsteady flow is assumed to be a small perturbation to a uniform
steady flow. The problem is thus reduced to analyzing the unsteady aerodynamics
of a cascade of flat plates operating at zero mean incidence. Efficient semi-analytical
techniques have been developed for rapid computer-generated solutions to the fully
linearized problem for subsonic flow [3-5]. However, the unsteady aerodynamic
effects due to interactions between the steady and unsteady flow fields, i.e., the effects
of blade geometry and nonzero incidence angle (steady loading), are not considered
in these models. To overcome these limitations, linearized models are being
developed which take into account the effects of a nonuniform mean flow field on
the unsteady flow, which is assumed to be a small perturbation to the steady flow
field, references 6-12, for example. While these linearized models should be
computationally efficient, nonlinear analyses which solve the time-dependent full
‘ potential and Euler equations are also being used to predict oscillating cascéde

aerodynamics [13-15), although they require relatively large computing times.

1.1 Oscillating Cascade Experiments

To direct the development of advanced unsteady aerodynamic models and to
evaluate these as well as existing analyses, data obtained from oscillating cascade
experiments are needed. Appropriate experimental data will quantify the airfoil
surface steady and unsteady pressure distributions over a range of oscillating cascade
operating conditions. The steady flow field, as a function of inlet Mach number,
solidity, stagger angle and airfoil geometry, should be in the appropriate regime of
compressible flow, i.e., subsonic, transonic or supersonic, be of either compressor or

turbine geometry as required, and data should be obtained for several steady flow
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conditions so that the effect of steady loading on the cascade unsteady aerodynamics
may be investigated. Unsteady data are needed over a range of interblade phase
angles at values of reduced frequency which are realistic for the application.

With these experimental objectives in mind, a review of previous oscillating
cascade investigations reveals there is, in general, little data available for cascaded
airfoils driven to oscillate simultaneously. Focusing on subsonic and transonic flows
for compressor geometries, there are several noteworthy publications. Davies and
Whitehead [16] performed experiments in an annular oscillating cascade in subsonic
through supersonic flow regimes, but there is significant scatter in the data and the
measurements were limited to unsteady aerodynamic moment data from strain gages.
Of particular interest herein, unsteady pressure measurements have been made at
the NASA Lewis Research Center in a transonic oscillating cascade [17].
Unfortunately, there were some discrepancies in the analysis of the unsteady data as
well as the steady airfoil surface pressure data. As a part of the current investigation,
these discrepancies in the steady and unsteady data are corrected. Kobayashi [18]
has made detailed blade surface pressure measurements in an annular oscillating
cascade at high subsonic and supersonic inlet conditions. Large pressure fluctuations
occurred due to shock wave motion and cascade instability was noted over a wide
range of conditions.

The lack of oscillating cascade data is due to the inherent complexity of the
experiments. First, oscillating cascades are expensive to build, requiring a drive
system capable of oscillating the airfoils simultaneously at realistic reduced frequency
values. Second, because the measurements must be obtained not only for each steady
flow condition and reduced frequency, but also over a range of interblade phase
angles, these experiments are quite time consuming. As a result, data are typically

obtained for only several interblade phase angles.



To avoid these problems, oscillating cascade data might be obtained through
simpler experiments. In particular, when the unsteady disturbances are small, as in
a typical flutter stability problem, an unsteady aerodynamic influence coefficient
technique might be utilized. In this technique, only one airfoil in the cascade is
oscillated, with the resulting airfoil surface unsteady pressure distributions measured
on the oscillating airfoil and its stationary neighbors. The unsteady aerodynamics of
an equivalent cascade with all airfoils oscillating at any specified interblade phase
angle is then determined through a vector summation of these influence coefficient
data.

Figure 1.1 depicts a two-dimensional finite cascade representation of a blade
row. For a given mean flow field and reduced frequency of oscillation, and assuming
small unsteady disturbances, the cascade unsteady aerodynamics may be expressed
as linearly combined influence coefficients which can be determined experimentally
or analytically. Consider a finite airfoil cascade with 2N + 1 airfoils executing constant
amplitude harmonic oscillations with a constant interblade phase angle (3. The airfoil
surface unsteady pressure, expressed as a pressure coefficient C,(x,B) acting ata
point on the reference airfoil (airfoil 0 in Figure 1.1), can be expressed as a Fourier

series

N
C,(x,B)= ) Ch(x)e™ (1.1)

n=~-N

where C? is the complex-valued unsteady aerodynamic influence coefficient. Thus

this influence coefficient defines the unsteady pressure coefficient developed on the
reference airfoil due to the motion of airfoil n.
Mathematical models for an infinite cascade of airfoils oscillating with a

specified interblade phase angle can also be used to determine these unsteady
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aerodynamic influence coefficients. For this case, the influence coefficients are

determined by inversion of Equation 1.1.
An 1 T -in
cp(x)=§;[-_fncp(x,[3)e bdp (1.2)

Analytically determined unsteady aerodynamic influence coefficients can thus be
determined from oscillating cascade mathematical models by integrating over the
complete interblade phase angle interval, Equation 1.2. Utilizing these influence
coefficients in Equation 1.1 then enables analytical results for a finite number of
airfoils oscillating in an infinite cascade to be determined.

Several experimental investigations have been directed at validation of this
technique through correlation of unsteady aerodynamic influence coefficient results
with corresponding data acquired with all airfoils oscillating at specified interblade
phase angles. Hanamura et al. [19] found good results for flow in a water channel
and subsequently applied this technique, without further validation, to subsonic and
transonic flows [20,21]. Davies and Whitehead [16] performed such experiments at
high subsonic inlet conditions and reduced frequencies based on semichord up to 0.1,
but the validity of the influence coefficient technique cannot be assessed due to scatter
in the data. In supersonic inlet Mach number experiments at ONERA [22], the
summation of influence coefficients has been compared to data for a linear cascade
with two airfoils oscillating, but the scope of the experiments was very limited.
Recently, Bolcs et al. [23] reported very good results for this technique in an annular

turbine cascade.

1.2 Calculation of Oscillating Cascade Aerodynamics
Time-marching solutions of the nonlinear equations of fluid dynamics for the

oscillating cascade problem are similar to the experiments in that they tend to be



very time-consuming. To remedy this problem, the unsteady aerodynamic influence
coefficient technique may also be applied to the computational aerodynamics of
oscillating, cascaded airfoils. Gerolymos [24] has used this technique to predict the
aerodynamics of a supersonic oscillating cascade with some success.

Aswith the experimental unsteady aerodynamic influence coefficient technique,
only one airfoil in the cascade is oscillated, and the influences of these oscillations
are determined for the oscillating airfoil and its stationary neighbors. The unsteady
aerodynamics of an equivalent cascade with all airfoils oscillating at any specified
interblade phase angle is then determined through a vector summation of the
influence coefficients. The unsteady solution is obtained for oscillations relative to
the previously-computed steady flow, thus the effects of a nonuniform steady flow

field are included in the unsteady solution.

1.3 Objective

The objective of the experimental research reported herein is twofold: (1) the
aerodynamics of a cascade of airfoils oscillating simultaneously is quantified for two
cascade solidities, several mean flow conditions and a number of interblade phase
angle/reduced frequency combinations; and (2) adetailed experimental study ismade
of the unsteady aerodynamic influence coefficient technique. In particular, the steady
and unsteady aerodynamics of a cascade of biconvex airfoils executing torsion mode
oscillations are investigated for subsonic inlet Mach numbers. This is accomplished
by obtaining fundamental aerodynamic datain the NASA Lewis Transonic Oscillating
Cascade Facility. Detailed steady airfoil surface pressure distributions quantify the
mean flow field. Unsteady airfoil surface pressure distributions are measured both

with all airfoils oscillating at specified interblade phase angles and with only one



airfoil oscillating. The experimentally-determined influence coefficient data are
summed for correlation with the data obtained with all airfoils oscillating and also
with the predictions of a linearized subsonic oscillating cascade analysis.

In addition, an Euler code for oscillating, cascaded airfoils is modified for
implementation of the unsteady aerodynamic influence coefficient technique. The
Euler code is first improved by modification of the upstream and downstream
boundary conditions. The unsteady aerodynamic influence coefficient technique is
then implemented by further modification of the code. The resulting predictions are
correlated with the experimental data and also with the linearized analysis

predictions.
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CHAPTER 2
FACILITY AND INSTRUMENTATION

The NASA Lewis Transonic Oscillating Cascade Facility combines a linear,
transonic cascade wind tunnel capable of inlet flow approaching Mach one with a
high-speed airfoil drive system which imparts torsion-mode oscillations to the
cascaded airfoils at specified interblade phase angles and realistic high reduced
frequency values. Appropriate steady-state instrumentation is used to determine the
cascade inlet Mach number, verify the cascade passage-to-passage periodicity and
quantify the steady airfoil surface pressure distribution for each steady flow field.
Miniature dynamic pressure transducers are used to quantify the unsteady airfoil

surface pressures on the oscillating cascaded airfoils.

2.1 Oscillating Cascade Facility

The NASA Lewis Transonic Oscillating Cascade Facility is shown in Figure 2.1.
Air drawn from the atmosphere passes through a smooth contraction inlet section
into a constant area test section of 9.78 cm span which measures 58.6 cm along the
stagger line. Up to nine airfoils may be accommodated, spaced by 5.86 cm. Upstream
of the test section, suction is applied through perforated walls to reduce the boundary
layer thickness. Adjustable tailboards are used to adjust the cascade exit region static
pressure and also form bleed scoops which further reduce upper and lower wall
boundary layer effects. Downstream of the test section, the air is expanded through
a diffuser into an exhaust header. The flow rate is controlled by two valves located

in the header which operate in parallel, the smaller of the two providing fine



fipoey apesse) une((osQ dTuosuel], SINYT VSVN 1°Z 2and1y

SdVL 3UNSS3IHJ
TIVM3AIs

10



—

adjustment to the flow rate. The exhaust system, part of a central air facility at Lewis,
maintains a 30 kPa pressure downstream of the flow control valves. The inlet and
airfoil angles are adjustable, allowing a wide range of incidence and stagger angle
combinations.

A boundary layer bleed system is provided to minimize tunnel wall boundary
layer effects. Perforated end walls having an open area ratio of 0.225 with 0.15 cm
perforation hole diameters are located upstream of the airfoils. These bleeds are
partitioned into five segments on each wall, with each segment having an individual
flow control valve for localized control. Adjustable tailboards form scoops with the
top and bottom side walls, and also have individual flow control valves. Headers
route the bleed flow into the exhaust system.

Uncambered, zero-twist biconvex airfoils fabricated out of titanium alloy are
used for these experiments. The radius of curvature of each airfoil surface is 27.4
cm, and the leading and trailing edges are rounded to 0.025 cm radii of curvature.
With a chord length of 7.62 cm and a maximum thickness of 0.577 + 0.004 cm, the
thickness-to-chord ratio is 0.076. The span is 9.60 cm, making the aspect ratio 1.26.
Trunnions which support the airfoil and allow coupling to the drive system are located
at the mid-chord, resulting in a mid-chord elastic axis.

Tests were conducted to ensure that the airfoils would not deform when
oscillated at high frequency [25]. The first torsion mode was determined by
interferometry to occur at 932 Hz, and negligible airfoil deflections were found to
occur during torsional oscillation at 600 Hz.

To obtain realistically high values of the reduced frequency, the mechanical
drive system must provide high frequency controlled oscillations of the airfoils. Figure
2.2 illustrates the main components of the drive system. Nine stainless steel barrel

cams, each with a six cycle sinusoidal groove machined into its periphery, are mounted
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on a common rotating shaft driven by a 74.6 kW electric motor. A cam follower
assembly, consisting of a titanium alloy connecting arm with a stainless steel button
on one end, is joined on the other end to an airfoil trunnion. The button fits into the
cam groove, thus coupling the airfoil to the camshaft. Lubrication for the
cam/follower assembly is provided by an oil bath. The amplitude of the torsional
airfoil motion is 1.2 degrees as dictated by the cam and follower geometry. The drive
system is configured for oscillations at a chosen fixed interblade phase angle by fixing

the cams at the required relative positions on the shaft.

2.2 Instrumentation for Steady-State Measurements

A row of 22 wall static pressure taps, located upstream of the cascaded airfoils,

is used to determine the inlet static pressure distribution. A similar row of static taps,
located downstream of the cascade, determines the cascade exit region static pressure.
Two airfoils are instrumented with static pressure taps so that airfoil upper

and lower surface pressures may be determined simultaneously. There are sixteen
chordwise measurement locations with a higher density in the leading edge region to
capture the higher gradients there, Figure 2.3. Four additional taps, numbers 17
through 20 in the figure, are used to indicate the spanwise pressure distribution. Two
airfoils are instrumented so that data for the two airfoil surfaces defining one cascade

passage may be obtained simultaneously.

2.3 Instrumentation for Unsteady Measurements
The primary unsteady data are the magnitude and phase of the unsteady airfoil
surface pressures relative to the airfoil motion. The elements crucial to these
measurements are the dynamic pressure transducers and the airfoil motion detection

system.

13



suonjedo[ dej ainssaid onels dBNS IOV €T aindiy

wo 09°6 = NVdS
P Ty

0'6L 02 o8t

2'8S 61 "
€91 8l o

LY L1 oz "

c'86 91 o °

S'16 Gt o
£€es8 vi o

0'SL €l ,

G99 ¢l o8

2'8S N8

86 118

iy 6

'€ 8

L've L

£91 9

L6 ]

¥9 14

Ly €

(I ¢ o0

Sl l

pIoYd % ‘ou de| X . %
° n z oo
4

14

QHOHD

wa Z29°L




2.3.1 Pressure Transducers

Miniature semiconductor pressure transducers are used to measure the airfoil
surface unsteady pressures. Consisting of a silicon diaphragm containing a four arm
strain gage bridge mounted over a cylindrical cavity, the transducer has several
desirable characteristics: (1) frequency response sufficient to measure atleast several
harmonics of the oscillation frequency; (2) small dimensions for good spatial
resolution and minimal flow disturbance; (3) insensitivity of output to transducer
acceleration; and (4) invariance of the transducer dynamic response with change in
temperature. In addition, a mounting technique which effectively isolates the
transducer from airfoil strain is necessary.

Six Kulite Semiconductor Products dynamic pressure transducers are flush
mounted symmetrically about the midchord of one surface of the airfoil, Figure 2.4.
These transducers, haﬁng active sensor diameters of 0.097 cm (1.3%' of the airfoil
chord), are epoxied into milled slots and potted in room temperature vulcanizing
rubber (RTV) for isolation from airfoil strain. A thin coating of
room-temberature-vulcanizing rubber is used to fair the transducer surface into the
surface contour of the airfoil and also protect the transducer.

Static calibration consists of measuring the transducer output over a range of
applied pressures. The transducers were calibrated before the oscillating cascade
experiments and then recalibrated periodically. In all cases, the output voltage was
a highly linear function of the applied pressure differential, and the typical transducer

had a negligible change in its calibration over the course of the experiments.

Frequency Response

Due to the high stiffness-to-mass ratio of the diaphragm, the transducers have
a high natural frequency, reported to be 230 kHz. Since the transducers are expected

to have unity gain and negligible phase shift up to 20% of the natural frequency, the

15
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frequency response is more than adequate for these experiments, which require
harmonic information to about 1 kHz. However, RTV coating applied to the
transducer diaphragm will reduce its natural frequency. To be certain that this has
no detrimental effect on the transducer response at the frequencies of interest,
frequency-response verification tests were undertaken.

A resonant tube assembly similar to that of Capece and Fleeter [26] is used to
generate plane acoustic waves to excite the pressure transducers at discrete
frequencies. The assembly consists of an 20.3 cm diameter, 4.6 m long plastic tube
with a speaker mounted at one end. Aninstrumented airfoil is inserted in the opposite
end of the tube, which is open to the atmosphere, and an Endevco pressure transducer
positioned adjacent to the instrumented airfoil serves as the reference. Amplified
sine waves are used to drive the speaker which in turn creates acoustic waves in the
tube for excitation of the transducers. The resulting pressure transducer responses
are flat to frequencies in excess of 1000 Hz within +2% in magnitude and +2 degrees

in phase.

Strain Isolati
Airfoil strain may induce transducer strain, thus resulting in an apparent pressure
signal. To achieve effective strainisolation, Kulite was commissioned by NASA Lewis
to conduct a transducer mounting study, reference 27. Potting the transducer in
rubber was found to be effective: intests conducted using one of the biconvex airfoils,
blade tip deflections of + 0.05 cm were found to have no measurable effect on the
transducer output to 0.01 millivolt, which corresponds to about 0.07 kPa (0.01 psi).
As described in reference 25, one of the biconvex airfoils was oscillated at high

frequencies to verify its structural integrity. Specifically, based on the test data, a

17



conservative estimate of the maximum airfoil tip deflection at 600 Hz oscillation
frequency is 0.003 cm. Combining this with the results of the strain isolation study,

the response to airfoil strain will be negligible.

Acceleration Effects

During the oscillating cascade experiments, the pressure transducers are subject
to accelerations which may produce apparent pressure signals. Although uncoated
transducers are highly insensitive to acceleration effects [28], the RTV-coated
transducers require calibration. To quantify this effect, the instrumented airfoil was
oscillated at several frequencies under no-flow or zero mean velocity conditions.
Figure 2.5 shows the amplitude response of six coated transducers as a function of
the acceleration magnitude. The response is a linear function of the acceleration,
implying that the acoustic response, which will vary with the airfoil velocity magnitude,
isdominated by the acceleration response. Significantamplitude variationisapparent
among the transducers, and is probably due to differences in rubber coating
thicknesses. The phase angle variation with frequency was linear ahd small for a]l the
transducers.
Temperature Drift

Since only the fluctuating pressure will be measured by the transducers, only
the slope of the transducer calibration curve is required. This is determined by static
calibration at the ambient temperature, but the test section air static temperature
may be as much as 60 degrees C less than the ambient. Because the rated maximum
change in sensitivity with temperature is + 4.5% per 100 degrees C [28], the

temperature drift effect is believed to be negligible.

18
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2.3.2 Airfoil Motion Measurement

The time-variant position of the reference oscillating airfoil is determined by a
capacitance-type proximity sensor which produces a voltage proportional to the air
gap between the sensor and an adjacent object. This sensor is positioned to face a
six cycle sinusoidally-shaped cam which is mounted on the airfoil drive camshaft
When the camshaft rotates, the proximity sensor produces a sinusoidal output voltage
which is in phase with the reference airfoil motion. In addition, an electro-optical
displacement meter is available to directly track the motion of the reference airfoil
by focusing on thé edge of the airfoil. These two measurement systems were found
to agree within = 3 degrees in phase. This indicates that deformations in the drive
system, which would cause phase errors in the measurement of the reference airfoil
motion, are negligible, and verifies the displacement meter alignment relative to the

cam.
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CHAPTER 3
DATA ACQUISITION AND ANALYSIS

The steady-state data of interest are the cascade inlet Mach number, inlet static
pressure, exit static pressure and the airfoil surface pressure distribution. A
conventional pressure measurement system using Scanivalves and computerized data
acquisition and reduction is used to quantify these data. Signals which quantify the
pertinent unsteady data, the airfoil motion and the airfoil surface unsteady pressure
distribution, are recorded on FM tape and analyzed using a computer-based

digitization and Fourier analysis system.

3.1 Acquisition and Analysis of Steady-State Data

A computer-based data acquisition and analysis system is used to monitor the
cascade operating conditions and acquire and reduce the steady-state data.
Microprocessors control the digitization of the data and feed the data to a
remotely-located minicomputer which stores data for later analysis and also calculates
various quantities pertintent to operation of the wind tunnel. Post-processing of
steady-state data is done on a VAX computer.

Steady-state pressures are determined using three 48 port Scanivalve units which
operate in parallel. Time-average static pressures are determined from the average
of at least 30 readings. The mean inlet static pressure, Din, is the spatial average of

the time-average wall static pressures as determined from the taps located upstream

21



of the airfoils. The inlet total pressure, p,, is determined by a remotely-located

barometer. The inlet Mach number is then calculated from the isentropic relation

5 )
M=, | = g) _1). (3.1)
Y—l((pm

The airfoil surface steady pressure coefficient is defined as

Cp(x) = RinPolX) (3.2)
sPV

where po is the time-average airfoil surface static pressure at the chordwise
coordinate x,and p and I/ are the inlet values of density and velocity. The mean
exitstatic pressure, P .x,isthe spatial average of the time-average wall static pressures

as determined from the taps located downstream of the airfoils.

3.2 Acquisition and Analysis of Unsteady Data

Figure 3.1 is a schematic of the unsteady data acquisition and analysis system.
Within the test cell, the dynamic pressure transduce*s are connected to strain gage
bridge amplifiers. The amplifier gains are set to 200 to boost the signals, initially in
the millivolt range, to levels on the order of 1 volt, thus minimizing the effects of
low-level noise acquired during transmission of the signals. The airfoil motion signal
is of a sufficiently high amplitude, on the order of 1 volt, that it does not require
amplification before transmission. High-pass filters remove d.c. components in the
signals and instrumentation amplifiers are used to adjust the signal levels to be
compatible with the recording equipment. To determine the frequency of oscillation,
the airfoil motion signal passes through a frequency counter. Monitor oscilloscopes
are used to observe the unsteady signals during the experiments. A fourteen channel

FM tape recorder is used for permanent analog recording of the data.
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Figure 3.1  System for acquisition and analysis of unsteady data
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Analysis of the unsteady data centers around an IBM PC-AT computer-based
system which controls digitization of the recorded signals, executes the data analysis
software and drives the post-processing plotting devices. Two Gould 8 channel
waveform recorders are used to digitize the signals. Each channel has its own 8 bit
A/D converter and 32 kilobyte memory buffer, thus enabling simultaneous
digitization and storage of 16 channels of unsteady data. Gould software controls
transfer of the data from the waveform recorders to the computer through an
IEEE-488 interface and provides graphics for viewing the digitized signals.

The unsteady data acquisition system is calibrated using sinusoidal signals input
to all the channels simultaneously starting at the high pass filters. These signals are
recorded on tape and then digitized and reduced using the computerized data
reduction system. It was found that small phase shifts of seQeral degrees may occur
depending upon the tape recorder track, and these calibration results are
incorporated into the data reduction system. In addition, the accuracy of the 8 bit
A/D converters was compared to a 12 bit FFT analyzer using unsteady pressure
signals. Negligible differences between the two systems were found in the calculated
first harmonic components of the signals.

The unsteady pressure signals are digitized at rates sufficient to capture at least
three harmonics of the oscillation frequency, with 32,768 (32k) samples taken per
channel. An averaging technique, Bartlett’s procedure [29], is then applied to the
data. This procedure is shown in Figure 3.2 for one channel of data: the data are
divided into contiguous blocks, each block typically with 2048 samples, and then
Fourier decomposed (using an algorithm of Bergland and Dolan [30]). To minimize
errors due to spectral leakage, an interpolation scheme, as described in Appendix A,
is used to determine the first harmonic pressure of each block of data. Each block’s

first harmonic pressure is referenced to the airfoil motion by subtracting the phase
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of the first harmonic motion signal of the corresponding block from it. Once all of
the blocks from a channel are decomposed in this manner, the block results are
averaged and the complex-valued acceleration response is subtracted vectorally.

To demonstrate this data analysis technique, the time-dependent pressure
transducer signals shown in Figure 3.3 and the corresponding airfoil motion signali
are considered. The pressure signals are seen to be sinusoidal in nature with
superimposed noise. The resulting averaged pressure spectra are characterized by
a large spike at the oscillation frequency, 200 Hz, some small spikes at higher
harmonics of the oscillation frequency, and other small spikes near 55 and 110 Hz
caused by wind tunnel tones.

In these experiments, the airfoil motion is defined by the change in the incidence

angle with time:

a(t)=a,+a,Re{e'“} (3.3)
where a, is the mean incidence angle, a, is the oscillatory amplitude of 1.2 degrees
and w is the frequency. The final unsteady pressure data are presented in the form
of the complex-valued dynamic pressure coefficient

pPi(x)
Cp(x)zl—lT'
spV  a,

(3.4)

where p; is the first harmonic of the airfoil surface static pressure, p and IV are

the inlet values of density and velocity, and a, is the torsional oscillation amplitude.
The dynamic pressure difference coefficient is defined by

AC,=C,=C,,- (3.5)
The subscripts [ and u refer to the airfoil lower and upper surfaces, respectively.
These coefficients are referenced to the airfoil motion, with a positive phase

corresponding to the unsteady pressure leading the airfoil motion.
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CHAPTER 4
EXPERIMENT RESULTS

The torsion mode oscillating cascade aerodynamics are experimentally
investigated in both low and high solidity configurations which are summarized in
Table 4.1. As the oscillating cascade aerodynamics are a function of the underlying
mean flow field, several mean flow conditions are investigated for each cascade
configuration.

For the low solidity cascade, there are two steady flow conditions, defined by
inlet Mach numbers of 0.55 and 0.80 at 2 degrees incidence. With the instrumented
(reference) airfoil in relative position 0 as defined in Figure 1.1, influence coefficient
data are acquired on this airfoil with the airfoils in positions -2, -1, 0, 1 and 2
individually oscillating at reduced frequencies of 0.2 and 0.32 for the two inlet Mach
numbers plus k=0.45 for M=0.55. Corresponding data are obtained from baseline
experiments in which the airfoils are oscillating simultaneously at fixed interblade
phase angle values of 0, 45, -45, 90, -90 and 180 degrees.

The high solidity configuration is investigated for incidence angles of 0 and 7
degrees at an inlet Mach number of 0.65 and at 7 degrees with an inlet Mach number
of 0.80. Influence coefficient data are obtained for reduced frequencies of 0.185 and
0.32 at M=0.8, and 0.22 and 0.39 at M=0.65. Corresponding baseline data are
obtained for all the airfoils oscillating simultaneously at fixed interblade phase angles

of 0, 90 and -90 degrees.
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Table 4.1 Airfoil and cascade geometry

AIRFOIL

Type
Surface radius of curvature

biconvex, no camber
274 cm

Leading and trailing edge radii of curvature 0.025 cm
Chord, C 7.62 cm
Maximum airfoil thickness / chord 0.076
Elastic axis midchord
Dynamic pressure transducer locations, % chord  12,25,40,60,75,88
LOW SOLIDITY CASCADE
Number of airfoils 4
Airfoil spacing, S 11.72 cm
Solidity, C/S 0.65
Stagger angle, vy 45 degrees
Amplitude of torsional oscillation 1.2 degrees
HIGH SOLIDITY CASCADE
Number of airfoils 9
Airfoil spacing, S 5.86 cm
Solidity, C/S 13
Stagger angle, vy 53 degrees
Amplitude of torsional oscillation 1.2 degrees
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The steady airfoil surface pressure distributions are presented first followed by
a detailed study of the cascade unsteady acrodynamics. The dynamic periodicity of
the cascade with all airfoils oscillating is investigated, then unsteady pressure
influence coefficients are presented. These influence coefficient data are then
summed to predict the unsteady aerodynamics of an equivalent cascade with all
airfoils oscillating at a fixed interblade phase angle. The resulting unsteady pressure
distributions are correlated with the data for all airfoils oscillating and the predictions
from the linearized unsteady cascade analysis of reference 3. To aid the interpretation
of these results, the limitations of conducting oscillating cascade experiments in a

finite, linear cascade are considered.
4.1 Steady State Aerodynamics

4.1.1 Low Solidity Cascade

To demonstrate periodicity at the steady state conditions, airfoil surface pressure
distributions are obtained for multiple passages in the low solidity cascade. For
example, Figure 4.1 presents data at an inlet Mach number of 0.55 for the center
cascade passage and the two adjacent passages. Good cascade periodicity is readily
apparent, with the only significant differences found at the leading edge of the airfoil
upper surface. Using the methods of reference 31,2 95% confidence interval of £0.01
is calculated for the airfoil surface steady pressure coefficients.

Figure 4.2 presents the M =0.80 steady flow airfoil surface pressure coefficient
distributions for the cascade center passage. For both inlet Mach ﬁumbers, the upper
surface distribution peaks near the leading edge and the pressure difference tends
toward zero near the trailing edge. There is negligible loading beyond 50% of chord.
Darkened symbols in Figure 4.2 indicate multiple spanwise data used to indicate

spanwise uniformity of the steady flow (see Figure 2.3 for the pressure tap locations).
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As shown, departure from two-dimensionality is negﬁgible except for small
differences near the leading edge on the upper surface. Since C,=0.43S for sonic
flow with an inlet Mach number of 0.8, the flow field is entirely subsonic for both

inlet Mach numbers.

4.1.2 High Solidity Cascade

The steady flow airfoil surface pressure coefficient distributions for the center
airfoil of the high solidity cascade are shown in Figure 4.3 for 0.65 inlet Mach number
and zero incidence, and Figure 4.4 for inlet Mach numbers of 0.65 and 0.8 at 7 degrees
incidence. The zero incidence condition exhibits airfoil loading due to cascade effects.
At 7 degrees incidence, the pressure coefficient distributions are nearly identical for
the two Mach numbers, with loading only on the airfoil forward half. At an inlet
Mach number of 0.8, the sonic value of C , is 0.435. Thus there is a small region of
supersonic flow on the upper surface near the leading edge. This supersonic region
is terminated by a small shock, as determined frofn schlieren images. At an inlet
Mach number of 0.65, the sonic value of C ,, 1.01, is slightly exceeded on the upper

surface at the leading edge. In this case, no shock was detected.

4.2 Unsteady Aerodynamics

4.2.1 Data for All Airfoils Oscillating
In this section, summaries of the unsteady data obtained for the low and high
solidity cascade configurations are presented. In addition, for the low solidity cascade,
the cascade dynamic periodicity is investigated for a range of experiment parameters.
First, however, the theoretical modes of oscillating cascade wave propagation as

predicted by linearized unsteady aerodynamic theory are considered.
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The unsteady aerodynamic conditions investigated herein may result in the
oscillating cascade operating at several modes of wave propagation as predicted by
linearized unsteady aerodynamic theory. An oscillating cascade in subsonic flow is
said to be superresonant when pressure disturbances are produced which propagate
away from the cascade unattenuated. When the pressure disturbances decay
exponentially with distance from the cascade, the behavior is called subresonant. A
point where subresonant and superresonant regions meet is called an acoustic
resonance. At an acoustic resonance, the pressure disturbances propagate energy
along the blade row. An expression for the resonant interblade phase angle, Equation
4.1, is derived in Appendix C.

Br=

Figure 4.5 illustrates typical subsonic cascade behavior in terms of these wave

2kMS
cQ-M%

(Msin(ag+y)£y1-M2cos?(ao+Y)) (4.1)

propagation modes. Acoustic resonances at positive and negative interblade phase
angle values, B}, bracket the wave-propagating superresonant region which always
includes R=0 when 0<M<1 and k>0. When B>R; or B<B;, the cascade is
subresonant and the waves decay. Table 4.2 lists the resonant interblade phase angle

values for the both cascade configurations.

Low Solidity C |

Airfoil surface unsteady pressure distributions were obtained in the low solidity
configuration (C/S=0.65) for interblade phase angle values of 0, 45, -45, 90, -90 and
180 degrees at reduced frequencies of 0.2 and 0.32 for M=0.80, and those reduced
frequencies and also 0.45 for M=0.55.

For a linear cascade to be a valid model of an axial-flow turbomachine blade
row, the cascade must exhibit good passage-to-passage periodicity for both steady
and unsteady flow. Low solidity cascade data for all airfoils oscillating simultaneously

were obtained by instrumenting the two airfoil surfaces defining the center passage
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Table 4.2 Resonant values of interblade phase angle

(a) Low solidity cascade
k
M 0.20 0.32 0.45
0.55 -14.6, 37.0 -23.3,59.1 -32.8,83.2
0.80 -19.8, 111.5 -31.7,178.4
(b) High solidity cascade, M=0.65
M | a k=022 k=0.39
0.65 0° -8.8,31.4 -15.5, 55.7
7° -8.4,329 -14.8, 58.4
(c) High solidity cascade, M=0.80
M Ao k=0.185 k=0.32
0.80 7° -8.1, 58.3 -14.0, 100.8

38




of the cascade. The unsteady periodicity of the low solidity cascade was determined
by subsequently positioning the instrumented airfoils to measure the opposite surfaces
of the two center airfoil positions, thus giving dynamic pressure measurements for
both surfaces of the two most centrally located airfoils.

First harmonic unsteady pressure coefficient periodicity data are presented in
Figure 4.6 for M=0.55,k=0.2 and 3=-45 degrees. To simplify the discussion of these
results, the two instrumented airfoils will be referred to as A and B as labeled in the
figure. The data indicate that the dynamic periodicity is excellent in both magnitude
and phase for the airfoil upper surface. Although the lower surface periodicity is
good, the magnitudes tend to be larger on airfoil A, particularly over the forward half
of the airfoil. There are also small but noticeable phase differences in the midchord
region on the lower surface.

To aid the presentation of the periodicity data, new quantities are defined. The

dynamic periodicity magnitude and phase differences, 6C , and 6¢, are defined in

Equations 4.2 and 4.3.
cil-|ck
p_l Al PI Bl Pl (42)
§(lcp|+lcp|)x/c-o.1z
5¢=¢;—-¢z (4.3)

Figure 4.7 presents the dynamic periodicity data determined from the data presented
in Figure 4.6. Both the excellent upper surface periodicity and defects in the lower
surface periodicity are now clearly revealed.

The oscillating cascade periodicity is now investigated as a function of the
interblade phase angle using the quantities 6C, and 8¢. Reduced frequency
crossplots of the periodicity data for M=0.55, k=0.2 and 0.45 are presented in Figures
4.8 through 4.13 for the various interblade phase angle values. Beginningwith 3 =0°,

Figure 4.8, the dynamic periodicity is generally poor, regardless of reduced frequency,

39



UNSTEADY PRESSURE COEFFICIENT

10 —

b’
.-
)
o T,
Q o)
-
E —_—
B
3 O
i
8
P .
® g n
O i i I |
O 25 50 75 100
% AIRFOIL CHORD
180
- B
n
H 90-
&
Q
g | e
$ ! o o 8 50 ®
& 904 .
— 180+

Figure 4.6 Dynamic periodicity of the low solidity cascade, M=0.55, k=0.20,
R=-45 degrees
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Figure 4.7 Dynamic periodicity difference, low solidity cascade, M=0.55,
k=0.20, 3=-45 degrees
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Figure 4.8 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M =0.55, B=0 degrees, k=0.20 and 0.45
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in both magnitude and phase for these superresonant conditions. Reduced frequency
affects the dynamic periodicity when B =45°, Figure 4.9: the periodicity is fairly
good for the subresonant oscillations of k =0.2, except for some large phase differences
at 60 and 75% of chord, but poor for k=0.45 (superresonant), which has large
magnitude differences on both airfoil surfaces. In contrast, the periodicity is much
better for B=-45° for the two values of k, both of which are subresonant, Figure
4.10. When B = 90°, the periodicity is poor for both subresonant conditions, Figure
4.11. In this case, only the lower surface periodicity for k=0.45 is respectable. When

=-90°, Figure 4.12, dynamic periodicity is generally good for the subresonant
lower reduced frequency except for the upper surface magnitude at 12% of chord.
Increasing k to 0.45 (also subresonant) results in reasonably good periodicity except
at 60% of chord. Finally, for out-of-phase oscillations (subresonant), Figure 4.13,
the magnitude differences are fairly small, especially for k=0.2, but the phase
differences are not small for that value of reduced frequency. In contrast, the phase
differences are usually small for k=0.45.

To summarize these dynamic periodicity data, the periodicity is largely a function
of the predicted cascade wave propagation mode: cascade dynamic periodicity is
relatively good for subresonant oscillations but poor for superresonant oscillations.
However, subresonance does not guarantee good dynamic periodicity: dynamic
periodicity is poor for B = 90°, a subresonant interblade phase angle for both values
of reduced frequency shown in Figure 4.11.

Similar trends are found for M =0.80 and reduced frequencies of 0.2 and 0.32,
Figures 4.14 through 4.19. Periodicity is relatively good for subresonant oscillations,
interblade phase angles of -45, -90 and 180 degrees, but poor for superresonant
oscillations, interblade phase angle values of 0, 45 and 90 degrees. An exception is

B =-45° and k=0.32, a subresonant condition with poor dynamic periodicity.

43




DYNAMIC PERIODICITY DIFFERENCE

AIRFOIL SURFACE
LOWER UPPER

@) O k=0.20 (SUBRESONANT)
1.0 & k=0.45 (SUPERRESONANT)
®
®
® ® [
O o 0 g
g 00 = O — |
« () 0 50 o 100
[ |
—0.5 4 - % AIRFOIL CHORD
[ |
—10 -
180
— [ |
0
L 90 -
(s o
(L) [
) " ®
b 0 . e E 1 % —&—
g ¢ ® 50 ® 5 00
u e
—90- -
— 180~

Figure 4.9 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.55, 3=45 degrees, k=0.20 and 0.45
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Figure 4.10 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.55, B=-45 degrees, k=0.20 and 0.45
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Figure 4.11 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M =0.55, 3=90 degrees, k=0.20 and 0.45
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Figure 4.12 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.55, R=-90 degrees, k=0.20 and 0.45
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Figure 4.13 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.55, 3=180 degrees, k=0.20 and 0.45
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Figure 4.14 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.80, 3=0 degrees, k=0.20 and 0.32
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Figure 4.15 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.80, 3=45 degrees, k=0.20 and 0.32
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Figure 4.16 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.80, B=-45 degrees, k=0.20 and 0.32
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Figure 4.17 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.80, 3=90 degrees, k=0.20 and 0.32
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Figure 4.18 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.80, 3=-90 degrees, k=0.20 and 0.32
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Figure 4.19 Reduced frequency crossplot of dynamic periodicity difference,
low solidity cascade, M=0.80, 3=180 degrees, k=0.20 and 0.32
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Hieh Solidity Cascad

The airfoil surface unsteady pressure distributions were obtained in the high
solidity configuration (C/S=1.3) for interblade phase angle values of 0, 90, and -90
degrees at reduced frequencies of 0.22 and 0.39 for M=0.65, and reduced frequencies
of 0.185 and 0.32 for M=0.80. A portion of these data were presented in Reference
17, but anomalies were found to exist in the data due to an unreliable airfoil motion.
signal. As a part of the current investigation, these signals were re-analyzed using
the backup airfoil motion signal.

The results presented in Reference 17 were derived using an electro-optical
displacement meter to track the motion of the instrumented airfoil. Asecond measure
of the airfoil motion was provided by a proximity sensor as described in Section 2.3.2.
Samples of these two signals, Figure 4.20, illustrate the main difference between the
output of the two devices: while the proximity probe signal is virtually noise-free, the
optical sensor produces a relatively noisy signal. The two signals generally agreed to
within + 4 degrees in phase, so either signal could often be used as a reference for
the unsteady pressure measurements. Insome cases, however, there were large ph;ase
differences between the two measurements, most likely caused by the excessive noise
in the optical signal or dropout of that signal altogether. Thus the proximity sensor
was used as the measure of the airfoil motion for the re-analysis of these data.

Note that due to limitations in the time available for these high solidity cascade

experiments with all airfoils oscillating, dynamic periodicity data were not obtained.

4.2.2 Influence Coefficient Data
Chordwise distributions of the first harmonic dynamic pressure influence
coefficients on the individual surfaces of the position 0 reference instrumented airfoil
are presented for the oscillating airfoil in the five relative positions defined by -2

through 2.
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Dynamic Periodici

To investigate the dynamic periodicity of the low solidity cascade, self-induced
unsteady pressure data were obtained for the two airfoil locations which define the
cascade center passage. Results are presented in the format of dynamic periodicity
difference quantities as defined in Equations 4.2 and 4.3 for M=0.55,k=0.2 and 0.45,
and M =0.80, k=0.2 and 0.32, Figures 4.21 and 4.22. For M=0.55, the periodicity is
generally good except for 6C, for k=0.45 on the upper surface at 12% of chord.
Except for several large phase differences, the M=0.8, k=0.2 data are periodic.
However, the k=0.32 6C, values are relatively large at 25 and 40% of chord. For
the remainder of this study, the €9 data used for the low solidity cascade are those
obtained from the airfoil surfaces defining the center cascade passage. For the high

solidity cascade, the C ‘,’, data were obtained from the center airfoil in the cascade.

Eff f Relative Position of Oscillating Airfoil

To investigate the effect of the relative position of the oscillating airfoil, first
harmonic dynarrﬁc pressure influence coefficient data are presented for the five
relative positions of the oscillating airfoil in the low solidity cascade. For 0.55 inlet
Mach number and 0.20 reduced frequency, the first harmonic dynamic pressure
influence coefficients C? are presented for the airfoil lower surface in Figure 4.23.
In the accompanying schematic, each symbol corresponds to the effect of oscillation

of the indicated airfoil on the reference instrumented airfoil.

For the lower surface data, self-induced unsteady pressures, |C3l, are
dominant, attaining a maximum near the leading edge then tending toward zero at
the trailing edge. The unsteady pressure magnitude distribution due to airfoil -1

oscillations, the airfoil adjacent to the reference airfoil lower surface, also peaks near

the leading edge. Airfoil 1 oscillations cause smaller amplitudes along the forward
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Figure 4.21 Effect of reduced frequency on dynamic periodicity difference,

oscillating airfoil in relative position 0, low solidity cascade,

M=0.55
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Figure 4.22 Effect of reduced frequency on dynamic periodicity difference,
oscillating airfoil in relative position 0, low solidity cascade,
M=0.80
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Figure 4.23 Airfoil lower surface unsteadﬁ pressure influence coefficient
distribution as a function of the oscillating airfoil relative
position, low solidity cascade, M=0.55, k=0.20
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half of the reference airfoil lower surface, but || is slightly larger than |¢£;!|
along the aft half. The n=2 and n=-2 magnitudes are quite small, illustrating the
decrease in unsteady pressure magnitude with distance from the oscillating airfoil.

Lower surface phase angle data are strong functions of the oscillating airfoil
position but, for any one value of n, change little with chordwise position. The n=0
phase changes linearly from a phase lag over the forward half of the airfoil to a phase
lead over the aft half. For n=-1and -2, the phase data are roughly out-of-phase with
respect to the oscillating airfoil motion but the n=1 and n=2 phases lag the airfoil
motion.

For the airfoil upper surface, the self-induced unsteady pressures and those due
to oscillations of the airfoil adjacent to the instrumented airfoil surface are most
significant, Figure 4.24, analogous to the lower surface results. Decreasing values of

| €| with distance from the oscillating airfoil are apparent when n =1and n=2, but

when the airfoils upstream of the instrumented airfoil, n=-1andn=-2, are oscillating,
values of |C;?|, although small, are larger than |C}'| except at the leading and
trailing edges. The n=0 unsteady pressure fluctuations are approximafely
out-of-phase relative to the airfoil motion while airfoil 1 oscillations resultin in-phase
unsteady pressures. The rest of the unsteady pressures tend to lag the motion by
varying amounts.

Increasing the reduced frequency to 0.45 while maintaining a 0.55 inlet Mach
number dramatically increases the effects of oscillating airfoils in relative positions
1and 2, the airfoils downstream of the instrumented airfoil. This is shown in Figures
4.25 and 4.26 for the lower and upper surfaces, respectively. Unexpectedly, [CL]
and |C32| are equal to each other and almost constant with chordwise position on

both surfaces. |C;'| And |C}?| are relatively small on the lower surface except at
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distribution as a function of the oscillating airfoil relative
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12% of chord. On the upper surface, |¢;!| and |C;?| are still smaller than | ol |
and [€2], and |C;']| is smaller than |C;?| - this is similar to the data for k=0.20

in Figure 4.24.

Figures 4.27 and 4.28 show lower and upper surface influence coefficient data

for the higher Mach number, M=0.8, and k=0.2. As expected, the self-induced

unsteady pressures |C ¢ | are still the largest, but similar to the M=0.55, k=0.45 data,

relatively large unsteady pressures are found due to airfoil 1 and airfoil 2 oscillations.

On the lower surface, |CL|~|C2| while |CL|>|C32| on the upper surface. Values

of |C3?| tend to be slightly larger than |C;'| on the upper surface.

The following briefly summarizes the effect of the relative position of the

oscillating airfoil, as presented in Figures 4.23 through 4.28.

(1)

@

€)

The airfoil surface first harmonic pressure influence coefficients are a strong
function of the relative position of the oscillating airfoil, with the
self-induced pressure fluctuations having the largest magnitudes.

Phase angle data for the self-induced unsteady pressures tend to be in-phase
with the airfoil motion for the lower surface and out-of-phase for the upper
surface.

The expected decrease in unsteady pressure magnitude with distance
between the oscillating and instrumented airfoils does not necessarily occur.
|

(a) Onthe reference airfoil upper surface, |C ;2| is generally greater than

col.
(b) The influences of the airfoils downstream of the instrumented airfoil,
€} and C?2, are unexpectedly large except at the lowest Mach

number/reduced frequency combination, M=0.55 and k=0.20.
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Figure 4.27 Airfoil lower surface unsteady pressure influence coefficient
distribution as a function of the oscillating airfoil relative
position, low solidity cascade, M=0.80, k=0.20
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Figure 4.28 Airfoil upper surface unsteady pressure influence coefficient
distribution as a function of the oscillating airfoil relative
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Effect of Reduced Frequency

From the previous results, it is apparent that the reduced frequency has
significant effects on the influence coefficients. To clarify these effects, a series of
dynamic pressure influence coefficient plots having data for k=0.20 and k=0.45 are
presented for M=0.55. Each figure corresponds to a different oscillating airfoil
relative position and includes data for both airfoil surfaces, thus also allowing the
upper and lower surface unsteady pressure distributions to be compared.

The effect of reduced frequency on the self-induced oscillating airfoil unsteady
pressure distribution is shown in Figure 4.29. The larger amplitudes are generally
associated with the higher value of k, except near the leading edge on the upper
surface. For k=0.45, the lower surface amplitudes are typically larger than the upper
surface amplitudes. For k=0.20, the amplitudes for the two surfaces are about equal.
Reduced frequency affects the phase of the unsteady pressure distribution to some
extent on the upper surface but not on the lower surface.

Unsteady pressures resulting from oscillations of the airfoil in relative position
1 are shown in Figure 4.30. A schematic of the cascade configuration used to obtain
the data is also shown. In the schematic, the solid lines above and below the cascaded
airfoils designate the wind tunnel walls. The unsteady pressure magnitudes at either
reduced frequency are nearly constant with chordwise position and equal for each of
the two surfaces. The magnitude increases with reduced frequency, k=0.45 having
nearly twice the magnitude as k=0.2. For either value of reduced frequency, the
phases of the upper and lower surface unsteady pressures are about the same along
the aft half of the airfoil. Forward of there, the phase distributions diverge with the
lower surface lagging the upper surface. The lower surface phases vary in a fairly

linear fashion, while the upper surface phases are nearly constant.
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Figure 4.29 Effect of reduced frequency on unsteady pressure influence
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That the magnitudes of €}, in Figure 4.30 are constant and equal for the two

airfoil surfaces suggest that these unsteady pressure distributions are due to plane
traveling waves. Such waves would ideally also have a linear phase variation with
chordwise position, the rate of variation depending upon the direction the wave is
propagating and the mean flow conditions. The lower surface phase data approximate
this condition, having a fairly linear phase change with chord. The upper surface
phase data also approximate this condition, with the phase changing little with chord
- indicative of a wave traveling normal to the airfoil chord.

The rate-of-change with chord of the phase data may be used to calculate a wave
propagation velocity in the chordwise direction. Based on least squares fits of the
lower surface data of Figure 4.30, the waves propagate in the upstream direction at
velocities divided by the speed of sound of 0.23 and 0.31 for k=0.20 and 0.45,
respectively. Assuming that the steady flow field is uniform, a wave travelingupstream
in the chordwise direction would have a velocity of propagation divided by the speed
of sound of (V ,/ d) =1-M=1-0.55 = 045. The differences between the

‘theoretical and calculated values indicate the waves are actually propagating in a

direction oblique to the airfoil chordwise direction.

Similar trends occur for (€2, Figure 4.31, further supporting the

upstream-traveling wave concept. Again, for either k, the unsteady pressure
magnitude distributions vary little with chordwise position and are nearly equal for
the two surfaces. The higher reduced frequency data have significantly larger
magnitudes. The phase distribution for the k=0.45 data is nearly the same for both
airfoil surfaces except at 12% of chord. The k=0.2 phase distributions for the two

airfoil surfaces are equal at 88% of chord then gradually diverge forward of there.
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Experimental values of IV ,/7a are 0.33 for k=0.20 and 0.44 for k=0.45. The
experimental value for k=0.45 is approximately equal to the theoretical value, 0.45,
indicating that this wave is propagating in the chordwise direction.

The main effect of oscillating the airfoil in relative position -1 is a peak in the
unsteady pressure magnitude near the leading edge on the adjacent, lower surface
of the instrumented airfoil, Figure 4.32. Upper surface magnitudes are very small
except near the leading edge. Contrary to the trend for n>0 of larger magnitudes
for higher reduced frequencies, the magnitudes on the lower surface are larger for
the lower reduced frequency. Phase distributions for the upper surface are very
similar for the two reduced frequencies, both with the phase at 12% of chord leading
the phase at 88% of chord by about 150 degrees and having reasonably linear variation
with chordwise position. There are large differences due to reduced frequency in the
phase distributions on the lower surface: the k=0.2 data remain constant with chord

while the k=0.45 data vary greatly with position.

Figure 4.33 presents €, The larger magnitude data are associated with the

higher reduced frequency. A more significant finding is that the unsteady pressure
magnitudes are larger on the airfoil upper surface. Referring to the accompanying
cascade schematic, it is seen that the instrumented airfoil upper surface is adjacent
to a wind tunnel wall. The relatively large unsteady pressures found in the data are
likely due to reflection of pressure waves off the wind tunnel wall toward the
instrumented airfoil upper surface. The phase distributions change little with position
and are approximately out-of-phase.

In summary, Figures 4.29 through 4.33 illustrate the effect of reduced frequency
on the unsteady pressure influence coefficient distribution and the differencesin C}

for the two airfoil surfaces. Important trends found in these plots are as follows.
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(1)

)
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4

Largerunsteady pressure coefficients generally result at the higher reduced
frequency. An exceptionis €' for the lower surface.

For either value of reduced frequency, oscillation of airfoil 1 or airfoil 2
causes unsteady pressure fluctuation magnitudes on the reference airfoil
surface which are nearly constant along the airfoil and nearly equal for the
two airfoil surfaces. This behavior appears to be a consequence of a plane
traveling wave.

For either value of reduced frequency, oscillation of airfoil -1 causes
unsteady pressure fluctuations on the nearest reference airfoil surface, the
lower surface, which are larger than those on the opposite surface.
When airfoil -2 is oscillating, the reference airfoil upper surface unsteady
pressures are larger than those on the lower surface, most likely due to

waves being reflected off the adjacent wind tunnel wall.

Plots analogous to those just presented but for an inlet Mach number of 0.80

and reduced frequencies of 0.20 and 0.32, Figures 4.34 through 4.38, reveal many

similar trends concerning the effect of reduced frequency and differences in C4 for

the two airfoil surfaces. These results are summarized in the following.

(1)
)

Larger unsteady pressures generally result at the higher reduced frequency.
For either value of reduced frequency, oscillation of airfoil 1 causes
unsteady pressure fluctuations on the reference airfoil surface which are
nearly equal in magnitude on both airfoil surfaces. However, the
magnitude varies some with airfoil chord, having a hump centered at 60%
of chord. Similar results are evident for Ci except that, for k=0.32, the
hump is more pronounced and the lower surface magnitudes are

significantly larger than those of the upper surface. These data are also
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indicative of traveling wave phenomena, except that the mean flow field
is distorting the waves and causing the nonuniform unsteady pressure
magnitude distributions at this higher inlet Mach number.

(3) For either value of reduced frequency, oscillation of airfoil -1 causes
unsteady pressure fluctuations on the nearest reference airfoil surface, the
lower surface, which are larger than the opposite surface.

(4) When airfoil -2 is oscillating, larger unsteady pressures are found on the

reference airfoil upper surface than the lower surface.

Effect of Inlet Mach Number

To determine the effects of inlet Mach number, a series of dynamic pressure
influence coefficient plots having data for both M=0.55 and M =0.80 are presented
for k=0.32. Each plot corresponds to a different oscillating airfoil relative position
and includes data for both airfoil surfaces.

Inlet Mach number has a significant effect on the self-induced unsteady pressure
coefficient magnitude distribution, Figure 4.39. Magnitudes are larger for the higher
inlet Mach number, and there is little difference between the lower and upper surface
magnitudeswhen M=0.8. When M =0.55, magnitudes are larger on the lower surface.
The phase distributions are little affected by inlet Mach number.

Larger magnitudes also occur for M=0.80 whenn=1and n=2, Figures 4.40 and
4.41. Wave distortion by the mean flow field at the higher inlet Mach number is also
apparent, as evidenced by the nonuniform magnitude distribution. This contrasts
with the uniform distributions for M=0.55. One difference is that the upper and

lower surface magnitudes for n=1and M =0.55 are not equal.
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For the other relative positions of the oscillating airfoil, n=-1and n=-2, Figures
4.42 and 4.43, respectively, larger magnitudes are again found for the higher inlet
Mach number. Inlet Mach number affects the phase data considerably, but no general

trend is apparent.

Effect of Solidity and Number of Airfoil

The effect of cascade solidity and also the number of airfoils in the cascade is
investigated by comparison of M=0.8 influence coefficient data for the low and high
solidity cascades, Figures 4.44 through 4.48. Solidities of these cascades differ by a
factor of two, the steady flow incidence angles are different, 2 degrees for the ldw
solidity cascade and 7 degrees for the high solidity cascade, and the stagger angles
also differ, 45 degrees for the low solidity configuration and 53 degrees for the high
solidity configuration.

Despite all these differences, the self-induced unsteady pressure coefficient,
Figure 4.44, is nearly independent of solidity. The main difference is on the upper
surface at 12% of chord where an oscilléting shock wave gives a spike in magnitude
for the high solidity cascade. Otherwise, the magnitude and phase distributions are
very similar.

Oscillating the airfoil in relative position 1, Figure 4.45, clearly shows the effect
of reducing the spacing between the airfoils: the unsteady pressures on the adjacent
surface of the instrumented airfoil, the upper surface, increase dramatically as the
spacing is decreased. Magnitudes on the opposite surface are hardly affected. Phase
distributions are similar in slope but shifted due to the difference in airfoil spacing.
Note that, in the accompanying schematic, the locations of the cascade walls are
accurate only for the low solidity (four airfoil) cascade; in the high solidity cascade,

the center airfoil of the nine airfoils was oscillating.
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Solidity has little effect on the magnitude distribution of €2, Figure 4.46, but

there is large shift in the phase angle due to the difference in airfoil spacing.
Oscillations of the airfoil immediately beneath the instrumented airfoil, Figure
4.47, causes larger lower surface unsteady pressures for the high solidity cascade,
another consequence of the difference in airfoil spacing. The upper surface pressure -
magnitudes are approximately the same for the two cascades. The phase distributions ’

are generally dissimilar except for the forward half of the airfoil lower surface.

Differences in |C;?|, Figure 4.48, confirm the adverse effect of the cascade

wall on the upper surface pressures in the low solidity cascade. As discussed
previously, reflections off the adjacent wall of the wind tunnel are believed to be the
reason for values of |C ;2| which are, for the low solidity cascade, largest on the
airfoil upper surface. In contrast, this figure shows that the high solidity cascade
upper surface magnitudes are the smallest of all. That the airfoil upper surface was,
in the high solidity cascade, separated from the wind tunnel wall by two airfoils is the

critical factor.

Effect of Mean Flow Incidence Angle

Data taken in the high solidity cascade configuration for two incidence angles,
0 and 7 degrees, allow the effect of the mean flow incidence angle and the associated
differences in the steady flow field on the unsteady aerodynamics to be investigated.
For 0.65 inlet Mach number and 0.22 reduced frequency, incidence angle crossplots
are presented for the various relative positions of the oscillating airfoil in Figures
4.49 through 4.53.

Mean flow incidence angle haslittle effect on the self-induced unsteady pressure
coefficients, Figure 4.49. Except for the large magnitude on the upper surface at 12%

of chord for 7 degrees of incidence, the distributions are the same. The large response
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Figure 4.46 Effect of cascade solidity on unsteady pressure influence
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k=0.32

92



UNSTEADY PRESSURE INFLUENCE COEFFICIENT épl

SURFACE
LOWER UPPER SOLIDITY

6 e} a 0.65 =
® = 1.3 = nsruMenTED
v— AIRFORL
b
‘é’ ®
O
> ®
(3 O
s o 9
™ - o
0 T E I 9 9 ﬁ |
0 50 100
% CHORD
180
7 90 . o U
m —
] " O
(o o
i
(] n [ T ]
:"}': (), 0O 0O 50 100
[ |
g O
__90__
o o © o
[ ]
~180- T @ b @
8 ®

Figure 4.47 Effect of cascade solidity on unsteady pressure influence
coefficient, oscillating airfoil in relative position -1, M=0.80,
k=0.32

93



UNSTEADY PRESSURE INFLUENCE COEFFICIENT ég

SURFACE INSTRUMENTED AIRFOIL
LOWER UPPER SOLIDITY 7

mm—

6 @) a 0.65
T ® ] 1.3 Ve -
=
w -
=)
E 97
Z
(O]
g
=
- :
0 0
@
OO ﬁ g ‘ 5IO : g Q 1(1)0
g B % CHORD
n
180 o =
O
O 8 @)
~ 0
@ 90- S O
w 0 o
o
O B
‘uoi OO | 510 | 1(130
T ®
3 _90- ® o ®
o ® ® ®
— 180~

Figure 4.48 Effect of cascade solidity on unsteady pressure influence

coefficient, oscillating airfoil in relative position -2, M =0.80,
k=0.32

94



20

SURFACE
LOWER UPPER Q)
| @) O o
—X-" o ® [ ] 7
©u
-
ZE 10 —
W=
Q¢
w . O
ao° °
w B @ @
3] 2
2 0O ; T T 1
W 0 50 100
=4 - % CHORD
('.
Z 180~ = B _ IR
w =
o
B @ N
o w907
i o
a o ® ®
w
EQ 0 @ @ 8 [ ' 1
ﬁu.l ) 50 100
G 2
2 T -90-
= o
- 180~
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there is due to a small, oscillating separation bubble near the leading edge on the
upper surface. The presence of separation was first indicated by significant higher
harmonic content in the leading upper surface pressure transducer signal. Steady
state flow visualization with airfoil 0 at 8.2 degrees of incidence then confirmed the
presence of a small separated region near the leading edge.

Differences in the other influence coefficients due to incidence angle are
generally small. For C}, Figure 4.50, phase differences are small with only the
magnitude on the aft half of the airfoil upper surface affected. Larger magnitudes
occur there for zero incidence. Some differences in phase are found in the chordwise
distribution of €2, Figure 4.51, but the magnitude differences are small. I:lcidence
angle does affect C;', Figure 4.52, to some extent: the lower surface magnitudes
are generally larger for the higher incidence angle, and the upper surface separation
bubble is caused to oscillate, resulting in a spike in the unsteady upper surface pressure
at 12% of chord. There are also differences in the upper surface phase distributions,
but the upper surface amplitudes are generally so small that these differences are
insignificant. Valuesof €, , Figure4.53, are also very small except for someresponse

on the lower surface for zero incidence.

4.2.3 Summation of Influence Coefficients
Summation of the experimentally-determined influence coefficients to
determine the unsteady pressure difference coefficient is depicted in Figures 4.54
and 4.55 for low solidity cascade data. The 0.55 inlet Mach number, 0.45 reduced
frequency data are presented as a dynamic pressure difference coefficient for
interblade phase angles of 0 and 180 degrees, with N specifying the limits of the sum

per Equation 1.1. Thus N=0 corresponds to the self-induced unsteady aerodynamic
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response. The influence coefficient series for AC ,, is rapidly convergent, with only
the reference airfoil and its two immediate neighbors having a significant effect on
the resulting dynamic pressure differences.

In contrast, the series for the airfoil individual surface static pressure coefficient
C p is not necessarily convergent. For example, Figures 4.56 and 4.57 demonstrate
summation of the lower surface pressure coefficients for M =0.55, k=0.45, in-phase
and out-of-phase oscillations. In both of these cases, the series are not convergent
over the range for which data are available: the phase is varying rapidly with N for
B =0° while the magnitude is not converging for B = 180°. This is mainly due to
the large magnitudes of €}, when n>0. That the series for the unsteady pressure
difference coefficient is convergent despite this is because the pressures due to the
upstream traveling wave largely cancel when the pressure difference is taken. This
can be seen in Figures 4.31 and 4.36, where the complex individual surface values of
C?% are approximately equal and thus cancel when the pressure difference is
calculated. While the individual surface influence coefficients are of significant

magnitude, the pressure difference influence coefficient is insignificant.

Since the amplitude of €2 increases with reduced frequency, lowering the

reduced frequency should result in a C , series with better convergence properties.
This effect is shown in Figures 4.58 and 4.59, where a reduction in k to 0.20 while
keeping the same Mach number and interblade phase angles results in good

convergence for the airfoil lower surface unsteady pressure coefficient.

4.2.4 Correlation of Data
Experimental results consisting of unsteady airfoil surface pressure difference
coefficients obtained via summation of influence coefficients and the corresponding

data obtained when all the airfoils are oscillating simultaneously with a constant
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interblade phase angle are presented. These experimental data are correlated with
the analysis of Smith, reference 3. Smith’s analysis is based upon the assumptions of
inviscid, isentropic, subsonic flow through an infinite cascade of flat plate airfoils.
The analysis also assumes that the airfoils are at zero mean incidence, and that the
airfoil oscillations create small unsteady disturbances to the uniform mean flow.
Summation of the influence coefficient experimental data makes use of all the
available experimental data, that is, N=2 in Equation 1.1. Predictions obtained from
Smith’s analysis via the influence coefficient technique, as explained in Chapter 1,

are also presented for N=2.

Low Solidity C ]

For a reduced frequency of 0.32 and a range of interblade phase angles from
-90 degrees to 180 degrees, Figures 4.60 through 4.71 present low solidity cascade
results for inlet Mach numbers of 0.55 and 0.80. For superresonant in-phase
oscillations with M =0.55, Figure 4.60, the two experimental data sets correlate very
well with each other in both magnitﬁde and phase. The magnitudes predicted by
Smith’s linearized analysis are in very good agreement with the experimental data
and the analytical influence coefficient predictions for N=2. The
analytically-determined phase distributions are offset from the experimental data by
a small amount. The good overall correlation found here is surprising considering
the poor dynamic periodicity found for = 0° and M=0.55, Figure 4.8.

When the inlet Mach number is increased to 0.80, Figure 4.61, the correlation
is not as good as for M=0.55. The two sets of experimental data are in good mutual
agreement along the forward half of the airfoil, but aft of there, the
experimentally-determined influence coefficient magnitudes are relatively small in
comparison with the experimental all-airfoils-oscillating data. The analytical

predictions are in very good mutual agreement, indicating that only a few oscillating
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Figure 4.60 Unsteady pressure difference coefficient distribution, low
solidity cascade, M=0.55, k=0.32, 3=0
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airfoils are required to accurately quantify the oscillating cascade aerodynamics at
this flow condition. The correlation of the experimental data and the analytical
predictions varies: the predicted magnitudes are in better agreement with the
experimental all-airfoils-oscillating data than with the experimental influence
coefficient data, but the predicted phase distributions better agree with the
experimental influence coefficient data. Poor dynamic periodicity was found for this

superresonant condition, Figure 4.14.

The data correlation for 3 = 45° also varies with inlet Mach number. For both

inlet Mach numbers, B=4S° is superresonant. For M=0.55, Figure 4.62, the
magnitude correlation is good but the phase variations are large. In particular, while
the analytical results and the experimental influence coefficient phase data are in
good agreement, the experimental all-airfoils-oscillating phase data generally have
much more of a phase lead. For M=0.80, Figure 4.63, the level of correlation is
reduced. The good magnitude correlation of the all-airfoils-oscillating experimental
data and the analytical predictions is offset by their poor phase correlation. The
influence coefficient data result in magnitudes about half that of the data for
all-airfoils-oscillating, and phases which fall between the experimental
all-airfoils-oscillating data and the analytical predictions. For both of these inlet
Mach numbers, the dynamic periodicity for B =45° was found to be poor. This is
shown in Figure 4.9 for an inlet Mach number of 0.55 and in Figure 4.15 for an inlet
Mach number of 0.80.

In contrast, the correlation is very good for 3 = —45°, a subresonant condition,

Figures 4.64 and 4.65. The only significant differences are found at the higher Mach

number where there are some relatively small differences in the experimental
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Figure 4.62 Unsteady pressure difference coefficient distribution, low
solidity cascade, M=0.55, k=0.32, 3= 45 degrees
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Figure 4.65 Unsteady pressure difference coefficient distribution, low
solidity cascade, M=0.80, k=0.32, 3=-45 degrees
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magnitude data. As discussed in Section 4.2.1, relatively good dynamic periodicity
was found at this value of interblade phase angle, Figure 4.10 for M=0.55 and Figure
4.16 for M=0.80.

Correlations for B =90° are shown in Figures 4.66 and 4.67 for M=0.55

(subresonant) and M=0.80 (superresonant), respectively. These correlations are
quite similar to their respective correlations for B = 45 °, Figures 4.62 and 4.63. One
exception is that the experimental magnitude data and the analytical magnitude
predictions are reduced in agreement forM=0.55, B = 90°, a subresonant condition,
as compared to M=0.55, B=45°, a superresonant condition. Poor dynamic
periodicity was found for these conditions, Figures 4.11 and 4.17, respectively, for

M=0.55 and M=0.80.

Asfor B = - 45°, the data-theory correlation is very good for B = —90°, Figures

4.68 and 4.69. Good dynamic periodicity was found for B =-90°, Figure 4.12 for
M =0.55 and Figure 4.18 for M=0.80.

The correlation for out-of-phase, subresonant, oscillations varies with inlet
Mach number. For M =0.55, Figure 4.70, both sets of the experimental magnitude
data and the analyﬁcal predictions are in good agreement. The influence coefficient
experiment phase data and the analytical predictions are in very good agreement,
but the all-airfoils-oscillating experiment phase data are shifted from the analytical
predictions and the influence coefficient experiment phase data. Note that while
relatively good periodicity was found for M=0.55 and B = 180°, Figure 4.13, this
correlation is not as good as the correlations found for 3 = - 45° and B=-90°, the

other interblade phase angle values where relatively good periodicity was found.

AtM=0.80and B = 180°, Figure 4.71, the correlation is reduced. The two sets

of experimental magnitude data are in good agreement with each other but are
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Un_st;ady pressure difference coefficient distribution, low
solidity cascade, M=0.55, k=0.32, 3=90 degrees
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Figure 4.67 Unsteady pressure difference coefficient distribution, low
solidity cascade, M=0.80, k=0.32, 3=90 degrees
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Figure 4.68 Unsteady pressure difference coefficient distribution, low
solidity cascade, M=0.55, k=0.32, B=-90 degrees
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Figure 4.69 Unsteady pressure difference coefficient distribution, low
solidity cascade, M=0.80, k=0.32, 3=-90 degrees
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Unsteady pressure difference coefficient distribution, low
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Figure 4.71 Unsteady pressure difference coefficient distribution, low
solidity cascade, M=0.80, k=0.32, B=180 degrees
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significantly less in magnitude than the analytical prediction for an infinite cascade.
The experimental phase data and the analytical predictions all have significant
differences despite similar trends. Because this condition falls very near an acoustic
resonance at 178.4 degrees, the predictions of Smith’s analysis for an infinite cascade
and the analytical influence coefficient predictions for N=2 are quite different.
However, the experimental influence coefficient data and the analytical influence
coefficient predictions are in good agreement.

To summarize these low solidity cascade results, several trends are evident from
these plots of the dynamic pressure difference coefficient distributions:

(1) The best correlation is achieved at interblade phase angle values where
the best unsteady cascade periodicity is found, -90 and -45 degrees. The
two sets of experimental data are in good agreement with each other and
also in good agreement with the analytical predictions. All of these
conditions are subresonant.

(2) The level of correlation is generally poorest at interblade phase angle
values of 45 and 90 degrees, values for which the unsteady cascade
periodicity was generally poor. One of these conditions is subresonant,
thus subresonance does not guarantee good correlation.

3) Surprisingly good correlationis found for in-phase oscillations considering
that relatively poor dynamic periodicity was found for that interblade
phase angle value.

4) Correlation is reduced at the higher inlet Mach number, M=0.8, as
compared to the lower inlet Mach number, M =0.55.

(5) There is generally good agreement between the values of AC,

determined using the experimental influence coefficient technique and

those predicted by the linearized analysis.
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(6) The analytical influence coefficient predictions for N=2 are generally in
very good agreement with the analytical predictions for an infinite
cascade, indicating that only a few oscillating airfoils are generally
required to model an infinite cascade. This approximation fails in the
vicinity of acoustic resonances. Also, because the analyses predict AC ,,
not C,, the number of oscillating airfoils required to accurately

determine the airfoil surface C , distributions is not determined.

Hieh Solidity Cascad

In a similar fashion, AC , experimental data from the high solidity cascade are

presented along with the analytical predictions in Figures 4.72 through 4.80. The 0.39
reduced frequency results are presented for an inlet Mach number of 0.65, 0 and 7
degreés mean incidence. The 0.32 reduced frequency results are presented for an
inlet Mach number of 0.8 and 7 degrees mean incidence. Due to the failure of several
dynamic pressure transducers, some data points from the all-airfoils-oscillating
experiments are omitted from these figures.

Superresonant in-phase oscillations result in varied correlations. For 0.65 inlet
Mach number and 0 mean incidence, Figure 4.72, the predicted magnitudes tend to
fall between the two sets of experimental data, with the largest magnitudes from the
all-airfoils-oscillating experiment. The experimental phase data are in good mutual
agreement except in the midchord region, but there is a large offset between the
predictions and the experimental data. The analytical influence coefficient
predictions for N=2 are in good agreement with the analytical predictions for an
infinite cascade.

Changing the mean flow incidence angle to 7 degrees, Figure 4.73, results in

improved magnitude and phase correlations except for the magnitude near the leading
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Figure 472 Unsteady pressure difference coefficient distribution, high
solidity cascade, M=0.65, a,=0, k=0.39, =0
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edge and the phase near the trailing edge. The peak in the
influence-coefficient-determined magnitude at 12% of chord is due to the oscillating
separation bubble as discussed in Section 4.2.2.

For M=0.8 at 7 degrees of incidence and k=0.32, Figure 4.74, the two sets of
experimental magnitude data are in fairly good mutual agreement except at the
leading edge. There, the peak in the influence-coefficient-determined magnitude at
12% of chord is due to oscillations of the upper surface shock wave. That shock wave
oscillations were not evident at 12% of chord in the corresponding
all-airfoils-oscillating experiments may be due to small differences in the steady flow
field between the two experiments. The analyses predict larger magnitudes than the
experimental data except at 12% of chord. The experimental phase data are in good
mutual agreement near the leading and trailing edges but differ in between. The
predictions correlate reasonably well with the experimental phase data except for the
experimental influence coefficient data at 25 and 75% of chord and the
all-airfoils-oscillating experiment data at 60% of chord.

Changing the interblade phase angle to 90 degrees, the oscillating cascade is
predicted to be subresonant for M=0.65 and k=0.39, but superresonant for M=0.80
and k=0.32. For M=0.65 and a,=0°, Figure 4.75, the influence coefficient
experiment data and the predictions correlate very well, but the experiment phase
data for all-airfoils-oscillating are offset from the rest. The influence coefficient
experiment data and the analytical predictions are also in relatively good agreement
when the mean incidence angle is changed to 7 degrees, Figure 4.76, although the
magnitude correlation is reduced over the forward half of the airfoil. For M=0.8,
k=0.32, Figure 4.77, the magnitude correlation is good except near the leading edge
where the influence coefficient magnitude is large due to the oscillating shock wave.

Differences between the phase data and the analysis results occupy a wide band.
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Figure 4.74 Unsteady pressure difference coefficient distribution, high
solidity cascade, M=0.80, a,=7 degrees, k= 0.32, =0
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Figure 4.75 Unsteady pressure difference coefficient distribution, high
solidity cascade, M=0.65, a,=0, k=0.39, 3=90 degrees
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Figure 4.76 Unsteady pressure difference coefficient distribution, high solidity
cascade, M=0.65, a,=7 degrees, k=0.39, B=90 degrees
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Figure 4.77 Unsteady pressure difference coefficient distribution, high solidity
cascade, M=0.80, a,=7 degrees, k=0.32, 3=90 degrees
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For B=-90°, subresonant conditions are predicted for both inlet Mach

numbers. The two sets of experimental data and the predictions correlate well in
both magnitude and phase for 0.65 inlet Mach number and 0 mean incidence, Figure
4.78. Increasing the mean incidence to 7 degrees, Figure 4.79, the correlation is still
good except that the predicted magnitudes are, except near the leading edge, greater
than the experiment data. Again, the peak in the influence-coefficient-determined
magnitude at 12% of chord is due to the oscillating separation bubble. There is good
phase correlation for M =0.8, Figure 4.80, but the predicted magnitude distributions
are again generally greater than measured. The ;‘)eak in the
influence-coefficient-determined magnitude at 12% of chord is due to oscillations of
the upper surface shock wave.

In summary, there are several trends from these plots of the dynamic pressure
difference coefficient distributions for the high solidity cascade:

(1) The experimental data-linearized analysis magnitude correlation is
generally good. The primary exceptions are due to the M =0.80 oscillating

| shock wave or the M=0.65 oscillating separation bubble present at 12%
of chord in the influence coefficient experiments.

(2) The best correlation of both experimental data sets and the analytical
results is generally achieved at 3 = -90°, a subresonant interblade phase
angle.

3) Significant differences in the phase angle distributions are generally found
at interblade phase angle values of 0 (superresonant) and 90 degrees
(subresonant for M =0.65, superresonant for M =0.80).

4) The correlations between the experimental influence coefficient data and
the linearized analysis predictions for the high solidity cascade vary

considerably.
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Figure 4.78 Unsteady pressure difference coefficient distribution, high solidity
cascade, M=0.65, a,=0, k=039, 3=-90 degrees
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Figure 4.79 Unsteady pressure difference coefficient distribution, high solidity
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Figure 4.80 Unsteady pressure difference coefficient distribution, high solidity
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4.2.5 Finite Linear Cascade Effects

The cascade dynamic periodicity and correlation of the experimental
all-airfoils-oscillating data with the results of Smith’s analysis have been shown to
vary greatly with interblade phase angle. How these correlations can be very good
for some interblade phase angles but poor for others leads one to question the validity
of conducting oscillating cascade experiments in a linear cascade. Two specific areas
of concern which will now be considered are: (1) the effect of having a finite number
of airfoils in the cascade; (2) the effect of the wind tunnel walls. Both experimental
data and linearized analysis will be used to address these concerns.

The effect of a finite number of airfoils has, in effect, already been considered.
In Section 4.2.3, the convergence properties of the experimentally-determined
influence coefficient series were investigated. Because the experiment C , series is,
for some conditions, slowly convergent at best, a large number of airfoils is generally
required to determine the unsteady pressure distribution on the oscillating cascaded
airfoils. But the series convergence depends mainly upon the upstream-traveling
wave, which may not truly be a cascade phenomenon. That is, the wave may bé a
consequence of the rectangular duct which encloses the cascade. Thus there is
insufficient experimental evidence to assess the effect of alimited number of cascaded
airfoils. From a theoretical standpoint, it was found in Section 4.2.4 that the analytical
predictions for N=2 are generally in good agreement with infinite cascade
predictions. But the analyses predict AC ,, not C , so the convergence properties
of the C , series may not be determined from the analyses.

The effect of the wind tunnel walls on the cascade unsteady aerodynamics is
addressed by considering both the experimental data and the linearized‘ unsteady
aerodynamic analysis. The analysis, as explained in Appendix C, is used to predict

the cascade wave generation characteristics which, although for an infinite cascade,
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will give insightinto possible cascade/wind tunnel interactions. Algebraicexpressions
are used to calculate the wavelength, propagation direction and decay rate of the
pressure disturbances produced by an oscillating cascade. The initial amplitudes of

these disturbances are calculated using Smith’s analysis.

Low Solidity Cascade

Figures 4.81 through 4.84 present these results for an inlet Mach number of 0.55
and 0.32 reduced frequency. Referring to Figure 4.81, the direction of wave
propagation is expressed relative to axial (§) and tangential () coordinates so that a
wave moving away from the cascade in the -§ direction is said to be
upstream-traveling while a wave moving in the & direction is traveling downstream.
Both upstream-traveling and downstream-traveling waves are produced in the
superresonant region which brackets 3=0°. Outside this region, the oscillating
cascade produces subresonant waves which travel only downstream. Acoustic
resonances occur at the boundaries between the subresonant and superresonant
regions, with pressure disturbances propagating along the cascade in the =n
directions.

Computed values of the initial magnitude of the outgoing pressure disturbance
are shown in Figure 4.82 for M=0.55 and k=0.32. These results are presented in the
format of an unsteady pressure coefficient magnitude at the leading edge of the
cascade, |C,(5=0)|. The largest initial disturbance amplitudes are found in the
vicinity of 3; . Outside the near-resonance regions, relatively large amplitudes occur
at positive subresonant values of the interblade phase angle, 3 >3;. As shown in
Appendix C, these pressure disturbances will either propagate unattenuated or decay

exponentially as a function of the axial distance &:

}Cp(§)| _ e-[llEI.

= 4.4
|Cp(E=0)| ( )

137



T€0=Y ‘SS'0= ‘oprased Anpijos mo| ‘uonoanp uonededoid soueqimsip 21nssag 18t 21ng1,]

(S334H3A) I1ONV ISVHd IAVIGHILNI

om_um oﬁ_u_

oo__ -

ONITIAVHL
“WY3HLSdN

-]

ONITIAVHL
“WVYIHISNMOQ

ONIT3AVHL
“Nv3diSdn

--— LNVNOS3Hans

1INVNOS3HU3dNS

AINVYNOSIHENS —

00Z—
081~
-3
. 2
m
2
nOmlm
>
S
s
o
-0 <
o
o 1
m
O
d
(o]
-0 &
v o)
- O
m
o
m
iow—_____
@

138



7€°0=Y ‘SS’0=JA ‘opeoses Ap1jos mo[ ‘opmyjdure soueqinisip ainssaid [eniu] 78 9In3i]

(S33493A) I1ONV ISVHd 3AVIGHIALNI

00¢ 001 0 oo_ﬁl

1

00

—

P —

L | | ! | ]

~—— LNVYNOSIHANS ———» LINVNOSIHHUIANS |«——— LNVNOSIHENS —»

I ’d

ONITIAVHL-NVIHLSNMOQ @
ONIT3IAVHL-NVIHLISdN &

o"unuoocooo --l-ll-lll-l-l---ll-ll---

(@
O

L~
[

90| 3anLrdwy 30NvEHNLSIa TVILINI

(0=

139



;! is the imaginary part of the axial wavenumber. Figure 4.83 presents ;/ forM=0.55

and k=0.32. As shown, !’ =0 in the superresonant region, hence superresonant
disturbances propagate away from the cascade unattenuated. Outside this region,
1! is nonzero, thus the subresonant waves decay with distance away from the cascade.
In addition, !’ increases monotonically with the absolute value of the interblade
phase angle in the subresonant regions.

Figure 4.84 presents the disturbance wavelength for M=0.55 and k=0.32. The
wavelengths are an order of magnitude greater than the airfoil chord, and the
subresonant waves for B <O are about 2.5 times longer than the subresonant waves
for >0.

Insight into possible cascade/wind tunnel wall interactions is gained by
considering the predicted pressure disturbance characteristics along with the
correlation of the experimental data and Smith’s analysis. Specifically, for 0.55 inlet
Mach number and 0.32 reduced frequency, Figures 4.81 through 4.84, decaying waves
traveling at 6 ~80° with |C,(§=0)|=1.5 are predicted for B=-45° and

= -90°, the interblade phase angle values for which good AC, data-analysis
correlation was found. These waves are directed at the upper cascade wall. Since
the angle of reflection of a wave off a plane surface is equal to the angle of incidence
[32], the reflected disturbances exit the cascade and thus will have little effect on the
oscillating cascade aerodynamics. Decaying waves are also predicted for B =90°,
an interblade phase angle at which there was poor correlation between the data for
all airfoils oscillating and the theory. But the predicted cascade wave generation
characteristics for 3 =90° are much different than for B =-90°: the initial wave
amplitude is about twice as large, the wave decays less rapidly than that for | R=-90°,
and itis traveling at almost the opposite direction, 6 = -83°,such that wavesreflected

off the lower wind tunnel wall could reflect into the cascade and thereby affect the
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cascade unsteady aerodynamics. Out-of-phase oscillations also produce decaying
waves of similar amplitude and direction as B = 90°, except that the imaginary part
of the axial wavenumber is more than doubled, so the waves generated at 3 = 180°
will decay more rapidly. Thus the cascade walls should have less of an effect at
B = 180°, and the result is slightly better correlation between the data for all airfoils
oscillating and the analysis at 3 = 180°, Figure 4.70, than at B = 90°, Figure 4.66.
Interblade phase angle values of 0 and 45 degrees are predicted to be superresonant,
propagating waves unattenuated in both the upstream and downstream directions.
The data-analysis correlation is good for B=0°, but this is considered fortuitous
because the cascade periodicity was poor. The upstream-traveling wave for in-phase
oscillations is predicted to travel at an angle of 140 degrees; reflection of this wave
off the upper cascade wall could affect the cascade unsteady aerodynamics. The
data-analysis correlation is poor for 3 = 45°. In this case, the downstream-traveling
wave, directed at an angle of -48 degrees, might disturb the cascade unsteady
aerodynamics after reflection off the lower wall.

Increasing the inlet Mach number to 0.8 while maintaining k =0.32, Figures 4.85
through 4.88, results in an expanded range of superresonant interblade phase angles,
but the trends are similar to M=0.55. As for M=0.55, at B=-45° and B=-90°
there is good data-analysis correlation, and the predicted wave characteristics at these
two interblade phase angles are very similar to those for M=0.55. The direction of
propagation of the subresonant wave at B = 180° has not changed much, but the
wave produced at 0.8 inlet Mach number is of about twice the initial amplitude and
decays much more slowly than the wave of M=0.55, thus the poorer data-theory
correlation for M=0.8 is understandable. In-phase oscillations at the higher inlet
Mach number produce an upstream-traveling wave of larger amplitude than M=0.55,

and the correlation between the data for all-airfoils-oscillating and the analysis is
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reduced in comparison to M=0.55. For g = 45°, the wave propagation directions
are quite different than for M=0.55, but the overall correlation is similar. In this
case, the upstream-traveling wave ( © = 145°) appears to be responsible. B =90°
is now superresonant. The wave amplitudes are smaller at M=0.8 than M =0.55, but

aren’t predicted to decay, and the level of correlation is reduced.

High Salidity Cascad

The predicted acoustic wave propagation characteristics for the high solidity
cascade with M=0.65, a,=0and k=0.39 are presented in Figures 4.89 through 4.92.
In comparison to the predictions for the low solidity cascade, the peak values of the
initial disturbance amplitude are relatively large when B >;, but values of I’ are
also relatively large, so the high solidity cascade waves may initially be of larger
amplitude, but tend to decay more rapidly. The all-airfoils-oscillating experiment
phase data correlate poorly with the predictions for 3=0°, Figure 4.72, and for
B =90°, Figure 4.75. Inboth cases, waves are predicted which may reflect off a wind
tunnel wall and back into the cascade, thus affecting the unsteady aerodynamics. The
wave predicted for B =-90° is directed at the upper cascade wall and will reflect

away from the cascade.
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CHAPTER 5
COMPUTATIONAL UNSTEADY AERODYNAMIC INFLUENCE
COEFFICIENT TECHNIQUE

An Euler solver for oscillating cascaded airfoils is modified to implement the
computational unsteady aerodynamic influence coefficient technique. First, a
description of the baseline code is presented along with a description of boundary
condition modifications which improve the ability of the code to predict oscillating
cascade aerodynamics and sample results. Thenthe code, as modified for the unsteady
aerodynamic influence coefficient technique, is described and results are correlated

with both experimental data and linearized analysis predictions.

5.1 Euler Solver for Oscillating Cascaded Airfoils

Solutions of the time-dependent equations for the conservation of mass,
momentum and energy for the two-dimensional flow of an inviscid, non-heat-
conducting calorically perfect gas are obtained for a body-fitted coordinate system

~via an implicit finite difference procedure. The flow solver was initially coded for
 isolated pitching airfoils by Sankar and Tang [33], extended by Wu [34] and adapted
to caé'cad‘e‘_'flows by Huff [13].

5.1.1 Mathematical Model

A body-fitted C-grid, Figure 5.1, is transformed from the spatial coordinates |
X,y andtime ¢ intothe §,n, T coordinate system which depends uponthe x,y,t

coordinates.

E=8(x.y, ), n=n(x,y.t), T="1(t) (s.1)
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The conservation of mass, momentum and energy in the transformed coordinate
system, the Euler equations, are expressed in matrix conservation-law form, Equation
5.2.

a_Q-g-éE-q.aF:O

RS TAS ™ (5.2)

The unknown quantities p, the density, u and v, the x and y components

of velocity and e, the total energy per unit volume, are components of the vector Q.

P
ol pu
=J! 5.3
Q ou (5.3)
e
where
e=p(ch+%(u2+v2)) (5.4)

All quantities in these equations are nondimensional. Lengths are divided by
the airfoil chord, velocity components are divided by the inlet speed of sound, time
is multiplied by the inlet speed of sound divided by the airfoil chord, and the total
energy per unit volume is divided by the product of the inlet density and the square

of the inlet speed of sound.
The transformation Jacobian is given in equation 5.5, with the E and F vectors
defined in Equations 5.6 and 5.7.
ok o 0
s=289n_282m (5.5)
puyg
o
puug+p=>

E=J"! L (5.6)
puUy pay

ok
ug(e"'P)_pZ'
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pu,

on
puvy* P
F=J"! on (5.7)
-+ —
pUU,* P
on
vs(e+ p) P73,
The & and n components of velocity are, respectively,
o o
u§=—-§+u§+ éé ] =a—n+uﬂ]-+v—n. (5.8)
ot dx dy oot dx oy
The pressure is related to the total energy and the velocity components by
p=(y-l)(e—%(u2+v2)). (5.9)

Baseline Boundary Conditi

To complete the mathematical model, boundary conditions are specified on the
airfoil surface, the wake-region cut-line, the cascade periodic boundaries and the
upstream and downstream boundaries. On the airfoil surface, line b-c-d of Figure
5.1, the relative normal velocity, v,, must be zero. ug and p are extrapolated from
the interior of the computational domain, and the surface normal pressure gradient

is approximately

Q
T

=0. (5.10)

Q

n
The surface pressure is determined from adjacent grid points using a one-sided
difference approximation to Equation 5.10.

The wake-region cut-line consists of segments a-b and d-e, Figure 5.1. To
preserve continuity of the variables across this cut, the variables along the cut are the
averages of those one point above and below the cut.

Cascade periodic boundary conditions are satisfied by stacking airfoil grids and
passing information between adjacent grids. This is achieved by expanding the grids

withghost points in the ndirection so the grids overlap along the periodic boundaries.
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Figure 5.2 shows how the ghost points are chosen to be coincident with interior points
in the adjacent grid. The ghost points are used as the boundaries to the interior
solution scheme which is applied to each airfoil grid sequentially for each time step.
Thus the solution at the periodic boundaries is determined as part of the interior
solution.

With the airfoils oscillating at a fixed nonzero interblade phase angle, the
minimum number of airfoils, N ., which satisfy the periodicity requirement

N,.|Bl=360° (5.11)

is used to define the cascade. Thus a 90 degree interblade phase angle requires

modeling 4 airfoils. For in-phase oscillations, only one airfoil is required.
At the upstream boundary of the computational domain, the values of p, u and

v are specified and eis extrapolated from the interior. At the downstream boundary,

the static pressure is specified and p, u and v are extrapolated from the interior.

Modified Boundary Conditi
Improved boundary conditions at the cascade inflow and outflow boundaries

are obtained using ‘a one-dimensional approximation to the Euler equations as in

reference 35. The Euler equations in primitive variable form (see Appendix B for

details)
'Z—2+A%%+Eg—z=o (5.12)
with
p
q=J" ‘: (5.13)
p

are used to derive the boundary conditions. At the inflow boundary, derivatives with

respect to & are neglected. Equation 5.12 becomes

oq 2q :
—+B—=0. S.
ot on (5.14)
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B may be expressed by the similarity transform § =R, A JRiL A, is a diagonal

matrix of the eigenvalues of B.

v, O 0 0
A o v, 0] 0] 5.15)
"l 0 0 w,+alvn| 0 -
0O 0 0 v,-alVn|

where [ V1| = (on/9x)2+ (on/3Yy)2.
The columns of R, are right eigenvectors of B corresponding in order to the
eigenvaluesin Equation5.15and therows of R} are corresponding left eigenvectors.

Substituting for B and multiplying by R;' gives

-194g -199
Rn 5'%‘+/\an Sﬁ=o. (5.16)

R;' is assumed to be constant (indicated by the subscript 0), so

ORwa,  ORuq_

5.17
ot 9N 0 ( )
with
0 0 -1/a?
m, i 0

R;}= (5.18)

A./¥2 /2 1/(V2p,a,)
-f./2 -7,/02 1/(2p4a0)
n,=(on/23y)/|Vn|, for example, and a = yyp/p is the speed of sound. Letting

o O O —

Jo)

ag
un, -un,
W,=Rpeq=J7'| unx vi,  p (5.19)
\/E \/—é \/Epoao
_uﬁx_vﬁy+ p
V[—é \/—é \/Epoao

results in Equation 5.20.
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OWy AWy _

5o Mo =0 (5.20)

Because A, is diagonal, the individual equations of Equation 5.20 are

decoupled and each component equation may be expressed as

oW 4, oW 4,

= + A, 5 =0 (5.21)

d
where A ;= Fnr—’ is the speed of propagation of W ;, the j-th component of W,.

The sign of A ,;; thus determines the propagation of information for W', . For

subsonic flow at the inflow boundary, A ;;;, A 22 and A 4, are eachless than zero.
Thus W, W, and W 4 all travel into the computational domain from upstream,
and their values at the upstream boundary are specified using the inlet values of p,
u, vand p. A,s3 is greater than zero, so W ,3 waves travel from the interior of
the computational domain toward the boundary. At the boundary, W 5 is calculated
using values p, u, v and p extrapolated from the adjacent interior node in the n
direction. Once the values of W ,; are calculated, the simultaneous equations

composing Equation 5.19 are solved for the boundary values of p, u, v and p.

Boundary conditions at the computational exit plane are determined in an

analogous manner except that variations are neglected in the 1 direction. Asaresult,

Al Nt 5.22
+ = .
2T ¥ ot ( )
is obtained with
u, O 0] 0]
A O ug 0 0 5.3
“l 0 0 wu+alve O (5.23)
0O O 0 ug-alVE|
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and

p-£
Clo
ug, - vE,
W,=Rpeq=J""| ufs v§, p | (5.24)

\/_ */E ‘[époao
-uf, vEy b

T \/— ‘/Epoao

The three of these quantities which propagate toward the boundary from the
interior are extrapolated from the interior. One of W3 and W, will propagate
upstream. That quantity which propagates upstream is set equal to the mean flow
value at the exit plane. The simultaneous equations for W ; are then solved for the

boundary values of p, u, v and p.

5.1.2 Numerical Solution Technique-

Equation 5.2 is solved numerically using an implicit finite difference technique.
The time derivative is approximated by a first order accurate difference and the spatial

derivatives are approximated by second order accurate central differences.

2Q+5 E"'+6,F*!+0(AT,A8%,AN%) (5.25)

with
AQ=Q"'-Q"

1 n

At=1" -7

n+ n+1
5 E,..1=Ei~1l.j_Ei-1.j
¢ 2AE
5 F*!= F:N/l*l—F:"/ll
n 2An

The nonlinear terms E and F are expanded in Taylor series.

E"”=E"+(§—g) AQ+0(AT?) (5.26)
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F“*‘=F"+(%)nAQ+0(MZ) (5.27)

Substituting Equations 5.26 and 5.27 into 5.25 and letting A =2JE/2Q and

B =0F/2Q, asystem of linear equations in AQ is obtained.
(1+ATH,A"+ATH,B")AQ=-AT(5E"+56,F") (5.28)
Expressions for A and B are in Appendix B.
Application of Equation 5.28 to the interior of the computational domain results
in a sparse block pentadiagonal matrix which must be solved at each time step. A
more efficient solution technique is to factor the left hand side of Equation 5.28 into
a product of £ and n derivatives. Since
(1+AT6A™)(1+AT6,B")=1+AT6, A"+ ATH B"+AT?6,A"6,B"
Equation 5.28 may be approximated by
(1+ATE A" (1+ATH,B")AQ=-AT(BE"+5,F") (5.29)
without degrading the formal accuracy of the equation.
The linear system of Equation 5.29 is solved in alternating directions by first
solving
(I+A1:65A")AQ'=—AT(GEE"'*G,‘F") (5.30)
then
(1+A7T5,B")AQ=AQ". (5.31)
A system of block tridiagonal equations is obtained for each of these sweeps.
Implicit and explicit damping terms, as described in reference 34, are added to
the discretized equations to suppress high frequency oscillations arising from the
central differences.
A deforming grid is used to capture the oscillating airfoil motion, reference 13.

A linear weighting function w is defined which allows the grid points on the airfoil
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surface, 1 =1n,,,, to follow the airfoil motion while the grid points at the outer

boundary, N = N.,, remain fixed.

_,__s&.n)
Yo LTS M) (5.32)

s(&,n) is the arc length in the physical plane of the grid line & = constant from the

airfoil surface (n = N y;,) to n. Then the grid deformation for one time step is
Ax;=w;Ax";
Ayy=wyAy’

Ax’;and Ay’ are changes in the grid coordinates for a solid body motion of the

grid.

The C grid is generated using the GRAPE program (GRids about Airfoils using
Poisson’s Equation), reference 36. This program allows the user to specify the grid
intersection angles at the boundaries, so orthogonality at the boundaries may be
specified if desired, and also the mesh spacing at the boundaries. The code has been
modified to better model turbomachine blades, reference 37, including enforced

periodicity of the cascade C grid.

5.1.3 Results

To ascertain the effectiveness of the modified boundary conditions, test cases
are considered for a cascade of flat plates oscillating in torsion about the midchord.
The results from the modified Euler code are compared to results obtained from the
baseline, unmodified code and the fully linearized subsonic oscillating cascade
analysis [3].

The cascade consists of flat plates staggered at 53 degrees with 1.3 solidity. The
inlet Mach number is 0.65, the mean flow incidence angle is zero and the reduced
frequencyis 0.22. For the codes, 1% thick flat plates with rounded leading and trailing
edges are used to facilitate fitting the 199x33 C grid, Figure 5.3. Initially, the flow

variables are set equal to the previously determined steady-state values. Then the
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airfoils oscillate for a number of cycles sufficient to reach a periodic unsteady solution.
The airfoil surface unsteady pressures for the last cycle of oscillation are Fourier

transformed to determine the first harmonic unsteady pressure distribution.

To illustrate the rapid convergence of the time-marching solution, results for
in-phase oscillations are considered. As shown in Figure 5.4, the moment coefficient
rapidly becomes periodic and varies in a sinusoidal manner. Figure 5.5, which shows
that the first harmonic dynamic pressure difference coefficients for the third and
fourth cycles of airfoil oscillation are essentially identical, further confirms the rapid
convergence of the solution.

Predicted first harmonic unsteady pressure difference coefficients are compared
with the baseline Euler code predictions and the linearized theory for interblade
phase angle values of -90, 0 and 90 degrees, Figures 5.6 through 5.8. Running on the
NASA Lewis CRAY-XMP, the Euler calculations required 2500 seconds to complete
3570 time steps (3.25 cycles of airfoil oscillation) for the -90 and 90 degree interblade
phase angles. Since the in-phase oscillations require modeling only one airfoil as
opposed to four, the computer time was roughly 625 seconds.

There is little difference between the unsteady pressure difference coefficients
predicted by the Euler codes for B = -90° Figure 5.6, a subresonant interblade phase
angle, with both code results in good agreement with the predictions of Smith’s
analysis. In particular, the baseline code predictions for the AC', magnitude are in
excellent agreement with the theory but there are small differences between the
magnitude predicted by the modified Euler code and the analysis. The phase dis-
tributions predicted by the Euler codes are almost identical except near the trailing
edge. They agree well with the analytical predictions except for a small offset of
about 10 degrees.

The modified boundary conditions have a large effect on the Euler code pre-
dictions for in-phase (superresonant) oscillations, Figure 5.7. While the predictions
of the modified code are in very good agreement with the analytical predictions, the

baseline Euler code predicts much larger magnitudes than Smith’s analysis, and the
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phase distribution is offset from the analytical predictions. Apparently, wave
reflections from the upstream and downstream boundaries in the baseline code are

detrimental to the predicted airfoil surface unsteady pressure distributions.
For P = 90° a subresonant condition, the levels of agreement between the two

codes and the theory are similar, Figure 5.8. The magnitude distribution predicted
by the modified Euler code is in better agreement with the linearized analysis pre-
dictions over the forward half of the airfoil, but the baseline Euler code better agrees
with the analytical predictions over the aft half. The phase distributions predicted
by the codes are nearly identical except for the trailing edge region. These predictions
are in very good trendwise agreement with the theory but there is some offset, par-
ticularly over the aft half of the airfoil where the corresponding magnitudes are

relatively small.

5.2 Influence Coefficient Technique

Modifications to the Euler code allow implementation of the unsteady aero-
dynamic influence coefficient technique. After these modifications are described,
calculated unsteady aerodynamic influence coefficients are presented for a cascade
of oscillating flat plate airfoils and compared to the linearized theory. Summation
of these influence coefficients is used to predict the cascade unsteady aerodynamics
for various interblade phase angle values, with these results also correlated with the
linearized analysis predictions. Then the influence coefficient technique is used to
predict the biconvex airfoil cascade unsteady aerodynamics, and the results are

correlated with the corresponding experimental data.

5.2.1 Euler Code Modifications

Just as when the airfoils are oscillating at a fixed interblade phase angle, grids
are stacked for the desired number of airfoils. However, now only the center airfoil
in the cascade oscillates. The one-dimensional boundary conditions are used at the

inlet and exit. Overlapping grids are used to pass information between adjacent grids.
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The two outermost airfoils in the cascade have open boundaries: boundary f-g in
Figure 5.1 for the top airfoil, and boundary h-i for the bottom airfoil. These boundaries
are treated by setting the flow variables at the ghost points equal to those from the
steady-state solution.

Initially, the flow variables are set equal to the previously determined steady-
state values. Then the center airfoil oscillates for an amount of time sufficient to
reach a periodic unsteady solution. The airfoil surface unsteady pressures for the
last cycle of oscillation are Fourier transformed in order to determine the first har-
monic unsteady pressure distribution on each airfoil in the cascade. Predicted results
for any value of interblade phase angle are obtained via summation of the influence

coefficients.

5.2.2 Comparison with Linearized Analysis Results
'First harmonic unsteady pressure difference influence coefficients predicted by
the code for a cascade of oscillating flat plate airfoils are presented, then these
influence coefficients are summed to predict unsteady aerodynamic moment coef-
ficients over the entire range of interblade phase angle values. These predictions are
correlated with influence coefficient results obtained from the linearized analysis
using the technique described in Chapter 1. To study the effect of the number of

cascaded airfoils, code results are presented for 5 airfoil and 7 airfoil cascades.

Unsteady pressure difference influence coefficients for a cascade of flat plates
are presented in Figures 5.9 through 5.15 for values of n ranging from -3 to 3. The
cascade has a stagger angle of 53 degrees and 1.3 solidity. The Mach number is 0.65,
the incidence angle is 0 and the reduced frequency of oscillation is 0.5. The center
airfoil is oscillating in torsion about the mid-chord. 1600 seconds of CPU time on -
the NASA Lewis CRAY-XMP were required to complete 1570 time steps (3.25 cycles

of oscillation of the center airfoil) of the Euler solution for the 7 airfoil cascade.
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For the self-induced unsteady pressure difference coefficients, Figure 5.9, there
is good agreement between the code predictions and the linearized analysis. The
code under-predicts the magnitude by a small amount, and there are small differences
in the predicted phase angle distribution and the analysis. Differences between the
code predictions for five and seven airfoils are negligible.

For the oscillating airfoil in relative position 1, Figure 5.10, the Euler code-
linearized analysis correlation is very good in both magnitude and phase over the aft
half of the reference airfoil. Significant phase differences occur over the forward
half, but the predicted magnitudes are in good agreement with the theory except for
the first 15% of the airfoil. The code predictions are the same for five and seven

airfoil cascades.

Large phase differences are found for AC?2, Figure 5.11. The Euler code-

linearized analysis magnitude correlation is good except in the leading edge region.
There are small differences in the code predictions depending upon the number of
cascaded airfoils, but these differences are small compared to the differences with

the linearized analysis.
Large phase differences are also found for AC?, Figure 5.12. The magnitude

correlation is not good, either, with the code predicting magnitudes over the forward
half of the airfoil which are large relative to the linearized analysis values.

With the oscillating airfoil immediately below the reference airfoil, Figure 5.13,
the correlation is good in both magnitude and phase over the forward half of the
airfoil. Aft of there, the correlation is poor due to large differences in the phase angle
values. Fortunately, the corresponding magnitudes are relatively small, so the dif-

ferences are not crucial.
The correlation is poor for AC;?, Figure 5.14. Magnitudes predicted by the

linearized analysis are negligible everywhere except near the leading edge, but the
Euler code predictions are much larger. Differences between the predictions for five

airfoil and seven airfoil cascades are insignificant.
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Figure 5.9 Predicted unsteady aerodynamic influence coefficient
distributions, flat plate airfoil cascade, oscillating airfoil in
relative position 0, M=0.65, k=0.50
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Figure 5.11 Predicted unsteady aerodynamic influence coefficient
distributions, flat plate airfoil cascade, oscillating airfoil in
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Similar results are found for AC ;®, Figure 5.15: while the magnitudes predicted

by the linearized analysis are mostly negligible, the magnitudes predicted by the Euler
code are relatively large. '
Equation 5.35 defines the unsteady aerodynamic moment coefficient about the

midchord for a flat plate airfoil.
1
1 * * *
Cn= f(z—x )ACP(x Ydx (5.39)
0

x* is the nondimensional chordwise coordinate, x/C. Accordingly, the unsteady
aerodynamic moment influence coefficient resulting from oscillations of the airfoil

in relative position n is given in Equation 5.36.
r(
cr = f(é—x')AC’;(x')dx'. (5.36)
o

Unsteady aerodynamic moment influence coefficients obtained by integration of the
Euler code seven airfoil cascade predictions of Figures 5.9 through 5.15 are presented
in Figure 5.16 along with linearized analysis results. The unsteady aerodynamic
moment on the reference airfoil is shown to be a strong function of the unsteady
aerodynamics associated with oscillating the reference airfoil itself and the two
adjacent airfoils. There is generally good agreement between the influence coeffi-
cients predicted by the code and the linearized analysis, but the difference in the
imaginary part of €3, is significant.

The consequence of differences between the Euler code predictions and the
results of the linearized analysis is shown in Figure 5.17, a plot of the imaginary part
of the unsteady aerodynamic moment coefficient versus interblade phase angle. As
demonstrated in reference 17, the work per cycle of oscillation done by the fluid on
the airfoil is proportional to the imaginary part of C,,. Thus, when C !. is greater

than 0, the work per cycle is positive, and flutter may occur. The curve predicted by
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distributions, flat plate airfoil cascade, oscillating airfoil in
relative position -3, M=0.65, k=0.50

181



0S0=Y ‘S9°'0= ‘oprosed j1ou1e a1e[d 1B[j ‘SIULID1JJ200 dUINYUT IUWOwW diweuipoide Apeaisun  91°G aIngig

I ONl

-Gl - C
&
; S
] M >
ro
TNOL4HIV DNLLYTUISO e oo .._u. <
40 NOLLISOd 3ALLY13H nN.. w
m ¢ L 0 t— ¢— ¢— ¥— G- aw
W B g m —§—8—&— 00 09
a u O <
& mz2
- so0 . .\.wv
006

. m
0O - 0l 2=
0 -1 0
SISKIVNV G3ZIHVaNI ° o =
3009 43 N3 = 0 e m
AHYNIOVYWI  1v3H -

182



0S°0=Y ‘S9°0=IA ‘Opeosed [10j11e ed 1ep ‘SIUaIO1IJ200 Judwow dnueuipoiae Apeasuny £1°G 21ngig

(s33493a) 319NV ASVHd 3AVIGHILNI
oo.ﬁowﬁ oo_.om omu.o oo._oml 00081 —.
1 .V||

T

JONVYNOSIH JILSNOJV FONVYNOS3H JOLLSNOJY

(%51 AuvNIOVYII

0>3T10AD/MHOM
0<310AJ/)HOM

o =N ‘SISATVNY G3ZI4VIN —o—
0L=N ‘SISATVNV Q3ZIidvaNl O i
Z=N ‘SISATYNVY Q3ZIHVaNIT O

Z=N ‘3000 ¥3IN3

183



the Euler code is in good agreement with the analysis values except for an offset
between them. This offset is a direct consequence of the differences in the imaginary
part of C, shown in Figure 5.16.

Results of the linearized analysis are shown in Figure 5.17 for limits of sum-
mation ranging from N=2to N =, C, for an infinite cascade varies smoothly
except in the vicinity of acoustic resonances, where rapid changes with the interblade
phase angle occur. Results for N=2are in good agreement with the infinite cascade
results except near the acoustic resonances. To capture the rapidly changing unsteady
aerodynamic response in these regions, many more airfoils are required: variations
near the resonant interblade phase angles are better predicted when the influences
of more airfoils are taken into account, N=10. Consequently, acoustic resonances
will not occur in linear cascade experiments due to the limited number of cascaded

airfoils.

5.2.3 Comparison with Experimental Data
Airfoil surface steady pressure coefficients and unsteady aerodynamicinfluence
coefficients predicted by the Euler code are correlated with experimental data from
the biconvex airfoil cascade. Following that, the influence coefficients are summed
for comparison with the experimental data and linearized analysis predictions for

various values of interblade phase angle.

Steady State

Steady state airfoil surface pressure coefficient distributions are correlated with
the experimental data for the low solidity cascade at 2 degrees of incidence with inlet
Mach numbers of 0.55 and 0.80. A 199x33 C-grid is used, as shown in Figure 5.18.

Figure 5.19 illustrates the prediction-data correlation for M=0.55. The best
correlation is obtained on the forward half of the airfoil upper surface, where the
data and the predictions are in good agreement. Beyond 50% of chord, the predicted

upper surface pressure coefficients are greater in value than the data. The lower
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surface predictions are in fairly good agreement with the data along the aft half of
the airfoil. Forward of there, the predicted values of the steady pressure coefficient
are considerably greater than the data.

A similar correlation is obtained for M=0.80, Figure 5.20. For both of Figures
5.19 and 5.20, the inlet and exit boundary conditions are specified according to the
experiment values of inlet Mach number, inlet flow angle and exit static pressure. It
was found that relatively small changes in these boundary conditions could improve
the correlation between the lower surface predictions and the data. However, this
was at the expense of the upper surface correlation, thus no overall improvement was

found.

The degree of correlation between the code predictions and the high solidity
cascade data varies with incidence angle. For an inlet Mach number of 0.65 and an
incidence angle of 0 degrees, Figure 5.21, the correlation is good. Predictions for the
airfoil upper surface are in very good agreement with the data except when close to
the leading edge. Lower surface trends are correctly predicted, but differences are

found in the region extending from 10 to 50% of chord.

For M=0.65 with 7 degrees of incidence, Figure 5.22, the correlation is poor for
both surfaces. The predicted pressure distributions shown here were obtained using
the experiment values of inlet Mach number, inlet flow angle and exit static pressure
for the inlet and exit boundary conditions, respectively. Altering these boundary

values did not improve the correlation.

Influence Coefficients

In Figures 5.23 through 5.27, the predicted unsteady pressure influence coeffi-
cients are compared with the experimental data for the low solidity cascade for 0.55
inlet Mach number and 0.20 reduced frequency. The Euler solution took 3400 seconds
of CPU time to complete 4642 time steps (3.25 cycles of airfoil oscillation) for a 5

airfoil cascade.
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Correlation of the self-induced unsteady pressure distribution is generally very
good, Figure 5.23. The magnitude trends predicted for both airfoil surfaces are in
very good agreement with the data although the predicted magnitudes are slightly
larger. The phase correlation is also very good with the only significant differences
at 88% of chord. The magnitudes are so small there that those differences are not

very significant.
The experimental data fall between the predicted magnitudes for C }, Figure

5.24. Note that the cascade schematic indicates walls which were present in the
experiments but not simulated in the computations. While the differences in mag-
nitude between the lower and upper surfaces.are small for the data, the predicted
magnitudes are largest on the upper surface, as one would expect. The phase data

and predictions are in good agreement except near the leading edge.

Both the predicted magnitudes for €3 are smaller than the measured values,

Figure 5.25. Similar to €}, there is little difference in experiment magnitudes
between the two surfaces, but the code predicts magnitudes larger on the airfoil upper
surface than the lower surface. The phase correlation is very similar to that for C },
being very good except on the upper surface at 12% of chord.

Oscillations of the airfoil in relative position -1, Figure 5.26, cause relatively
large unsteady pressure coefficient magnitudes on the lower surface of the reference
airfoil. The correlation of the predictions with the data is very good, particularly for
the airfoil upper surface. For the lower surface, the predicted magnitudes are gen-
erally larger than the data, but these differences are fairly small. The lower surface
phase correlation is very good except for the aft portion of the airfoil.

Moving the oscillating airfoil further away from the reference airfoil to relative
position -2, Figure 5.27, correlation of the Euler code predictions with the data is

fairly good. Because the magnitudes are quite small, the differences between the
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predictions and the data are of little significance. However, while the predicted upper

surface magnitudes are essentially zero, the experimental data indicate small but

finite responses which may be due to reflections off the adjacent wind tunnel wall.

Correlation of the predicted unsteady pressure influence coefficients with

experimental data is also made for the low solidity cascade with 0.80 inlet Mach

number and 0.32 reduced frequency. The results for the first harmonic unsteady

pressure coefficients, shown in Figures 5.28 through 5.32, are in many ways very similar

to the results just seen for M=0.55 and k=0.20.

(M)

)

The correlation for € is very good, Figure 5.28. The only differences of

note are on the aft half of the upper surface, where the predicted magni-

tudes are less than the data.
The predicted upper surface distribution for € 5! isinvery good agreement

with the data, Figure 5.29. The lower surface magnitude data-prediction
correlation is also very good, but the phase correlation is poor along the
airfoil aft half.

The main differences between these results and those for M=0.55, k=0.20 are

due to the upstream-traveling wave phenomenon occurring in the experiments, an

effect which was found to intensify with increasing Mach number and reduced fre-

quency.
(1)

Differences in the magnitude correlation for C }, Figure 5.30, are mainly

a consequence of this wave phenomenon. While the wave causes exper-
imental pressure distributions of approximately equal amplitude on the
two airfoil surfaces, the predicted unsteady pressure differences are
relatively large. The magnitude andi phase correlations are good for the
airfoil upper surface, but the predicted magnitudes for the lower surface

are much less than the data.
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(2)  The upstream-traveling wave effect is even more evident for €2, Figure
p: g py TIgU

5.31. The predicted unsteady pressure magnitudes are negligible while the

experimentally-determined values are relatively large.

- These results indicate that the upstream traveling wave is actually a duct phe-
nomenon rather than a cascade phenomenon. That is, the wave exists in the
experiments only because the cascade of airfoils is enclosed in a duct. Because the

influence coefficient Euler code does not simulate this duct, the wave is not predicted.
Finally, for € ;?, Figure 5.32, the correlation is generally poor. Nowhere on the

airfoil lower surface are the magnitude and phase correlations simultaneously good.
On the upper surface, the experimentally-determined magnitudes are much larger
than the predicted magnitudes, possibly due to reflections off the adjacent wall of the

wind tunnel.

For the high solidity cascade, correlations for a steady flow condition defined
by an inlet Mach number of 0.65 and a mean flow incidence angle of 0 degrees are
presented in Figures 5.33 through 5.37. The reduced frequency is 0.39. The corre-
lation is, once again, good for €9, Figure 5.33. The predicted effect of oscillating
the airfoil in relative position 1, Figure 5.34, is in trendwise agreement with the data,
but the predicted upper surface magnitude distribution has a larger peak than the
data, and the predicted lower surface magnitudes are less than the data. For €32,
Figure 5.35, the predicted magnitudes are smaller than the experimental data due to
the upstream-traveling wave. The response due to oscillations of the airfoil in relative
position -1 is relatively large on the adjacent, lower surface of the reference airfoil,
Figure 5.36. The magnitude correlation is very good for both airfoil surfaces, but the
phase correlation is good only at 12 and 25% of chord. For C?, Figure 5.37, the
upper surface correlation is good, but the predicted lower surface magnitudes are

much larger than the measured values.
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Airfoil surface unsteady pressure coefficient distributions obtained via sum-
mation of influence coefficients predicted by the Euler code are correlated with
experiment data obtained using the influence coefficient technique and also the data
for all airfoils oscillating. The influence coefficients are summed over the oscillating
airfoil relative positions ranging from -2 to 2, asindicated by N =2 in the figure legends.
Results for the unsteady pressure\difference coefficient distributions are also pres-
ented, these plots including linearized analysis results. The low solidity cascade
configuration is used with an inlet Mach number of 0.55 and a reduced frequency of
0.20. The combination of lowest inlet Mach number and lowest reduced frequency
is used to minimize the upstream-traveling wave effect in the experimental influence

coefficient data.

Correlation of the airfoil surface unsteady pressure coefficient distributions for
in-phase oscillations is shown in Figure 5.38. The experimental influence coefficient
data and the all-airfoils-oscillating data are in very good mutual agreement. The
Euler code predictions for the airfoil lower surface magnitudes are in very good
agreement with these data, but the predicted lower surface phases lead the data by
a small amount. The predicted upper surface magnitudes are larger than the
experimental data over the forward half of the airfoil but generally smaller along the
aft half. The predicted upper surface phase angles are in good agreement with both
data sets. The unsteady pressure difference coefficients, AC ,, are presented in
Figure 5.39 along with linearized analysis results for a finite number of oscillating
airfoils. Correlation of the Euler code predictions with the data and the linearized
analysis results is generally very good. Only in the leading edge region do significant

phase angle differences arise.
For B=45 degrees, Figure 5.40, the Euler code predictions for C , correlate

well with the experimental influence coefficient data, although the code predictions
for the magnitudes tend to be slightly larger than the data. In comparison to the

influence coefficient data, the all-airfoils-oscillating magnitude data are in good
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Figure 5.40 Airfoil surface unsteady pressure coefficient distributions,

M=0.55, k=0.20, B=45 degrees
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agreement but phase differences exist along the first 50% of chord. The Euler code
predictions for AC , are in good agreement with the experimental influence coef-
ficient data, Figure 5.41. The all-airfoils-oscillating magnitude data are in good
agreement with the experimental influence coefficient data, but there is an offset
between the two sets of phase data. Relative to the experimental influence coefficient
data, the linearized analysis predicts larger magnitudes, but the phase angles are in

good agreement.
For B=-45 degrees, the two sets of experimental data and the Euler code

predictions for C , are in good agreement, Figure 5.42. However, the code tends to
predict larger magnitudes than measured, particularly on the airfoil upper surface.
As expected, then, the AC, correlation is also good, Figure 5.43. The two sets of
experimental data and the results from the linearized analysis are in particularly good
agreement, while the Euler code predicts slightly larger magnitudes and slightly

different phases.
Poor cascade dynamic periodicity was found for B=90 degrees, thus it is not

surprising that the correlation between the data for all airfoils oscillating and the
influence coefficient data is not particularly good for that value of interblade phase
angle, Figure 5.44. The Euler code predicts larger magnitudes than determined using
the experimental influence coefficients, but the phase angles are in very good

agreement. These differences result in Euler code predictions for |AC .| which are

significantly greater than magnitudes determined from the experimental influence

coefficients, Figure 5.45. The linearized analysis predicts even larger magnitudes.
With the exception of the all-airfoils-oscillating data, the phase angle results are in

good agreement, particularly near the leading edge.
The two sets of experimental data revert to good mutual agreement for 3=-90

degrees, Figure 5.46. Asfor =90 degrees, the Euler code predicts larger magnitudes

for C , than determined using the experimental influence coefficients, but the phase
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Figure 5.41 Airfoil surface unsteady pressure difference coefficient
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Figure 5.43 Airfoil surface unsteady pressure difference coefficient
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angles are invery good agreement. Thus the Euler code predictions for the magnitude
of AC, are also larger than the data and, in this case, often larger than the linearized

analysis predictions, Figure 5.47. The phase angle correlation is very good.

Out-of-phase oscillations result in differences in the C , phase angle values as

determined by the two experimental techniques, Figure 5.48. In comparison to the
experimental influence coefficient data, the Euler code again predicts larger mag-
nitude for C ., but the phase angle values are in very good agreement. Thus the
Euler code predictions for the magnitude of AC ,, Figure 5.49, are also larger than
the experimental data, but in very good agreement with linearized analysis predic-
tions. Except for the all-airfoils-oscillating data, the phase angle correlation is very

good.
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Figure 5.47 Airfoil surface unsteady pressure difference coefficient

distributions, M=0.55, k=0.20, B=-90 degrees
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CHAPTER 6
' SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Linear oscillating cascade aerodynamics have been investigated using
experimental and computational methods. Two methods of determining the
oscillating cascade aerodynamics have been used: (1) the conventional method in
which all the airfoils oscillate simultaneously at a fixed interblade phase angle; and
(2) the unsteady aerodynamic influence coefficient technique. In this technique, only
one airfoil in the cascade is oscillated at a time, with the resulting airfoil surface
unsteady pressure distribution measured on one dynamically instrumented reference
airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils
oscillating at any specified interblade phase angle are then determined through a
vector summation of these data.

Steady and unsteady aerodynamic data were obtained in the NASA Lewis
Transonic Oscillating Cascade Facility using a cascade of biconvex airfoils executing
torsion mode oscillations at values of reduced frequency as great as 0.45. Two cascade
solidities, 0.65 and 1.3, were investigated for several different mean flow conditions
ranging from subsonic to transonic. Detailed steady airfoil surface pressure
distributions quantified the mean flow field. Unsteady airfoil surface pressure
distributions were measured using flush-mounted, miniature high-response pressure
transducers, then discrete Fourier analysis techniques were used to analyze the

unsteady pressure data.
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It was found that, depending upon the steady and unsteady aerodynamic
conditions, the wind tunnel walls may have a detrimental effect on the cascade
unsteady aerodynamics. Only at interblade phase angle values where the
experimental all-airfoils-oscillating data generally had good dynamic periodicity, -90
and -45 degrees, did the all-airfoils-oscillating data correlate consistently well with
the experimental influence coefficient data and the linearized analysis results. It was
subsequently found by application of linearized unsteady aerodynamic theory that,
at those two values of interblade phase angle, pressure waves are produced which do
not interfere with the cascade unsteady aerodynamics. However, at the other
interblade phase angles where the correlation was not generally good, pressure waves
were predicted which could interfere with the cascade unsteady aerodynamics by
reflection off a wind tunnel wall back into the cascade. Whether the waves were
subresonant (attenuating with distance from the cascade) or superresonant
(propagating unattenuated) made no difference.

The wind tunnel walls also caused two potentially detrimental effects in the
influence coefficient experiments. One relatively minor effect, the reflection of
pressure disturbances off a wind tunnel wall onto the adjacent airfoil, caused spurious
unsteady pressures on that airfoil. The other effect, the creation of an
upstream-traveling pressure wave, often had a large effect on the unsteady pressure
distributions of airfoils upstream of the oscillating airfoil.

The upstream-traveling wave phenomenon was confirmed to be a consequence
of the wind tunnel walls by correlation of experimentally-determined influence
coefficients with those determined by an Euler code which did not model the walls.
From the experimental data, the wave amplitude was found to increése with reduced
frequency and Mach number, and as a consequence, the summation of influence

coefficient series for the dynamic pressure coefficient was found to be convergent

225



only for the lowest combination of Mach number and reduced frequency. However,
the unsteady pressure difference coefficient series is generally convergent. In fact,
for the low solidity cascade, good unsteady pressure difference coefficient agreement
was generally found between values determined by the experimental influence
coefficient technique and values predicted by the linearized analysis.

Thus to make this linear cascade a reliable facility for the experimental
quantification of oscillating cascade aerodynamics, it is necessary toreduce the effects
of the wind tunnel walls. It is recommended that the solid walls of the wind tunnel
in the vicinity of the cascade be replaced with acoustically-treated walls designed
using the technology developed toreduce aircraft gas turbine engine noise [40]. Then,
to determine the effectiveness of the new walls, the experimental investigation
reported herein could be repeated.

In addition, an Euler code for oscillating, cascaded airfoils was modified for
implementation of the unsteady aerodynamic influence coefficient technique. The
Euler code was first improved by modification of the upstream and downstream
boundary conditions using a one-dimensional approximation to the Euler equations.
Then the unsteady aerodynamic influence coefficient technique was implemented by
further modification of the code. The resulting predictions were correlated with the
experimental data and also with the linearized analysis predictions.

The Euler code boundary condition modifications were found to improve the
ability of the code to predict the unsteady aerodynamics of a cascade of flat plates
oscillating simultaneously. Influence coefficients predicted by the Euler code were
found to be in good agreement with the experimental data. Summation of the
predicted influence coefficients to obtain predicted unsteady pressure coefficients

for various values of interblade phase angle were found to be in good agreement with
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the experimental data and the linearized analysis results. Thus the Euler code
implementation of the unsteady aerodynamic influence coefficient technique was
found to be a valid method for the calculation of oscillating cascade aerodynamics.

-However, the ability of the code to predict the steady state aerodynamics of the
high solidity biconvex airfoil cascade at 7 degrees of incidence was not good. To be
useful for a wide range of cascade geometries and flow conditions, the steady state
aerodynamic predictions of this code must be improved. Two-dimensional inlet and

exit boundary conditions may be useful in this respect.

227



10.

LIST OF REFERENCES

Jeffers I1, J.D. and Meece, C.E., "F100 Fan Stall Flutter Problem Review and
Solution," ALAA Journal of Aircraft, Vol. 12, No. 4, April 1975, pp. 350-357.

Mehmed, O., Kaza, K.R.V., Lubomski, J.F. and Kielb, R.E., "Bending-Torsion
Flutter of a Highly Swept Advanced Turboprop," NASA TM-82975, 1982.

Smith, S.N. "Discrete Frequency Sound Generation in Axial Flow
Turbomachines," Aeronautical Research Council Reports and Memoranda No.
3709, March 1972.

Fleeter, S., "Fluctuating Lift and Moment Coefficients for Cascaded Airfoils
in a Nonuniform Compressible Flow Field," 4144 Journal of Aircraft, Vol. 10,
No. 2, February 1973, pp. 93-98.

Whitehead, D.S., "Classical Two-Dimensional Methods," AGARD Manual on
Aeroelasticity in Axial-Flow Turbomachines Volume 1 Unsteady Turbomachinery
Aerodynamics, AGARDograph No. 298, M.F. Platzer and F.O. Carta, editors,
London, 1987, pp. (3-1)-(3-30).

Atassi, HM. and Akai, T.J., "Aerodynamic and Aeroelastic Characteristics of
Oscillating Loaded Cascades at Low Mach Number," ASME Paper 70-GT-111,
March 1979.

Verdon, J.M. and Caspar, J.R., "Subsonic Flow Past an Oscillating Cascade
with Finite Mean Flow Deflection," AL4A4 Journal, Vol. 18, No. 5, May 1980,
pp. 540-548.

Whitehead, D.S., "The Calculation of Steady and Unsteady Transonic Flow in
Cascades," Cambridge University Report CUED /A-Turbo/TR118, 1982.

Verdon, J.M. and Caspar, J.R., "A Linearized Unsteady Aerodynamic Analysis
for Transonic Cascades, "Joumal of Fluid Mechanics, Vol. 149, December 1984,
pp- 403-429.

Verdon, J.M. and Usab, W.J.,, "Application of a Linearized Unsteady
Aerodynamic Analysis to Standard Cascade Confxguratlons " NASA CR-3940,
January 1986.

228



11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

Chiang, H.D. and Fleeter, S., "Locally Analytical Numerical Method for
Inviscid Oscillating Airfoil Aerodynamics,” presented at the SIAM 1986
National Meeting, Boston, July 1986.

Hall, K.C. and Crawley, EF. "Calculation of Unsteady Flows in
Turbomachinery Using the Linearized Euler Equations," Unsteady
Aerodynamics and Aeroelasticity of Turbomachines and Propellers, H.E. Gallus
and S. Servaty, editors, Aachen Institute of Technology, Aachen, February
1988, pp. 15-38.

Huff, D.L., "Numerical Analysis of Flow Through Oscillating Cascade
Sections," NASA TM-101417, 1989.

He, L., "An Euler Solution for Unsteady Flows Around Oscillating Blades,"
ASME Paper 89-GT-279, 1989.

Kao, Y.-F., "A Two-Dimensional Unsteady Analysis for Transonic and
Supersonic Cascade Flows," Ph.D. Thesis, Purdue University, May 1989.

Davies, M.R.D. and Whitehead, D.S., "Unsteady Aerodynamic Measurements
in a Transonic Annular Cascade," Unsteady Aerodynamics of Turbomachines
and Propellers, Cambridge University Engineering Department, Cambridge,
1984, pp. 487-502.

Shaw, L.M., Boldman, D.R., Buggele, A.E. and Buffum, D.H., "Unsteady
Pressure Measurements on a Biconvex Airfoil in a Transonic Oscillating
Cascade," ASME Journal of Engineering for Gas Turbines and Power, Vol. 108,
No. 1, January 1986, pp. 53-59.

Kobayashi, H., "Annular Cascade Study of Low Back-Pressure Supersonic Fan
Blade Flutter," ASME Paper 89-GT-297, 1989.

Hanamura, Y., Tanaka, H. and Yamaguchi, K., "A Simplified Method to
Measure Unsteady Forces Acting on the Vibrating Blades in Cascade," Bulletin
of the JSME, Vol. 23, No. 180, June 1980, pp. 880-887.

Hanamura, Y. and Yamaguchi, K., "An Experimental Investigation on
Aerodynamic Interblade Interactions of a Vibrating Cascade in Transonic
Flow," JISME International Journal, Vol. 30, No. 270, 1987, pp. 1919-1927.

Hanamura, Y. and Yamaguchi, K., "An Experimental Investigation on the
Flutter of the Cascade of Turbomachinery in Transonic Flow," Journal of the
Faculty of Engineering, The University of Tokyo (B), Vol. 39, No. 3, 1988, pp.
311-338.

Szechenyi, E., "Fan Blade Flutter - Single Blade Instability of Blade to Blade
Coupling?," ASME Paper 85-GT-216, 1985.

229



23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

Bolcs, A., Fransson, T.H. and Schlafli, D., "Aerodynamic Superposition
Principle in Vibrating Turbine Cascades," AGARD-CPP-468/469, 1989.

Gerolymos, G.A., "Numerical Integration of the Blade-to-Blade Surface Euler
Equations in Vibrating Cascades," AIAA Journal, Vol. 26, No. 12, December
1988, pp. 1483-1492.

Boldman, D.R. and Buggele, A.E., "Wind Tunnel Tests of a Blade Subjected
to Midchord Torsional Oscillation at High Subsonic Stall Flutter Conditions,”
NASA TM-78998, October 1978.

Capece, V.R. and Fleeter, S., "Forced Response Unsteady Aerodynamics in a
Multistage Compressor," Purdue University Report ME-TSPC-TR-87-12, August
1987.

Mallon, J.R., Final Report: Installationand Testing of a Strain Isolation System
on Government Furnished Blades, NASA Contract NAS3-21611, March 1983.

Englund, D.R., Grant, H.P. and Lanati, G.A., "Measuring Unsteady Pressure
on Rotating Compressor Blades," NASA TM-79159, 1979.

Oppenheim, A.V.and Shafer, R.W., Digital Signal Processing, Englewood Cliffs:
Prentice-Hall, 1975.

Bergland, G.D. and Dolan, M.T., "Fast Fourier Transform Algorithms,"
Programs for Digital Signal Processing, 1EEE Digital Signal Processing
Committee, editor, New York: IEEE Press, 1979.

Kline, S.J. and McClintock, F.A., "Describing Uncertainties in Single-Sample
Experiments,” Mechanical Engineering, January 1953, pp. 3-8.

Landau, L.D. and Lifshitz, EM., Fluid Mechanics, 2nd edition, Oxford:
Pergamon Press, 1987.

Sankar, N.L. and Tang, W., "Numerical Solution of Unsteady Viscous Flow
Past Rotor Sections," AL4A Paper 85-0129, 1985.

Wu, J.C., "A Study of Unsteady Turbulent Flow Past Airfoils," Ph.D. Thesis,
Georgia Institute of Technology, August 1988.

Janus,J. M., "The Development ofa Three-Dimensional Split Flux Vector Euler
Solver with Dynamic Grid Applications," M.S. Thesis, Mississippi State
University, August 1984.

Sorenson, R.L., "A Computer Program to Generate Two-Dimensional Grids
About Airfoils and Other Shapes by the Use of Poisson’s Equation,”" NASA
TM-81198, 1980.

230



37.

38.

39.

40.

Chima, R.V., "Explicit Multi-Grid Algorithm for Quasi Three-Dimensional
Viscous Flow in Turbomachinery," Journal of Propulsion and Power, Vol. 3, No.
5, 1987, pp. 397-405.

Burgess, J.C., "On Digital Spectrum Analysis of Periodic Signals," Journal of

* the Acoustical Society of America, Vol. 58, No. 3, September 1975, pp. 556-567.

Pulliam, T.H. and Steger, J.L., "Recent Improvements in Efficiency, Accuracy,
and Convergence for Implicit Approximate Factorization Algorithms," 4144
Paper 85-0360, January 1985.

Groeneweg, J.F. and Rice, E.J.,, "Aircraft Turbofan Noise," Journal of
Turbomachinery, Vol. 109, January 1987, pp. 130-141.

231



Appendix A. Discrete Fourier Analysis Techniques

Discrete Fourier transform methods are used to analyze the time-dependent
pressure signals. In particular, these pressure signals, typically periodic with a
fundamental frequency equal to the airfoil oscillation frequency, are decomposed via
Fourier analysis methods to determine the magnitude and phase of the dominant
frequency components. Despite the widespread availability of Fourier analysis
software, this is not a trivial task due to the spectral leakage phenomenon. The basic
analysis of this problem and the formulation of a scheme for correction of leakage
effects has been accomplished by Burgess [38]. This approach will now be outlined
with continuous time signals of a single frequency considered first. These results will
be extended to discrete data, then the Hanning window will be discussed as will

periodic signals with higher harmonics.

A.1 Continuous Time Signals

The Fourier series coefficients (FSC) of the continuous time signal p( t) over

the interval 0 <t < T are defined as:
1 (7 -iw,t
pa=z | p(t)e at (A.1)
(o]

where w ,, the radian frequency, is equal to nw,, and w,=2n/T. The integer

frequency index n varies between —® and +«. The inverse relation is

at

p(t)= Y pae” (4.2)

for 0 <t <T. This gives a periodic result p(t+{T)= p(t) for any integer (.

Consider a signal p(t)= Acos(lt, 0<t<T. The FSC are

Al sin(Q-w,)T/2 «a-w,y1/2 sin(Q+w,)T/72 iasw,)1/2
+ e . (A.3)

P3| T(-wnT/2 (Q+w)T/2
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Figure A.1 depicts an envelope of the magnitude of p. as expressed by Equation

A.3. The presence of multiple side lobes in the spectrum, termed leakage, generally
occurs despite the fact that the cosine wave under consideration has a single frequency
component. As shown, spectral lines fall in the envelope with spacing w,. Under
specificsampling conditions, there will be just two spectral lines, locatedat w,=+Q,
which yield the correct magnitude and phase of the cosine signal. However, this will
not generally be the case, as indicated in Figure A.1. The most important feature
shown is that none of the lines are at the frequency Q. Obviously, errors generally
occur in doubling the magnitude of the largest spectral line to obtain the amplitude
of the cosine signal. Also, phase errors will occur. Thus the task is to correctly infer
the magnitude and phase of the wave from such a spectrum.

To analyze this problem, Equation A.3 will be written in a more useful form.
Let T 5 denote the period of the wave. Then

QT o= 2m. (A.4)

Choose m to be the number of wavelengths sampled. Thus

T
-=—. A.S
m 7 ( )

Splitting m into integer and fractional parts r and s, respectively, gives
m=r+s. (A.6)
Using Equations A.4 through A.6,

(Qtwn)g-=n(n1tn).

With these results, Equation A.3 becomes

= A[Sinn(m_n) inm+Sinn(m+ n)e-inm]e-iun

Pa=3 n(m-n) n(m+n) (A.7)
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Identities such as the following are then applied to Equation A.7:

in(s+n)

e sinn(m-n)=e sinmns.

This results in

sinmns sinns _;
pn=£[ lils+ e u!s]'

2 n(m—n)e n(m+n) (A4.8)

The importance of the parameter s is revealed by Equation A.8. For example,

when s=0,
=£ for n==xr
pn 2

=0 for all n#=r.

Thus, in this special case, the correct magnitude and phase are recovered directly
from the spectrum. This result is illustrated in Figure A.2; the absence of leakage
contrasts with the example of Figure A.1, which illustrates a fypical result for nonzero
values of s.

Recalling that s is the fractional part of T/T,, s=0 thus corresponds to

sampling an intéger number of periods of the wave. This is shown in Figure A.3(a).
Calculation of Fourier series coefficients assumes that the given signal is periodic in
T ; the periodic continuation of the signal of Figure A.3(a) is the continuous signal
shown in part (b) of the figure.

When s is nonzero, the corresponding periodic continuation will not be
continuous, as seen in Figure A.4. These discontinuities are the source of the spectral
leakage shown in Figure A.1.

The correction scheme depends upon simplification of Equation A.8. For
convenience, denote the first term in Equation A.8 as the direct contribution and the
second term as the image contribution. Let /4, and U, denote the magnitudes of

the direct and image parts.
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d

_é sinns
2n(m-n)

A sinns

2n(m+n)
Their ratio is

m-n
m+n’

U,
Ua

Attention is focused on values of n=r and n=r +1 which give the spectral lines

bracketing 2. When n=r,

Zi__S
a 2r+s
For the worst case, s=1/2, and
Ui 1
Ud 4""‘1.

To neglect the image contribution, this ratio must be small, less than 0.01 for example.
This requires r 2 25 and then allows the approximation

ins

Asinns

> s (A.9)

r

This shows that the amplitude is attenuated and a phase shift is introduced when s

is nonzero. Since r is directly related to the signal observation time, specifying a

minimum value for r is equivalent to requiring a minimum sampling period.

For the worst case, s =1/2, Equation A.9 gives

_dSinn/Z in/2
Pr=5"w/2

= (o.cséc)ge""”" .
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Thusif p. is used to estimate the amplitude and phase of the signal, the amplitude

estimate may be low by as much as 36%, and the phase may be 1/2 radians in error.
Only when s =0 will p, directly give the desired result.

Since it is generally not possible to choose s in advance, one must find a way
to estimate it from the data. Under the condition that Equation A.9 is a valid
approximation, the following may be used for p,.,:

A sSIinns  ue

Prq=§me (A.10)
Then
|p.| _(1-5)
|Pral S
or
! (A.11)

s= .
dp-l/lpra+1
This calculated value of s allows Equation A.9 to be solved for A. The correct phase

is the computed value for n =r - nsradians.

In summary, when Equation A.9 is a valid approximation, Equation A.11 may
be used to estimate s. Then s is used in Equation A.9 to calculate the magnitude
and phase of the signal. s is subtracted from the computed phase to get the

corrected phase.

A.2 Application to Discrete Data
For a sufficient number of samples, N > 16, over a sufficient length of the signal,
Burgess demonstrates Equations A.9 through A.11 are also valid for discrete Fourier
series coefficients (DFSC). For the image contribution to be at most 1% of the direct

contribution, the allowable values of m as a function of N are given in Table A.1.
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Table A.1 Signal sampling parameters

N m

256 28 <m < 100
2048 | 26 <m < (N/2)-26

The upper limits on m arise due to the periodicity of the DSFC in N.

Calculations were performed to validate the correction scheme. A sine wave
was generated with 256 equally-spaced data points and Fourier transformed, then
the correction scheme was applied using the minimum value of r, 28, with the worst
case value of s, 1/2. The maximum errors found to occur were 1.5 degrees in phase

and 1% in magnitude.

A.3 Hanning Window

The previous results are for the case where the signal is sampled over 0 <t <T

and assumed to be zero outside this interval. This amounts to implicitly windowing
the data with a square window, as in Figures A3 and A4. To smooth the
discontinuities this process may cause, Figure A.4, many other windows have been
devised, such as the Hanning window. Application of a Hanning window to the data
results in reduced leakage which allows more liberal sampling criteria than previously
stated.

The Hanning window, expressed as

w(t)=sin2n?t (A.12)
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for 0 <t <T,is compared with the square window in Figure A.5. The raw signal is
multiplied by the Hanning window in the time domain, resulting in a signal which
goestozeroatboth t =0 and ¢ =T, thus the periodic continuation of the signal will
be smooth.

The derivation of the approximatc' equations used for leakage correction is

analogous to that for the square window. The required expressions are:

n A m( 1 \sinns
=— A.13
Pr=3° 1-s2) mus ( )
and

pf,fée““ 1 smns. (A.14)

4 (1-s5)(2-s) mns

Define R as the ratio |p¥|/|p¥..|. Then

or

(A.15)

For the magnitude of the image contribution to be at most 1% of the direct
contribution, Burgess recommends 2<m < (N/2)-2 for N 2 40. This allows a
much broader range of sampling conditions than the results for a square window.
Calculations using 256 samples of a sine wave and r = 2 show the correction scheme

to give less than 1% amplitude error and approximately + 1 degree phase error.
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A.4 Application to Signals with Higher Harmonics

The correction scheme will now be extended to periodic signals with frequency
content at integer multiples of the fundamental frequency. This will lead to more
restricted sampling criteria than before in order to keep leakage effects within the
desired bounds.

Up to this point, the signal has been assumed to have one frequency component.
Hence its leakage patterns were centered at =, and the resulting sampling criteria
essentially restricted the leakage so that the interaction would be negligible in the
neighborhood of Q2. Now, with leakage patterns at = n(, the leakage extent must

be more restricted for the interaction to remain negligible.

The case of equal amplitude cosine waves at frequencies w, = £} and w, =20

was analyzed. Interaction from the image frequencies —Q and -2Q was assumed
to be negligible. Thus expressions like Equation A.9 were valid for each of the
frequencies individually. Then the effect of the second harmonic on the first was
deemed negligible when the ratio of the magnitude of the second to the ﬁrs"t‘was less
than 0.01 for the frequency line nearest Q2. With a Hanning window in effect,
S<m,<(N-10)/2 is a conservative requirement. m, is based on w, so

T

m ==
l Twl TO.

Calculations were used as before to validate the correction scheme for this case.
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Appendix B. Euler Equations
The fluid is assumed to be a perfect gas with constant specific heats and viscous
effects, body forces and external heat addition are neglected. The equations for the
conservation of mass, momentum and energy for two-dimensional flow, the Euler
equations, may be expressed in Cartesian coordinates as [39]

0Q oE oF
a_t+5—);+a_};—o (Bl)

where

| PU
Q= ov (B.2)

pu

2
g=| P TP (B.3).
puv

u(e+p)
and

pU
puv
2
puvi+p
v(e+p)

F- (B.4)
p is the density, u and v are the x and y velocity components and e is the total
energy per unit volume

e=p(c,T+5(u?+v?)) (B.5)
with temperature 7 and specific heat at constant volume c,. The pressure may be

expressed as

p=<v—1)(e—%(u2+v2)). (B.6)
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All quantities in these equations are nondimensional. Lengths are divided by the
airfoil chord, velocity components are divided by the inlet speed of sound, time is
multiplied by the inlet speed of sound over the airfoil chord and the total energy per
unit volume is divided by the product of the inlet density and the square of the speed
of sound.

For a general transformation to §-n coordinates, &£=E(x,y.tl),

n=n(x,y,t) t=t, the Euler equations become

2Q, 9 oF

B.7
2T 9F 97 0 (B.7)
where
Q=J""'Q (B.8)
pUg
o
pulg+ ps—
f A0 o P .

E=J ‘(Q—§+E—§-+F—§-)=J ! o (B.9)

ot ox oy pvuz+p-a—;

o

ug(e"'p)—P'a_t

and
pYU,
P

puv,+ p=2

ELEPEL I ox
F=J“(Q—+E—-+F—)=J“ on . (B.10)

ot ox 5y pUUﬂ*—pE

on

v,,(e+p)-pa—t
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The & and n components of velocity are

0 0 o on - o 0
E=—§+u’—g+ _E' ] =——T]+u-—n+u-—n. (B.ll)
ot dx 2y oot ox dy

The transformation Jacobian is

_9%89on_2&2nm

J=———— = . B.12
0xdy 0Jdyodx ( )

Applying the chain rule to the transformed spatial derivatives, Equation B.7

becomes

AN TN A (B.12)
ot 2% am

with A=0E/9Q and B =9F/2Q. Using Equations B.9 and B.10 and letting K = A
when k=% and K =B when k=m0, K is expressed as

ok OF ak+al‘?ak

or ok, or ok (B.13)
ot 2Qax 2Qoy

where 1 is the identity matrix. Calculating the partial derivatives in Equation B.13

and simplifying results in

k, k, k, 0
K k,,tz—ub k,+6-(y-2)k,u =(y- Dk v+k,u (y-1)k,
k,tz-vb k.,v-(y-1)k,u ki +6-(vy~-2)k,v (y- 1k,

8(-v(e/p)+28%) (v(e/p)~tHk.~-(y-1)ud (y(e/p)-t3k,—(y-1)vd k,+yb
(B.14)
where 6=u(ok/ox)+v(dk/dy), ¢%=(y~-1)(u?+v?)/2 and k,=23k/dt.

K may be expressed as the similarity transform

K=T,A,T;'. (B.15)
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A, is a diagonal matrix of the eigenvalues of K,

k,+6 O 0 0
0 k,+6 0 0
M= o 0 k,+6+a|Vk| 0 - (B.16)
0 0 0 k,+6-al|Vk|

|Vk|=+(ok/ax)2+(2k/oy)?and a=yp/p is the isentropic speed of sound.

The columns of T, are right eigenvectors of K corresponding to the eigenvalues in

Equation B.16 and the rows of T;' are the corresponding left eigenvectors.

1 0 v v
u k,p v(u+k,a) v(u-k,a)
T, = v -k,p v(v+k,a) v(v-k,a)
2 2, 42 2, 42
s p(K,u-k, v) V(t" ta +a5) V(c a —as)
y-1 - y-1
(B.17)
1-t%/a? (y-1)u/a? (y-1v/a’ -(y-1)/a?
0 (k.v-k,u)/p k,/p -k /p 0
) x(g?-ab)  x(k.a-(y-Du) x(k,a-(y-1)v) x(y-1)
x(t®+ab) -x(k,a+(y-Du) -x(ka+(y-1v)  x(y-1)
(B.18)
where v=p/(J2a), x = 1/(J2pa) and &=c/k2+k3 for any c.
Expanding Equation B.12 to primitive variable form,
2Q2a, ,2Q2a 5oQ2a_ (8.19)
aqaT 2q ot aqan
with
q=J" (B.20)

Toe & ©
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Substituting S™' =9Q/4q into Equation B.19 gives

199 -19q 199
s'=+As'=+BS'2=0. B.2
T 2% on 0 (B.21)

Multiplying by S and substituting A =SAS™' and B=SBS™',

2q =~ oq 2q
aT+Aa§+5an 0. (B.22)
Expressions for S™' and S are
1 - 0 O 0
u p 0 0
)
s‘=5-CQ~I= v 0 »p 0 (B.23)
%(u2+v2) pu pu 1/(y-1)
and
1 0 0 0
N -u/p 1/p 0 0
s=£= —u/p 0 1/p 0 . (B.24)
y-1 -
o) =(yv-Du -(yv-Du (y-1)

A and B are determined using
R=SKS'=ST,A,T;'S"' =R, AR}’ (B.25)

where K = A when k =& and K =B when k =1. Using Equations B.18 and B.21,

1 0 0 -1/a?
oo k, -k, 0
Re=TeS =l o k2 k12 1/(Zpa) (B.26)
0 -k /N2 -k,/N2 1/(/2pa)
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and, using Equations B.17 and B.22,

1 0 p/(2a) p/(V2a)
o k k -k
Y /2 e . (B.27)
o -k, k2 -k 2
0O O pa/y2  pa/y2

R,=ST,=
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Appendix C. Linearized Theory of Cascade Wave Propagation

From the linearized theory of an infinite cascade of flat plate airfoils oscillating
with fixed interblade phase angle in a uniform subsonic mean flow field, reference
3, several characteristics of the resulting pressure waves which propagate away from
the cascade may be determined. The approach is to assume inviscid, isentropic,
two-dimensional subsonic flow through an infinite cascade of flat plate airfoils.
Unsteady disturbances are assumed to be small perturbations to the steady flow field,
resulting in a system of first order linear partial differential equations for the unknown
perturbation quantities. When harmonic solutions which satisfy cascade periodicity
are assumed, the disturbance wavelength, direction of propagation and rate of decay
may be determined.

The mass conservation equation is, for the £-mn coordinate system of Figure C.1,

Dp (ou v
“Po[ 8% -0, c.1
Di p(ag an) c.1)

The momentum equations are

— = c.2

Dt p 0% ( )
and

D_l£=__1.2_p_ (C 3)

Dt pdn’ '

u isthe & —~component of velocity, v is the 1 —component of velocity, p is the density
and

D o o 0
LEtu—tU—. (C.4)
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| ' Figure C.1 Cascade coordinate system
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Using the subscript 0 to denote mean values (which are constant) and 1 for the

perturbations,
P=Po*P,>»
u=ug+u,,

R

are substituted into the governing conservation equations. Once the equations are

expanded and products of perturbations are neglected, a system of linear partial

differential equations results with the perturbation quantities as the dependent

variables. Conservation of mass becomes

Dt 25 om

The momentum equations become

Dou, _12Py

Dt Po 0%
and
Dovy__12Ps
Dt Po oM
with the operator
‘ Do 0o °

Dopl+ (5ul+bvl)_o
ol —+— |=

(C.5)

(C.6)

(C.7)

(C.8)

To close the system of equations, the speed of sound for isentropic flow of a calorically

perfect gas, « is introduced.

o
az=(_P) _ap
s p
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Expanding Equations C.5 through C.7 and using C.9 to replace derivatives of p, with

derivatives of p, gives

2q oq 2q
—+A—+B—= Cc.10
ot ARy T0 (C.10)
where
P,
q=| u, (C.11)
V)
u, poa’ O
A=| 1/p, U, 0 (C.12)
0 0 Ug
and

vo O pea?
B= 0 Vo 0 . (C.13)
1/po O Vo
For an infinite cascade of equally-spaced airfoils oscillating harmonically at a

fixed interblade phase angle, the dependent variables will depend harmonically on

the spatial position and the time. Thus the pressure perturbation is expressed as

py=p,e@riEmm (C.14)

where p, is the pressure disturbance amplitude and ! and m are the axial and
tangential wave numbers. Analogous relations are used for u,and v,.
Substituting the perturbation expressions into Equation C.10, a system of linear

algebraic equations is obtained:

wrugl+vem a’lp, a’mp, P
l/p, W+ Ugl+ruvom 0 u, [=0.(¢C.15)
m/p, 0 w+uyl+vym v,
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To obtaina non-trivial solution to this linear system, the determinant of the coefficient

matrix in Equation C.15 is set equal to 0:
(w+ugl+rvom)[(w+ugl+vom)®-a?(12+m?)]=0. (C.16)

The two solutions to Equation C.16 encompass different physical phenomena - it is
necessary to determine which solution applies to acoustic disturbances.
From the momentum equations, relations between pressure and velocity

fluctuations are obtained:
— Po -
b, =f7’(w+uol+vom)ul
Po -
=--n7(w+u.ol+vom)vl. (C.17)

Hence for the solution of Equation C.16 obtained when w + uo L+ vom = 0, the

pressure fluctuations are, from Equation C.17, zero, but the vorticity is

ov, du,
wl = e—— = c—
ot 9n
=i(lu, - mu,)e' @ itmm, (C.18)

The velocity of propagation of a disturbance is simply the phase velocity, which
is determined by tracking a constant disturbance phase. In this reference frame, the

phase does not change with time:
ﬁ(wh lg+mn)=0
dt

or

ag dn
125 &g C.19
PRy (C.19)
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Combining Equation C.19 and w + uol+vem =0 to eliminate w results in

dg dn
laz+m—(1—t=uol+uom. (C.20)

Thus the & and n components of velocity are equal to the mean flow velocity

components 4o and v This solution corresponds to convection of vorticity by the
mean flow with no associated pressure fluctuations.

For nonzero pressure disturbances, Equation C.17 implies w . uol+vom#0.

The only remaining way to satisfy Equation C.16 is
(w+ugl+vuvym)2-a?(l?+m?)=0. (c.21)
From Equations C.17, mu, = lv,. Substituting this into Equation C.18, it follows

that the vorticity is zero; the solution which satisfies Equation C.21 therefore
corresponds to irrotational pressure perturbations.

Solving Equatfon C.21 for the axial wave number,

uo(w+vom)zay(w+vem)?-(a-uf)m?

1 c.22
e (C.22)

or

Me((Ww/a)+ M m)=y{((w/a)+M,m)2-(1-MEZ)m?
L= - (C.23)
l"Mg

where M, and M, are components of the Mach number in the & and n directions.

The tangential wave number must satisfy cascade dynamic periodicity, which is
specified by the interblade phase angle 3 Hence
mS=B+2nn (C.24)

where S is the cascade spacing and n is an integer.

256



The nature of acoustic wave generation depends upon the termunder the radical
ineither of Equations C.22 and C.23. Let 6 be the termunder the radical in Equation
C.23.

5= ((w/a)+M,m)*-(1-MZ)m? (C.25)
When 6=0, the acoustic resonance condition, only one wave is created which

propagatesin the circumferential direction. The sense of the direction of propagation,
either +n or —n, depends upon the tangential wave number. From Equation C.25,

the tangential wave numbers at the resonances are
2kM
m=——————\M i,/l—MZ C.26
C( 1-M 2 ) ( n 14 ) ( )

where k is the reduced frequency and C is the airfoil chord. Combining Equation
C.24 for n =0 with Equation C.26 and solving for the resonant interblade phase

angle, 3,, yields

[3: —?W—S(Mn:t “"M?)

T Cc(1-M?)

or

2kMS

- c(1 _Mz)(MSin(o‘o‘*Y)*\/l -M3cos?(aq+ y)), (C.27)

B

When 6> 0, ( is real and two waves propagate without decay, one going upstream

and the other downstream - this behavior is termed superresonant for a subsonic
mean flow field. Lastly, when 6 <O, the behavior is termed subresonant and the

waves decay exponentially with axial distance.
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When 6<0, [ is complex. Substituting = (®+il' in to Equation C.14 gives

oy i(wl#(l‘#ill)tomn)

Py=DP,e
=p, e teiwrtttemn (C.28)

Thus the wave decays exponentially with distance, depending upon the imaginary

partof [.

| Py (E)] _ |p1(5)] = oIt

— = = C.29
P IP1(5=O)| ( )

The absolute value of the exponent disallows a second solution, the non-physical case
of an amplifying wave.

The axial and tangential wave numbers specify the acoustic wave propagation

| directionrelativeto £“,n° coordinates which are parallel to the fixed §.n coordinate

system but moving with the steady flowvelocity [5]. Relativetothe £, n" coordinates,

the waves propagate at the angle
6'=tan'l(-:%) (C.30).

at the speed of sound. The wave propagation vector v pin the fixed §,n coordinate
systemis therefore the sum of the steady flow velocity vector and the wave propagation
vector relative to the moving coordinate system,

[7‘p=(uo+acose’)5§+(v°+asin9')5,, (C.31)

from which the direction of propagation 6 in the &, n coordinate system is

(C.32)

6ot _l(uo+asin6’)
=tan” | —————— |.

Ug+acosB’
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The disturbance wavelength is the distance a disturbance travels in one temporal

period, 21/ wa Thus

27—
x-(—»—]v,|. (C.33)

259




National Aeronautics and Report Documentat'on Page
Space Administration
1. Report No. 2. Government Accession No. ! 3. Recipient's Catalog No.
NASA TM-103250
4. Title and Subtitle 5. Report Date
Aerodynamics of a Linear Oscillating Cascade August 1990
6. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Daniel H. Buffum and Sanford Fleeter E-5677
10. Work Unit No.
535-05-01
9. Performing Organization Name and Address
o . 11. Contract or Grant No.
National Aeronautics and Space Administration
Lewis Research Center
Cleveland, Ohio 44135-3191 13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 14 Sponsoring Agency Code )
Washington, D.C. 20546-0001
15. Supplementary Notes
Daniel H. Buffum, NASA Lewis Research Center; Sanford Fleeter, School of Mechanical Engineering, Purdue
University, West Lafayette, Indiana 47907.
16. Abstract
The steady and unsteady aerodynamics of a linear oscillating cascade are investigated using experimental and
computational methods. Experiments are performed to quantify the torsion mode oscillating cascade aerodynamics
of the NASA Lewis Transonic Oscillating Cascade for subsonic inlet flowfields using two methods: (I) simultaneous
oscillation of all the cascaded airfoils at various values of interblade phase angle, and (2) the unsteady aero-
dynamic influence coefficient technique. Analysis of these data and correlation with classical linearized unsteady
aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the cascade have, in some cases, a
detrimental effect on the cascade unsteady acrodynamics. An Euler code for oscillating cascade aerodynamics is
modified to incorporate improved upstream and downstream boundary conditions and also the unsteady
aerodynamic influence coefficient technique. The new boundary conditions are shown to improve the unsteady
aerodynamic predictions of the code, and the computational unsteady aerodynamic influence coefficient technique
is shown to be a viable alternative for calculation of oscillating cascade aerodynamics.
17. Key Words (Suggested by Author(s)) 18. Distribution Statement
Aerodynamics Unclassified — Unlimited
Cascade Subject Category 02
Unsteady aerodynamics
Flutter
19. Security Ciassif. (of this report) 20. Security Classif. (of this page) 21. No. of pages 22. Price”
Unclassified Unclassified 265 Al2

NASA FORM 1626 OCT 86

*For sale by the National Technical Information Service, Springfield, Virginia 22161




