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The steady and unsteady aerodynamics of a linear oscillating cascade are

investigated using experimental and computational methods. Experiments are

performed to quantify the torsion mode oscillating cascade aerodynamics of the

NASA Lewis Transonic Oscillating Cascade for subsonic inlet flow fields using two

methods: (1) simultaneous oscillation of all the cascaded airfoils at various values

of interblade phase angle, and (2) the unsteady aerodynamic influence coefficient

technique. Analysis of these data and correlation with classical linearized unsteady

aerodynamic analysis predictions indicate that the wind tunnel walls enclosing the

cascade have, in some cases, a detrimental effect on the cascade unsteady

aerodynamics. An Euler code for oscillating cascade aerodynamics is modified to

incorporate improved upstream and downstream boundary conditions and also the

unsteady aerodynamic influence coefficient technique. The new boundary conditions

are shown to improve the unsteady aerodynamic predictions of the code, and the

computational unsteady aerodynamic influence coefficient technique is shown to be

a viable alternative for calculation of oscillating cascade aerodynamics.
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CHAPTER 1

INTRODUCTION

Blade vibration problems continue to hinder the development of advanced

turbomachines and propellers. Blade flutter, a self-excited oscillation in which the

unsteady aerodynamic forces depend upon the blade motion, typically results in

failure of the blading. Costly re-design of the blading is then required, with

aerodynamic performance often compromised in the process.

Traditional design methodology, in which flutter boundaries based upon testing

of previous designs are applied to new designs, has been found to be inadequate even

for conventional turbofan engines [1]. When new propulsion concepts are

investigated, the use of past experience to avoid flutter is even more dubious. For

example, highly efficient advanced propellers currently under development are

characterized by thin, highly-swept blades of relatively high solidity operating with

supersonic tip relative Mach numbers. The novel design features of the advanced

propeller place it well outside the realm of previous experience: the solidity is too

large for it to be analyzed as an isolated airfoil but much smaller than a conventional

turbomachine, and it also has much greater aerodynamic sweep. Flutter of an

advanced propeller model [2] indicated that cascade effects had a destabilizing effect

on the flutter boundary. In addition, flutter was not encountered in tests of similar

propellers with less sweep, implying that sweep is a destabilizing influence. Thus the

features largely responsible for placing advanced propeller designs outside the realm

of previous experience had significant influences on the occurrence of flutter.



To improve the ability to predict flutter in turbomachines and propellers,

advancedanalysesto predict oscillating cascadeaerodynamicsmust be developed.

Classicalunsteadyaerodynamicmodelsare basedon fully linearized aerodynamic

theory in which the unsteadyflow isassumedto be asmall perturbation to a uniform

steadyflow. The problem is thus reduced to analyzingthe unsteadyaerodynamics

of a cascadeof flat platesoperatingat zeromeanincidence. Efficient semi-analytical

techniqueshavebeendevelopedfor rapid computer-generatedsolutions to the fully

linearized problem for subsonicflow [3-5]. However, the unsteady aerodynamic

effectsdueto interactionsbetweenthesteadyandunsteadyflow fields, i.e.,the effects

of bladegeometry andnonzero incidenceangle (steadyloading), arenot considered

in these models. To overcome these limitations, linearized models are being

developedwhich take into accountthe effectsof a nonuniform mean flow field on

the unsteadyflow, which is assumedto be a small perturbation to the steadyflow

field, references 6-12, for example. While these linearized models should be

computationally efficient, nonlinear analyseswhich solve the time-dependent full

potential and Euler equations are also being used to predict oscillating cascade

aerodynamics[13-15],although they require relatively large computing times.

1.1Oscillating Cascade Experiments

To direct the development of advanced unsteady aerodynamic models and to

evaluate these as well as existing analyses, data obtained from oscillating cascade

experiments are needed. Appropriate experimental data will q_aantify the airfoil

surface steady and unsteady pressure distributions over a range of oscillating cascade

operating conditions. The steady flow field, as a function of inlet Mach number,

solidity, stagger angle and airfoil geometry, should be in the appropriate regime of

compressible flow, i.e., subsonic, transonic or supersonic, be of either compressor or

turbine geometry as required, and data should be obtained for several steady flow



conditions so that the effect of steady loading on the cascade unsteady aerodynamics

may be investigated. Unsteady data are needed over a range of interblade phase

angles at values of reduced frequency which are realistic for the application.

With these experimental objectives in mind, a review of previous oscillating

cascade investigations reveals there is, in general, little data available for cascaded

airfoils driven to oscillate simultaneously. Focusing on subsonic and transonic flows

for compressor geometries, there are several noteworthy publications. Davies and

Whitehead [16] performed experiments in an annular oscillating cascade in subsonic

through supersonic flow regimes, but there is significant scatter in the data and the

measurements were limited to unsteady aerodynamic moment data from strain gages.

Of particular interest herein, unsteady pressure measurements have been made at

the NASA Lewis Research Center in a transonic oscillating cascade [17].

Unfortunately, there were some discrepancies in the analysis of the unsteady data as

well as the steady airfoil surface pressure data. As a part of the current investigation,

these discrepancies in the steady and unsteady data are corrected. Kobayashi [18]

has made detailed blade surface pressure measurements in an annular oscillating

cascade at high subsonic and supersonic inlet conditions. Large pressure fluctuations

occurred due to shock wave motion and cascade instability was noted over a wide

range of conditions.

The lack of oscillating cascade data is due to the inherent complexity of the

experiments. First, oscillating cascades are expensive to build, requiring a drive

system capable of oscillating the airfoils simultaneously at realistic reduced frequency

values. Second, because the measurements must be obtained not only for each steady

flow condition and reduced frequency, but also over a range of interblade phase

angles, these experiments are quite time consuming. As a result, data are typically

obtained for only several interblade phase angles.



To avoid these problems, oscillating cascade data might be obtained through

simpler experiments. In particular, when the unsteady disturbances are small, as in

a typical flutter stability problem, an unsteady aerodynamic influence coefficient

technique might be utilized. In this technique, only one airfoil in the cascade is

oscillated, with the resulting airfoil surface unsteady pressure distributions measured

on the oscillating airfoil and its stationary neighbors. The unsteady aerodynamics of

an equivalent cascade with all airfoils oscillating at any specified interblade phase

angle is then determined through a vector summation of these influence coefficient

data.

Figure 1.1 depicts a two-dimensional finite cascade representation of a blade

row. For a given mean flow field and reduced frequency of oscillation, and assuming

small unsteady disturbances, the cascade unsteady aerodynamics may be expressed

as linearly combined influence coefficients which can be determined experimentally

or analytically. Consider a finite airfoil cascade with 2N + 1 airfoils executing constant

amplitude harmonic oscillations with a constant interblade phase angle f3. The airfoil

surface unsteady pressure, expressed as a pressure coefficient C p (x, 13) acting at a

point on the reference airfoil (airfoil 0 in Figure 1.1), can be expressed as a Fourier

series

N

C.(x,_)= _ _(x)_ 'n_ (1.1)
n--N

where C _ is the complex-valued unsteady aerodynamic influence coefficient. Thus

this influence coefficient defines the unsteady pressure coefficient developed on the

reference airfoil due to the motion of airfoil t_.

Mathematical models for an infinite cascade of airfoils oscillating with a

specified interblade phase angle can also be used to determine these unsteady

4
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Figure 1.1 Two-dimensional finite cascade model of a blade row



For this case, the influence coefficients areaerodynamic influence coefficients.

determined by inversion of Equation 1.1.

C;(x) = (1.2)
-It

Analytically determined unsteady aerodynamic influence coefficients can thus be

determined from oscillating cascade mathematical models by integrating over the

complete interblade phase angle interval, Equation 1.2. Utilizing these influence

coefficients in Equation 1.1 then enables analytical results for a finite number of

airfoils oscillating in an infinite cascade to be determined.

Several experimental investigations have been directed at validation of this

technique through correlation of unsteady aerodynamic influence coefficient results

with corresponding data acquired with all airfoils oscillating at specified interblade

phase angles. Hanamura et al. [19] found good results for flow in a water channel

and subsequently applied this technique, without further validation, to subsonic and

transonic flows [20,21]. Davies and Whitehead [16] performed such experiments at

high subsonic inlet conditions and reduced frequencies based on semichord up to 0.1,

but the validity of the influence coefficient technique cannot be assessed due to scatter

in the data. In supersonic inlet Mach number experiments at ONERA [22], the

summation of influence coefficients has been compared to data for a linear cascade

with two airfoils oscillating, but the scope of the experiments was very limited.

Recently, Bolcs et al. [23] reported very good results for this technique in an annular

turbine cascade.

1.2 Calculation of Oscillating Cascade Aerodynamics

Time-marching solutions of the nonlinear equations of fluid dynamics for the

oscillating cascade problem are similar to the experiments in that they tend to be

q
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verytime-consuming. To remedythis problem, the unsteadyaerodynamic influence

coefficient technique may also be applied to the computational aerodynamicsof

oscillating, cascadedairfoils. Gerolymos [24] hasusedthis technique to predict the

aerodynamicsof a supersonicoscillating cascadewith somesuccess.

Aswith the experimentalunsteadyaerodynamicinfluence coefficient technique,

only one airfoil in the cascadeis oscillated, and the influences of theseoscillations

are determinedfor the oscillating airfoil and its stationary neighbors. The unsteady

aerodynamicsof an equivalent cascadewith all airfoils oscillating at any specified

interblade phase angle is then determined through a vector summation of the

influence coefficients. The unsteadysolution is obtained for oscillations relative to

the previously-computedsteadyflow, thus the effectsof a nonuniform steady flow

field are included in the unsteadysolution.

1.3Objective

The objective of the experimental research reported herein is twofold: (1) the

aerodynamics of a cascade of airfoils oscillating simultaneously is quantified for two

cascade solidities, several mean flow conditions and a number of interblade phase

angle/reduced frequency combinations; and (2) a detailed experimental study is made

of the unsteady aerodynamic influence coefficient technique. In particular, the steady

and unsteady aerodynamics of a cascade of biconvex airfoils executing torsion mode

oscillations are investigated for subsonic inlet Mach numbers. This is accomplished

by obtaining fundamental aerodynamic data in the NASA Lewis Transonic Oscillating

Cascade Facility. Detailed steady airfoil surface pressure distributions quantify the

mean flow field. Unsteady airfoil surface pressure distributions are measured both

with all airfoils oscillating at specified interblade phase angles and with only one



airfoil oscillating. The experimentally-determined influence coefficient data are

summed for correlation with the data obtained with all airfoils oscillating and also

with the predictions of a linearized subsonic oscillating cascade analysis.

In addition, an Euler code for oscillating, cascaded airfoils is modified for

implementation of the unsteady aerodynamic influence coefficient technique. The

Euler code is first improved by modification of the upstream and downstream

boundary conditions. The unsteady aerodynamic influence coefficient technique is

then implemented by further modification of the code. The resulting predictions are

correlated with the experimental data and also with the linearized analysis

predictions.



CHAPTER 2

FACILITY AND INSTRUMENTATION

i,.

The NASA Lewis Transonic Oscillating Cascade Facility combines a linear,

transonic cascade wind tunnel capable of inlet flow approaching Mach one with a

high-speed airfoil drive system which imparts torsion-mode oscillations to the

cascaded airfoils at specified interblade phase angles and realistic high reduced

frequency values. Appropriate steady-state instrumentation is used to determine the

cascade inlet Mach number, verify the cascade passage-to-passage periodicity and

quantify the steady airfoil surface pressure distribution for each steady flow field.

Miniature dynamic pressure transducers are used to quantify the unsteady airfoil

surface pressures on the oscillating cascaded airfoils.

i

2.1 Oscillating Cascade Facility

The NASA Lewis Transonic Oscillating Cascade Facility is shown in Figure 2.1.

Air drawn from the atmosphere passes through a smooth contraction inlet section

into a constant area test section of 9.78 cm span which measures 58.6 cm along the

stagger line. Up to nine airfoils may be accommodated, spaced by 5.86 cm. Upstream

of the test section, suction is applied through perforated walls to reduce the boundary

layer thickness. Adjustable tailboards are used to adjust the cascade exit region static

pressure and also form bleed scoops which further reduce upper and lower wall

boundary layer effects. Downstream of the test section, the air is expanded through

a diffuser into an exhaust header. The flow rate is controlled by two valves located

in the header which operate in parallel, the smaller of the two providing fine
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b,

adjustment to the flow rate. The exhaust system, part of a central air facility at Lewis,

maintains a 30 kPa pressure downstream of the flow control valves. The inlet and

airfoil angles are adjustable, allowing a wide range of incidence and stagger angle

combinations.

A boundary layer bleed system is provided to minimize tunnel wall boundary

layer effects. Perforated end wails having an open area ratio of 0.225 with 0.15 cm

perforation hole diameters are located upstream of the airfoils. These bleeds are

partitioned into five segments on each wail, with each segment having an individual

flow control valve for localized control. Adjustable tailboards form scoops with the

top and bottom side wails, and also have individual flow control valves. Headers

route the bleed flow into the exhaust system.

Uncambered, zero-twist biconvex airfoils fabricated out of titanium alloy are

used for these experiments. The radius of curvature of each airfoil surface is 27.4

cm, and the leading and trailing edges are rounded to 0.025 cm radii of curvature.

With a chord length of 7.62 cm and a maximum thickness of 0.577 + 0.004 cm, the

thickness-to-chord ratio is 0.076. The span is 9.60 cm, making the aspect ratio 1.26.

Trunnions which support the airfoil and allow coupling to the drive system are located

at the mid-chord, resulting in a mid-chord elastic axis.

Tests were conducted to ensure that the airfoils would not deform when

oscillated at high frequency [25]. The first torsion mode was determined by

interferometry to occur at 932 Hz, and negligible airfoil deflections were found to

occur during torsional oscillation at 600 Hz.

To obtain realistically high values of the reduced frequency, the mechanical

drive system must provide high frequency controlled oscillations of the airfoils. Figure

2.2 illustrates the main components of the drive system. Nine stainless steel barrel

cams, each with a six cycle sinusoidal groove machined into its periphery, are mounted

11
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on a common rotating shaft driven by a 74.6kW electric motor. A cam follower

assembly,consistingof a titanium alloy connectingarm with a stainlesssteelbutton

on oneend, is joined on the other end to anairfoil trunnion. The button fits into the

cam groove, thus coupling the airfoil to the camshaft. Lubrication for the

cam/follower assemblyis provided by an oil bath. The amplitude of the torsional

airfoil motion is 1.2degreesasdictatedbythe camandfollower geometry. The drive

systemis configuredfor oscillationsat achosenfixed interblade phaseanglebyfixing

the camsat the required relative positionson the shaft.

2.2 Instrumentation for Steady-State Measurements

A row of 22 wall static pressure taps, located upstream of the cascaded airfoils,

is used to determine the inlet static pressure distribution. A similar row of static taps,

located downstream of the cascade, determines the cascade exit region static pressure.

Two airfoils are instrumented with static pressure taps so that airfoil upper

and lower surface pressures may be determined simultaneously. There are sixteen

chordwise measurement locations with a higher density in the leading edge region to

capture the higher gradients there, Figure 2.3. Four additional taps, numbers 17

through 20 in the figure, are used to indicate the spanwise pressure distribution. Two

airfoils are instrumented so that data for the two airfoil surfaces defining one cascade

passage may be obtained simultaneously.

2.3 Instrumentation for Unsteady Measurements

The primary unsteady data are the magnitude and phase of the unsteady airfoil

surface pressures relative to the airfoil motion. The elements crucial to these

measurements are the dynamic pressure transducers and the airfoil motion detection

system.

13
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2.3.1 Pressure Transducers

Miniature semiconductor pressure transducers are used to measure the airfoil

surface unsteady pressures. Consisting of a silicon diaphragm containing a four arm

strain gage bridge mounted over a cylindrical cavity, the transducer has several

desirable characteristics: (1) frequency response sufficient to measure at least several

harmonics of the oscillation frequency; (2) small dimensions for good spatial

resolution and minimal flow disturbance; (3) insensitivity of output to transducer

acceleration; and (4) invariance of the transducer dynamic response with change in

temperature. In addition, a mounting technique which effectively isolates the

transducer from airfoil strain is necessary.

Six Kulite Semiconductor Products dynamic pressure transducers are flush

mounted symmetrically about the midchord of one surface of the airfoil, Figure 2.4.

These transducers, having active sensor diameters of 0.097 cm (1.3% of the airfoil

chord), are epoxied into milled slots and potted in room temperature vulcanizing

rubber (RTV) for isolation from airfoil strain. A thin coating of

room-temperature-vulcanizing rubber is used to fair the transducer surface into the

surface contour of the airfoil and also protect the transducer.

Static calibration consists of measuring the transducer output over a range of

applied pressures. The transducers were calibrated before the oscillating cascade

experiments and then recalibrated periodically. In all cases, the output voltage was

a highly linear function of the applied pressure differential, and the typical transducer

had a negligible change in its calibration over the course of the experiments.

Frequency. Response

Due to the high stiffness-to-mass ratio of the diaphragm, the transducers have

a high natural frequency, reported to be 230 kHz. Since the transducers are expected

to have unity gain and negligible phase shift up to 20% of the natural frequency, the

IS
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frequency response is more than adequate for these experiments, which require

harmonic information to about 1 kHz. However, RTV coating applied to the

transducer diaphragm will reduce its natural frequency. To be certain that this has

no detrimental effect on the transducer response at the frequencies of interest,

frequency-response verification tests were undertaken.

A resonant tube assembly similar to that of Capece and Fleeter [26] is used to

generate plane acoustic waves to excite the pressure transducers at discrete

frequencies. The assembly consists of an 20.3 cm diameter, 4.6 m long plastic tube

with a speaker mounted at one end. An instrumented airfoil is inserted in the opposite

end of the tube, which is open to the atmosphere, and an Endevco pressure transducer

positioned adjacent to the instrumented airfoil serves as the reference. Amplified

sine waves are used to drive the speaker which in turn creates acoustic waves in the

tube for excitation of the transducers. The resulting pressure transducer responses

are flat to frequencies in excess of 1000 Hz within ±2% in magnitude and ±2 degrees

in phase.

Strain Isolation

Airfoil strain may induce transducer strain, thus resulting in an apparent pressure

signal. To achieve effective strain isolation, Kulite was commissioned by NASA Lewis

to conduct a transducer mounting study, reference 27. Potting the transducer in

rubber was found to be effective: in tests conducted using one of the biconvex airfoils,

blade tip deflections of ± 0.05 cm were found to have no measurable effect on the

transducer output to 0.01 millivolt, which corresponds to about 0.07 kPa (0.01 psi).

As described in reference 25, one of the biconvex airfoils was oscillated at high

frequencies to verify its structural integrity. Specifically, based on the test data, a

17



conservative estimate of the maximum airfoil tip deflection at 600 Hz oscillation

frequency is 0.003 cm. Combining this with the results of the strain isolation study,

the response to airfoil strain will be negligible.

Acceleration Effects

During the oscillating cascade experiments, the pressure transducers are subject

to accelerations which may produce apparent pressure signals. Although uncoated

transducers are highly insensitive to acceleration effects [28], the RTV-coated

transducers require calibration. To quantify this effect, the instrumented airfoil was

oscillated at several frequencies under no-flow or zero mean velocity conditions.

Figure 2.5 shows the amplitude response of six coated transducers as a function of

the acceleration magnitude. The response is a linear function of the acceleration,

implying that the acoustic response, which will varywith the airfoil velocity magnitude,

is dominated by the acceleration response. Significant amplitude variation is apparent

among the transducers, and is probably due to differences in rubber coating

thicknesses. The phase angle variation with frequency was linear and small for all the

transducers.

Temperature Drift

Since only the fluctuating pressure will be measured by the transducers, only

the slope of the transducer calibration curve is required. This is determined by static

calibration at the ambient temperature, but the test section air static temperature

may be as much as 60 degrees C less than the ambient. Because the rated maximum

change in sensitivity with temperature is ± 4.5% per 100 degrees C [28], the

temperature drift effect is believed to be negligible.

18
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2.3.2Airfoil Motion Measurement

The time-variant position of the reference oscillating airfoil is determined by a

capacitance-type proximity sensor which produces a voltage proportional to the air

gap between the sensor and an adjacent object. This sensor is positioned to face a

six cycle sinusoidally-shaped cam which is mounted on the airfoil drive camshaft

When the camshaft rotates, the proximity sensor produces a sinusoidal output voltage

which is in phase with the reference airfoil motion. In addition, an electro-optical

displacement meter is available to directly track the motion of the reference airfoil

by focusing on the edge of the airfoil. These two measurement systems were found

to agree within ± 3 degrees in phase. This indicates that deformations in the drive

system, which would cause phase errors in the measurement of the reference airfoil

motion, are negligible, and verifies the displacement meter alignment relative to the

cam.

20



CHAPTER 3

DATA ACQUISITION AND ANALYSIS

The steady-state data of interest are the cascade inlet Mach number, inlet static

pressure, exit static pressure and the airfoil surface pressure distribution. A

conventional pressure measurement system using Scanivalves and computerized data

acquisition and reduction is used to quantify these data. Signals which quantify the

pertinent unsteady data, the airfoil motion and the airfoil surface unsteady pressure

distribution, are recorded on FM tape and analyzed using a computer-based

digitization and Fourier analysis system.

3.1 Acquisition and Analysis of Steady-State Data

A computer-based data acquisition and analysis system is used to monitor the

cascade operating conditions and acquire and reduce the steady-state data.

Microprocessors control the digitization of the data and feed the data to a

remotely-located minicomputer which stores data for later analysis and also calculates

various quantities pertintent to operation of the wind tunnel. Post-processing of

steady-state data is done on a VAX computer.

Steady-state pressures are determined using three 48 port Scanivalve units which

operate in parallel. Time-average static pressures are determined from the average

of at least 30 readings. The mean inlet static pressure, t9 in, is the spatial average of

the time-average wall static pressures as determined from the taps located upstream

21



of the airfoils. The inlet total pressure, 19,, is determined by a remotely-located

barometer. The inlet Mach number is then calculated from the isentropic relation

)M= Pt S-
-- ]. •

Pin

The airfoil surface steady pressure coefficient is defined as

(3.])

_p(x)= p''- p°(x) (3.2)
1 2

_pV

where p o is the time-average airfoil surface static pressure at the chordwise

coordinate x, and p and V are the inlet values of density and velocity. The mean

exit static pressure, p _x, is the spatial average of the time-average wall static pressures

as determined from the taps located downstream of the airfoils.

3.2 Acquisition and Analysis of Unsteady Data

Figure 3.1 is a schematic of the unsteady data acquisition and analysis system.

Within the test cell, the dynamic pressure transducers are connected to strain gage

bridge amplifiers. The amplifier gains are set to 200 to boost the signals, initially in

the millivolt range, to levels on the order of 1 volt, thus minimizing the effects of

low-level noise acquired during transmission of the signals. The airfoil motion signal

is of a sufficiently high amplitude, on the order of 1 volt, that it does not require

amplification before transmission. High-pass filters remove d.c. components in the

signals and instrumentation amplifiers are used to adjust the signal levels to be

compatible with the recording equipment. To determine the frequency of oscillation,

the airfoil motion signal passes through a frequency counter. Monitor oscilloscopes

are used to observe the unsteady signals during the experiments. A fourteen channel

FM tape recorder is used for permanent analog recording of the data.

22
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Analysis of the unsteady data centers around an IBM PC-AT computer-based

system which controls digitization of the recorded signals, executes the data analysis

software and drives the post-processing plotting devices. Two Gould 8 channel

waveform recorders are used to digitize the signals. Each channel has its own 8 bit

A/D converter and 32 kilobyte memory buffer, thus enabling simultaneous

digitization and storage of 16 channels of unsteady data. Gould software controls

transfer of the data from the waveform recorders to the computer through an

IEEE-488 interface and provides graphics for viewing the digitized signals.

The unsteady data acquisition system is calibrated using sinusoidal signals input

to all the channels simultaneously starting at the high pass filters. These signals are

recorded on tape and then digitized and reduced using the computerized data

reduction system. It was found that small phase shifts of several degrees may occur

depending upon the tape recorder track, and these calibration results are

incorporated into the data reduction system. In addition, the accuracy of the 8 bit

A/D converters was compared to a 12 bit FFT analyzer using unsteady pressure

signals. Negligible differences between the two systems were found in the calculated

first harmonic components of the signals.

The unsteady pressure signals are digitized at rates sufficient to capture at least

three harmonics of the oscillation frequency, with 32,768 (32k) samples taken per

channel. An averaging technique, Bartlett's procedure [29], is then applied to the

data. This procedure is shown in Figure 3.2 for one channel of data: the data are

divided into contiguous blocks, each block typically with 2048 samples, and then

Fourier decomposed (using an algorithm of Bergland and Dolan [30]). To minimize

errors due to spectral leakage, an interpolation scheme, as described in Appendix A,

is used to determine the first harmonic pressure of each block of data. Each block's

first harmonic pressure is referenced to the airfoil motion by subtracting the phase
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of the first harmonic motion signal of the corresponding block from it. Once all of

the blocks from a channel are decomposed in this manner, the block results are

averaged and the complex-valued acceleration response is subtracted vectorally.

To demonstrate this data analysis technique, the time-dependent pressure

transducer signals shown in Figure 3.3 and the corresponding airfoil motion signal

are considered. The pressure signals are seen to be sinusoidal in nature with

superimposed noise. The resulting averaged pressure spectra are characterized by

a large spike at the oscillation frequency, 200 Hz, some small spikes at higher

harmonics of the oscillation frequency, and other small spikes near 55 and 110 Hz

caused by wind tunnel tones.

In these experiments, the airfoil motion is defined by the change in the incidence

angle with time:

a(t) = a o + ot I Re(e"') (3.3)

where ct o is the mean incidence angle, a _ is the oscillatory amplitude of 1.2 degrees

and _ is the frequency. The final unsteady pressure data are presented in the form

of the complex-valued dynamic pressure coefficient

pl(x)
Cp(X)= 1 (3.4)

5pVZcxl

where p _ is the first harmonic of the airfoil surface static pressure, p and V are

the inlet values of density and velocity, and ct _ is the torsional oscillation amplitude.

The dynamic pressure difference coefficient is defined by

AC p=C pt-C p,,. (3.5)

The subscripts I and u refer to the airfoil lower and upper surfaces, respectively.

These coefficients are referenced to the airfoil motion, with a positive phase

corresponding to the unsteady pressure leading the airfoil motion.
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CHAPTER 4

EXPERIMENT RESULTS

The torsion mode oscillating cascade aerodynamics are experimentally

investigated in both low and high solidity configurations which are summarized in

Table 4.1. As the oscillating cascade aerodynamics are a function of the underlying

mean flow field, several mean flow conditions are investigated for each cascade

configuration.

For the low solidity cascade, there are two steady flow conditions, defined by

inlet Mach numbers of 0.55 and 0.80 at 2 degrees incidence. With the instrumented

(reference) airfoil in relative position 0 as defined in Figure 1.1, influence coefficient

data are acquired on this airfoil with the airfoils in positions -2, -1, 0, 1 and 2

individually oscillating at reduced frequencies of 0.2 and 0.32 for the two inlet Mach

numbers plus k--0.45 for M = 0.55. Corresponding data are obtained from baseline

experiments in which the airfoils are oscillating simultaneously at fixed interblade

phase angle values of 0, 45, -45, 90, -90 and 180 degrees.

The high solidity configuration is investigated for incidence angles of 0 and 7

degrees at an inlet Mach number of 0.65 and at 7 degrees with an inlet Mach number

of 0.80. Influence coefficient data are obtained for reduced frequencies of 0.185 and

0.32 at M=0.8, and 0.22 and 0.39 at M=0.65. Corresponding baseline data are

obtained for all the airfoils oscillating simultaneously at fixed interblade phase angles

of 0, 90 and -90 degrees.
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Table 4.1 Airfoil and cascade geometry

AIRFOIL

Type

Surface radius of curvature

Leading and trailing edge radii of curvature

Chord, C

Maximum airfoil thickness / chord

Elastic axis

iDynamic pressure transducer locations, % chord

biconvex, no camber

27.4 cm

0.025 cm

7.62 cm

0.O76

midchord

12,25,40,60,75,88

LOW SOLIDITY CASCADE

Number of airfoils

Airfoil spacing, S

Solidity, C/S

Stagger angle, V

Amplitude of torsional oscillation

4

11.72 cm

0.65

45 degrees

1.2 degrees

HIGH SOLIDITY CASCADE

Number of airfoils

Airfoil spacing, S

Solidity, C/S

Stagger angle, y

Amplitude of torsional oscillation

9

5.86 cm

1.3

53 degrees

1.2 degrees
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The steadyairfoil surfacepressuredistributions are presented first followed by

a detailed study of the cascade unsteady aerodynamics. The dynamic periodicity of

the cascade with all airfoils oscillating is investigated, then unsteady pressure

influence coefficients are presented. These influence coefficient data are then

summed to predict the unsteady aerodynamics of an equivalent cascade with all

airfoils oscillating at a fixed interblade phase angle. The resulting unsteady pressure

distributions are correlated with the data for all airfoils oscillating and the predictions

from the linearized unsteady cascade analysis of reference 3. To aid the interpretation

of these results, the limitations of conducting oscillating cascade experiments in a

finite, linear cascade are considered.

4.1 Steady State Aerodynamics

4.1.1 Low Solidity Cascade

To demonstrate periodicity at the steady state conditions, airfoil surface pressure

distributions are obtained for multiple passages in the low solidity cascade. For

example, Figure 4.1 presents data at an inlet Mach number of 0.55 for the center

cascade passage and the two adjacent passages. Good cascade periodicity is readily

apparent, with the only significant differences found at the leading edge of the airfoil

upper surface. Using the methods of reference 31, a 95% confidence interval of *-0.01

is calculated for the airfoil surface steady pressure coefficients.

Figure 4.2 presents the M = 0.80 steady flow airfoil surface pressure coefficient

distributions for the cascade center passage. For both inlet Mach numbers, the upper

surface distribution peaks near the leading edge and the pressure difference tends

toward zero near the trailing edge. There is negligible loading beyond 50% of chord.

Darkened symbols in Figure 4.2 indicate multiple spanwise data used to indicate

spanwise uniformity of the steady flow (see Figure 2.3 for the pressure tap locations).
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As shown, departure from two-dimensionality is negligible except for small

differences near the leading edge on the upper surface. Since C p = 0.435 for sonic

flow with an inlet Mach number of 0.8, the flow field is entirely subsonic for both

inlet Mach numbers.

4.1.2 High Solidity Cascade

The steady flow airfoil surface pressure coefficient distributions for the center

airfoil of the high solidity cascade are shown in Figure 4.3 for 0.65 inlet Mach number

and zero incidence, and Figure 4.4 for inlet Mach numbers of 0.65 and 0.8 at 7 degrees

incidence. The zero incidence condition exhibits airfoil loading due to cascade effects.

At 7 degrees incidence, the pressure coefficient distributions are nearly identical for

the two Mach numbers, with loading only on the airfoil forward half. At an inlet

Mach number of 0.8, the sonic value of C p is 0.435. Thus there is a small region of

supersonic flow on the upper surface near the leading edge. This supersonic region

is terminated by a small shock, as determined from schlieren images. At an inlet

Mach number of 0.65, the sonic value of C p, 1.01, is slightly exceeded on the upper

surface at the leading edge. In this case, no shock was detected.

4.2 Unsteady Aerodynamics

4.2.1 Data for All Airfoils Oscillating

In this section, summaries of the unsteady data obtained for the low and high

solidity cascade configurations are presented. In addition, for the low solidity cascade,

the cascade dynamic periodicity is investigated for a range of experiment parameters.

First, however, the theoretical modes of oscillating cascade wave propagation as

predicted by linearized unsteady aerodynamic theory are considered.
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The unsteady aerodynamic conditions investigated herein may result in the

oscillating cascade operating at several modes of wave propagation as predicted by

linearized unsteady aerodynamic theory. An oscillating cascade in subsonic flow is

said to be superresonant when pressure disturbances are produced which propagate

away from the cascade unattenuated. When the pressure disturbances decay

exponentially with distance from the cascade, the behavior is called subresonant. A

point where subresonant and superresonant regions meet is called an acoustic

resonance. At an acoustic resonance, the pressure disturbances propagate energy

along the blade row. An expression for the resonant interblade phase angle, Equation

4.1, is derived in Appendix C.

13_=cc,_u2._____.__2kus(Msin(ao+ y)±_/l_M2cos2(Oto+ V)) (4.1)

Figure 4.5 illustrates typical subsonic cascade behavior in terms of these wave

propagation modes. Acoustic resonances at positive and negative interblade phase

angle values, 13;, bracket the wave-propagating superresonant region which always

includes I3= 0 when 0 < M < 1 and k > 0. When 13> 13_- or 13< 13;, the cascade is

subresonant and the waves decay. Table 4.2 lists the resonant interblade phase angle

values for the both cascade configurations.

Low Solidity. Cascade

Airfoil surface unsteady pressure distributions were obtained in the low solidity

configuration (C/S = 0.65) for interblade phase angle values of 0, 45, -45, 90, -90 and

180 degrees at reduced frequencies of 0.2 and 0.32 for M=0.80, and those reduced

frequencies and also 0.45 for M = 0.55.

For a linear cascade to be a valid model of an axial-flow turbomachine blade

row, the cascade must exhibit good passage-to-passage periodicity for both steady

and unsteady flow. Low solidity cascade data for all airfoils oscillating simultaneously

were obtained by instrumenting the two airfoil surfaces defining the center passage
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Table 4.2 Resonant values of interblade phase angle

(a) Low solidity cascade

M

0.55

0.80

k

0.20 0.32 0.45

-14.6, 37.0 -23.3, 59.1 -32.8, 83.2

-19.8, 111.5 -31.7, 178.4

(b) High solidity cascade, M = 0.65

M

0.65

Ct o

O*

7*

k = 0.22 k-- 0.39

-8.8, 31.4 -15.5, 55.7

-8.4, 32.9 -14.8, 58.4

(c) High solidity cascade, M = 0.80

M

0.80

Cto k=0.185

7 o -8.1, 58.3

k=0.32

-14.0, 100.8
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of the cascade.The unsteadyperiodicity of the low solidity cascadewasdetermined

bysubsequentlypositioningtheinstrumentedairfoils to measuretheoppositesurfaces

of the two center airfoil positions, thus giving dynamicpressure measurementsfor

both surfacesof the two most centrally locatedairfoils.

First harmonic unsteadypressurecoefficient periodicity data are presentedin

Figure4.6for M--0.55, k = 0.2and 13=-45degrees.To simplify thediscussionof these

results,the two instrumentedairfoils will be referred to asA and B aslabeledin the

figure. The data indicate that thedynamicperiodicity is excellent in both magnitude

and phasefor the airfoil upper surface. Although the lower surfaceperiodicity is

good,the magnitudestend to be largeron airfoil A, particularly over theforward half

of the airfoil. There arealsosmallbut noticeablephasedifferencesin the midchord

region on the lower surface.

To aid the presentationof theperiodicity data,new quantitiesare defined. The

dynamicperiodicity magnitudeand phasedifferences, 8C p and 8 _, are defined in

Equations 4.2 and 4.3.

Ic l-lc".l (4.2)
5Cp = I A

" (4.3)

Figure 4.7 presents the dynamic periodicity data determined from the data presented

in Figure 4.6. Both the excellent upper surface periodicity and defects in the lower

surface periodicity are now clearly revealed.

The oscillating cascade periodicity is now investigated as a function of the

interblade phase angle using the quantities 8Cp and 8_. Reduced frequency

crossplots of the periodicity data for M = 0.55, k = 0.2 and 0.45 are presented in Figures

4.8 through 4.13 for the various interblade phase angle values. Beginning with I3 -- 0 °,

Figure 4.8, the dynamic periodicity is generally poor, regardless of reduced frequency,
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in both magnitude and phase for these superresonant conditions. Reduced frequency

affects the dynamic periodicity when 13= 4S °, Figure 4.9: the periodicity is fairly

good for the subresonant oscillations ofk = 0.2, except for some large phase differences

at 60 and 75% of chord, but poor for k=0.45 (superresonant), which has large

magnitude differences on both airfoil surfaces. In contrast, the periodicity is much

better for 13= -45 ° for the two values of k, both of which are subresonant, Figure

4.10. When 13= 900, the periodicity is poor for both subresonant conditions, Figure

4.11. In this case, only the lower surface periodicity for k = 0.45 is respectable. When

13=- 900 , Figure 4.12, dynamic periodicity is generally good for the subresonant

lower reduced frequency except for the upper surface magnitude at 12% of chord.

Increasing k to 0.45 (also subresonant) results in reasonably good periodicity except

at 60% of chord. Finally, for out-of-phase oscillations (subresonant), Figure 4.13,

the magnitude differences are fairly small, especially for k=0.2, but the phase

differences are not small for that value of reduced frequency. In contrast, the phase

differences are usually small for k = 0.45.

To summarize these d_rnamic periodicity data, the periodicity is largely a function

of the predicted cascade wave propagation mode: cascade dynamic periodicity is

relatively good for subresonant oscillations but poor for superresonant oscillations.

However, subresonance does not guarantee good dynamic periodicity: dynamic

periodicity is poor for 13= 90 °, a subresonant interblade phase angle for both values

of reduced frequency shown in Figure 4.11.

Similar trends are found for M = 0.80 and reduced frequencies of 0.2 and 0.32,

Figures 4.14 through 4.19. Periodicity is relatively good for subresonant oscillations,

interblade phase angles of -45, -90 and 180 degrees, but poor for superresonant

oscillations, interblade phase angle values of 0, 45 and 90 degrees. An exception is

13= -45 ° and k = 0.32, a subresonant condition with poor dynamic periodicity.
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Hieh Solidity Cascade
v

The airfoil surface unsteady pressure distributions were obtained in the high

solidity configuration (C/S-- 1.3) for interblade phase angle values of 0, 90, and -90

degrees at reduced frequencies of 0.22 and 0.39 for M = 0.65, and reduced frequencies

of 0.185 and 0.32 for M =0.80. A portion of these data were presented in Reference

17, but anomalies were found to exist in the data due to an unreliable airfoil motion.

signal. As a part of the current investigation, these signals were re-analyzed using

the backup airfoil motion signal.

The results presented in Reference 17 were derived using an electro-optical

displacement meter to track the motion of the instrumented airfoil. A second measure

of the airfoil motion was provided by a proximity sensor as described in Section 2.3.2.

Samples of these two signals, Figure 4.20, illustrate the main difference between the

output of the two devices: while the proximity probe signal is virtually noise-free, the

optical sensor produces a relatively noisy signal. The two signals generally agreed to

within ± 4 degrees in phase, so either signal could often be used as a reference for

the unsteady pressure measurements. In some cases, however, there were large phase

differences between the two measurements, most likely caused by the excessive noise

in the optical signal or dropout of that signal altogether. Thus the proximity sensor

was used as the measure of the airfoil motion for the re-analysis of these data.

Note that due to limitations in the time available for these high solidity cascade

experiments with all airfoils oscillating, dynamic periodicity data were not obtained.

4.2.2 Influence Coefficient Data

Chordwise distributions of the first harmonic dynamic pressure influence

coefficients on the individual surfaces of the position 0 reference instrumented airfoil

are presented for the oscillating airfoil in the five relative positions defined by -2

through 2.
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Dynamic Periodicity.

To investigate the dynamic periodicity of the low solidity cascade, self-induced

unsteady pressure data were obtained for the two airfoil locations which define the

cascade center passage. Results are presented in the format of dynamic periodicity

difference quantities as defined in Equations 4.2 and 4.3 for M = 0.55, k = 0.2 and 0.45,

and M=0.80, k=0.2 and 0.32, Figures 4.21 and 4.22. For M=0.55, the periodicity is

generally good except for 5Cp for k=0.45 on the upper surface at 12% of chord.

Except for several large phase differences, the M =0.8, k=0.2 data are periodic.

However, the k = 0.32 5 C p values are relatively large at 25 and 40% of chord. For

the remainder of this study, the d opdata used for the low solidity cascade are those

obtained from the airfoil surfaces defining the center cascade passage. For the high

solidity cascade, the C o data were obtained from the center airfoil in the cascade.

Effect of Relative Position of Oscillating Airfoil

To investigate the effect of the relative position of the oscillating airfoil, first

harmonic dynamic pressure .influence coefficient data are presented for the five

relative positions of the oscillating airfoil in the low solidity cascade. For 0.55 inlet

Mach number and 0.20 reduced frequency, the first harmonic dynamic pressure

influence coefficients C _, are presented for the airfoil lower surface in Figure 4.23.

In the accompanying schematic, each symbol corresponds to the effect of oscillation

of the indicated airfoil on the reference instrumented airfoil.

For the lower surface data, self-induced unsteady pressures, [_° Ip , are

dominant, attaining a maximum near the leading edge then tending toward zero at

the trailing edge. The unsteady pressure magnitude distribution due to airfoil -1

oscillations, the airfoil adjacent to the reference airfoil lower surface, also peaks near

the leading edge. Airfoil 1 oscillations cause smaller amplitudes along the forward

57



1.0 --

0.5 --

ttl

0
z 0.0w

W
u_
_ -0.5
a

i-
-1.0 -

a
o
n- 18o-
w
n A

£ w
w 90-

_ a o

-90-

-180-

SURFACE
LOWER UPPER k

0 • 0.20

[] I 0.45

O

o I

100

[] % CHORD

[]

[]

_I 5'0 _ Iii 100
0

Figure 4.21 Effect of reduced frequency on dynamic periodicity difference,
oscillating airfoil in relative position 0, low solidity cascade,
M =0.55

58



1.0

0.5

ttl

Z 0.0
w

I,l.I
_L
u. -0.5
a

I""

-1.0

a
o

n. 180 -
._i

£ ,-
X w 90-
,< n-

-90-

-180-

0

m

SURFACE

LOWER UPPER

0 []

• []

[]

[]
o R i_
rh ,.-., i []

• 50 •
0

k

0.20

0.32

100

% CHORD

O 0

0

il m
50 ,_. • 1 O0

[] []

Figure 4.22 Effect of reduced frequency on dynamic periodicity difference,
oscillating airfoil in relative position 0, low solidity cascade,
M =0.80

59



O

_

_

w X
O
O
ltl
O
Z

w 0
0

u_
Z
m

w 180-

w w 90-
1,1,1

uJ
"_ _ 0

I,,- w (

0. -90-

-180-

0

0

0

"====-'2
<>

[]

V _ _ AIRFOIL 0
0 (INSTRUMENTED)

-1
Z_

-2
×

A O

i I
5O

i I

100
% CHORD

/"x A A A A

O O

@ 0 I
0 50 [] rq

[] _ O O
U c>

X

100
O

X
X

X

Figure 4.23 Airfoil lower surface unsteady pressure influence coefficient
distribution as a function of the oscillating airfoil relative

position, low solidity cascade, M = 0.55, k = 0.20

60



half of the reference airfoil lower surface, but I C _1 is slightly larger than l e _[

along the aft half. The n = 2 and n =-2 magnitudes are quite small, illustrating the

decrease in unsteady pressure magnitude with distance from the oscillating airfoil.

Lower surface phase angle data are strong functions of the oscillating airfoil

position but, for any one value of n, change little with chordwise position. The n = 0

phase changes linearly from a phase lag over the forward half of the airfoil to a phase

lead over the aft half. For n =-1 and -2, the phase data are roughly out-of-phase with

respect to the oscillating airfoil motion but the n= 1 and n=2 phases lag the airfoil

motion.

For the airfoil upper surface, the self-induced unsteady pressures and those due

to oscillations of the airfoil adjacent to the instrumented airfoil surface are most

significant, Figure 4.24, analogous to the lower surface results. Decreasing values of

[_ _ [ with distance from the oscillating airfoil are apparent when n = 1 and n = 2, but

when the airfoils upstream of the instrumented airfoil, n =-1 and n =-2, are oscillating,

values of [C_,2[, although small, are larger than [C_,_ [ except at the leading and

trailing edges. The n=0 unsteady pressure fluctuations are approximately

out-of-phase relative to the airfoil motion while airfoil 1 oscillations result in in-phase

unsteady pressures. The rest of the unsteady pressures tend to lag the motion by

varying amounts.

Increasing the reduced frequency to 0.45 while maintaining a 0.55 inlet Mach

number dramatically increases the effects of oscillating airfoils in relative positions

1 and 2, the airfoils downstream of the instrumented airfoil. This is shown in Figures

4.25 and 4.26 for the lower and upper surfaces, respectively. Unexpectedly, ICpl"

and Id 2p[ are equal to each other and almost constant with chordwise position on

both surfaces. [d _,_ I And I_ _2 [ are relatively small on the lower surface except at
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12% of chord. On the upper surface, l e ;'1 and l e ;21 are still smaller than I d _1

and ICZpl, and IC; l is smaller than It;21 - this is similar to the data for k=0.20

in Figure 4.24.

Figures 4.27 and 4.28 show lower and upper surface influence coefficient data

for the higher Much number, M=0.8, and k=0.2. As expected, the self-induced

unsteady pressures I_ _ I are still the largest, but similar to the M = 0.55, k = 0.45 data,

relatively large unsteady pressures are found due to airfoil I and airfoil 2 oscillations.

On the lower surface, [C _1 _- [C _1 while [C _1 > [C 21 on the upper surface. Values

of [C _,2[ tend to be slightly larger than [C _,_[ on the upper surface.

The following briefly summarizes the effect of the relative position of the

oscillating airfoil, as presented in Figures 4.23 through 4.28.

(1) The airfoil surface first harmonic pressure influence coefficients are a strong

function of the relative position of the oscillating airfoil, with the

self-induced pressure fluctuations having the largest magnitudes.

(2) Phase angle data for the self-induced unsteady pressures tend to be in-phase

with the airfoil motion for the lower surface and out-of-phase for the upper

surface.

(3) The expected decrease in unsteady pressure magnitude with distance

between the oscillating and instrumented airfoils does not necessarily occur.

(a) On the reference airfoil upper surface, [C _,2 [ is generally greater than

IC;'l.

(b) The influences of the airfoils downstream of the instrumented airfoil,

and - 2C p C p, are unexpectedly large except at the lowest Mach

number/reduced frequency combination, M = 0.55 and k = 0.20.
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Effect of Reduced Frequency.

From the previous results, it is apparent that the reduced frequency has

significant effects on the influence coefficients. To clarify these effects, a series of

dynamic pressure influence coefficient plots having data for k = 0.20 and k = 0.45 are

presented for M = 0.55. Each figure corresponds to a different oscillating airfoil

relative position and includes data for both airfoil surfaces, thus also allowing the

upper and lower surface unsteady pressure distributions to be compared.

The effect of reduced frequency on the self-induced oscillating airfoil unsteady

pressure distribution is shown in Figure 4.29. The larger amplitudes are generally

associated with the higher value of k, except near the leading edge on the upper

surface. For k = 0.45, the lower surface amplitudes are typically larger than the upper

surface amplitudes. For k = 0.20, the amplitudes for the two surfaces are about equal.

Reduced frequency affects the phase of the unsteady pressure distribution to some

extent on the upper surface but not on the lower surface.

Unsteady pressures resulting from oscillations of the airfoil in relative position

1 are shown in Figure 4.30. A schematic of the cascade configuration used to obtain

the data is also shown. In the schematic, the solid lines above and below the cascaded

airfoils designate the wind tunnel walls. The unsteady pressure magnitudes at either

reduced frequency are nearly constant with chordwise position and equal for each of

the two surfaces. The magnitude increases with reduced frequency, k = 0.45 having

nearly twice the magnitude as k = 0.2. For either value of reduced frequency, the

phases of the upper and lower surface unsteady pressures are about the same along

the aft half of the airfoil. Forward of there, the phase distributions diverge with the

lower surface lagging the upper surface. The lower surface phases vary in a fairly

linear fashion, while the upper surface phases are nearly constant.
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That the magnitudes of C _ in Figure 4.30 are constant and equal for the two

airfoil surfaces suggest that these unsteady pressure distributions are due to plane

traveling waves. Such waves would ideally also have a linear phase variation with

chordwise position, the rate of variation depending upon the direction the wave is

propagating and the mean flow conditions. The lower surface phase data approximate

this condition, having a fairly linear phase change with chord. The upper surface

phase data also approximate this condition, with the phase changing little with chord

- indicative of a wave traveling normal to the airfoil chord.

The rate-of-change with chord of the phase data may be used to calculate a wave

propagation velocity in the chordwise direction. Based on least squares fits of the

lower surface data of Figure 4.30, the waves propagate in the upstream direction at

velocities divided by the speed of sound of 0.23 and 0.31 for k=0.20 and 0.45,

respectively. Assuming that the steady flow field is uniform, a wave traveling upstream

in the chordwise direction would have a velocity of propagation divided by the speed

of sound of (V u/a) = 1 - M.= 1 - 0.55 = 0.45. The differences between the

theoretical and calculated values indicate the waves are actually propagating in a

direction oblique to the airfoil chordwise direction.

Similar trends occur for C 2, Figure 4.31,

upstream-traveling wave concept. Again, for either

further supporting the

k, the unsteady pressure

magnitude distributions vary little with chordwise position and are nearly equal for

the two surfaces. The higher reduced frequency data have significantly larger

magnitudes. The phase distribution for the k = 0.45 data is nearly the same for both

airfoil surfaces except at 12% of chord. The k = 0.2 phase distributions for the two

airfoil surfaces are equal at 88% of chord then gradually diverge forward of there.
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Experimental values of Vpla are 0.33 for k=0.20 and 0.44 for k-0.45. The

experimental value for k = 0.45 is approximately equal to the theoretical value, 0.45,

indicating that this wave is propagating in the chordwise direction.

The main effect of oscillating the airfoil in relative position -1 is a peak in the

unsteady pressure magnitude near the leading edge on the adjacent, lower surface

of the instrumented airfoil, Figure 4.32. Upper surface magnitudes are very small

except near the leading edge. Contrary to the trend for n > 0 of larger magnitudes

for higher reduced frequencies, the magnitudes on the lower surface are larger for

the lower reduced frequency. Phase distributions for the upper surface are very

similar for the two reduced frequencies, both with the phase at 12% of chord leading

the phase at 88% of chord by about 150 degrees and having reasonably linear variation

with chordwise position. There are large differences due to reduced frequency in the

phase distributions on the lower surface: the k = 0.2 data remain constant with chord

while the k = 0.45 data vary greatly with position.

Figure 4.33 presents C _,2. The larger magnitude data are associated with the

higher reduced frequency. A more significant finding is that the unsteady pressure

magnitudes are larger on the airfoil upper surface. Referring to the accompanying

cascade schematic, it is seen that the instrumented airfoil upper surface is adjacent

to a wind tunnel wall. The relatively large unsteady pressures found in the data are

likely due to reflection of pressure waves off the wind tunnel wall toward the

instrumented airfoil upper surface. The phase distributions change little with position

and are approximately out-of-phase.

In summary, Figures 4.29 through 4.33 illustrate the effect of reduced frequency

on the unsteady pressure influence coefficient distribution and the differences in C _,

for the two airfoil surfaces. Important trends found in these plots are as follows.
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(1) Larger unsteady pressure coefficients generally result at the higher reduced

frequency. An exception is _,1 for the lower surface.

(2) For either value of reduced frequency, oseiUation of airfoil 1 or airfoil 2

causes unsteady pressure fluctuation magnitudes on the reference airfoil

surface which are nearly constant along the airfoil and nearly equal for the

two airfoil surfaces. This behavior appears to be a consequence of a plane

traveling wave.

(3) For either value of reduced frequency, oscillation of airfoil -1 causes

unsteady pressure fluctuations on the nearest reference airfoil surface, the

lower surface, which are larger than those on the opposite surface.

(4) When airfoil -2 is oscillating, the reference airfoil upper surface unsteady

pressures are larger than those on the lower surface, most likely due to

waves being reflected off the adjacent wind tunnel wall.

Plots analogous to those just presented but for an inlet Mach number of 0.80

and reduced frequencies of 0.20 and 0.32, Figures 4.34 through 4.38, reveal many

similar trends conceniing the effect of reduced frequency and differences in _ _, for

the two airfoil surfaces. These results are summarized in the following.

(1) Larger unsteady pressures generally result at the higher reduced frequency.

(2) For either value of reduced frequency, oscillation of airfoil 1 causes

unsteady pressure fluctuations on the reference airfoil surface which are

nearly equal in magnitude on both airfoil surfaces. However, the

magnitude varies some with airfoil chord, having a hump centered at 60%

of chord. Similar results are evident for C zpexcept that, for k = 0.32, the

hump is more pronounced and the lower surface magnitudes are

significantly larger than those of the upper surface. These data are also
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(3)

(4)

indicative of traveling wave phenomena, except that the mean flow field

is distorting the waves and causing the nonuniform unsteady pressure

magnitude distributions at this higher inlet Mach number.

For either value of reduced frequency, oscillation of airfoil -1 causes

unsteady pressure fluctuations on the nearest reference airfoil surface, the

lower surface, which are larger than the opposite surface.

When airfoil -2 is oscillating, larger unsteady pressures are found on the

reference airfoil upper surface than the lower surface.

Effect of Inlet Math Number

To determine the effects of inlet Mach number, a series of dynamic pressure

influence coefficient plots having data for both M = 0.55 and M = 0.80 are presented

for k = 0.32. Each plot corresponds to a different oscillating airfoil relative position

and includes data for both airfoil surfaces.

Inlet Mach number has a significant effect on the self-induced unsteady pressure

coefficient magnitude distribution, Figure 4.39. Magnitudes are larger for the higher

inlet Math number, and there is little difference between the lower and upper surface

magnitudes when M = 0.8. When M = 0.55, magnitudes are larger on the lower surface.

The phase distributions are little affected by inlet Mach number.

Larger magnitudes also occur for M = 0.80 when n = 1 and n = 2, Figures 4.40 and

4.41. Wave distortion by the mean flow field at the higher inlet Math number is also

apparent, as evidenced by the nonuniform magnitude distribution. This contrasts

with the uniform distributions for M=0.55. One difference is that the upper and

lower surface magnitudes for n = 1 and M = 0.55 are not equal.
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For the other relative positions of the oscillating airfoil, n =-1 and n =-2, Figures

4.42 and 4.43, respectively, larger magnitudes are again found for the higher inlet

Mach number. Inlet Mach number affects the phase data considerably, but no general

trend is apparent.

Effect of Solidity. and Number of Airfoils

The effect of cascade solidity and also the number of airfoils in the cascade is

investigated by comparison of M-- 0.8 influence coefficient data for the low and high

solidity cascades, Figures 4.44 through 4.48. Solidities of these cascades differ by a

factor of two, the steady flow incidence angles are different, 2 degrees for the low

solidity cascade and 7 degrees for the high solidity cascade, and the stagger angles

also differ, 45 degrees for the low solidity configuration and 53 degrees for the high

solidity Configuration.

Despite all these differences, the self-induced unsteady pressure coefficient,

Figure 4.44, is nearly independent of solidity. The main difference is on the upper

surface at 12% of chord where an oscillating shock wave gives a spike in magnitude

for the high solidity cascade. Otherwise, the magnitude and phase distributions are

very similar.

Oscillating the airfoil in relative position 1, Figure 4.45, clearly shows the effect

of reducing the spacing between the airfoils: the unsteady pressures on the adjacent

surface of the instrumented airfoil, the upper surface, increase dramatically as the

spacing is decreased. Magnitudes on the opposite surface are hardly affected. Phase

distributions are similar in slope but shifted due to the difference in airfoil spacing.

Note that, in the accompanying schematic, the locations of the cascade walls are

accurate only for the low solidity (four airfoil) cascade; in the high solidity cascade,

the center airfoil of the nine airfoils was oscillating.

86



"7,I_
<.)m

D

SURFACE

LOWER UPPER M

6 - 0 [] 0.ss

• [] 0.80 _"L m_..f.TEO
V----_

O

0
[] i

o s'o
% CHORD

180-
0 0

0

e e 90-
w

1,1,,II,LI []
E

_ 0 i m I i I
< 5O IO0
W W _ []
I,,'- _

[] []

-180- e ¢ []
@

Figure 4.42 Effect of inlet Mach number on unsteady pressure influence
coefficient, oscillating airfoil in relative position -1, low
solidity cascade, k = 0.32

87



_

<9 uJ
D

Z D--
w E, 5-

Q
0

z 0
ill

0
.J
IL
Z
- 180-

,,=,, 9o-

_ o

_ a. -90-

-180-

SURFACE
LOWER UPPER M

0 [] o.ss

• B 0.80

INSTRUMENTED ._7

V----"

I=

e []

o

O

I
100

% CHORD

e

[] o B° ; o

5O 100
0

[] rq. []
[] [] []

Figure 4.43 Effect of inlet Mach number on unsteady pressure influence

coefficient, oscillating airfoil in relative position -2, low

solidity cascade, k = 0.32

88



0-

,.'4-,0
u. IB
ILl
0

UJ

Z
ILl

.J

Z
nm

UJ
rr

A

10

0
0

180-

90-

o

< -9O

-180-

Figure 4.44

SURFACE

LOWER UPPER SOLIDITY

[] o [] o..

• • 1.3

i i i i
5O 100

% CHORD

@

o

5o loo

[]
[]

[]
[] []

[] _ [] [] []
[]

Effect of cascade solidi_ on unstead 7 pressure influence
coefficient, oscillating airfoil in relatwe position O, M = 0.80,
k=0.32

89



_.

<.) .i
a

z_. 3-tim
u/ Zm

mm

u. <
"- X
I/.I
0
t,.)
I.t,/

z 0
'_ 0
J

z 180-
t/,/

A

_ 90-
_,_

oc

SURFACE
LOWER UPPER SOLIDITY

0 I-'1 0.65

• [] 1.3

[]

[]

O

[] []

[]

O

o e 8

0

I i I
50 100

% CHORD

[] [] [] : g 1 0

@ @ @[] [] [] []
0 0

[] [] 0

-180- 0

Figure 4.45 Effect of cascade solidity on unstead}, pressure influence
coefficient, oscillating airfoil in relatwe position 1, M =0.80,
k=0.32

go



Solidity has little effect on the magnitude distribution of _ z, Figure 4.46, but

there is large shift in the phase angle due to the difference in airfoil spacing.

Oscillations of the airfoil immediately beneath the instrumented airfoil, Figure

4.47, causes larger lower surface unsteady pressures for the high solidity cascade,

another consequence of the difference in airfoil spacing. The upper surface pressure

magnitudes are approximately the same for the two cascades. The phase distributions

are generally dissimilar except for the forward half of the airfoil lower surface.

Differences in [_ _,21, Figure 4.48, confirm the adverse effect of the cascade

wall on the upper surface pressures in the low solidity cascade. As discussed

previously, reflections off the adjacent wall of the wind tunnel are believed to be the

reason for values of [C _2[ which are, for the low solidity cascade, largest on the

airfoil upper surface. In contrast, this figure shows that the high solidity cascade

upper surface magnitudes are the smallest of all. That the airfoil upper surface was,

in the high solidity cascade, separated from the wind tunnel wall by two airfoils is the

critical factor.

Effect of Mean Flow Incidence Angle

Data taken in the high solidity cascade configuration for two incidence angles,

0 and 7 degrees, allow the effect of the mean flow incidence angle and the associated

differences in the steady flow field on the unsteady aerodynamics to be investigated.

For 0.65 inlet Mach number and 0.22 reduced frequency, incidence angle crossplots

are presented for the various relative positions of the oscillating airfoil in Figures

4.49 through 4.53.

Mean flow incidence angle has little effect on the self-induced unsteady pressure

coefficients, Figure 4.49. Except for the large magnitude on the upper surface at 12%

of chord for 7 degrees of incidence, the distributions are the same. The large response
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there is due to a small, oscillating separation bubble near the leading edge on the

upper surface. The presence of separation was first indicated by significant higher

harmonic content in the leading upper surface pressure transducer signal. Steady

state flow visualization with airfoil 0 at 8.2 degrees of incidence then confirmed the

presence of a small separated region near the leading edge.

Differences in the other influence coefficients due to incidence angle are

generally small. For _ _, Figure 4.50, phase differences are small with only the

magnitude on the aft half of the airfoil upper surface affected. Larger magnitudes

occur there for zero incidence. Some differences in phase are found in the chordwise
O

distribution of "zC p, Figure 4.51, but the magnitude differences are small. Incidence

angle does affect C ;,_, Figure 4.52, to some extent: the lower surface magnitudes

are generally larger for the higher incidence angle, and the upper surface separation

bubble is caused to oscillate, resulting in a spike in the unsteady upper surface pressure

at 12% of chord. There are also differences in the upper surface phase distributions,

but the upper surface amplitudes are generally so small that these differences are

insignificant. Values of C ;2, Figure 4.53, are also very small except for some response

on the lower surface for zero incidence.

4.2.3 Summation of Influence Coefficients

Summation of the experimentally-determined influence coefficients to

determine the unsteady pressure difference coefficient is depicted in Figures 4.54

and 4.55 for low solidity cascade data. The 0.55 inlet Mach number, 0.45 reduced

frequency data are presented as a dynamic pressure difference coefficient for

interblade phase angles of 0 and 180 degrees, with N specifying the limits of the sum

per Equation 1.1. Thus N = 0 corresponds to the self-induced unsteady aerodynamic
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response. The influence coefficient series for A C p is rapidly convergent, with only

the reference airfoil and its two immediate neighbors having a significant effect on

the resulting dynamic pressure differences.

In contrast, the series for the airfoil individual surface static pressure coefficient

C p is not necessarily convergent. For example, Figures 4.56 and 4.57 demonstrate

summation of the lower surface pressure coefficients for M- 0.55, k = 0.45, in-phase

and out-of-phase oscillations. In both of these cases, the series are not convergent

over the range for which data are available: the phase is varying rapidly with N for

13= 0 ° while the magnitude is not converging for 13= 180 ° . This is mainly due to

the large magnitudes of d _ when r_>0. That the series for the unsteady pressure

difference coefficient is convergent despite this is because the pressures due to the

upstream traveling wave largely cancel when the pressure difference is taken. This

can be seen in Figures 4.31 and 4.36, where the complex individual surface values of

2
d p are approximately equal and thus cancel when the pressure difference is

calculated. While the individual surface influence coefficients are of significant

magnitude, the pressure difference influence coefficient is insignificant.

Since the amplitude of C p2 increases with reduced frequency, lowering the

reduced frequency should result in a C p series with better convergence properties.

This effect is shown in Figures 4.58 and 4.59, where a reduction in k to 0.20 while

keeping the same Mach number and interblade phase angles results in good

convergence for the airfoil lower surface unsteady pressure coefficient.

4.2.4 Correlation of Data

Experimental results consisting of unsteady airfoil surface pressure difference

coefficients obtained via summation of influence coefficients and the corresponding

data obtained when all the airfoils are oscillating simultaneously with a constant

103



10-

ul
t_

I-"
__ _ 5-
z

X

W
0

W
,_- 0

0

W
_" 180-
a.

_ _ 90-

0

-180-

N

-N

O o

[] t
A 2

1_1 [] A
0 0 []

0

I i I

50 100
% AIRFOIL CHORD

O
[]
A

0 0

[] [] 50 A A [] 100
A A A

Figure 4.56 Summation of airfoil lower surface unsteady pressure influence

coefficients, M=0.55, k=0.45, 13=0 degrees

104



10-

i 5-

i"
8

0

0

,. 180-

"<' '9o-
_ ,.,.,

1,1,1
,', 0

I,U

-t80-

[]

6
[]

[]2 o

N

-N

o o
[] 1

/x 2

l I l I

50 100
% AIRFOIL CHORD

o oI i O I

5O 100

Figure 4.57 Summation of airfoil lower surface unsteady pressure influence

coefficients, M = 0.55, k = 0.45, 13= 180 degrees

105



10-

_ 5-
Z O
w <

z
m

u_
u_
ttl
O
O

w 0
a-

0

ttl
180-

L

_ ,."I,9o-
_wne

_ I,LI
a 0

m

-180-

0

I
5O

I
4_ ta so

N

-N

0 0

[] 1

/k 2

8 8

% AIRFOIL CHORD

I
100

I
100

Figure 4.58 Summation of airfoil lower surface unsteady pressure influence
coefficients, M = 0.55, k = 0.20, 13= 0 degrees

106



10-

I--
z o
w <
m

o X
ilmll

IL
IJL
Ill
O
o
w 0
: 0
(n
(n
uJ
_, 180-
a,

I- W

z 0
_ W

m

<
"-90-
I1,

-180-

0

-N

o o
[] ]
/_ 2

0
8

I i I

50 100
% AIRFOIL CHORD

,
J I

(_ [] 50 A 100

Figure 4.59 Summation of airfoil lower surface unsteady pressure influence

coefficients, M=0.55, k=0.20, 13= 180 degrees

107



interblade phase angle are presented. These experimental data are correlated with

the analysis of Smith, reference 3. Smith's analysis is based upon the assumptions of

inviscid, isentropic, subsonic flow through an infinite cascade of fiat plate airfoils.

The analysis also assumes that the airfoils are at zero mean incidence, and that the

airfoil oscillations create small unsteady disturbances to the uniform mean flow.

Summation of the influence coefficient experimental data makes use of all the

available experimental data, that is, N-2 in Equation 1.1. Predictions obtained from

Smith's analysis via the influence coefficient technique, as explained in Chapter 1,

are also presented for N = 2.

Low Solidity. Cascade

For a reduced frequency of 0.32 and a range of interblade phase angles from

-90 degrees to 180 degrees, Figures 4.60 through 4.71 present low solidity cascade

results for inlet Mach numbers of 0.55 and 0.80. For superresonant in-phase

oscillations with M--- 0.55, Figure 4.60, the two experimental data sets correlate very

well with each other in both magnitude and pha_e. The magnitudes predicted by

Smith's linearized analysis are in very good agreement with the experimental data

and the analytical influence coefficient predictions for N=2. The

analytically-determined phase distributions are offset from the experimental data by

a small amount. The good overall correlation found here is surprising considering

the poor dynamic periodicity found for 13-- 0 ° and M--0.55, Figure 4.8.

When the inlet Mach number is increased to 0.80, Figure 4.61, the correlation

is not as good as for M = 0.55. The two sets of experimental data are in good mutual

agreement along the forward half of the airfoil, but aft of there, the

experimentally-determined influence coefficient magnitudes are relatively small in

comparison with the experimental all-airfoils-oscillating data. The analytical

predictions are in very good mutual agreement, indicating that only a few oscillating
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airfoils are required to accurately quantify the oscillating cascade aerodynamics at

this flow condition. The correlation of the experimental data and the analytical

predictions varies: the predicted magnitudes are in better agreement with the

experimental all-airfoils-oscillating data than with the experimental influence

coefficient data, but the predicted phase distributions better agree with the

experimental influence coefficient data. Poor dynamic periodicity was found for this

superresonant condition, Figure 4.14.

The data correlation for 13-- 45 ° also varies with inlet Mach number. For both

inlet Mach numbers, 13--45 ° is superresonant. For M=0.55, Figure 4.62, the

magnitude correlation is good but the phase variations are large. In particular, while

the analytical results and the experimental influence coefficient phase data are in

good agreement, the experimental all-airfoils-oscillating phase data generally have

much more of a phase lead. For M = 0.80, Figure 4.63, the level of correlation is

reduced. The good magnitude correlation of the all-airfoils-oscillating experimental

data and the analytical predictions is offset by their poor phase correlation. The

influence coefficient data result in magnitudes about half that of the data for

all-airfoils-oscillating, and phases which fall between the experimental

all-airfoils-oscillating data and the analytical predictions. For both of these inlet

Mach numbers, the dynamic periodicity for 13-- 45 ° was found to be poor. This is

shown in Figure 4.9 for an inlet Mach number of 0.55 and in Figure 4.15 for an inlet

Mach number of 0.80.

In contrast, the correlation is very good for S = - 45 ° , a subresonant condition,

Figures 4.64 and 4.65. The only significant differences are found at the higher Mach

number where there are some relatively small differences in the experimental
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magnitude data. As discussed in Section 4.2.1, relatively good dynamic periodicity

was found at this value of interblade phase angle, Figure 4.10 for M = 0.55 and Figure

4.16 for M=0.80.

Correlations for [3 = 90 ° are shown in Figures 4.66 and 4.67 for M---0.55

(subresonant) and M=0.80 (superresonant), respectively. These correlations are

quite similar to their respective correlations for [3= 45 °, Figures 4.62 and 4.63. One

exception is that the experimental magnitude data and the analytical magnitude

predictions are reduced in agreement for M = 0.55, [3 ---90 o, a subresonant condition,

as compared to M-0.55, [3= 4S °, a superresonant condition. Poor dynamic

periodicity was found for these conditions, Figures 4.11 and 4.17, respectively, for

M-- 0.55 and M- 0.80.

As for 13= - 45 °, the data-theory correlation is very good for 13= - 90 °, Figures

4.68 and 4.69. Good dynamic periodicity was found for 13= -90 ° , Figure 4.12 for

M--0.55 and Figure 4.18 for M=0.80.

The correlation for out-of-phase, subresonant, oscillations varies with inlet

Mach number. For M = 0.55, Figure 4.70, both sets of the experimental magnitude

data and the analytical predictions are in good agreement. The influence coefficient

experiment phase data and the analytical predictions are in very good agreement,

but the all-airfoils-oscillating experiment phase data are shifted from the analytical

predictions and the influence coefficient experiment phase data. Note that while

relatively good periodicity was found for M=0.55 and [3 = 180 °, Figure 4.13, this

correlation is not as good as the correlations found for [3 = - 45 ° and 13= - 90", the

other interblade phase angle values where relatively good periodicity was found.

At M = 0.80 and 13= 180 °, Figure 4.71, the correlation is reduced. The two sets

of experimental magnitude data are in good agreement with each other but are
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significantly less in magnitude than the analytical prediction for an infinite cascade.

The experimental phase data and the analytical predictions all have significant

differences despite similar trends. Because this condition falls very near an acoustic

resonance at 178.4 degrees, the predictions of Smith's analysis for an infinite cascade

and the analytical influence coefficient predictions for N=2 are quite different.

However, the experimental influence coefficient data and the analytical influence

coefficient predictions are in good agreement.

To summarize these low solidity cascade results, several trends are evident from

these plots of the dynamic pressure difference coefficient distributions:

(1) The best correlation is achieved at interblade phase angle values where

the best unsteady cascade periodicity is found, -90 and -45 degrees. The

two sets of experimental data are in good agreement with each other and

also in good agreement with the analytical predictions. All of these

conditions are subresonant.

(2) The level of correlation is generally poorest at interblade phase angle

values of 45 and 90 degrees, values for which the unsteady cascade

periodicity was generally poor. One of these conditions is subresonant,

thus subresonance does not guarantee good correlation.

(3) Surprisingly good correlation is found for in-phase oscillations considering

that relatively poor dynamic periodicity was found for that interblade

phase angle value.

(4) Correlation is reduced at the higher inlet Mach number, M=0.8, as

compared to the lower inlet Mach number, M = 0.55.

(5) There is generally good agreement between the values of A Cp

determined using the experimental influence coefficient technique and

those predicted by the linearized analysis.
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(6) The analytical influence coefficient predictions for N = 2 are generally in

very good agreement with the analytical predictions for an infinite

cascade, indicating that only a few oscillating airfoils are generally

required to model an infinite cascade. This approximation fails in the

vicinity of acoustic resonances. Also, because the analyses predict A C p,

not C p, the number of oscillating airfoils required to accurately

determine the airfoil surface C p distributions is not determined.

High Solidity. Cascade

In a similar fashion, A C p experimental data from the high solidity cascade are

presented along with the analytical predictions in Figures 4.72 through 4.80. The 0.39

reduced frequency results are presented for an inlet Mach number of 0.65, 0 and 7

degrees mean incidence. The 0.32 reduced frequency results are presented for an

inlet Mach number of 0.8 and 7 degrees mean incidence. Due to the failure of several

dynamic pressure transducers, some data points from the all-airfoils-oscillating

experiments are omitted from these figures.

Superresonant in-phase oscillations result in varied correlations. For 0.65 inlet

Mach number and 0 mean incidence, Figure 4.72, the predicted magnitudes tend to

fall between the two sets of experimental data, with the largest magnitudes from the

all-airfoils-oscillating experiment. The experimental phase data are in good mutual

agreement except in the midchord region, but there is a large offset between the

predictions and the experimental data. The analytical influence coefficient

predictions for N =2 are in good agreement with the analytical predictions for an

infinite cascade.

Changing the mean flow incidence angle to 7 degrees, Figure 4.73, results in

improved magnitude and phase correlations except for the magnitude near the leading
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edge and the phase near the trailing edge. The peak in the

influence-coefficient-determined magnitude at 12% of chord is due to the oscillating

separation bubble as discussed in Section 4.2.2.

For M = 0.8 at 7 degrees of incidence and k = 0.32, Figure 4.74, the two sets of

experimental magnitude data are in fairly good mutual agreement except at the

leading edge. There, the peak in the influence-coefficient-determined magnitude at

12% of chord is due to oscillations of the upper surface shock wave. That shock wave

oscillations were not evident at 12% of chord in the corresponding

all-airfoils-oscillating experiments may be due to small differences in the steady flow

field between the two experiments. The analyses predict larger magnitudes than the

experimental data except at 12% of chord. The experimental phase data are in good

mutual agreement near the leading and trailing edges but differ in between. The

predictions correlate reasonably well with the experimental phase data except for the

experimental influence coefficient data at 25 and 75% of chord and tbe

all-airfoils-oscillating experiment data at 60% of chord.

Changing the "interblade phase angle to 90 degrees, the oscillating cascade is

predicted to be subresonant for M- 0.65 and k-- 0.39, but superresonant for M- 0.80

and k=0.32. For M=0.65 and Cto-_ 0 °, Figure 4.75, the influence coefficient

experiment data and the predictions correlate very well, but the experiment phase

data for all-airfoils-oscillating are offset from the rest. The influence coefficient

experiment data and the analytical predictions are also in relatively good agreement

when the mean incidence angle is changed to 7 degrees, Figure 4.76, although the

magnitude correlation is reduced over the forward half of the airfoil. For M=0.8,

k = 0.32, Figure 4.77, the magnitude correlation is good except near the leading edge

where the influence coefficient magnitude is large due to the oscillating shock wave.

Differences between the phase data and the analysis results occupy a wide band.
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For 13=-90 °, subresonant conditions are predicted for both inlet Mach

numbers. The two sets of experimental data and the predictions correlate well in

both magnitude and phase for 0.65 inlet Mach number and 0 mean incidence, Figure

4.78. Increasing the mean incidence to 7 degrees, Figure 4.79, the correlation is still

good except that the predicted magnitudes are, except near the leading edge, greater

than the experiment data. Again, the peak in the influence-coefficient-determined

magnitude at 12% of chord is due to the oscillating separation bubble. There is good

phase correlation for M = 0.8, Figure 4.80, but the predicted magnitude distributions

are again generally greater than measured. The peak in the

influence-coefficient-determined magnitude at 12% of chord is due to oscillations of

the upper surface shock wave.

In summary, there are several trends from these plots of the dynamic pressure

difference coefficient distributions for the high solidity cascade:

(1) The experimental data-linearized analysis magnitude correlation is

generally good. The primary exceptions are due to the M = 0.80 oscillating

shock wave or the M = 0.65 oscillating separation bubble present at 12%

of chord in the influence coefficient experiments.

(2) The best correlation of both experimental data sets and the analytical

results is generally achieved at 13= - 90 °, a subresonant interblade phase

angle.

(3) Significant differences in the phase angle distributions are generally found

at interblade phase angle values of 0 (superresonant) and 90 degrees

(subresonant for M = 0.65, superresonant for M = 0.80).

(4) The correlations between the experimental influence coefficient data and

the linearized analysis predictions for the high solidity cascade vary

considerably.
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4.2.5Finite Linear CascadeEffects

The cascade dynamic periodicity and correlation of the experimental

all-airfoils-oscillating data with the resultsof Smith's analysishave been shown to

vary greatly with interblade phaseangle. How thesecorrelations canbe very good

for someinterblade phaseanglesbutpoor for othersleadsone to question thevalidity

of conductingoscillating cascadeexperimentsin a linear cascade.Two specificareas

of concernwhich will now beconsideredare: (1) the effect of havingafinite number

of airfoils in the cascade;(2) the effectof thewind tunnel walls. Both experimental

dataand linearized analysiswill be usedto addresstheseconcerns.

The effect of a finite number of airfoils has,in effect, alreadybeen considered.

In Section 4.2.3, the convergenceproperties of the experimentally-determined

influence coefficient serieswere investigated.Becausethe experiment C p series is,

for some conditions, slowly convergent at best, a large number of airfoils is generally

required to determine the unsteady pressure distribution on the oscillating cascaded

airfoils. But the series convergence depends mainly upon the upstream-traveling

wave, which may not truly be a cascade phenomenon. That is, the wave may be a

consequence of the rectangular duct which encloses the cascade. Thus there is

insufficient experimental evidence to assess the effect of a limited number of cascaded

airfoils. From a theoretical standpoint, it was found in Section 4.2.4 that the analytical

predictions for N=2 are generally in good agreement with infinite cascade

predictions. But the analyses predict A C p, not C p, so the convergence properties

of the C p series may not be determined from the analyses.

The effect of the wind tunnel walls on the cascade unsteady aerodynamics is

addressed by considering both the experimental data and the linearized unsteady

aerodynamic analysis. The analysis, as explained in Appendix C, is used to predict

the cascade wave generation characteristics which, although for an infinite cascade,
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will give insight into possible cascade/wind tunnel interactions. Algebraic expressions

are used to calculate the wavelength, propagation direction and decay rate of the

pressure disturbances produced by an oscillating cascade. The initial amplitudes of

these disturbances are calculated using Smith's analysis.

Low Solidity. Cascade

Figures 4.81 through 4.84 present these results for an inlet Mach number of 0.55

and 0.32 reduced frequency. Referring to Figure 4.81, the direction of wave

propagation is expressed relative to axial (0 and tangential (q) coordinates so that a

wave moving away from the cascade in the -_ direction is said to be

upstream-traveling while a wave moving in the _ direction is traveling downstream.

Both upstream-traveling and downstream-traveling waves are produced in the

superresonant region which brackets 13=0 °. Outside this region, the oscillating

cascade produces subresonant waves which travel only downstream. Acoustic

resonances occur at the boundaries between the subresonant and superresonant

regions, with pressure disturbances propagating along the cascade in the ± 11

directions.

Computed values of the initial magnitude of the outgoing pressure disturbance

are shown in Figure 4.82 for M = 0.55 and k = 0.32. These results are presented in the

format of an unsteady pressure coefficient magnitude at the leading edge of the

cascade, IC p (_ = 0) [. The largest initial disturbance amplitudes are found in the

vicinity of 13_.. Outside the near-resonance regions, relatively large amplitudes occur

at positive subresonant values of the interblade phase angle, 13> 13_-. As shown in

Appendix C, these pressure disturbances will either propagate unattenuated or decay

exponentially as a function of the axial distance _ :

Ic.( )l
:e (4.4)

= o)1
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l _ is the imaginary part of the axial wavenumber. Figure 4.83 presents l _ for M = 0.55

and k=0.32. As shown, I t = 0 in the superresonant region, hence superresonant

disturbances propagate away from the cascade unattenuated. Outside this region,

l _ is nonzero, thus the subresonant waves decay with distance away from the cascade.

In addition, l _ increases monotonically with the absolute value of the interblade

phase angle in the subresonant regions.

Figure 4.84 presents the disturbance wavelength for M = 0.55 and k = 0.32. The

wavelengths are an order of magnitude greater than the airfoil chord, and the

subresonant waves for 13< 0 are about 2.5 times longer than the subresonant waves

for 13>0.

Insight

considering

into possible cascade/wind tunnel wall interactions is gained by

the predicted pressure disturbance characteristics along with the

correlation of the experimental data and Smith's analysis. Specifically, for 0.55 inlet

Mach number and 0.32 reduced frequency, Figures 4.81 through 4.84, decaying waves

traveling at 0_-80 ° with ICp(_=O)[ _ 1.5 are predicted for 13=-4_ ° and

13= - 90 ° , the interblade phase angle values for which good A C p data-analysis

correlation was found. These waves are directed at the upper cascade wall. Since

the angle of reflection of a wave off a plane surface is equal to the angle of incidence

[32], the reflected disturbances exit the cascade and thus will have little effect on the

oscillating cascade aerodynamics. Decaying waves are also predicted for 13= 90 °,

an interblade phase angle at which there was poor correlation between the data for

all airfoils oscillating and the theory. But the predicted cascade wave generation

characteristics for [3 = 90 ° are much different than for [3 = -900 : the initial wave

amplitude is about twice as large, the wave decays less rapidly than that for 13= - 90 °,

and it is traveling at almost the opposite direction, 0 = - 83 °, such that waves reflected

off the lower wind tunnel wall could reflect into the cascade and thereby affect the
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cascade unsteady aerodynamics. Out-of-phase oscillations also produce decaying

waves of similar amplitude and direction as 13-- 90 °, except that the imaginary part

of the axial wavenumber is more than doubled, so the waves generated at 13= 180 °

will decay more rapidly. Thus the cascade walls should have less of an effect at

13= 180 °, and the result is slightly better correlation between the data for all airfoils

oscillating and the analysis at 13-- 180 ° , Figure 4.70, than at 13-- 90 ° , Figure 4.66.

Interblade phase angle values of 0 and 45 degrees are predicted to be superresonant,

propagating waves unattenuated in both the upstream and downstream directions.

The data-analysis correlation is good for 13- 0°, but this is considered fortuitous

because the cascade periodicity was poor. The upstream-traveling wave for in-phase

oscillations is predicted to travel at an angle of 140 degrees; reflection of this wave

off the upper cascade wall could affect the cascade unsteady aerodynamics. The

data-analysis correlation is poor for 13-- 45 °. In this case, the downstream-traveling

wave, directed at an angle of -48 degrees, might disturb the cascade unsteady

aerodynamics after reflection off the lower wall.

Increasing the inlet Mach number to 0.8 while maintaining k = 0.32, Figures 4.85

through 4.88, results in an expanded range of superresonant interblade phase angles,

but the trends are similar to M=0.55. As for M=0.55, at 13= -45 ° and 13= -90 °

there is good data-analysis correlation, and the predicted wave characteristics at these

two interblade phase angles are very similar to those for M = 0.55. The direction of

propagation of the subresonant wave at 13= 180 ° has not changed much, but the

wave produced at 0.8 inlet Mach number is of about twice the initial amplitude and

decays much more slowly than the wave of M =0.55, thus the poorer data-theory

correlation for M = 0.8 is understandable. In-phase oscillations at the higher inlet

Mach number produce an upstream-traveling wave of larger amplitude than M = 0.55,

and the correlation between the data for all-airfoils-oscillating and the analysis is
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reduced in comparison to M =0.55. For 13= 45 ° , the wave propagation directions

are quite different than for M = 0.55, but the overall correlation is similar. In this

case, the upstream-traveling wave ( 0 = 145 °) appears to be responsible. 13-- 90 o

is now superresonant. The wave amplitudes are smaller at M = 0.8 than M = 0.55, but

aren't predicted to decay, and the level of correlation is reduced.

High Solidity. Cascade

The predicted acoustic wave propagation characteristics for the high solidity

cascade with M = 0.65, a o= 0 and k = 0.39 are presented in Figures 4.89 through 4.92.

In comparison to the predictions for the low solidity cascade, the peak values of the

initial disturbance amplitude are relatively large when 13> 13;, but values of l I are

also relatively large, so the high solidity cascade waves may initially be of larger

amplitude, but tend to decay more rapidly. The all-airfoils-oscillating experiment

phase data correlate poorly with the predictions for 13= 0°, Figure 4.72, and for

13= 90 o, Figure 4.75. In both cases, waves are predicted which may reflect off awind

tunnel wall and back into the cascade, thus affecting the unsteady aerodynamics. The

wave predicted for 13= -90 ° is directed at the upper cascade wall and will reflect

away from the cascade.
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CHAPTER 5

COMPUTATIONAL UNSTEADY AERODYNAMIC INFLUENCE

COEFFICIENT TECHNIQUE

An Euler solver for oscillating cascaded airfoils is modified to implement the

computational unsteady aerodynamic influence coefficient technique. First, a

description of the baseline code is presented along with a description of boundary

condition modifications which improve the ability of the code to predict oscillating

cascade aerodynamics and sample results. Then the code, as modified for the unsteady

aerodynamic influence coefficient technique, is described and results are correlated

with both experimental data and linearized analysis predictions.

5.1 Euler Solver for Oscillating Cascaded Airfoils

Solutions of the time-dependent equations for the conservation of mass,

momentum and energy for the two-dimensional flow of an inviscid, non-heat-

conducting calorically perfect gas are obtained for a body-fitted coordinate system

via an implicit finite difference procedure. The flow solver was initially coded for

isolated pitching airfoils by Sankar and Tang [33], extended by Wu [34] and adapted

to c_cade flows by Huff [13].

5.1.1 Mathematical Model

A body-fitt¢d C-grid, Figure 5.1, is transformed from the spatial coordinates

x, y and time t into the _, q, _: coordinate system which depends upon the x, y, t

coordinates.

= _(x, y, t), n = n(x, y, t), x = x(t) (5.1)
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The conservation of mass, momentum and energy in the transformed coordinate

system, the Euler equations, are expressed in matrix conservation-law form, Equation

5.2.

_Q _E _F
--+--+--=0 (5.2)
a'c b_ 31"1

The unknown quantities p, the density, u and v, the x and y components

of velocity and e, the total energy per unit volume, are components of the vector Q.

(5.3)

where

1 2 v 2 )e=p c_T+_(u + ) (5.4)

All quantities in these equations are nondimensional. Lengths are divided by

the airfoil chord, velocity components are divided by the inlet speed of sound, time

is multiplied by the inlet speed of sound divided by the airfoil chord, and the total

energy per unit volume is divided by the product of the inlet density and the square

of the inlet speed of sound.

The transformation Jacobian is given in equation 5.5, with the E and F vectors

defined in Equations 5.6 and 5.7.

J-a_an a_aq
bxby bybx

(5.s)

E=J (5.6)
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F=_j -1

¢¢ pu n

a___D_n
puu.+ P ax

arl

puu.+ p-_y

aq

u,l(e+ p)- p-_-_-

(5.7")

The _ and rl components of velocity are, respectively,

a_ a_ an----+u--+v a---_tIv an+u--+v an. (5.8)
u_ at ax ay' n= a--t ax ay

The pressure is related to the total energy and the velocity components by

(0,.)p=(y-l) e-_( +v z) . (5.9)

Baseline Boundary Conditions

To complete the mathematical model, boundary conditions are specified on the

airfoil surface, the wake-region cut-line, the cascade periodic boundaries and the

upstream and.downstream boundaries. On the airfoil surface, line b-c-d of Figure

5.1, the relative normal velocity, u,, must be zero. u_ and p are extrapolated from

the interior of the computational domain, and the surface normal pressure gradient

is approximately

a---EP= o. (5.1o)
an

The surface pressure is determined from adjacent grid points using a one-sided

difference approximation to Equation 5.10.

The wake-region cut-line consists of segments a-b and d-e, Figure 5.1. To

preserve continuity of the variables across this cut, the variables along the cut are the

averages of those one point above and below the cut.

Cascade periodic boundary conditions are satisfied by stacking airfoil grids and

passing information between adjacent grids. This is achieved by expanding the grids

with ghost points in the q direction so the grids overlap along the periodic boundaries.

156



Figure 5.2 shows how the ghost points are chosen to be coincident with interior points

in the adjacent grid. The ghost points are used as the boundaries to the interior

solution scheme which is applied to each airfoil grid sequentially for each time step.

Thus the solution at the periodic boundaries is determined as part of the interior

solution.

With the airfoils oscillating at a fixed nonzero interblade phase angle, the

minimum number of airfoils, N a, which satisfy the periodicity requirement

g,, I1 1---360° (5.1 l)

is used to define the cascade. Thus a 90 degree interblade phase angle requires

modeling 4 airfoils. For in-phase oscillations, only one airfoil is required.

At the upstream boundary of the computational domain, the values of P, u and

v are specified and e is extrapolated from the interior. At the downstream boundary,

the static pressure is specified and P, u and v are extrapolated from the interior.

Modified Boundary Conditions

Improved boundary conditions at the cascade inflow and outflow boundaries

are obtained using'a one-dimensional approximation to the Euler equations as in

The Euler equations in primitive variable form (see Appendix B forreference 35.

details)

with

_q _q _q
--+A_+_=o (5.12)

(p)q=j-l u (5.13)
O

P

are used to derive the boundary conditions. At the inflow boundary, derivatives with

respect to _ are neglected. Equation 5.12 becomes

'_q+_Oq=o. (5.14)
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1_ may be expressed by the similarity transform I_ = R n A n R 71L

matrix of the eigenvalues of B.

(;o ov n 0

An=L_ 00 on+alVql0

where Ivnl = ,f(,_n/,_x)2 + (3n/ay)2.

0;)0

0

vn-aIVq

A n is a diagonal

(_.]_)

The columns of R n are right eigenvectors of I] corresponding in order to the

eigenvalues in Equation 5.15 and the rows of R _ _ are corresponding left eigenvectors.

Substituting for n and multiplying by R; _ gives

-iOq 3q
--+A - --=0. (5.16)

Rn aT nRniaQ

R _ is assumed to be constant (indicated by the subscript 0), so

3n_o_q 3n;_q
_+A -0 (5.17)

a'_ n 3rl

with

(! o o_, fi>, -_

n_,= (,_n/,_y)/lvn[, for example, and

- l/a°_o 11/(,i-_p oao) . (5.18)

ll(f2Ooao)

a = ,f-yp/p is the speed of sound. Letting

13 - a-"_

u_y-V6x

UT],, vr]y t9 (5.19)
-4- 4-

_ _po_o
-ur_x orgy p

"4-

Wn R-i -1= qoq -- d

results in Equation 5.20.
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+ A.--c-- = 0 (5.20)
,_'rl

Because A. is diagonal, the individual equations of Equation 5.20 are

decoupled and each component equation may be expressed as

where A .jj

C)W ni
01dnJ + A _= 0 (S.21)

_'c nJ/ c_rl

= an...../jis the speed of propagation of 14n J, the j-th component of W n.

The sign of A .jj thus determines the propagation of information for 14._. For

subsonic flow at the inflow boundary, A., _, A .22 and A .44 are each less than zero.

Thus W.,, W .z and 14.4 all travel into the computational domain from upstream,

and their values at the upstream boundary are specified using the inlet values of 19,

u, v and /9. /k _3a is greater than zero, so 14._ waves travel from the interior of

the computational domain toward the boundary. At the boundary, 14.3 is calculated

using values p, u, u and p extrapolated from the adjacent interior node in the 1"1

direction. Once the values of 14.i are calculated, the simultaneous equations

composing Equation 5.19 are solved for the boundary values of p, u, u and p.

Boundary conditions at the computational exit plane are determined in an

analogous manner except thatvariations are neglected in the rl direction. As a result,

,gW_
_14_+ A --= 0 (5.22)
3x _ 3_

is obtained with

u_ 0 0 0 1

0 u_ 0 0 (5.23)
At= o o u_+alV_[ o

o o o u_-alv_l
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and

-1 -1
W_=Rtoq=J

P a2o

u_,, V_y p

-u_ v_y p
4-

\  poaoj

(5.24)

The three of these quantities which propagate toward the boundary from the

interior are extrapolated from the interior. One of Ie'_3 and h/_4 will propagate

upstream. That quantity which propagates upstream is set equal to the mean flow

value at the exit plane. The simultaneous equations for I¢" _j are then solved for the

boundary values of p, u, v and p.

5.1.2 Numerical Solution Technique

Equation 5.2 is solved numerically using an implicit finite difference technique.

The time derivative is approximated by a first order accurate difference and the spatial

derivatives are approximated by second order accurate central differences.

A_._QQ+ 5_E.._ + 5.F.. _ + O(Ax, A_ 2 , Arl 2) (5.25)
Ax

with

The nonlinear terms

n÷ 1 _ i:n ÷ 1
Ei÷l.j L'i-l.j

5_E"*l = 2A_

_n+ 1 -- _,n.,-.l

8nFn. 1 = ti,/÷l --t,/-I
2Arl

E and F are expanded in Taylor series.

E"._ =E"+ AQ+O(A't 2) (5.26)
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F "'l =F"+ AQ+O(Aa: 2) (5.27)

Substituting Equations 5.26 and 5.27 into 5.25 and letting A = c_E/OQ and

B = _ F / _ Q, a system of linear equations in A Q is obtained.

. B n(l+Aa:8_A +A'_8 n )AQ=-Ax(8_E "+SnF _) (5.28)

Expressions for A and B are in Appendix B.

Application of Equation 5.28 to the interior of the computational domain results

in a sparse block pentadiagonal matrix which must be solved at each time step. A

more efficient solution technique is to factor the left hand side of Equation 5.28 into

a product of _ and rl derivatives. Since

(I + A'i;fl_A") (! + A"c8nB") = ! + A%fI_A" + A1;fnB" + A'i;Zf_A"SnB n

Equation 5.28 may be approximated by

(I+A-cS_A")(I+A-tfnB_)AQ=-Aa:(6_E_+6nF _) (S.29)

without degrading the formal accuracy of the equation.

The linear system of Equation 5.29 is solved in alternating directions by first

solving

(I + A"cf_A")A Q" = - A'_(6_E" + 6nF") (5.30)

then

(! + A't;6nB")AQ = AQ'. (5.31)

A system of block tridiagonal equations is obtained for each of these sweeps.

Implicit and explicit damping terms, as described in reference 34, are added to

the discretized equations to suppress high frequency oscillations arising from the

central differences.

A deforming grid is used to capture the oscillating airfoil motion, reference 13.

A linear weighting function to is defined which allows the grid points on the airfoil
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surface,

boundary, 1"1= q m,,,, remain fixed.

rl = q rain, to follow the airfoil motion while the grid points at the outer

s(_;,n)
w u = 1 (5.32)

S(_, T_max)

s (_, rl) is the arc length in the physical plane of the grid line _ = constant from the

airfoil surface (q = q mi,) to rl. Then the grid deformation for one time step is

Axe1 = wqAx'_i

AYU = wuAy'u

A x" u and A y" u' are changes in the grid coordinates for a solid body motion of the

grid.

The C grid is generated using the GRAPE program (GRids about Airfoils using

Poisson's Equation), reference 36. This program allows the user to specify the grid

intersection angles at the boundaries, so orthogonality at the boundaries may be

specified if desired, and also the mesh spacing at the boundaries. The code has been

modified to better model turbomachine blades, reference 37, including enforced

periodicity of the cascade C grid.

5.1.3 Results

To ascertain the effectiveness of the modified boundary conditions, test cases

are considered for a cascade of fiat plates oscillating in torsion about the midchord.

The results from the modified Euler code are compared to results obtained from the

baseline, unmodified code and the fully linearized subsonic oscillating cascade

analysis [3].

The cascade consists of flat plates staggered at 53 degrees with 1.3 solidity. The

inlet Mach number is 0.65, the mean flow incidence angle is zero and the reduced

frequency is 0.22. For the codes, 1% thick flat plates with rounded leading and trailing

edges are used to facilitate fitting the 199x33 C grid, Figure 5.3. Initially, the flow

variables are set equal to the previously determined steady-state values. Then the
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Figure 5.3 Flat plate cascade grid
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airfoils oscillate for a number of cycles sufficient to reach aperiodic unsteady solution.

The airfoil surface unsteady pressures for the last cycle of oscillation are Fourier

transformed to determine the first harmonic unsteady pressure distribution.

To illustrate the rapid convergence of the time-marching solution, results for

in-phase oscillations are considered. As shown in Figure 5.4, the moment coefficient

rapidly becomes periodic and varies in a sinusoidal manner. Figure 5.5, which shows

that the first harmonic dynamic pressure difference coefficients for the third and

fourth cycles of airfoil oscillation are essentially identical, further confirms the rapid

convergence of the solution.

Predicted first harmonic unsteady pressure difference coefficients are compared

with the baseline Euler code predictions and the linearized theory for interblade

phase angle values of-90, 0 and 90 degrees, Figures 5.6 through 5.8. Running on the

NASA Lewis CRAY-XMP, the Euler calculations required 2500 seconds to complete

3570 time steps (3.25 cycles of airfoil oscillation) for the -90 and 90 degree interblade

phase angles. Since the in-phase oscillations require modeling only one airfoil as

opposed to four, the computer time was roughly 625 seconds.

There is little difference between the unsteady pressure difference coefficients

predicted by the Euler codes for 13-- - 90', Figure 5.6, a subresonant interblade phase

angle, with both code results in good agreement with the predictions of Smith's

analysis. In particular, the baseline code predictions for the A C,, magnitude are in

excellent agreement with the theory but there are small differences between the

magnitude predicted by the modified Euler code and the analysis. The phase dis-

tributions predicted by the Euler codes are almost identical except near the trailing

edge. They agree well with the analytical predictions except for a small offset of

about 10 degrees.

The modified boundary conditions have a large effect on the Euler code pre-

dictions for in-phase (superresonant) oscillations, Figure 5.7. While the predictions

of the modified code are in very good agreement with the analytical predictions, the

baseline Euler code predicts much larger magnitudes than Smith's analysis, and the
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phase distribution is offset from the analytical predictions. Apparently, wave

reflections from the upstream and downstream boundaries in the baseline code are

detrimental to the predicted airfoil surface unsteady pressure distributions.

For 13-- 90", a subresonant condition, the levels of agreement between the two

codes and the theory are similar, Figure 5.8. The magnitude distribution predicted

by the modified Euler code is in better agreement with the linearized analysis pre-

dictions over the forward half of the airfoil, but the baseline Euler code better agrees

with the analytical predictions over the aft half. The phase distributions predicted

by the codes are nearly identical except for the trailing edge region. These predictions

are in very good trendwise agreement with the theory but there is some offset, par-

ticularly over the aft half of the airfoil where the corresponding magnitudes are

relatively small.

5.2 Influence Coefficient Technique

Modifications to the Euler code allow implementation of the unsteady aero-

dynamic influence coefficient technique. After these modifications are described,

calculated unsteady aerodynamic influence coefficients are presented for a cascade

of oscillating flat plate airfoils and compared to the linearized theory. Summation

of these influence coefficients is used to predict the cascade unsteady aerodynamics

for various interblade phase angle values, with these results also correlated with the

linearized analysis predictions. Then the influence coefficient technique is used to

predict the biconvex airfoil cascade unsteady aerodynamics, and the results are

correlated with the corresponding experimental data.

5.2.1 Euler Code Modifications

Just as when the airfoils are oscillating at a fixed interblade phase angle, grids

are stacked for the desired number of airfoils. However, now only the center airfoil

in the cascade oscillates. The one-dimensional boundary conditions are used at the

inlet and exit. Overlapping grids are used to pass information between adjacent grids.
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The two outermost airfoils in the cascade have open boundaries: boundary f-g in

Figure 5.1 for the top airfoil, and boundary h-i for the bottom airfoil. These boundaries

are treated by setting the flow variables at the ghost points equal to those from the

steady-state solution.

Initially, the flow variables are set equal to the previously determined steady-

state values. Then the center airfoil oscillates for an amount of time sufficient to

reach a periodic unsteady solution. The airfoil surface unsteady pressures for the

last cycle of oscillation are Fourier transformed in order to determine the first har-

monic unsteady pressure distribution on each airfoil in the cascade. Predicted results

for any value of interblade phase angle are obtained via summation of the influence

coefficients.

5.2.2 Comparison with Linearized Analysis Results

First harmonic unsteady pressure difference influence coefficients predicted by

the code for a cascade of oscillating flat plate airfoils are presented, then these

influence coefficients are summed to predict unsteady aerodynamic moment coef-

ficients over the entire range of interblade phase angle values. These predictions are

correlated with influence coefficient results obtained from the linearized analysis

using the technique described in Chapter 1. To study the effect of the number of

cascaded airfoils, code results are presented for 5 airfoil and 7 airfoil cascades.

Unsteady pressure difference influence coefficients for a cascade of flat plates

are presented in Figures 5.9 through 5.15 for values of n ranging from -3 to 3. The

cascade has a stagger angle of 53 degrees and 1.3 solidity. The Mach number is 0.65,

the incidence angle is 0 and the reduced frequency of oscillation is 0.5. The center

airfoil is oscillating in torsion about the mid-chord. 1600 seconds of CPU time on

the NASA Lewis CRAY-XMP were required to complete 1570 time steps (3.25 cycles

of oscillation of the center airfoil) of the Euler solution for the 7 airfoil cascade.
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For the self-induced unsteady pressure difference coefficients, Figure 5.9, there

is good agreement between the code predictions and the linearized analysis. The

code under-predicts the magnitude by a small amount, and there are small differences

in the predicted phase angle distribution and the analysis. Differences between the

code predictions for five and seven airfoils are negligible.

For the oscillating airfoil in relative position 1, Figure 5.10, the Euler code-

linearized analysis correlation is very good in both magnitude and phase over the aft

half of the reference airfoil. Significant phase differences occur over the forward

half, but the predicted magnitudes are in good agreement with the theory except for

the first 15% of the airfoil. The code predictions are the same for five and seven

airfoil cascades.

"2
Large phase differences are found for /XCp, Figure 5.11. The Euler code-

linearized analysis magnitude correlation is good except in the leading edge region.

There are small differences in the code predictions depending upon the number of

cascaded airfoils, but these differences are small compared to the differences with

the linearized analysis.

"3
Large phase differences are also found for /x C p, Figure 5.12. The magnitude

correlation is not good, either, with the code predicting magnitudes over the forward

half of the airfoil which are large relative to the linearized analysis values.

With the oscillating airfoil immediately below the reference airfoil, Figure 5.13,

the correlation is good in both magnitude and phase over the forward half of the

airfoil. Aft of there, the correlation is poor due to large differences in the phase angle

values. Fortunately, the corresponding magnitudes are relatively small, so the dif-

ferences are not crucial.

The correlation is poor for AC_, z, Figure 5.14. Magnitudes predicted by the

linearized analysis are negligible everywhere except near the leading edge, but the

Euler code predictions are much larger. Differences between the predictions for five

airfoil and seven airfoil cascades are insignificant.
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Similar results are found for A d _3, Figure 5.15: while the magnitudes predicted

by the linearized analysis are mostly negligible, the magnitudes predicted by the Euler

code are relatively large.

Equation 5.35 defines the unsteady aerodynamic moment coefficient about the

midchord for a fiat plate airfoil.

1

)C,,,= _-x _Cp(X )dx" (5.35)
0

x* is the nondimensional chordwise coordinate, x/C. Accordingly, the unsteady

aerodynamic moment influence coefficient resulting from oscillations of the airfoil

in relative position n is given in Equation 5.36.

1

.)_= _-x AS_(x )clx'. (5.36)
o

Unsteady aerodynamic moment influence coefficients obtained by integration of the

Euler code seven airfoil cascade predictions of Figures 5.9 through 5.15 are presented

in Figure 5.16 along with linearized analysis results. The unsteady aerodynamic

moment on the reference airfoil is shown to be a strong function of the unsteady

aerodynamics associated with oscillating the reference airfoil itself and the two

adjacent airfoils. There is generally good agreement between the influence coeffi-

cients predicted by the code and the linearized analysis, but the difference in the

imaginary part of 8 o is significant.

The consequence of differences between the Euler code predictions and the

results of the linearized analysis is shown in Figure 5.17, a plot of the imaginary part

of the unsteady aerodynamic moment coefficient versus interblade phase angle. As

demonstrated in reference 17, the work per cycle of oscillation done by the fluid on

the airfoil is proportional to the imaginary part of C,_. Thus, when C 2 is greater

than 0, the work per cycle is positive, and flutter may occur. The curve predicted by
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the Euler code is in good agreement with the analysis values except for an offset

between them. This offset is a direct consequence of the differences in the imaginary

part of do shown in Figure 5.16.

Results of the linearized analysis are shown in Figure 5.17 for limits of sum-

mation ranging from N--2 to N = o_. C ml for an infinite cascade varies smoothly

except in the vicinity of acoustic resonances, where rapid changes with the interblade

phase angle occur. Results for N=2 are in good agreement with the infinite cascade

results except near the acoustic resonances. To capture the rapidly changing unsteady

aerodynamic response in these regions, many more airfoils are required: variations

near the resonant interblade phase angles are better predicted when the influences

of more airfoils are taken into account, N- 10. Consequently, acoustic resonances

will not occur in linear cascade experiments due to the limited number of cascaded

airfoils.

5.2.3 Comparison with Experimental Data

Airfoil surface steady pressure coefficients and unsteady aerodynamic influence

coefficients predicted by the Euler code are correlated with experimental data from

the biconvex airfoil cascade. Following that, the influence coefficients are summed

for comparison with the experimental data and linearized analysis predictions for

various values of interblade phase angle.

Steady state airfoil surface pressure coefficient distributions are correlated with

the experimental data for the low solidity cascade at 2 degrees of incidence with inlet

Mach numbers of 0.55 and 0.80. A 199x33 C-grid is used, as shown in Figure 5.18.

Figure 5.19 illustrates the prediction-data correlation for M=0.55. The best

correlation is obtained on the forward half of the airfoil upper surface, where the

data and the predictions are in good agreement. Beyond 50% of chord, the predicted

upper surface pressure coefficients are greater in value than the data. The lower
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Figure 5.18 Low solidity biconvex airfoil cascade grid
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surface predictions are in fairly good agreement with the data along the aft half of

the airfoil. Forward of there, the predicted values of the steady pressure coefficient

are considerably greater than the data.

A similar correlation is obtained for M = 0.80, Figure 5.20. For both of Figures

5.19 and 5.20, the inlet and exit boundary conditions are specified according to the

experiment values of inlet Mach number, inlet flow angle and exit static pressure. It

was found that relatively small changes in these boundary conditions could improve

the correlation between the lower surface predictions and the data. However, this

was at the expense of the upper surface correlation, thus no overall improvement was

found.

The degree of correlation between the code predictions and the high solidity

cascade data varies with incidence angle. For an inlet Mach number of 0.65 and an

incidence angle of 0 degrees, Figure 5.21, the correlation is good. Predictions for the

airfoil upper surface are in very good agreement with the data except when close to

the leading edge. Lower surface trends are correctly predicted, but differences are

found in the region extending from 10 to 50% of chord.

For M = 0.65 with 7 degrees of incidence, Figure 5.22, the correlation is poor.for

both surfaces. The predicted pressure distributions shown here were obtained using

the experiment values of inlet Mach number, inlet flow angle and exit static pressure

for the inlet and exit boundary conditions, respectively. Altering these boundary

values did not improve the correlation.

Influence Coefficients

In Figures 5.23 through 5.27, the predicted unsteady pressure influence coeffi-

cients are compared with the experimental data for the low solidity cascade for 0.55

inlet Mach number and 0.20 reduced frequency. The Euler solution took 3400 seconds

of CPU time to complete 4642 time steps (3.25 cycles of airfoil oscillation) for a 5

airfoil cascade.
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Correlation of the self-induced unsteady pressure distribution is generally very

good, Figure 5.23. The magnitude trends predicted for both airfoil surfaces are in

very good agreement with the data although the predicted magnitudes are slightly

larger. The phase correlation is also very good with the only significant differences

at 88°% of chord. The magnitudes are so small there that those differences are not

very significant.

The experimental data fall between the predicted magnitudes for _ p,_ Figure

5.24. Note that the cascade schematic indicates walls which were present in the

experiments but not simulated in the computations. While the differences in mag-

nitude between the lower and upper surfaces are small for the data, the predicted

magnitudes are largest on the upper surface, as one would expect. The phase data

and predictions are in good agreement except near the leading edge.

Both the predicted magnitudes for C 2p are smaller than the measured values,

there is little difference in experiment magnitudesFigure 5.25. Similar to _ p,

between the two surfaces, but the code predicts magnitudes larger on the airfoil upper

surface than the lower surface. The phase correlation is very similar to that for _. P'

being very good except on the upper surface at 12% of chord.

Oscillations of the airfoil in relative position -1, Figure 5.26, cause relatively

large unsteady pressure coefficient magnitudes on the lower surface of the reference

airfoil. The correlation of the predictions with the data is very good, particularly for

the airfoil upper surface. For the lower surface, the predicted magnitudes are gen-

erally larger than the data, but these differences are fairly small. The lower surface

phase correlation is very good except for the aft portion of the airfoil.

Moving the oscillating airfoil further away from the reference airfoil to relative

position -2, Figure 5.27, correlation of the Euler code predictions with the data is

fairly good. Because the magnitudes are quite small, the differences between the
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predictions and the data are of little significance. However, while the predicted upper

surface magnitudes are essentially zero, the experimental data indicate small but

f'mite responses which may be due to reflections off the adjacent wind tunnel wall.

Correlation of the predicted unsteady pressure influence coefficients with

experimental data is also made for the low solidity cascade with 0.80 inlet Mach

number and 0.32 reduced frequency. The results for the first harmonic unsteady

pressure coefficients, shown in Figures 5.28 through 5.32, are in many ways very similar

to the results just seen for M = 0.55 and k = 0.20.

(1) The correlation for _ op is very good, Figure 5.28. The only differences of

note are on the aft half of the upper surface, where the predicted magni-

tudes are less than the data.

(2) The predicted upper surface distribution for _ _,_ is in verygood agreement

with the data, Figure 5.29. The lower surface magnitude data-prediction

correlation is also very good, but the phase correlation is poor along the

airfoil aft half.

The main differences between these results and those for M = 0.55, k- 0.20 are

due to the upstream-traveling wave phenomenon occurring in the experiments, an

effect which was found to intensify with increasing Math number and reduced fre-

quency.

(1) Differences in the magnitude correlation for d p,_Figure 5.30, are mainly

a consequence of this wave phenomenon. While the wave causes exper-

imental pressure distributions of approximately equal amplitude on the

two airfoil surfaces, the predicted unsteady pressure differences are

relatively large. The magnitude and phase correlations are good for the

airfoil upper surface, but the predicted magnitudes for the lower surface

are much less than the data.
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(2) The upstream-traveling wave effect is even more evident for C _, Figure

5.31. The predicted unsteady pressure magnitudes are negligible while the

experimentally-determined values are relatively large.

These results indicate that the upstream traveling wave is actually a duct phe-

nomenon rather than a cascade phenomenon. That is, the wave exists in the

experiments only because the cascade of airfoils is enclosed in a duct. Because the

influence coefficient Euler code does not simulate this duct, the wave is not predicted.

Finally, for _ _2, Figure 5.32, the correlation is generally poor. Nowhere on the

airfoil lower surface are the magnitude and phase correlations simultaneously good.

On the upper surface, the experimentally-determined magnitudes are much larger

than the predicted magnitudes, possibly due to reflections off the adjacent wall of the

wind tunnel.

For the high solidity cascade, correlations for a steady flow condition defined

by an inlet Mach number of 0.65 and a mean flow incidence angle of 0 degrees are

presented in Figures 5.33 through 5.37. The reduced frequency is 0.39. The corre-

lation is, once again, good for C o, Figure 5.33. The predicted effect of oscillating

the airfoil in relative position 1, Figure 5.34, is in trendwise agreement with the data,

but the predicted upper surface magnitude distribution has a larger peak than the

data, and the predicted lower surface magnitudes are less than the data. For C 2,

Figure 5.35, the predicted magnitudes are smaller than the experimental data due to

the upstream-traveling wave. The response due to oscillations of the airfoil in relative

position -1 is relatively large on the adjacent, lower surface of the reference airfoil,

Figure 5.36. The magnitude correlation is very good for both airfoil surfaces, but the

phase correlation is good only at 12 and 25% of chord. For C_2, Figure 5.37, the

upper surface correlation is good, but the predicted lower surface magnitudes are

much larger than the measured values.
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Interblade Phase An_le Results
v

Airfoil surface unsteady pressure coefficient distributions obtained via sum-

mation of influence coefficients predicted by the Euler code are correlated with

experiment data obtained using the influence coefficient technique and also the data

for all airfoils oscillating. The influence coefficients are summed over the oscillating

airfoil relative positions ranging from-2 to 2, as indicated by N- 2 in the figure legends.

Results for the unsteady pressure difference coefficient distributions are also pres-

ented, these plots including linearized analysis results. The low solidity cascade

configuration is used with an inlet Mach number of 0.55 and a reduced frequency of

0.20. The combination of lowest inlet Math number and lowest reduced frequency

is used to minimize the upstream-traveling wave effect in the experimental influence

coefficient data.

Correlation of the airfoil surface unsteady pressure coefficient distributions for

in-phase oscillations is shown in Figure 5.38. The experimental influence coefficient

data and the all-airfoils-oscillating data are in very good mutual agreement. The

Euler code predictions for the airfoil lower surface magnitudes are in very good

agreement with these data, but the predicted lower surface phases lead the data by

a small amount. The predicted upper surface magnitudes are larger than the

experimental data over the forward half of the airfoil but generally smaller along the

aft half. The predicted upper surface phase angles are in good agreement with both

data sets. The unsteady pressure difference coefficients, A C p, are presented in

Figure 5.39 along with linearized analysis results for a finite number of oscillating

airfoils. Correlation of the Euler code predictions with the data and the linearized

analysis results is generally very good. Only in the leading edge region do significant

phase angle differences arise.

For 13=45 degrees, Figure 5.40, the Euler code predictions for C p correlate

well with the experimental influence coefficient data, although the code predictions

for the magnitudes tend to be slightly larger than the data. In comparison to the

influence coefficient data, the all-airfoils-oscillating magnitude data are in good
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agreement but phase differences exist along the first 50% of chord. The Euler code

predictions for A C p are in good agreement with the experimental influence coef-

ficient data, Figure 5.41. The all-airfoils-oscillating magnitude data are in good

agreement with the experimental influence coefficient data, but there is an offset

between the two sets of phase data. Relative to the experimental influence coefficient

data, the linearized analysis predicts larger magnitudes, but the phase angles are in

good agreement.

For 13=-45 degrees, the two sets of experimental data and the Euler code

predictions for C p are in good agreement, Figure 5.42. However, the code tends to

predict larger magnitudes than measured, particularly on the airfoil upper surface.

As expected, then, the A C p correlation is also good, Figure 5.43. The two sets of

experimental data and the results from the linearized analysis are in particularly good

agreement, while the Euler code predicts slightly larger magnitudes and slightly

different phases.

Poor cascade dynamic periodicity was found for 13= 90 degrees, thus it is not

surprising that the correlation between the data for all airfoils oscillating and the

influence coefficient data is not particularly good for that value of interblade phase

angle, Figure 5.44. The Euler code predicts larger magnitudes than determined using

the experimental influence coefficients, but the phase angles are in very good

agreement. These differences result in Euler code predictions for [ A C p I which are

significantly greater than magnitudes determined from the experimental influence

coefficients, Figure 5.45. The linearized analysis predicts even larger magnitudes.

With the exception of the all-airfoils-oscillating data, the phase angle results are in

good agreement, particularly near the leading edge.

The two sets of experimental data revert to good mutual agreement for 13= -90

degrees, Figure 5.46. As for 13= 90 degrees, the Euler code predicts larger magnitudes

for C p than determined using the experimental influence coefficients, but the phase
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angles are invery good agreement. Thus the Euler code predictions for the magnitude

of A C p are also larger than the data and, in this case, often larger than the linearized

analysis predictions, Figure 5.47. The phase angle correlation is very good.

Out-of-phase oscillations result in differences in the C p phase angle values as

determined by the two experimental techniques, Figure 5.48. In comparison to the

experimental influence coefficient data, the Euler code again predicts larger mag-

nitude for C p, but the phase angle values are in very good agreement. Thus the

Euler code predictions for the magnitude of A C p, Figure 5.49, are also larger than

the experimental data, but in very good agreement with linearized analysis predic-

tions. Except for the all-airfoils-oscillating data, the phase angle correlation is very

good.
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CHAPTER 6

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

Linear oscillating cascade aerodynamics have been investigated using

experimental and computational methods. Two methods of determining the

oscillating cascade aerodynamics have been used: (1) the conventional method in

which all the airfoils oscillate simultaneously at a fixed interblade phase angle; and

(2) the unsteady aerodynamic influence coefficient technique. In this technique, only

one airfoil in the cascade is oscillated at a time, with the resulting airfoil surface

unsteady pressure distribution measured on one dynamically instrumented reference

airfoil. The unsteady aerodynamics of an equivalent cascade with all airfoils

oscillating at any specified interblade phase angle are then determined through a

vector summation of these data.

Steady and unsteady aerodynamic data were obtained in the NASA Lewis

Transonic Oscillating Cascade Facility using a cascade of biconvex airfoils executing

torsion mode oscillations at values of reduced frequency as great as 0.45. Two cascade

solidifies, 0.65 and 1.3, were investigated for several different mean flow conditions

ranging from subsonic to transonic. Detailed steady airfoil surface pressure

distributions quantified the mean flow field. Unsteady airfoil surface pressure

distributions were measured using flush-mounted, miniature high-response pressure

transducers, then discrete Fourier analysis techniques were used to analyze the

unsteady pressure data.
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It was found tha/, depending upon the steady and unsteady aerodynamic

conditions, the wind tunnel walls may have a detrimental effect on the cascade

unsteady aerodynamics. Only at interblade phase angle values where the

experimental all-airfoils-oscillating data generally had good dynamic periodicity, -90

and -45 degrees, did the all-airfoils-oscillating data correlate consistently well with

the experimental influence coefficient data and the linearized analysis results. It was

subsequently found by application of linearized unsteady aerodynamic theory that,

at those two values of interblade phase angle, pressure waves are produced which do

not interfere with the cascade unsteady aerodynamics. However, at the other

interblade phase angles where the correlation was not generally good, pressure waves

were predicted which could interfere with the cascade unsteady aerodynamics by

reflection off a wind tunnel wall back into the cascade. Whether the waves were

subresonant (attenuating with distance from the cascade) or superresonant

(propagating unattenuated) made no difference.

The wind tunnel walls also caused two potentially detrimental effects in the

influence coefficient experiments. One relatively minor effect, the reflection of

pressure disturbances off a wind tunnel wall onto the adjacent airfoil, caused spurious

unsteady pressures on that airfoil. The other effect, the creation of an

upstream-traveling pressure wave, often had a large effect on the unsteady pressure

distributions of airfoils upstream of the oscillating airfoil.

The upstream-traveling wave phenomenon was confirmed to be a consequence

of the wind tunnel walls by correlation of experimentally-determined influence

coefficients with those determined by an Euler code which did not model the walls.

From the experimental data, the wave amplitude was found to increase with reduced

frequency and Mach number, and as a consequence, the summation of influence

coefficient series for the dynamic pressure coefficient was found to be convergent
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only for the lowest combination of Mach number and reduced frequency. However,

the unsteady pressure difference coefficient series is generally convergent. In fact,

for the low solidity cascade, good unsteady pressure difference coefficient agreement

was generally found between values determined by the experimental influence

coefficient technique and values predicted by the linearized analysis.

Thus to make this linear cascade a reliable facility for the experimental

quantification of oscillating cascade aerodynamics, it is necessary to reduce the effects

of the wind tunnel walls. It is recommended that the solid walls of the wind tunnel

in the vicinity of the cascade be replaced with acoustically-treated walls designed

using the technology developed to reduce aircraft gas turbine engine noise [40]. Then,

to determine the effectiveness of the new walls, the experimental investigation

reported herein could be repeated.

In addition, an Euler code for oscillating, cascaded airfoils was modified for

implementation of the unsteady aerodynamic influence coefficient technique. The

Euler code was first improved by modification of the upstream and downstream

boundary conditions using a one-dimensional approximation to the Euler equations.

Then the unsteady aerodynamic influence coefficient technique was implemented by

further modification of the code. The resulting predictions were correlated with the

experimental data and also with the linearized analysis predictions.

The Euler code boundary condition modifications were found to improve the

ability of the code to predict the unsteady aerodynamics of a cascade of flat plates

oscillating simultaneously. Influence coefficients predicted by the Euler code were

found to be in good agreement with the experimental data. Summation of the

predicted influence coefficients to obtain predicted unsteady pressure coefficients

for various values of interblade phase angle were found to be in good agreement with
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the experimental data and the linearized analysisresults. Thus the Euler code

implementation of the unsteadyaerodynamic influence coefficient technique was

found to be avalid method for the calculation of oscillating cascadeaerodynamics.

However, the ability of the codeto predict the steadystateaerodynamicsof the

high solidity biconvexairfoil cascadeat 7 degreesof incidencewasnot good. To be

useful for a wide rangeof cascadegeometriesand flow conditions, the steadystate

aerodynamicpredictions of this codemustbe improved. Two-dimensional inlet and

exit boundary conditions maybeuseful in this respect.
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Appendix A. Discrete Fourier Analysis Techniques

Discrete Fourier transform methods are used to analyze the time-dependent

pressure signals. In particular, these pressure signals, typically periodic with a

fundamental frequency equal to the airfoil oscillation frequency, are decomposed via

Fourier analysis methods to determine the magnitude and phase of the dominant

frequency components. Despite the widespread availability of Fourier analysis

software, this is not a trivial task due to the spectral leakage phenomenon. The basic

analysis of this problem and the formulation of a scheme for correction of leakage

effects has been accomplished by Burgess [38]. This approach will now be outlined

with continuous time signals of a single frequency considered first. These results will

be extended to discrete data, then the Hanning window will be discussed as will

periodic signals with higher harmonics.

A.1 Continuous Time Signals

The Fourier series coefficients (FSC) of the continuous time signal p (t) over

the interval 0 <- t < T are defined as:

1 /o T -_%tdtpn=_ p(t)e (A.1)

where _ _, the radian frequency, is equal to n co 0, and _ o = 2 rt / T. The integer

frequency index n varies between - _o and + _. The inverse relation is

p(t)-- Z pae i_'t (A.2)
/'1 _ - aa

for 0 -< t < T. This gives aperiodic result p(t * lT) = p(t) for any integer l.

Consider a signal p(t) =Acos_t, O<_t<T. TheFSCare

A[sin(n-oo )r/2
+ j. (A.3)
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Figure A.1 depicts an envelope of the magnitude of /9 n as expressed by Equation

A.3. The presence of multiple side lobes in the spectrum, termed leakage, generally

occurs despite the fact that the cosine wave under consideration has a single frequency

component. As shown, spectral lines fall in the envelope with spacing oo o. Under

specific sampling conditions, there will be just two spectral lines, located at to, = ± f/,

which yield the correct magnitude and phase of the cosine signal. However, this will

not generally be the case, as indicated in Figure A.1. The most important feature

shown is that none of the lines are at the frequency _. Obviously, errors generally

occur in doubling the magnitude of the largest spectral line to obtain the amplitude

of the cosine signal. Also, phase errors will occur. Thus the task is to correctly infer

the magnitude and phase of the wave from such a spectrum.

To analyze this problem, Equation A.3 will be written in a more useful form.

Let T n denote the period of the wave. Then

£1T n= 2_. (A.4)

Choose m to be the number of wavelengths sampled. Thus

T
rn -- -- (A .5)

Tn"

Splitting rn into integer and fractional parts r and s, respectively, gives

rft = r + s.

Using Equations A.4 through A.6,

(.O. ± c_ )T
, _--- rt(n_* n).

With these results, Equation A.3 becomes

A[ sinrt(m- n) e,_,, +sin_t(m + n) e-_r_ 1 -,.,

(A .6)

(A .7')
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Identities such as the following are then applied to Equation A.7:

e i't_ sin rt(m - n) = e_"c''")sin ns.

This results in

A[ sinrts e"-, sinns)e-_'].jP"=-2L a-(m * n (,4.8)

The importance of the parameter s

when s = 0,

is revealed by Equation A.8. For example,

A
m

P"= 2 for n *r

=0 for all n#±r.

Thus, in this special case, the correct magnitude and phase are recovered directly

from the spectrum. This result is illustrated in Figure A.2; the absence of leakage

contrasts with the example of Figure A.1, which illustrates a typical result for nonzero

values of s.

Recalling that s is the fractional part of T/T n, s = 0 thus corresponds to

sampling an integer number of periods of the wave. This is shown in Figure A.3(a).

Calculation of Fourier series coefficients assumes that the given signal is periodic in

T; the periodic continuation of the signal of Figure A.3(a) is the continuous signal

shown in part (b) of the figure.

When s is nonzero, the corresponding periodic continuation will not be

continuous, as seen in Figure A.4. These discontinuities are the source of the spectral

leakage shown in Figure A.1.

The correction scheme depends upon simplification of Equation A.8. For

convenience, denote the first term in Equation A.8 as the direct contribution and the

second term as the image contribution. Let Ua and U_ denote the magnitudes of

the direct and image parts.
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A sin _s
Ua--

2 _.(rn- n)

A sin_s
Ui=

2rt(m+n)

Their ratio is

Ui /-/2-/2
m_.m

Ua rn+n"

Attention is focused on values of n = r and n -- r + 1 which give the spectral lines

bracketing xq. When/2 = r,

Ui $

Ua 2r+s"

For the worst case, s = 1 /2, and

Ui 1

Ua 4r + 1

To neglect the image contribution, this ratio must be small, less than 0.01 for example.

This requires r _>25 and then allows the approximation

A sin as ,_,
p_ = e (A .9)

2 as

This shows that the amplitude is attenuated and a phase shift is introduced when s

is nonzero. Since r is directly related to the signal observation time, specifying a

minimum value for r is equivalent to requiring a minimum sampling period.

For the worst case, s = 1 /2, Equation A.9 gives

Asin_/2 i_/2
Pr- e2 _t/2

= (0.6366) _e i_/2 .
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Thus if 19 r is used to estimate the amplitude and phase of the signal, the amplitude

estimate may be low by as much as 36%, and the phase may be rt / 2 radians in error.

Only when s = 0 will 19r directly give the desired result.

Since it is generally not possible to choose s in advance, one must find a way

to estimate it from the data. Under the condition that Equation A.9 is a valid

approximation, the following may be used for /9 r. _ :

A sinr_s i_,
Pr.l - e (A.IO)

2 rt(s- 1)

Then

Ip,I _(l-s)

I Pr÷l I S

or

1
s = (A.11)

(Ip_l/lpr.ll)+ l

This calculated value of s allows Equation A.9 to be solved for A. The correct phase

is the computed value for n = r - rt s radians.

In summary, when Equation A.9 is a valid approximation, Equation A.11 may

be used to estimate s. Then s is used in Equation A.9 to calculate the magnitude

and phase of the signal, rt s is subtracted from the computed phase to get the

corrected phase.

A.2 Application to Discrete Data

For a sufficient number of samples, N > 16, over a sufficient length of the signal,

Burgess demonstrates Equations A.9 through A.11 are also valid for discrete Fourier

series coefficients (DFSC). For the image contribution to be at most 1% of the direct

contribution, the allowable values of m as a function of N are given in Table A.1.
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Table A.1 Signal sampling parameters

N

256

2048

m

28 < m < 100

26 < m < (N/2)-26

The upper limits on m arise due to the periodicity of the DSFC in N.

Calculations were performed to validate the correction scheme. A sine wave

was generated with 256 equally-spaced data points and Fourier transformed, then

the correction scheme was applied using the minimum value of r, 28, with the worst

case value of s, 1/2. The maximum errors found to occur were 1.5 degrees in phase

and 1% in magnitude.

A.3 Hanning Window

The previous results are for the case where the signal is sampled over 0 <- t < T

and assumed to be zero outside this interval. This amounts to implicitly windowing

the data with a square window, as in Figures A.3 and A.4. To smooth the

discontinuities this process may cause, Figure A.4, many other windows have been

devised, such as the Hanning window. Application of a Hanning window to the data

results in reduced leakage which allows more liberal sampling criteria than previously

stated.

The Hanning window, expressed as

w(t)= sin 2rtt
T (A.12)
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for 0 _ t < T, is compared with the square window in Figure A.5. The raw signal is

multiplied by the Hannmg window in the time domain, resulting in a signal which

goes to zero at both t = 0 and t = T, thus the periodic continuation of the signal will

be smooth.

The derivation of the approximate equations used for leakage correction is

analogous to that for the square window. The required expressions are:

n A ,_.(" 1 _sinas
Pr =_-e _ 1 --'s 2) -_s (A.13)

and

Define R as the ratio

n _Ae_.. 1 sinas (A 14)Pr*l =
4 (1 -s)(2-s) rts

HIpYl/Ipr÷,l. Then

2-S
R_

l+s

or

2-R

s - 1÷--R" (A.lS)

For the magnitude of the image contribution to be at most 1% of the direct

contribution, Burgess recommends 2 _<rn < (N/2) - 2 for N > 40. This allows a

much broader range of sampling conditions than the results for a square window.

Calculations using 256 samples of a sine wave and r = 2 show the correction scheme

to give less than 1% amplitude error and approximately _+1 degree phase error.
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A.4 Application to Signals with Higher Harmonics

The correction scheme will now be extended to periodic signals with frequency

content at integer multiples of the fundamental frequency. This will lead to more

restricted sampling criteria than before in order to keep leakage effects within the

desired bounds.

Up to this point, the signal has been assumed to have one frequency component.

Hence its leakage patterns were centered at * _, and the resulting sampling criteria

essentially restricted the leakage so that the interaction would be negligible in the

neighborhood of _. Now, with leakage patterns at * n _, the leakage extent must

be more restricted for the interaction to remain negligible.

The case of equal amplitude cosine waves at frequencies to _ = _ and to 2 = 2_

was analyzed. Interaction from the image frequencies -xq and -2 f) was assumed

to be negligible. Thus expressions like Equation A.9 were valid for each of the

frequencies individually. Then the effect of the second harmonic on the first was

deemed negligible when the ratio of the magnitude of the second to the firs{ was less

than 0.01 for the frequency line nearest f/. With a Harming window in effect,

5 < rrt _ < ( N - 1 O) / 2 is a conservative requirement, rn _ is based on to _ so

T T

rnl T_,_ Tn

Calculations were used as before to validate the correction scheme for this case.
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Appendix B. Euler Equations

The fluid is assumed to be a perfect gas with constant specific heats and viscous

effects, body forces and external heat addition are neglected. The equations for the

conservation of mass, momentum and energy for two-dimensional flow, the Euler

equations, may be expressed in Cartesian coordinates as [39]

at
--+--+--=0 (B.1)
at ax ay

where

(B.2)

_.= Pu2+P (B.3)

puv ]
u(e+p)/

and

puv

k,v(e+ p)./

p is the density, u and v are the x and y velocity components and e is the total

energy per unit volume

( ' ))e=p c_T +-_(u2 + v 2 (B.5)

with temperature T and specific heat at constant volume c _. The pressure may be

expressed as

p=(y-1 )(e--_(U2+U2)). (B.6)
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All quantities in these equations are nondimensional. Lengths are divided by the

airfoil chord, velocity components are divided by the inlet speed of sound, time is

multiplied by the inlet speed of sound over the airfoil chord and the total energy per

unit volume is divided by the product of the inlet density and the square of the speed

of sound.

For

q=rl(x , y,t),

where

a general transformation to _-

x = t, the Euler equations become

3Q 3E 3F
--+--÷--=0

coordinates, I_=_(x,y,t),

(B.7)

Q_j-IQ (B.8)

and

E-J-' Q_+ ax -#-#y

bq ] _F=J _ Q3t 3x ,)y

# pu_ %

puu_ + P-#-_x

a_
puu_ + p-_y

o_

.pun

puun÷ P 3X

,:)q

puun+ Pc)y

,:)q

\ v,_( e + p ) - p-_--[ ,/

(B .9)

(B.IO)
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The _j and rl components of velocity are

= +u ÷vaA
at 3x" ay'

arlv =3rl+u_+v arl (B.l I)
n at ax ay

The transformation Jacobian is

j=a_.._._aTl 3_3n. (B.12)
axay ayax

Applying the chain rule to the transformed spatial derivatives, Equation B.7

becomes

3Q+ A a._.QQQ+ B 3.__Q_Q= 0 (B.12)
ax a_ an

with A - a E / a Q and B - a F / a Q. Using Equations B.9 and B.10 and letting K = A

when k : _ and K : B when k: q, t( is expressed as

K i ak a_.ak af:ak: --+----+---- (B.13)at aQa ,: aQay

where I is the identity matrix. Calculating the partial derivatives in Equation B.13

and simplifying results in

Km

ky_z-V6

6(-¥(e/p)* 2t_ 2 )

k x

k,+ 6-(V- 2)kxtt

kxv-(v- 1)kyu

(¥(e/p)- _Z)k_ - (¥ - 1 )u5

-(¥- 1)k,,v+ kyu

k,+6-(y-2)kyv

(_t(e/p)- Lz)k, - (y - 1)va

(¥- l)k.

(_¢ - 1 )k, ]
/

k,+v6 /

(B.14)

where 5 : u(.ak/ax) + v(ak/ay), _2 ,, (y _ 1 ) (u 2 + v2)/2 and k, = ak/at.

K may be expressed as the similarity transform

I< = TkA_T_,' (B.15)
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A _ is a diagonal matrix of the eigenvalues of K,

kl+5 0 0 0 1i k,+5 0 0
A_-- 0 k,+6+alVkl 0 . (B.16)

0 0 kt+5-alVk[

I_7k I - _]'(a k/,) x ) 2 + (a k / a y ) z and a = _ is the isentropic speed of sound.

The columns of T k are right eigenvectors of K corresponding to the eigenvalues in

Equation B.16 and the rows of T;, l are the corresponding left eigenvectors.

I! o
fiyP

_l-1 p(fiyu-Exv)

v v 1v(u+fi_a) v(u-/_.a)

v(v+fi_a) v(v-fi_a)

y-1 +a_ v -_ a_

(B.17)

I 1 -_2/a2

T-_' = (k.,,o-k.ru)lp
x(_ 2 -aS)

(y-1)ula 2

£ylp

x(fixa-(y-])u)

-x(_a+(y-1)u)

(y- 1 )via 2

- _,,Ip

X(Eya- (y- l )v)

- x(_.,a + (¥- 1)t,)

(B.18)

2 for any c.where v=p/(f2a), ×= 1/(,/'2pa) and g=c/_/k_+ky

Expanding Equation B.12 to primitive variable form,

3Q3q

3q31:
___.+ A 3Q3q + a'#Q3q. 0

,_q ,_I_ ,_q arl
(B.19)

with

q=j-I
/2

U

p

(B.20)
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Substituting S- J = _)Q / _ q into Equation B.19 gives

S -_ aq+ AS "_ aq+ BS "l a-_q= 0.
ax a_ arl

(B.21)

Multiplying by S and substituting _ = S A S- _ and i_ = S B S- _,

_)q _)q _)q--+A_+I_=O. (B.22)

Expressions for S-_ and S are

S-I

L/

3Q v

(u2+v 2)
ooo)
p 0 0

0 p 0

pu pv 1/(y-l)

(B.23)

and

I I 0 0 0 1

-u/p i/p 0 0
,gq

S=)_=.._ -v/p 0 I/p 0 .

(u,2+v z) -(¥-l)u, -(y- l)v (¥- I)

(B.24)

,_ and 1_ are determined using

-IS-l=R A R -lI_=SKS-I=STkAkTk k k k (B.2S)

where I_ = ,_ when k = _ and R = I_ when k = rl. Using Equations B.18 and B.21,

R;,l=T_IS -I= (B.26)
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and, using Equations B.17 and B.22,

Rk=STk =

0

-/_'x

0

pi(_a)

pa lx/'2 _al_ J

(B.27)
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Appendix C. Linearized Theory of Cascade Wave Propagation

From the linearized theory of an infinite cascade of flat plate airfoils oscillating

with fixed interblade phase angle in a uniform subsonic mean flow field, reference

3, several characteristics of the resulting pressure waves which propagate away from

the cascade may be determined. The approach is to assume inviscid, isentropic,

two-dimensional subsonic flow through an infinite cascade of fiat plate airfoils.

Unsteady disturbances are assumed to be small perturbations to the steady flow field,

resulting in a system of first order linear partial differential equations for the unknown

perturbation quantities. When harmonic solutions which satisfy cascade periodicity

are assumed, the disturbance wavelength, direction of propagation and rate of decay

may be determined.

The mass conservation equation is, for the _ - q coordinate system of Figure C.1,

Dp (au av)_+p _+-- =0. (C.1)
D t a _; a rl

The momentum equations are

and

Du lap
..... (C.2)
Dt p a_;

Dv lap

Dt p aq (C.3)

u is the _ -component of velocity, v is the rl -component of velocity, p is the density

and

D a a a
--=--+u--+v--.. (C.4)
Dt at a_ aq
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Figure C.1 Cascade coordinate system
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Using the subscript 0 to denote mean values (which are constant) and 1 for the

perturbations,

P=Po+pl,

/./----UO+ // 1 ,

are substituted into the governing conservation equations. Once the equations are

expanded and products of perturbations are neglected, a system of linear partial

differential equations results with the perturbation quantities as the dependent

variables. Conservation of mass becomes

D°pl+po _+ =0. (C.5)
0--7

The momentum equations become

Dou_ 1 c)Pl
_= (C.6)

Dt Po _

and

Dovl 1 c)p,
_= (C.7)

Dt Po ')q

with the operator
J

Do ,9 ,9 ,9

_'--+ U°'_ + v°_otat ,)rl" (C.8)

To close the system of equations, the speed of sound for isentropic flow of a calorically

perfect gas, ct, is introduced.

aZ=Cc)p) dp (c.9)
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ExpandingEquationsC.5throughC.7andusingC.9to replacederivativesof P, with

derivatives of p, gives

 q+Aaq+a q=o (C.10)
at a_ an

where

q= ul (C.ll)

Ul

A

I U o pot2 2 0 1
l/Po Uo 0

0 0 u o

(C.12)

and

B= 0 vo

llPo 0 Uo ,/

(c.13)

For an infinite cascade of equally-spaced airfoils oscillating harmonically at a

fixed interblade phase angle, the dependent variables will depend harmonically on

the spatial position and the time. Thus the pressure perturbation is expressed as

P] = Pl eK_t*II÷mn) (c.14)

m

where p, is the pressure disturbance amplitude and l and m are the axial and

tangential wave numbers. Analogous relations are used for u _and u 1,

Substituting the perturbation expressions into Equation C.10, a system of linear

algebraic equations is obtained:

_ + _o I + Oo_
llPo

mlPo

a2lPo

(&)+ tto Z + UoTn.

0 _+uol+vo m v I

=o.(c.15)
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To obtain a non-trivial solution to this linear system, the determinant of the coefficient

matrix in Equation C.15 is set equal to 0:

(uO+uol+vom)[(oO+Uol÷Vom)a-aa(la+ma)]=O. (C.16)

The two solutions to Equation C.16 encompass different physical phenomena - it is

necessary to determine which solution applies to acoustic disturbances.

From the momentum equations, relations between pressure and velocity

fluctuations are obtained:

Pl =-'-f(_+ Uol + Vom)Ul

= - P--2°(_ + u o l ÷ Vom)V l . (C. 17)
/22

Hence for the solution of Equation C.16 obtained when co ÷ u o l + v o m = 0, the

pressure fluctuations are, from Equation C.17, zero, but the vorticity is

_vz ,_uz

= i( lv_ - mu_ )e icy't" t_'"_") . (C. 18)

The velocity of propagation of a disturbance is simply the phase velocity, which

is determined by tracking a constant disturbance phase. In this reference frame, the

phase does not change with time:

d

_tt (oot ÷ l_ ÷ rn_) = O

or

dt dt
(c.19)
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Combining Equation C.19 and _ ÷ uo l + vora - 0 to eliminate _ results in

cl_ mdq=u l+Vorn (C.20)
l -'_ + cl t o

Thus the _ and rl components of velocity are equal to the mean flow velocity

components u o and vv This solution corresponds to convection of vorticity by the

mean flow with no associated pressure fluctuations.

For nonzero pressure disturbances, Equation C.17 implies _ + u o t + v o m ,' O.

The only remaining way to satisfy Equation C.16 is

(_+ u of+ vorrt) 2-a2(l 2+ rn z) = O. (C.2l)

From Equations C.17, rrt_ = l_. Substituting this into Equation C.18, it follows

that the vorticity is zero; the solution which satisfies Equation C.21 therefore

corresponds to irrotational pressure perturbations.

Solving Equation C.21 for the axial wave number,

Uo( (n + Vorn ) ± a _/ ( in + Vom ) z - (a 2 -/202)/72 2
l = (C.22)

t22- UO2

or

M_(((n/ct)+ M,lrrt )± ff (((n/ct)+ M.m) z- (1 - M[)rn z

l= 1 -M_

where

The tangential wave number must satisfy cascade

specified by the interblade phase angle 13. Hence

mS = [3+ 2rtn

where S is the cascade spacing and n is an integer.

(C.23)

M _ and M n are components of the Mach number in the _ and rl directions.

dynamic periodicity, which is

(C.24)
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The nature of acoustic wave generation depends upon the term under the radical

in either of Equations C.22 and C.23. Let 6 be the term under the radical in Equation

C.23.

2 m.25= ((uala)+ M,rrt) 2- (1 -M_) (C.25)

When 5 = O, the acoustic resonance condition, only one wave is created which

propagates in the circumferential direction. The sense of the direction of propagation,

either + 11 or - rl, depends upon the tangential wave number. From Equation C.25,

the tangential wave numbers at the resonances are

2kM (c.z6))

where k is the reduced frequency and C is the airfoil chord. Combining Equation

C.24 for n = 0 with Equation C.26 and solving for the resonant interblade phase

angle, 13r, yields

2kMS , ..'- I_-M_)13;: c i_- a)LM.

or

2kMS t

F_:=C-_i--_2)lMsin(_o+V)=_ll-M2cos2(ao+¥) ). (C.27)

When /5> 0, l is real and two waves propagate without decay, one going upstream

and the other downstream - this behavior is termed superresonant for a subsonic

mean flow field. Lastly, when /5< O, the behavior is termed subresonant and the

waves decay exponentially with axial distance.
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When 5<0, l is complex. Substituting l = l R+ t l t

_ i(_t.,.( lX ÷ilt)_.mvl)
Pl =PL

= Pi _ tqiei(°°t÷z*vi÷rnn)

in to Equation C.14 gives

(C.28)

Thus the wave decays exponentially with distance, depending upon the imaginary

part of l.

Ip](_)l= Ip,( )l (C.29)
Ip,( =o)l

The absolute value of the exponent disallows a second solution, the non-physical case

of an amplifying wave.

The axial and tangential wave numbers specify the acoustic wave propagation

direction relative to _', 11" coordinates which are parallel to the fixed 1_, rl coordinate

systembut movingwith the steady flowvelocity [5]. Relative to the _', q" coordinates,

the waves propagate at the angle

O" = tan ,(_m)_-77 (c.3o)

at the speed of sound. The wave propagation vector _ p in the fixed I_, rl coordinate

system is therefore the sum of the steady flow velocity vector and the wave propagation

vector relative to the moving coordinate system,

_ p = ( Uo + a cos O')e_ + ( Vo + asinO')e. (C.31)

from which the direction of propagation 0 in the _, rl coordinate system is

tan-'( u--2+-asine:e
Uo+ aCOSO"J" (C.32)\
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¢

The disturbance wavelength is the distance a disturbance travels in one temporal

period, 2 rt / tax Thus

_--_1_,,I. (c.33)

I
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