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INTRODUCTION

Certain fiber composites are often modeled as equivalent homogeneous solids [1].
Continuum models of this sort are useful in analyzing wave propogation in fiber
composites when the wavelengths under cons deration are long compared to the mean

fiber diameter.

The input-output characterization of a hormogeneous transversely isotropic plate is
investigated by tracing P and SV waves. Following the work in [2], the reflection of a P
wave at a stress-free plane boundary in a semi-infinite transversely isotropic medium is
considered first. It is reestablished that an incident P wave reflects a similar P wave and
an SV wave. It is also reestablished that the angle of reflection is equal to the angle of
incidence whenever the plane boundary where the reflection occurs is parallel to the
isotropic plane of the transversely isotropic medium. The angle of reflection of the

reflected SV wave is found as a function of the angle of incidence of the incident P wave.

The plane of isotropy of the equivalent transversely isotropic continuum plate lies in
the midplane of the plate and is parallel to each face of the plate. The P waves experience
multiple reflections at each face of the plate. At each reflection a P wave and an SV wave
are reflected back into the medium. The SV waves also experience multiple reflections,
producing a reflected P wave and a reflected SV wave at each reflection [2]. The
reflected SV wave is reflected with an angle ot reflection equal to the angle of incidence
of the incident SV wave |2] and the reflected P wave is reflected with an angle of
reflection equal to the angle of incidence of the incident P wave that produced the
incident SV wave The amplitude coefficients of the P and SV waves reflected by an
incidént P wave are calculated as functions of the angle of incidence and plotted. Further,
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the amplitude coefficients of the P and SV waves reflected by an incident SV wave
produced by mode splitting are calculated as functions of the angle of incidence of the

incident P wave that produced the incident SV wave and plotted.

A path notation is then defined to aid in the tracing of series of reflected P and SV
waves through the medium. Paths are determined by path parameters equal to the number
of P waves in the path, the number of SV waves in the path and the number of SV wave
to SV wave reflections in the path. A path amplitude coefficient is defined in terms of the
path parameters and tabulated. It is found that more than one path may have a given set of
path parameters and a path multiplicity function is derived to count the number of distinct
paths with the same path parameters. A net path amplitude coefficient is defined as the
sum of the amplitudes of all paths with the same total combination of P waves and SV

waves. The net path amplitude coefficient is tabulated.

Finally, a theoretical output voltage from the receiving transducer is calculated for a

tone burst (a periodic input voltage of finite duration) by neglecting the effects of mode

splitting.



REFLECTION OF INCIDENT P WAVE AT STRESS-FREE PLANE
BOUNDARY IN SEMI-INFINITE TRANSVERSELY ISOTROPIC MEDIUM
WITH PLANE OF ISOTROPY PARALLEL TO PLANE BOUNDARY

1. REFLECTED P AND SV WAVES

A plane progressive stress wave may be represented as

(u,v,w)=A(P,,P,P,) exp{ia(S,x +5,y +5,z 1)} @)
for example, see [3], where u, v and w are the displacement components of a point in the
medium along the x, y and z axes, respectively; A is the amplitude of the particle
displacement; P, P, and P, are the components of the unit vector of particle displacement
along the x, y and z axes, respectively; i =v~1; ® denotes radian frequency; S,, S, and S,
are the components of the slowness vector, which points in the same direction as the
normal to the wave front and has magnitude equal to the reciprocal of the phase velocity,

see [4], along the x, y and z axes, respectively; and ¢ denotes time.

A plane progressive P wave is incident on the plane boundary of a semi-infinte
linearly elastic transversely isotropic continuum with plane of isotropy parallel to the
plane boundary. Define a cartesian coordinate system (X, y, z) as follows: the plane
boundary of the medium contains the x and y axes, and the z axis is the zonal axis of the

medium (see Fig. 1). The generalized Hooke’s l_aw, when written relative to the (X, y, z)

coordinate system, is [4]



T . =CLux+Cuv,y+Caw,z

T, =Cpux+Cyv,y +Cpw,z

T,=Chux+Cv,y +Cyuw,z

1, =Cu(u,z+wx)

T, =Cu(v,z+w,y)

T, = Ces(th,y +V.X) (2)

"o

where for i =j 1, is a normal stress and for i #j 1, is a shear stress; ", denotes partial
differentiation with respect to the succeeding variable; C,, C,,, C,,, C,, and C,, are the
five independent elastic constants for a linearly elastic transversely isotropic medium;
and C, is equal to 1/2(C,, - C,)).

The stresses associated with a plane progressive P wave are evaluated by substituting
the expression for the displacement components of a point in the medium, given by eqn.

(1), into eqn. (2) to be

1, =iWA(C, S, P, +C ;S P, +CpS,P)explioSx +S,y +5,2 - 1)}

t, =i0A(C,S,P, +Cy\S,P,+Cy,S.P) expliafS x +S,y +S,z - 1)}

T, =i0A(Cp,S, P, +CiyS P+ CyyS,P ) explid(S,x +S,y +5,z - 1)}

1, =iA(CuS,P, +CS,P,)exp{ia(Sx +S,y +S,z - 1)}

T, =iWA(CyS,P, + CyS,P,) expli (S x + S,y+S,z-10}

T, = i0A(CeS, P, + CesS P,) expliaSx + S,y +5,2 = 1)} 3)

The stress boundary conditions on a stress free plane boundary require [3]



4% =0

W) =0

T+, =0 @
where the T, represent the stresses associated with the incident wave and the t®
represent the stresses associated with any reflected waves. The stresses determined by
eqn. (3) satisfy the boundary conditions, eqn. (4), only when the frequency, ®, of any

reflected wave is equal to the frequency of the incident wave [3] and

S(l) =S(R)
h_ ¢c®
S0 = s (5)

where S® and S are the x and y components of the slowness vector of the incident
wave, respectively; and S® and S ® are the x and y components of the slowness vector of
any reflected wave, respectively [2]. Eqn. (5) establishes that the incident and reflected
waves lie in the same plane, called the plane of incidence. For computational ease, and
without loss of generality, assume the plane of incidence coincides with the y-z plane.

Then the x components of the slowness vectors of the incident and the reflected waves
vanish, satisfying

sP=5"=0 ©)

A P wave with slowness surface in a plane containing the zonal axis of a transversely

isotropic medium possesses a quasi-longitudinal displacement [5]; therefore, a P wave

traveling in the y-z plane in the (x, y. 2) coordinate system has unit vector of particle

displacement

P,.P,,P)=0,P.P") 7



where P * and P® are, respectively, the directionally dependent y and z components of
the unit vector of particle displacement of a P wave.
A wave with P, P_and P _given by eqn. (7) and §, given by eqn. (6) has stresses

determined by eqn. (3) satisfying

T, =T, =0
Ty Tas Tpys T 2 0 8)

An SV wave with slowness surface in a plane containing the zonal axis of a
transversely isotropic medium is quasi-transverse [5]. Therefore, an SV wave traveling in

the plane x=0 in the (x, y, z) coordinate system has P, P and P_according to

(PP, P)=(0,P" PE") ©)
where P ¥ and P are, respectively, the directionally dependent y and z components of

the unit vector of particle displacement of an SV wave.

A wave with unit vector of particle displacment satisfying eqn. (9) and x component

of slowness vector determined by eqn. (6) has stresses calculated from eqn. (3) satisfying

Tyes T Ty Ty 20 (10)

An SH wave with slowness surface in a plane containing the zonal axis of a
tranversely isotropic medium possesses a transverse displacement [5]. Thus, for an SH
wave traveling in the plane x=0 in the (x, y, z) coordinate system the unit vector of

particle displacement is given by

P.P,P)=(1,0,0) (11)



A wave with P, P, and P, given by eqn. (11) and x component of slowness vector

equal to zero according to eqn. (6) has stresses determined from eqn. (3) satisfying

T, =1,=1,=1,=0
T, #0
1, %0 (12)

A P wave is incident on the plane boundary of a semi-infinite tranversely isotropic

medium. The stresses at the point of incidence that are associated with the incident P

wave are constrained by eqn. (8) and must satisfy

1‘,’,)1&0
%0
=0 (13)

x3

where the superscript  is used to denote properties associated with the incident wave.

The stress boundary conditions for any reflected waves are evaluated from eqn. (4)

and eqn. (13) and can be expressed as

®) _ _ D
T, = r,,;tO

=t 20

™W=0 (14)
where the superscript ® is used to denote properties associated with any reflected waves.
Eqgn. (12) indicates that the T, component of the siress tensor associated with an SH wave
is nonzero. Therefore, no SH wave will be reflected back into the medium by an incident

P wave, because such a wave would create a nonzero T, stress component and violate the

stress boundary conditions, eqn. (14). Eqn. (8) indicates that the components of the stress



tensor associated with a P wave satisfy the stress boundary conditions and eqn. (10)
indicates that the components of the stress tensor associated with an SV wave also satisfy
the stress boundary conditions. Therefore, an incident P wave will result in a reflected P

wave and a reflected SV wave [2].

2. SLOWNESS SURFACE OF P WAVE

The equations of motion relative to the (x, y, z) coordinate system are [4]

ToX +T,,Y +Tq.2 = PULIE
T, X +T,,Y +1T,,2=pv,it
ToX + 7T,y +71,,,2 = pw,lt (15)

where p is the density of the medium.

When the components of stress are calculated according to eqn. (3) and the
displacement components are calculated according to eqn. (1), the equations of motion

can be written as [2]

(CiuS2+CeeS2+CouSE = PIP, +(Cyy + Ce)S,S,P, +(C3 + C)S,S.P, = 0
(Cia+ Ceg)S, S, Py + (CeeSi+ Cpy ST+ CoSI = )P, +(Cy + C)S,S,P, =0
(Ci3+Co)S.SP,+(Ci3+C)S, 8P, +(CouST+CoSy + CyS; = p)P, =0 (16)

X7 x

Eqn. (16) can be put into matrix form as

[B1(P,.P,.P,) =[0] (17)

where [B] is a 3x3 matrix with entries



by =(C,,S2+ CeeSE+CuS! - p)

by = (CeS2+C 1Sy +CuS! = p)

by = (CouS2 + CuSi+CysS. =)

b, =by =(C 1, +Ce)S,S,

by =by =(C 13+ CL)S.S,

by = by = (C 3+ Cu)S, S, (18)
(P.P,P) 1s the unit vector of particle displacement and [0] is the 3x1 zero matrix. The
matrix [B], defined by eqn. (18), is a symmetric matrix; therefore, there exist three real
eigenvalues. One eigenvalue corresponds to an SH wave, another eigenvalue corresponds

to a P wave, and the third eigenvalue corresponds to an SV wave [2].

The plane wave solution is found by setting the determinant of matrix [B], the matrix
of the coefficients of the unit vector of particle displacement, equal to zero [6].
Expanding the determinant of [B] and solving for the three roots yields equations for the

three slowness surfaces. The slowness surface for a P wave is (5]

-;—{(cn +Co) (S5 +(Cog+ C)SI+5(C = Cu) (S7+S))+(Co - CSH +
4(S?+SHSH(C), ~ Cus) (€ = Cu) = (Cp3 + )] }"2} =p (19)

3. ANGLE OF REFLECTION OF REFLECTED P WAVE

According to egn. (5) the y components of the slowness vectors of the incident P

wave, the reflected P wave and the reflected SV wave are equal. Thus eqn. (5) can be

written as



b=5"=5" =5 (20)
where b is a constant and § @, §® and § *V are the y components of the slowness vectors
of the incident P wave, the reflected P wave and the reflected SV wave, respectively. The
z component of the slowness vector of the reflected P wave, 5/, is found from the
equation for the slowness surface of a P wave, eqn. (19). The values of the x and y
components of the slowness vector of the reflected P wave, S and S/, given by eqn.

(20) and eqn. (5), respectively, are substituted into eqn. (19) and S, is found to satisfy

SO =450 (21)
where S is the z component of the slowness vector of the incident P wave. The slowness
vector of the incident P wave points out of the medium and the slowness vector of the -
reflected P wave points into the medium (see Fig. 1), therefore the relationship between
S/ and S® is

§H=-50 (22)

The angle of incidence is defined as the angle between the slowness vector of the
incident wave and the normal to the boundary at the point of incidence. The angle of

incidence of the incident P wave, 6%, is then

0} S;')
0"’ = arctan (23)

—S,")

where the point of incidence is taken to be on the plane boundary of the semi-infinite

body (see Fig. 1).



The angle of reflection is defined, in a manner similar to the angle of incidence, as the
angle between the slowness vector of the reflected wave and the normal to the boundary

at the point of reflection. The angle of reflection of the reflected P wave, 6#, is then
) S(P )
Y
8" = arctan[g?;-)] (24)

Evaluating 6 using eqn. (20) and egn. (22) and comparing the result to eqn. (23)
establishes that
B(P) = 9(’) (25)
Thus, the angle of reflection of the reflected P wave is equal to the angle of incidence of

the incident P wave [2].

4. ANGLE OF REFLECTION OF REFLECTED SV WAVE

The equation for the slowness surface of an SV wave is found from the determinant of

the matrix [B], defined by eqn. (18), and is [5]

1
i{(C11 +Co) (S2+ 8D +(Cou+ C1)S] = {1(C11 ~Cu) (S2+5))+(Cp— CS +

4(312 + S:)sz[(cu =Cu)(Cy3=Co) - (Cis+ C44)2]}112} =P (26)

where S, S, and S, are the x, y and z components of the slowness vector of the SV wave,
respectively; p is the density of the medium and C.,C, C,, and C,, are elastic constants.
The z component of the slowness vector of the reflected SV wave, S, is found from

eqn. (26) by substituting in the values for S and S5V, the y and x components of the



slowness vector of the reflected SV wave, given by eqn. (20) and eqn. (5), respectively.
The substitution provides two values for S %, one positive and one negative. The positive
value corresponds to a wave traveling into the medium and is labeled §%. The angle of

reflection of the reflected SV wave, 6V, is then

V)
z

S(SV)
o = arctan[s" J (27)

The angle of reflection of the reflected SV wave is, in general, not equal to the angle of

incidence of the incident P wave [2].

A P wave incident, with angle of incidence 6, in the y-z plane in the (x, y, z)
coordinate system on the plane boundary of a semi-infinite body has y and z components, -

S @ and §,2, of slowness vector satisfying

§P=—2x (28)

Substituting egn. (5) and egn. (28) into eqn. (19) allows the equation for the slowness

surface of a P wave traveling in the plane x=0 to be written as
A s 48 (50 an00+ 1 sy + D5 tan 26 [+
2 y 2( y tan 2 y y an

172
4" tan26(CD - Ez)} =p (29)

where the conventions:

12



A=C,+C,

B=C,+C,
C=Cy-Cu
D=Cy—C,
E=C,,+C, (30)

have been used for computational ease. Eqn. (29) can be solved for § @ yielding

12
S =157 1 e 31)
2+21an20"+3{[C + D tan? 6"’ + 41an”* 6“[CD - E’]}
An expression for §¥ as a function of S ¥ can be derived from the equation for the

slowness surface of an SV wave by writing eqn. (26) as

172
2
_%{(cs;svﬂ +DS,(SV)2) +4SSPSS(CD —52)} =p- —S‘Sv’z I;Sfmz (32)

Squaring both sides of eqn. (32) and simplifying the resulting expression produces a
quadratic equation in (S#¥)x Using the quadratic formula to find the roots of this

equation produces the expression for (§,6%)
S(SV)2 {pB _ 5 S,(‘w)z +3_(’;P_S;SV)2+EZS£SV)2+{[3PBCD _ 2pBE2- pAD2]5y(SV>2 +

4 4

B* D?
{7“5‘} G

22 2 172
[_g_g_cg + ABE?+20™D?—3CDE? + E* 425 4 AP }?‘w+p20} }+



The z component of the slowness vector of the reflected SV wave is then computed as a

function of S #" according to

s =4{oB ——s“”2 3¢D 2= 5O 4 B2 +{[3pBCD — 2pBE*~ pAD?IS™ +
2 2 ’

_ 22 4212 2
[—3A—;£Q+ABE2+2CZD —-3CDE*+E +B4C +%[—)—Js;”"‘+p"1)2} }+

82 02 12
4]

Substituting eqn. (20) into eqn. (34) allows S#¥ to be calculated as a function of the y

component of the slowness vector of the incident P wave. The value of S is then given .

by

S'(SV)z{{ 0B _f_lzg e +§92'P_ SO 4 E25SV? +{[3pBCD ~2pBE*- pADYS" +

2 4 4

32 D2 12
55

Substituting eqn. (20) and eqn. (35) into eqn. (27) allows 0v the angle of reflection of

_ B3C? 242 1
[M+ABE2+2C2D _3CDE+E 42 +ﬂ}s;”“+p21)2} }+

the reflected SV wave to be computed as a function of § # according to



%" = arctan{{Sf)} + {[pB —%B—Si’)z +3;—C—2‘QS§”2 + EZS§SV)2 +

([3pBCD ~2pBE*~pAD*|S" +

r--— 2,2 22 172
—34;5@-+ABE2+2CZDZ— 3CDE*+ E“+§—4§—+é-;11-)—]5§"4+ pzDz] }

_32 02 172
_7‘7}} } (0)

where S,(’) is given as a function of 0% by eqn. (31).

The values of the material constants of a typical fiberglass epoxy composite are given .
in [4] as C,,=10.581x10° N/m?, C,;=4.679x1(? N/m?, C,=40.741x10° N/mz, C,=4.422x1(¢
N/m?, C,=3.243x10° N/m? and p=1850 kg/m?. The slowness surface of a P wave traveling
in the y-z plane in the fiberglass epoxy composite is obtained by substituting the
numerical values of the constants into eqn. (19) and setting the x component of the
slowness vector equal to zero. The slowness surface of an SV wave traveling in the y-z
plane in the fiberglass epoxy composite is found similarly from eqn. (26). The first

quadrant of the slowness surfaces thus obtained are shown in Fig. 2.

The angle of reflection of the reflected SV wave is found as a function of the angle of
incidence of the incident P wave by substituting the values of the material constants into
eqn. (36). The angle of reflection of the reflected SV wave is shown in Fig. 3 as a

function of the angle of incidence.



INPUT-QUTPUT CHARACTERIZATION OF FIBER COMPOSITE

1. ANGLES OF INCIDENCE AND REFLECTION OF P AND SV WAVES

Certain fiber composites may be modeled as a linearly elastic tranversely isotropic
homogeneous continua [1]. A fiber composite modeled as such a solid in the form of an
infinite plate where the plane of isotropy lies in the midplane of the plate is to be studied.
A cartesian coordinate system (x, y, z) is chosen such that the x-y plane coincides with
the plane of isotropy of the plate and the plate is bounded above by the plane z=h/2 and

bounded below by the plane z=-A/2.

A transmitting transducer and a receiving transducer are assumed to be coupled to the
top face of the plate in the y-z plane and separated by a distance L. The input electrical |
voltage of the transmitting transducer is a known function of time, V(#). The output
electrical voltage of the receiving transducer is an unknown function of time, V (f). The
transmitting transducer is assumed to be a point transducer that converts an input
electrical voltage into a stress at a point on the boundary of the plate; the stress then
travels through the plate as stress waves. The receiving transducer is assumed to be a

point transducer that converts the stress at a point on the boundary of the plate into an
output voltage.

A representative fiberglass epoxy composite plate will be characterised. The compos-

ite plate has an equivalent continuum model with material properties:



p=1850 kg/m?
C,,=10.581x10° N/m?
C,,=4.098x10° N/m?
C,=4.679x10° N/m?
C,,=40.741x10° N/m?
C,=4.422x10° N/m?
C=3.243x10° N/m*

The transducers are assumed to be separated by a distance L=10 cm and the plate is of
thickness A=5 cm.

In the following analysis only those stresses at the receiving transducer associated
with P waves generated by the receiving transducer will be considered. The P waves
produced by the transmitting transducer experience multiple reflections at each face of
the plate before reaching the receiving transducer. Since the isotropic plane of the plate
lies in the midplane of the plate and is parallel to the top and bottom faces of the plate
each reflection may be treated as the reflection of a plane progressive wave on the plane
boundary of a semi-infinite linearly elastic transversely isotropic continuum with plane of
isotropy parallel to the boundary. Therefore, at each reflection the incident P wave
reflects a P wave and an SV wave; the angle of reflection of the reflected P wave is equal
to the angle of incidence of the incident P wave (2] and the angle of the reflection of the

reflected SV wave is given by eqn. (36).

Assume a P wave is incident, with angle of incidence 6, on one of the plane

boundaries of the plate. An SV wave is reflected back into the medium with angle of

17



reflection 84V, The relationship between the y components, S and SV, of the slowness
vectors of the incident P wave and the reflected SV wave, respectively, is given by eqn.
(20) as
@ _ ¢V
S, =S, (37)

The SV wave then travels through the plate and is incident with an angle of incidence
equal to 6% on the opposite face of the plate (see Fig. 4). An SV wave and a P wave are
reflected by this new incident SV wave [2]. The reflected SV wave has angle of reflection

8= equal to the angle of incidence of the incident SV wave [2],
gRsV) — gV (38)
The reflected P wave has angle of reflection 647,

The relationship between the y components of the slowness vectors of the incident SV

wave, the reflected SV wave and the reflected P wave is [2]
V) _ cRSY) _ o(RP)
SV = gB - g (39)

where S, S ®¥ and S ®" are the y components of the slowness vectors of the incident
SV wave, the reflected SV wave, and the reflected P wave, respectively. Substituting eqn.

(37) into eqn. (39) demonstrates that
@) - ¢®P)
AMERAN (40)
The z component, S, of the slowness vector of the P wave reflected by the incident

SV wave is found by substituting eqn. (40) into eqn. (11) to satisfy

s =150 (41)



where S is the z component of the slowness vector of the initial P wave. The P wave
reflected by the incident SV wave and the initial P wave are both traveling from the upper
face of the plate towards the lower face of the plate (see Fig. 4), so the relationship
between S#» and S is

S®) =50 42)

The angle of incidence 6% of the initial P wave is defined by

o sy’
0¥ = arctan( — '(,)J (43)

and the angle of reflection of the P wave reflected by the incident SV wave, 647, is

defined by

S (RP)
R = arctan( ) (44)

-
SR
Substituting eqn. (40) and eqn. (42) into eqn. (44) and comparing the result to eqn. (43)
establishes that
9P = ¥ (45)

Thus, an incident P wave with angle of incidence 8 will cause a series of SV and P
waves to be produced by the initial and subsequent reflections. The SV waves will
always be reflected with angle of reflection @Y, given by equation (36), and the P waves

will always be reflected with angle of reflection equal to 6m.

19



2. AMPLITUDE COEFFICIENTS ASSOCIATED WITH INCIDENT P WAVE

The amplitude coefficients of the P and SV waves reflected by a P wave incident in
the y-z plane on the plane boundary of semi-infinite transversely isotropic medium are

given by the pair of simultaneous equations [2]

SOPD + SOPO 1+ AC-PASPPP 4 SOPIY +

P -SV), c(SY)p V) SVIpSVK .
AC(SEIPEN £ §IPEN =0 (46)
and

CSPPO+CySOPO + AP P(CSDPE +CpS TP +

ACIC,SEPE + CuSEPE) =0 47
where A®" is the amplitude coefficient of the reflected P wave and A® is the amplitude
coefficient of the reflected SV wave; S®, S® and S¢" are the y components of the
slowness vectors of the incident P wave, reflected P wave and reflected SV wave,
respectively; S®, S/ and S are the z components of the slowness vectors of the
incident P wave, reflected P wave and reflected SV wave, respectively; P ®, P and PV
are the y components of the unit vectors of particle displacement of the incident P wave,
reflected P wave and reflected SV wave, respectively; P, P® and P/ are the z
components of the unit vectors of particle displacement of the incident P wave, reflected
P wave and reflected SV wave, respectively; and C,, and C,; are elastic constants. Eqn.

(46) can be solved to provide the explicit expression for A®?),

SOPD 4 SOPD + AT -SV(SEIPSY 4 SEVPEV)

SPPP + SPPP) (48)

AP-P)

Substituting eqn. (48) into eqn. (47) yields

20



NHhph Np)
C’3S) P, +C335, P: -
S,(I)P)(,l)+S;”Pz(l)+A(P_SV)(Sx(SV)P§SV)+Sy(SV)P,(SV))
X
P)p (P P)pP
SPPP) 4 SPPP)

[CiySTPE+ CuSTPIN+ AT VC,SEPEV + CuSEPE =0 (49)
Eqn. (49) is an implicit function for A® dependent only on the material properties and
the slowness vectors and the particle displacement vectors of the incident and reflected

waves. This equation can be solved to provide the explicit function for A®-sv

AT ={C 8P - CuS PO+ (S P + SP)
(CoS P+ CoS PPN+ ST+ STPE)
(ST P+ 8PN (€18 P+ CpS TP +
[SEPE +5LPN+C KPS 4+ CsEPEVY (50)
The expression for A®SV) given by eqn. (50) can be substituted into eqn. (48) to
P
roduce an expression for A®? independent of A®). The amplitude coefficient of the
P p

reflected P wave is then

- 4 -1
AP =—(sPPO+ 5P (sPPE + 8P -

(SZ(SV)Py(SV)+S§SV)P'(SV)) (S,(P)P)(,P)'I-S)("P)PI(P))-I %

{-CisSV PP - C,SPPP +(STPT + 5P x

SPPL+5P) + (€SP + € STPHY x

{~SFPE+ SEIPEN(C,STPY + C1 8PP +

SEPO+SOPD) +C,SEPEV + C,ys T PEY (51)
The value of S is found as a function of the angle of incidence 6 from eqn. (31) to

, q

be

21



172
Sg)={a B, 2nd.l _zp 2 2ad 2 m} (52)
Z+-tan?0%+: {[C + D tan? 6" + 4tan?6"[CD - E*]}
where p is the density of the medium and A, B, C, D and E are functions of the material
properties defined by eqn. (30). Eqn. (20) establishes the equality of §®, § *® and S ¥ and
allows S ™ and S also to be found as functions of 6. Substituting eqn. (52) into eqn.

(28) establishes the value of S as

1
§P=- X
) tan 6

172
™ : e (53)
> +2tan?6%+: {[C + D tan 69" + 4 tan*0“[CD - E*]}
Substituting eqn. (52) into eqn. (20) to find S and substituting that value into eqn. (32)

provides the expression for S 4 in terms of 6%, as

ovy__ 1
* " tan@"

X

172
A B i : 2 173 (54)
Z+5tan?0?+3{[C +D tan 8“1 + 4tan20Y[CD - E?]}
where 8¢V is the angle of reflection of the reflected SV wave and is determined as a
function of 6@ by eqn. (36). The relationship between S and S is determined by eqn.
(22) so the z component of the slowness vector of the reflected P wave can also be found

as a function of 64,
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Thus, the components of the slowness vectors of the incident and reflected waves are
determined by egns. (20), (22), (52), (53) and (54) as functions of only the material

properties and the angle of incidence.

The y component of the unit vector of particle displacement of a P wave traveling in a
transversely isotropic continuum is calculated in [5] and can be expressed for a wave
traveling in the y-z plane as [2]

H,-DS}

= (55)
y 12
[(H, - DSH’+E*SIS]]

P

where the conventions of eqn. (30) have been used. Similarly, the z component of the unit

vector of particle displacement of a P wave traveling in the y-z plane can be expressed as

ES,S,
P, = 5 > (56)
((H,-DSH +E*S}S]]
The coefficient H, in eqn. (55) and eqn. (56) is defined by [2]
1 Z 2 2 2,2 202 2 12
Hp=§ CS,+DS,+[(CS)+DS,) -45,5(CD -E") 57

Substituting eqn. (28) into eqn. (57) allows the coefficient /, to be written as a function

of only S and the material properties. The H coefficient associated with the incident P

wave, HP('), is then
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2
H, =—;~{c S +D(s) tan™ e<'>+[(c (S +D(S) tan™ e"’) -

4(5® tan?0"(CD - Ez)]m} (58)

Eqn. (58) can be factored as

HP = (™'H,’ (59)
where
H,' = %{C +D tan20”+ [(C + D tan?6%)’ - 4 tan26(CD - E?) ]m} “

Using eqgns. (20), (22) and (28), eqn. (57) can be evaluated to provide an expression for

pr’), the HP coefficient associated with the reflected P wave, as
2
HP = %{C(S,‘”)Z +D (™ tan™ 9(”+[(C ™ +D (S tan™ e"’) -

4™’ tan?6(CD - E’)]m} 61)

Comparing eqn. (61) and eqn. (58) establishes that

O _ @)
H '=H, (62)
The y component of the unit vector of particle displacement of the incident P wave is

computed by substituting eqn. (28) and eqn. (59) into eqn. (55) to be

24



PO=[S'H, - D (s an 6"+
172

2
[((sﬁ”)zﬂp’ ~D (5" tan” e‘”) +EXS") tan™ e"’] (63)

Canceling a factor of (S®)¥(S ") from the right-hand side of eqn. (63) produces an
expression for P dependent on 8% and the material properties. The y component of the

unit vector of particle displacement of the incident P wave can then be written as

(64)

o H/’-D tan26%
Pl= "
" [(H,’-Dtan?8" + Etan? 6"
Similar substitutions allow the z component of the unit vector of particle displacment of
the incident P wave to be calculated as a function of the angle of incidence and the
material properties. Eqn. (28) and eqn. (59) are substituted into eqn. (56); a factor of

(8,2)(S m)*is canceled from the resulting expression and P @ is then determined by

p0 - _E (H =D tan 0 + E*1an26 2
. = , —D tan Y +E“tan" 0 (65)

tan 6

The components of the unit vector of particle displacement of the reflected P wave are
found by similar methods. Eqns. (20), (22), (28), (59) and (62) are substituted into eqn.
(55) to produce an expression for P ® dependent on only the material properties and 9%,
Comparing the equation for P/ resulting from the above substitutions to eqn. (65)

establishes the relationship between P ® and P as

PP =pP (66)

y

Substituting eqns. (20), (22), (28), (59) and (62) into eqn. (56) provides an expression

for P ® dependent only on 8 and the material properties. The value of P/® is given by



E 172
PP = W[(H /=D tan” 8"’ + E2tan™ 9(”] (67)

Comparing eqn. (67) and eqn. (64) establishes

P
Pl =-P] (68)

The components of the unit vector of particle displacement of an SV wave traveling in

a transversely isotropic continuum are given in [5] and can be written for the present case

of a wave traveling in the y-z plane in the (x, y, z) coordinate system as [2]

p H,,-DS} (69)
> [(H,-DS} +E*S2:H"
and
* [(H,-DSH»+E*S53"
where
1 2 2 2 2,2 2¢2 2 2
H,=31CS}+DS, -[(Cs, +DS}y —4S8S}(CD - E )] )

and the conventions defined by eqn. (30) are used.

Substituting the value of S#¥ given by eqn. (32) into eqn. (71) allows the H

coefficient associated with the reflected SV wave, H_#v, to be written as
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HS = %{c SEN +D () tan? %" - KC S +D (S5 tan” e‘sv’)z -

) 12
4(Sy(5\r ))4 tan—Z e(SV)(CD _ E2)] } (72)

where 64V is the angle of reflection of the reflected SV wave and is given as a function of

the angle of incidence 8" of the incident P wave by eqn. (36). The right-hand side of eqgn.

(72) can be factored as
HE = (S'H,’ (73)
where

Ead

H = %{c +D tan 0V~ [(C + D tan? 6"’ — 4 tan20"(CD - E’)]‘”} (74)

The y component of the unit vector of particle displacement of the reflected SV wave
can be calculated by substituting eqn. (32) and eqn. (73) into eqn. (69), then, canceling a

factor of (S #")¥(S #)? from the resulting expression to be

’ -2 (SV)
POV _ H., =D tan™ 6

y [(H-W’—D tan—z 9(SV))2+E2tan—26(SV)]U2 (75)

Similar substitutions allow the z component of unit vector of particle displacement of
the reflected SV wave to be written as a function of 6% and the material properties. Eqn.
(32) and eqn. (73) are substituted into eqn. (70); a factor of (S,5)¥/(§ 5)* is canceled

from the right-hand side of the ensuing expressior and P " is then given by
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E

P(SV) -
: tan 6%

1/2
[(H”' -D tan?6%) + D tan™ 9“"’] (76)

The amplitude coefficients of the P wave and SV wave reflected by an incident P
wave can be determined as functions of only the angle of incidence 8 of the incident P
wave and the material properties. The value of S, the y component of the slowness
vector of the incident P wave, is found as a function of 6” from eqn. (52). The y
components, S and SV, of the slowness vectors of the reflected P wave and reflected
SV wave, respectively, are set equal to S,f’) according to eqn. (20). The value of S, the z
component of the slowness vector of the incident P wave, is determined by eqn. (53) and
the z component, S ®, of the slowness vector of the reflected P wave is set equal to the
negative of S according to eqn. (22). The value of SV, the z component of the slowness
vector of the reflected SV wave, is found from eqn. (54) where 8%V is the angle of
reflection of the reflected SV wave and is defined in terms of 6 by eqn. (36). The values
of P® and P/, the y and z components, respectively, of the unit vector of particle
displacement of the incident P wave, are determined by eqn. (64) and eqn. (65) where the
coefficient H is determined by eqn. (60). The y component of the unit vector of particle
displacement of the reflected P wave, P, is set equal to P according to eqn. (66); and
P®, the z component of the unit vector of particle displacement of the reflected P wave,
is set equal to the negative of P® according to eqn. (68). The values of P v and P, the
y and z components of the unit vector of particle displacement of the reflected SV wave,

are found from eqn. (75) and egn. (76) where the coefficient H_ is determined by eqn.

(74).

28



The values of the y and z components of the slowness vectors of the incident P wave
and the reflected P and SV waves and the y and z components of the unit vectors of
particle displacement of the incident P wave and the reflected P and SV waves,
determined as functions of 6, can then be substituted into eqn. (50) and eqn. (51) to
obtain an expression for A®, the amplitude coefficient of the reflected SV wave, and an
expression for A®?, the amplitude coefficient of the reflected P wave, as functions of 6.
Thus, the amplitude coefficients of the reflected waves are determined by only the angle

of incidence of the incident wave and the material properties.

The amplitude coefficient of the P wave reflected by an incident P wave is calculated
using the material properties of the representative fiberglass epoxy composite and is
shown as a function of the angle of incidence of the incident P wave in Fig. 5. The |
amplitude coefficient of the SV wave reflected by an incident P wave is calculated

similarly and is shown as a function of angle of incidence in Fig. 6.

3. AMPLITUDE COEFFICIENTS ASSOCIATED WITH INCIDENT SV WAVE
PRODUCED BY MODE SPLITTING

The amplitude coefficients A*vs and AV of the SV wave and the P wave,

respectively, reflected by an incident SV wave are given by the pair of simultaneous

equations [2]

S‘(ISV)PJ(’ISV)+SilSV)P:ISV)+A(SV-P)(SI(RP)Py(RP}+Sy(RP)Pz(RP))+

ASY =S (SR 4 §EVPEVY _ (7

and

29



CI3S§ISV)P)(’ISV)+C33S'(’SV)P,(ISV)+A(SV-P)(C”S;RP)P)(’RP)+C33S,(RP)P,(RP))+

A(SV—SV)(CDS)(,RSV)P;RSV)'*' C33S1(RSV)PZ(RSV)) = 0 (78)
where S 7 and S,/ are the y and z components of the slowness vector of the incident
SV wave, respectively; S ®V and S are the y and z components of the slowness vector
of the reflected SV wave, respectively; S #» and S " are the y and z components of the
slowness vector of the reflected P wave, respectively; P/ and P/ are the y and z
components of the unit vector of particle displacement of the incident SV wave,
respectively; P ®" and P are the y and z components of the unit vector of particle
displacement of the reflected SV wave, respectively; and P*" and P " are the y and z
components of the unit vector of particle displacement of the reflected P wave,

respectively.

Eqgn. (77) can be solved for A®¥# in terms of A®¥*V as

A(SV—P) - _{S‘(ISV)PJEISV)P'(ISV)+S§ISV)+A(SV—SV)(S:(RSV)P;RSV)+SiRSV)Pz(RSV))} -
{sEPE 4 s Ry (79)
Substituting eqn. (79) into eqn. (78) provides an expression for A¢¥Y independent of

Asve_Simplifying the resulting equation produces the explicit function for A«

A(SV—SV) = {—CnS;ISV)PySV)_ C”S'(ISV)P!(ISV)+ [(SZ(ISV)P)(,ISV)"‘S;ISV)P,USV)) X
(CySEPE + CpSEPEN + (8P + s&IsEy
{[=SEVPE 4 sEBVPEWY (€, SEIPER 4 €, 8 P +
(s ,(”)Pj” '+ S,‘” PEN+[C,,S i“SV)Pi‘“V) +C,,SEVPE Y (80)
Substituting eqn. (80) into eqn. (79) yields an expression for A¢v# independent of

Asvsv, The amplitude coefficient of the reflected P wave is
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A(SV—P):__{S'(ISV)PilSV)+SilSV)Pz(ISV)_"_ {_C”SgSV)PilSV)"'C3gs,(ISV)P,(ISV)+
[(SI(ISV)P‘:ISV) +S,(ISV)P‘USV)) (ClssikF)PiRP) + C”SI(RP)PI(RP))] [S,(RP)P;RP)S;RP)P,(RP)]—I} %
{[—(S:RSV)P)('RSV)+S;RSV)P:RSV)) (Cljs§”)P§RP)+ C33S2(RP)P,(RP))] -
[S‘(RP)P)(,RP)'*'S;RP)P,(RP)] + [Clgs;RSV]P;RSV)+ C33SI(RSV)PI(RSV)]}'1 x
{S'(RSV)P)(,RSV)‘FS;RSV)P,(RSV)}} {S'(RP)IDikP)'f'S}(,RP)PI(RP)}—I (81)
Assume the incident SV wave was produced by the reflection of a P wave incident

with angle of incidence 8. Then, the y and z components of the slowness vector satisfy
S)(’ISV) = S)('SV) (82)
and
SI(ISV) - SI(SV) (83) V

where S ¢V and SV are the y and z components, respectively, of the slowness vector of
the SV wave reflected by the initial P wave. The y component of the slowness vector of
the SV wave reflected by the initial P wave is Jetermined from eqn. (20) and eqgn. (52),
and S is determined from eqn. (54). The components of the slowness vector of the
incident SV wave are thus determined as functions of the angle of incidence of the initial

P wave, 69,

The relationship between the y components of the slowness vectors of the incident SV

wave and the reflected SV and P waves is given by eqn. (39) as [2]
(USV) _ o(RSV) _ (RP)
SO = gV - g (84)

The z component of the slowness vector of the reflected SV wave is found by substituting
the expression for §#v determined by eqn. (84) into the equation for the slowness

surface of an SV wave, eqn. (26), to satisfy
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S,(RSV) = iS‘(ISV) (85)

If the slowness vector of the incident SV wave is pointing in the positive z direction then
the slowness vector of the reflected SV wave is pointing in the negative z direction and

vice versa (see Fig. 4); therefore, the relationship between § #% and S, is

S:(RSV) = _Sx(lSV) (86)

where S and § are the z components of the slowness vectors of the retlected SV
wave and the incident SV wave, respectively. Substituting eqn. (84) into eqn. (82) and
then using eqn. (20) and eqn. (52) provides an expression for S *" dependent on only the
material properties and 6. Substituting eqn. (86) into eqn. (83) and substituting the
resulting expression into eqn. (54) provides an expression for S,*% as a function of the
material properties and 6%.

The relationship between S #» and the y component, S, of the slowness vector of the

initial incident P wave is given by eqn. (40) as
®P) _ ¢
S, =85, (87)

The relationship between S®» and the z component, S, of the slowness vector of the

initial incident P wave is given by eqn. (42) as
sEI=5P (88)

Substituting eqn. (87) into eqn. (52) produces an expression for S ** dependent only on
the material properties and 6, and substituting eqn. (88) into eqn. (52) produces an

expression for S " as a function of 6.
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The components of the unit vector of particle displacement of an SV wave traveling in
a transversely isotropic continuum are given in [5] and are reproduced for the present
case of a wave traveling in the y-z plane in the (x, y, z) coordinate system in eqn. (69)
and eqn. (70) following [2]. The incident SV wave is the same wave as the SV wave
reflected by the initial incident P wave, therefore, the y and z components of the unit
vector of particle displacement of the incident SV wave are equal to the y and z

components, PV and P ¥, of the SV wave reflecied by the incident P wave;

P)('ISV) = P)(,SV) (89)
and
PI(ISV) — P'(SV) (90)
where P and P v are given by eqn. (75) and eqn. (76), respectively.
The coefficient H_, defined by egn. (70), can be evaluated for the reflected SV wave
by substituting eqn. (86) into eqn. (28) to establish

_Q6»)
=Sy

(RSV) _ .
S tan 8V ©n

then, substituting eqn. (82) and eqn. (91) into eqn. (71) to evaluate the H  coefficient

associated with the reflected SV wave, H_®", as

HgSV) — _;_ { C ( S ;sv))2 +D ( 0y )('sv))2 tan-z e(SV) _ [(C ( S iSV))2 +D ( S J(’sv))2 [an-z e(sv))z _

45 1an?0°V(CD - E’)]m} 92)
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Comparing eqn. (92) and eqn. (74) establishes that

RSV) _ ;08YN2yy #
HY=(S"VH,, 93)
The y component of the unit vector of particle displacement is found by substituting

eqns. (82), (91) and (93) into eqn. (69) to be

P ]ERSV) _ [ % ;SV))Z H_'~D(S §SV))2 ran e(SV)] .

2 172
[((Sﬁ”’)’ﬂw' ~D (S tan™ e‘”’) +4E*S* tan™ e‘”’} (94)

Canceling a factor of (§%)¥/(S)? from the right-hand side of eqn. (94) and comparing

the resulting expression to eqn. (75) establishes that
(RSV) _ p(sV) ‘
P = P, (95)

The z component of the unit vector of particle displacement of the reflected SV wave
is found by similar substitutions. Eqns. (84), (89) and (93) are substituted into eqn. (70).
A factor of (§)¥(S %) is canceled from the right-hand side of the subsequent equation
to produce an expression for P ® dependent on only the material properties and 64v, the
angle of incidence of the incident SV wave. Comparing the expression for P®"v thus

generated to eqn. (76) produces the relationship
pPEV=_pE" (96)

The components of the unit vector of particle displacement of a P wave traveling in a
transversely isotropic contiuum are given in [5] and are reproduced for the present case of
a wave traveling in the y-z plane in eqn. (55) and eqn. (56) following [2]. The coefficient
H, defined by eqn. (57), can be evaluated for the reflected P wave by substituting eqn.

(88) into eqn. (28) producing the expression
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—q?
5

tan 6%

$E = 97)

then, substituting egn. (87) and eqn. (97) into eqn. (57) to evaluate the H, coefficient

associated with the reflected P wave, Hp""’), as

2
HE® = %{C(sﬁ”)z +D(5") tan? 0+ [(C S’ +D(S")’ tan™ e‘”) -

45" 1an*0"(CD - Ez)]m} (98)

Comparing eqn. (88) and eqn. (60) establishes that

(RP) _ roUNZyy 7 '
H® =(SH, (99)
The y component of the unit vector of particle displacement of the reflected P wave is

found by substituting eqns. (88), (97) and (99) into eqn. (55)to be
®RPY _| (eUnegy 7 N2, 2ol ]|,
P} _[(s,’)H, ~D(S,”) tan™" 0 ]

2 172
[((s;”)zﬂ,,' -D(S™ tan™ e"’) +EX(S" tan’ 9"’] (100)

Canceling a factor of (S #V)%(SV)* from the right-hand side of eqn. (100) and comparing

the resulting expression to egn. (64) produces the relationship

(RP) _ p()
P& = P (101)
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The z component of the unit vector of particle displacement of the reflected P wave is
found by similar substitutions. Eqns. (88), (97) and (99) are substituted into eqn. (56). A
factor of (S #V)/(S )* is canceled from the right-hand side of the subsequent expression

for P® and the resulting expression is compared to eqn. (63) to establish that

pFI=p0 (102)

The amplitude coefficients of the SV wave and the P wave reflected by the incident
SV wave produced by mode splitting can then be determined as functions of only the
angle of incidence 8% of the incident P wave, that produced the incident SV wave, and
the material properties. The value of S, the y component of the slowness vector of the
incident SV wave, is found as a function of 6 by substituting eqn. (82) into eqn. (52). -
The y components, S ) and S,f'”’), of the slowness vectors of the reflected SV wave and
reflected P wave, respectively, are set equal to S *% according to eqn. (84). The value of
S, the z component of the slowness vector of the incident SV wave is found by
substituting eqn. (83) into eqn. (54), where 64V is defined as a function of 8 by eqn.
(36). The z component, S #, of the slowness vector of the reflected SV wave is set equal
to the negative of S according to eqn. (86). The value of S*, the z component of the
slowness vector of the reflected P wave, is found by substituting eqn. (88) into eqn. (53).
The values of P and P¢™, the y and z components of the unit vector of particle
displacement of the incident SV wave, are found by substituting eqn. (89) into eqn. (75)
and substituting eqn. (90) into eqn. (76), respectively. The coefficient H ' is determined
as a function of 6 by eqn. (74). The y component, P #%, of the unit vector of particle
displacement of the reflected SV wave is found by substituting eqn. (95) into eqn. (75),

and P ®, the z component of the unit vector of particle displacement of the reflected SV
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wave, is found by substituting eqn. (95) into eqn. (76). The y and z components, P #? and
P», of the unit vector of particle displacement of the reflected P wave are found by
substituting eqn. (101) into eqn. (64) and substituting eqn. (102) into egn. (65),
respectively.

The values of the y and z components of the slowness vectors of the incident SV wave
and the reflected SV and P waves and the y and z components of the unit vectors of
particle displacement of the incident SV wave and the reflected SV and P waves,
determined as functions of 6@, can then be substituted into eqn. (80) and eqn. (81) to
determine A®¥sv, the amplitude coefficient of the reflected SV wave, and Asv?, the
amplitude coefficient of the reflected P wave, &s functions of 6. Thus, the amplitude
coefficients of the waves reflected by an SV wave produced by mode splitting are

determined in terms of only the angle of incidence of the P wave that produced the

incident SV wave and the material properties.

The amplitude coefficient of the P wave reflected by an incident SV wave produced
by mode splitting is computed using the material properties of the representative
fiberglass epoxy composite. The amplitude coefficient of the reflected P wave is shown
as a function of the angle of incidence of the initial P wave in Fig. 7. The amplitude
coefficient of the SV wave reflected by an incident SV wave produced by mode splitting
is calculated similarly. The amplitude coefficient of the reflected SV wave is shown as a

function of the angle of incidence of the initial P wave in Fig. 8.
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4. WAVE PATHS

It is assumed that the receiving transducer does not produce an output voltage unless
there exists a series of reflected waves beginning (in this case) with a P wave produced
by the transmitting transducer, and ending with a P wave incident at the receiving
transducer. Let such a series of reflected waves be called a path from the transmitting
transducer to the receiving transducer. Both P waves and SV waves experience mode
splitting when incident on the stress-free plane boundary of a transversely isotropic

continuum [2]; therefore, a path may include both P and SV waves.
A simple path from the transmitting transducer to the receiving transducer may be
represented as
M=P-P-SV-P (103)
Eqn. (103) should be read as follows: M is the path from the transmitting transducer to
the receiving transducer that begins with a P wave produced by the transmitting
transducer that is incident on the lower face of the plate, producing a second P wave that
is, in turn, incident on the upper face of the plate, producing an SV wave that then is

incident on the lower face of the plate, producing a final P wave that is incident at the

receiving transducer. The complexity of this description demonstrates the usefulness of

the path notation.

A more complicated path of demonstrative value is

N=P-P-SV-P-SV-SV.P-P (104)
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Path N is interesting because it includes all four possible types of reflection: P wave
producing P wave, P wave producing SV wave. SV wave producing P wave, and SV
wave producing SV wave. These four types of reflection have amplitude coefficients

APl APV, A6sv-e) and AV,

5. NUMBER OF P AND SV WAVES IN PATH: WAVE INDICES

When the initial P wave of a path from the transmitting tranducer to the receiving
transducer is incident with a known angle of incidence, 6%, on the lower face of the plate
the angles of incidence and reflection for all subsequent P waves and SV waves in the
path are also known. The angle of reflection and the angle of incidence of any P wave in
the path are both equal to 6, and the angle of reflection and the angle of incidence of any '

SV wave in the path are both equal to 8", which is defined as a function of 6 by eqn.
(36).
A path from the transmitting transducer to the receiving transducer is therefore

characterized by the angle 8% with which the initial P wave of the path is incident on the

lower face of the plate. Because the plate is of thickness A, the total distance r, traveled

between reflections by any P wave in the path is (see Fig. 9)

h
Te = cos 89 (105)

The distance b, traveled in the y direction between reflections by the P wave is

b,=r,sin6” (106)

Using eqn. (105) to evaluate 7, in eqn. (106), the distance b, can be written as
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b, = htan 6" (107)

The distance r,, traveled between reflections by any SV wave in the path is (see Fig. 9)

h
T = cos 6%¥ (108)

where v is defined as a function of 6 by eqn. (36). The distance b, traveled in the y

direction between reflections by the SV wave is

b, =r,,sin®"" (109)

Evaluating 7, in eqn. (109) from eqn. (108) allows the distance b,, to be written as

b, = htan6®" (110) -

The transmitting transducer and the receiving transducer are assumed to lie in the
plane x=0 and be separated by a distance L in the y direction; therefore, the total distance
traveled in the path in the y direction must be L. Thus, if there are r P waves in the path

and s SV waves in the path, then the wave indices 7 and s must satisfy the relation

rb,+sb, =L (111)

Substituting egn. (107) and eqn. (110) into eqn. (111) and dividing both sides of the

resulting expression by h allows the relationship between r and s to be written as

L
N == 1
0 p (112)

9}

rtan0"’'+s tan

Since the first wave in the path is produced by the transmitting transducer and every
other wave in the path is produced by a reflection in the path the total number of

reflections in the path must be one less than the total number of waves in the path, r +s.
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Furthermore, the transmitting transducer and the receiving transducer are assumed to be
coupled to the same face of the plate; therefore, the total number of reflections in any
path from the transmitting transducer to the receiving transducer must be an odd number.

Thus, the total number of waves in the path must be an even number, mathematically

expressed as

+
f-i—s—e {123,...} (113)

where € denotes "is a member of".
In order for a path to be of interest, the characteristic angle of the path, 6, the number
of P waves in the path, r, and the number of SV waves in the path, s, must satisfy eqn. '

(112) and eqn. (113).

6. PATH AMPLITUDE COEFFICIENT AND REFLECTION INDEX

When the characteristic angle of a path, 8, is known, the four amplitude coefficients
associated with the path, A?), A®P, AsvsY and AV, can be calculated from eqns. (50),
(51), (80) and (81), respectively. A path amplitude coefficient, A, can then be defined as
the ratio between the amplitudes of the final P wave and the initial P wave of the path, for
a nondispersive and nonattenuating medium. This path amplitude coefficient can be

calculated as a function of 6 according to

A= (A (P—SV))l (A(P-P))M (A (SV—SV'))’l (A(SV-»P))P (1 14)
where [ is the number of P wave to SV wave reflections in the path, m is the number of P
wave to P wave reflections in the path, n is the number of SV wave to SV wave

reflections in the path, and p is the number of SV wave to P wave reflections in the path.
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When the path is written as a list of P’s and SV’s following the notation of eqn. (103), /is
the number of times the character string P-SV occurs in the list, m is the number of times
the character string P-P occurs in the list, n is the number of times the character string
SV-SV occurs in the list, and p is the number of times the character string SV-P occurs in

the list. The path amplitude coefficient for the path defined as N, A(N), is then found

from eqn. (104) and eqn. (114) to be

A(N) = (A(P—SV))Z (A(P—P))z (A(SV—SV))I (A(sv-P))z (1 15)
The characteristic angle, 89, together with the wave indices r and 5 do not uniquely
determine the path amplitude coefficient. More than one path may have the same 6, r
and s; furthermore, paths with the same 6%, r and s may or may not have the same .
amplitude coefficients. The three paths P,, P, and P, defined by
P,=P-SV-P-SV-P-P
P,=P-SV-SV.P-P-P
P,=P-P-P-SV-SV.-P (116)
have the same wave indices, =4 and s=2, and therefore, the same characteristic angle,
calculated from eqn. (112), but are distinct paths. The path amplitude coefficients, A(P,)

and A(P,), of paths P, and P,, respectively, are equal and computed as

AP) = AP;) =A%) AP @A) @SRy (117)

but path P, has a different path amplitude coefficient, A(P,), computed as

AP) =A% AP @Ry (118)
Therefore, another index, a reflection index »n, must be found to uniquely determine the

path amplitude coefficient.
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The path amplitude coefficient of any path is determined by the characteristic angle of
the path and the number of each type of reflection in the path. The last wave in any path
of interest is a P wave; therefore, every SV wave in the path must reflect in the path. The
number of SV wave to SV wave reflections in the path summed with the number of SV
wave to P wave reflections in the path must therefore be equal to the total number of SV
waves in the path, s. If there are n SV wave to SV wave reflections in the path, then there
must be s-n SV wave to P wave reflections in the path. Since the first wave in the path is
a P wave and the last wave in the path is a P wave, the number of P wave to SV wave
reflections in the path must be equal to the number of SV wave to P wave reflections in
the path, s-n. The total number of reflections in the path is equal to r+s-1, one less than
the total number of waves in the path. Since the number of SV wave reflections in the
path is equal to the number of SV waves in the path, s, the number of P wave reflections
in the path must be equal to r-1, one less than the number of P waves in the path.
Therefore, the number of P wave to P wave reflections in the path must be equal to
(r-1)-(s-n). The path amplitude coefficient A, ,, can then be calculated as a function of the
characteristic angle 8, the wave indices r and ¢, equal to the number of P and SV waves
in the path, respectively, and the reflection index n, equal to the number of SV wave to

SV wave reflections in the path, according to
A =(A(P-—SV)):-!I(A(P—P))(r—l)-(:—n)(A(SV—-SV))A (A(SV-P)):—n (119)
rsAa

7. MULTIPLICITY FUNCTION

The number of distinct paths from the transmitting transducer to the receiving
transducer that have characteristic angle 6, wave indices r and s, and reflection index n,

is found by applying elementary counting theory to the lists of the characters P and SV

43



that represent the paths. The lists are partitioned into character strings, where a character
string is an ordered subset of a list, of the form P-SV...SV and character strings of the
single character P. The character strings of the form P-SV...SV are chosen such that the
final SV in the character string is followed by a P in the list. The single character
character strings are chosen such that the P is followed by a second P in the list. Thus,
each character string in a partition begins with a P and ends with the character preceding
the next P in the list. Therefore, if a P is followed by a P, in the list, the first P becomes a
single character character string in the partition; otherwise, a character string consisting
of the first P followed by as many SV’s as occur in the list, until the next P is

encountered, is included in the partition (see Table 3 for examples).

Let the number of character strings, in a list, of the form P-SV ... SV, containing exactly
g+1 SV’s, be represented by k,. Thus, k, is the number of character strings in the path
representing one P wave to SV wave reflection and ¢ SV wave to SV wave reflections.
The number of character strings in a list of the form P-SV is then given by &, since in this
case g=0. Let the number of character strings of the single character P be denoted by £,
The number of SV wave to SV wave reflections is exactly n, so k, must be zero for all ¢

greater than n. Furthermore, the total number of SV wave to SV wave reflections in the

path is equal to
Z kg

q=1

so the multiplicity coefficients k, must satisfy the relation

S kq=n (120)
q=1
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The number of SV waves in the path is equal to

S k(q+1)

9=0

and must be exactly s. Therefore, the k,’s must also satisfy

S k(q+D=s (121)

q=0

In order for the receiving transducer to be excited, the last wave in the path must be a

P wave. Therefore, k£, must be at least one; mathematically, this can be represented by

k,21 (122)

[4

The number of P waves in the path is equal to

k,+ i‘, /cq

q=0

and is exactly r. Therefore, the multiplicity coefficients, £ and &, satisfy

n

k,+ Xk, =r (123)

The number of distinct paths from the transmitting transducer to the receiving
transducer ending in a P wave, that have r P waves, s SV waves, n SV wave to SV wave
reflections, and multiplicity coefficients &, &, ., ..., &, and &, satisfying egns. (120), (121),
(122) and (123), is equal the number of distinct lists with k_ objects of type 1, k,_, objects
of type 2, ..., k, objects of type n+1 and k-1 objects of type n+2. The value of k, is

reduced by one to remove one object of type n+2 from random placement in the list in
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order to place it at the end of the list; guaranteeing the last wave in the path is a P wave.
The number v of the distinct lists with &, objects of type i for each of n+2 types of objects

is given by [7]

3,
V= i=l (124)

m
Ry, My, ooy Ry By

is the multinomial coefficient defined by

where

0 if n,<0 forany i

m
@ g ")z m! .
1My oo By s : if n'.ZO forall i
n!nyt.. .ng_ilng!

where x! represents the factorial expansion of x, (x)(x-1)(x-2)...(2)(1).

The number N of distinct paths is then

k-1 >
1 kO u l’
Substituting eqn. (120) and eqn. (123) into eqn. (126) allows the expression for N to be
simplified to
N= r-t (127)
- _1 ko u l’
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The total number of paths, with r P waves, s SV waves and n SV wave to SV wave

reflections, is found by summing eqn. (127) over all possible values of the multiplicity

coefficients. Using the constraints of eqns. ( 120), (121), (122) and (123) allows the total

number of distinct paths N, to be calculated as

where

n— 2 ki
i=q+1
o =
! q

where Lx] denotes the greatest integer less than x,

ky=n-—2 ki

i=2
ko=s— 2 k(i+1)

i=1

and
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The characteristic angle, 6®, the number of P waves, r, the number of SV waves, s,
and the number of SV wave to SV wave reflections, n, have been held constant
throughout the counting process; therefore, all paths counted by eqn. (128) have the same

path amplitude coefficient.

The total number of distinct paths with wave indices r and s and reflection index n,

N, and the associated path amplitude coefficient, A, are tabulated in Table 1 for all

ran?

paths with ten or fewer transits of the plate for the fiberglass epoxy composite. The
characteristic angle is found from eqn. (112) by fixing » and s and substituting in the
values of L and h, L=10 cm and A=5 cm. The values of A ,, are found from eqn. (119) and
are observed from Table 1 to be either greater than or less than zero for different values

of r, s and n. This is due to the fact that A®s, the ratio of the amplitude of particle
displacement of the SV wave reflected by an incident SV wave to the amplitude of
particle displacement of the incident SV wave, is greater than zero and A®"), A™» and
Asvh are all less than zero (see Figs. 5,6,7 and 8). A negative amplitude coefficient
indicates that the direction of the particle displacement due to the reflected wave, at the
point of reflection, is in the opposite sense of the direction of the particle displacement
due to the incident wave. Whereas, a positive amplitude coefficient indicates that the
direction of the particle displacement due to the reflected wave, at the point of reflection,

is in the same sense as the direction of the particle displacement due to the incident wave.

8. PHASE VELOCITY AND TIME DELAY

The distance r, traveled between reflections by any P wave in a path with
characteristic angle 8¢ is given eqn. in (105). If there are exactly 7 P waves in the path

then the total distance R, traveled by P waves in the path is
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h
R,=r ST (133)

where 4 is the thickness of the plate.

The distance r, traveled between reflections by any SV wave in a path with
characteristic angle 6 is given by eqn. (108). If there are exactly s SV waves in the path

then the total distance R traveled by SV waves in the path is

R =s——h (134)

where 6V is defined as a function of 8 by eqn. (36).

The directionally dependent phase velocity of a P wave traveling in a transversely

isotropic continuum, C,(8), is, for example, see [4]

Coa+Cpy5in20+ Cyycos?0+VG )~
2p
where
G =[(C,, ~ Co)sin* 0+ (C,, — Cyy) c0s* 8] + 4(Cpy + C,p)’ sin® O cos’ 8 (136)

The directionally dependent phase velocity of an SV wave traveling in a transversely

isotropic contivum, C,(8), is, for example, see [4]

(137)

C“ + Cu Si.nze + C33 COS2 9 - .'JE]UZ

Csv(e) = ( 2 p

where G is defined by eqn. (136).
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The time delay ¢,, is defined as the time taken for the final P wave of a path with r P
waves and s SV waves to reach the receiving transducer after the path is initiated by the
transmitting transducer. The time delay is then

;= RP + RSV (138)
O Cp(O7)  Cey(8F)

Thus, the time delay is a function of only the geometry of the transducer arrangement, the

characteristic angle, 6, the wave indices, r and s, and the material properties of the plate.

9. NET PATH AMPLITUDE COEFFICIENT

Eqn. (138) establishes that all paths from the transmitting transducer to the receiving
transducer containing » P waves and s SV waves experience the same time delay in |
reaching the receiving transducer. Furthermore, all paths with r P waves and s SV waves
will be in phase at the receiving transducer. Therfore, the amplitudes of all paths with
wave indices r and s may be added algebraically at the receiving transducer. A net path
amplitude coefficient A, may be defined as the ratio between sum of the amplitudes of
the final P waves of all paths with r P waves and s SV waves and the amplitude of the
initial P wave of any path with wave indices r and s, when the medium through which the

waves are traveling is nondispersive and nonattenuating.

The net path amplitude coefficient is found by summing the product N,,, A, ,, over all
possible values of the reflection index n, where N is the total number of paths with r P
waves, s SV waves and n SV wave to SV wave reflections and is given by eqn. (128);
and A, is the path amplitude coefficient of any path with wave indices r and s and

reflection index n and is given by eqn. (119). The bounds on n are found by considering
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the exponents of the amplitude coefficients in eqn. (119). Clearly, if s is equal to zero
there can be no SV wave to SV wave reflections, and for all values of s greater than zero

there must be at least one P wave to SV wave reflection. Therefore, n must satisfy the

relationship

{0} if 5s=0
ne (139)
{0,1,....s -1} if s>0

where € denotes "is a member of". The lower bound on n is computed by noting that the

exponents of A®» and AS¥s must be nonnegative for all values of n. The lower bound on

nis then
n2max(s+1-r,0) (140) -

The net path amplitude coefficient is then

@A"Y i s=0
A = (141)

s--1
S  N,A,, if §>0

A=max(s+1-r0)
The net path amplitude coefficient A, = (A®?)" corresponds to the path P-P-P...P

containing (r-1) P wave to P wave reflections and no SV waves.

The net path amplitude coefficient A | is shown in Table 2 for all paths with ten or
fewer transits of the plate for the fiberglass epoxy composite. The value of A | is found by
summing the product A | N, , over all values of n. The maximum and minimum values of

n are found from eqn (139) and eqn. (140) and the values of A _, and N, are taken from

Table 1.
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10. ASSUMPTIONS ON TRANSDUCERS

The transmitting transducer and the receiving transducer are assumed to be longitudi-
nal transducers that transform an electrical voltage into a uniform longitudinal stress or a
uniform longitudinal stress into an electrical voltage. The following approach parallels
that of [8].

If an input voltage V, of amplitude V and frequency  is applied according to

V,=Vexp{-iwt} (142)
where i=v-1 and t denotes time, the stress T, that is introduced into the medium at the
transducer-medium interface by the transmitting transducer is

T;(1) = F(0)V exp{-i(wr +¢,)} (143)
where F (w) is the frequency dependent transduction ratio for the transmitting transducer
in transforming a voltage into a stress and ¢, is a phase angle. In eqn. (142) and eqn.

(143) the harmonic character of the signals is expressed in complex notation, but only the

real parts of these and subsequent equations should be considered. The amplitude T of the

applied stress is then

T =F (@)V (144)
Similarly, if a stress wave producing a stress component T, of amplitude 7" and

frequency o that impinges on the receiving transducer is defined as

1,/(1) =T exp{-iwt} (145)

then the output voltage V, from the receiving transducer is

V,(t) = F(w)T exp{—i(wt +¢,)} (146)
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where F,() is the frequency dependent transduction ratio for the receiving transducer in

transforming a shear stress to a voltage, and ¢, is a phase angle. Thus, the amplitude V" of

the output electrical voltage is

V' =F(w)T’ (147)
The characteristics of F,(®w) and F,(@) are unknown except that the product F,(w)F (w) is

dimensionless.

11. DIRECTIVITY FUNCTIONS

The directivity functions of the stresses associated with P and SV waves traveling in
semi-infinite transversely isotropic continua are evaluated from the far-field asymptotic
solutions of the displacement components produced by a harmonic point load imbedded |
in an infinite body in [2]. The directivity functions DX of the T, stress associated with P
waves whose slowness vectors are confined to the y-z plane and are produced by a point
load located on the plane boundary of a semi-infinite body and acting in the K direction

in the (x, y, z) coordinate system are reproduced.

Define a coefficient A_according to

2 2 2
_HSI+H S +HS; (148)

" |k, |
where | | denotes the "magnitude of”

K,=X[HSXHSS, -HSS,~HSSH+
QH.S,-HS,HS,S,-HSS -HSS, -HS.S)I (149)

and
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Cu ., C C
H =[Jis}+—11(s3+sf)— 1][—ﬁ(sj+sj)+—c—?3s3— 1}—
P P p p

Cu+CpY
(—-———“p ”) SHSI+SD) (150)

¥ denotes the sum with respect to cyclic permutation of §,, §, and S; "," denotes
differentiation with respect to the succeeding variable carried out assuming S,, S, and S,
are independent variables; C,,, C,,, C,, and C,, are elastic constants of the material; and p
is the density of the material.

The directivity function D" ® of the t_ shear stress associated with a P wave whose
slowness vector is confined to the plane x=0 and that is produced by a harmonic point
load located on the plane boundary of an infinite half-space and acting in the y direction

in the (x, y, z) coordinate system is

0,5.,5)0C,S, (—Cis 2 Cas s

D’yt(P):)\m( ,Sy,sx) 44 [ 133,2+—3-3-S,2—1] (151)
2n p P

where (0,5,°,5,") is the point on the slowness surface of a P wave where the normal to the

slowness surface is parallel to the line connecting the point load to the point at which the

directivity function is to be evaluated, @ denotes the radian frequency of the harmonic

point load and A, is evaluated at (0,5,.S,"). The directivity function D*.® of the T, normal

stress is

A0S SHYDS. (Ci3Cas o2 C33Cas o
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The directivity function DZ  of the T, shear stress associated with a P wave produced

by a harmonic point load acting in the z direction in the (x, y, z) coordinate system is

DZ(P) _ )-A(O»S;,Sz‘)mcus; 91_15‘2 + 93:2‘1_-_("25:‘2 -1 (153)
» 2n p 7 P

Similarly, the directivity function Dz ® of the t, normal stress is

(154)

2z 2ﬂ p Sy +_p—sr _C33

z®Py _ X,,((),S;,S:)Q)S;(CHCB - C13C44 - C123 2 C323 .2 ]

The directivity functions Df® of the stresses associated with a P wave whose
slowness surface is confined to the plane x=0 and that is produced by a harmonic point
load can be evaluated at a point M in a semi-infinite body by finding the point (0,5 °.5,") '
on the slowness surface of a P wave where the normal to the slowness surface is parallel

to the line OM connecting the point load to the point M (see Fig. 10). The slope m of the

line OM is found from Fig. 10 to be

A 1
Yy __ (155)

The normal to the slowness surface of a P wave is found at any point in the y-z plane
by setting the x component of the slowness vector, S, equal to zero and differentiating
the equation for the slowness surface, eqn. (19), with respect to S,, the z component of the

slowness vector. Solving the subsequent equation for the slope, -dS /dS,, of the normal

yields
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_d_§l_ o2 203
— =185, +((3CD - 2E7)55,+ D51

[C?S*+(6CD —4E?)S?S} +D’S]] "2}
{A S, +[C?S) +(3CD - 2E*)S S]] %
[C?S+(6CD - 4EYS]S! +Dzs;‘1“”} (156)

where the conventions of eqn. (30) have been used. Setting eqn. (155) cquél to eqn. (156)
establishes the constraint on S and S,°, the point on the slowness surface where the

normal is parallel to the line connecting the transmitting transducer to the point M,

1

— = {BS +[(3CD —2E)SS;+D s,"]x

172
[ CS’* +(6CD -4E )s'zs"wzs,“T }+
{AS,'+[ C?s.’ +(3CD -2E7S,S ‘2}

172
[ C?S) +(6CD —4E )S'ZS'2+DZS,'4I } (157)

The point (0,5,°,S,") is then found by setting S, equal to zero in eqn. (19) and solving eqn.

(19) and eqn. (157) simultaneously.
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12. STRESS FIELD RADIATED BY TRANSMITTING TRANSDUCER

If there were no bottom boundary to the plate and the stress waves were propogating
in an infinite half-space, the path from the transmitting transducer to the receiving
transducer with characteristic angle 8, ,® consisting of 2m P waves and no SV waves
would travel to a point M,_,, in a time 1, ,, traveling a distance R,,, (see Fig. 11). The

amplitude of the hypothetical stress T, at the point M, is T, and is defined as [2]

K(P)
T, =T+ Dy om p{—akm} (158)

where T is the magnitude of the longitudinal stress generated by the transmitting
transducer in the z direction, D%, is the value of the appropriate directivity function -
evaluated for the point M, and o is the P wave attenuation constant of the medium. The
P wave path, however, does not propagate in an infinite half-space, but instead

experiences 2m-1 reflections. The amplitude 7,,,, , of the stress at the receiving transducer

is thus obtained by modifying eqn. (158) as

TDK(P) (P P))Zm 1
T i on exp{—aR } (159)

°2m.0

where A,_7# is the P wave to P wave reflection coefficient, given by eqn. (51), evaluated
for a characteristic angle of 8,,_,".
The amplitude V,,, , of the output voltage from the receiving transducer is obtained

from eqn. (147) and eqn. (159) and is

F()TDXO@Ag Py
- exp{—oR, (160)

V =
?2m0 szm
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Substituting eqn. (144) into eqn. (160) yields

(161)

o2m,0 R

F@)F@VDXO@ME ™!
expy—oR,.

P2m

where V is the amplitude of the input voltage. Introducing a possible electrical signal

amplification factor, K, eqn. (161) can be written as

KFl(m)Fz(w)VDf(Q AP~ ”’)”" !
exp—OR,, (162)

PZM

°2m.0

The amplitude T, , of the stress at the receiving transducer associated with a path with
characteristic angle 6, consisting of r P waves and s SV waves can be understood
qualitatively by visualizing the waves as traveling in a hypothetical multi-layered ‘
half-space [8] (see Fig. 12). It is assumed that each layer is identical to the original plate
and that the layers are bonded together in a manner such that an incident wave in one
layer produces no reflected waves, but produces transmitted P and SV waves in the next
layer and that the transmission coefficients are the same as the reflection coefficients in
the original plate. The amplitude of the stress is then set equal to T, the value of the

stress amplitude at point M, in the hypothetical half-space. The value of T, ™ is then

TD§ A
T =% "” e p{{ak +BR,, )} (163)

where T is the magnitude of the stress generated by the transmitting transducer in the z
direction, Df,, is an equivalent directivity function for a path with wave indices r and s,

A_ is the path amplitude coefficient, given by eqn. (119), &, is the total distance traveled

s
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by P waves in the path, R,,, is the total distance traveled by SV waves in the path, a is the

P wave attenuation constant of the medium and B is the SV wave attenuation constant of

the medium.

If (A, ##) is much greater than A forall s #0 and the assumptions

=K K®)

D,-j~Dij (164)
and

B (165)

are then made, it is apparent that the stresses at the receiving transducer associated with
paths containing P and SV waves are much smaller than the stresses at the receiving

transducer associated with paths containing only P waves. Therefore, in the input-output
characterization of fiber composites which may be modeled as transversely isotropic
contimuum plates, the effects of mode splitting may be neglected. Only those paths from
the transmitting transducer to the receiving transducer consisting of 2m P waves and no

SV waves will produce significant stresses at the receiving transducer when eqn. (164)

and eqn. (165) are satisfied.

13. OUTPUT VOLTAGE DUE TO TONE BURST

Assume the input voltage V, to the transmitting transducer is a periodic function of
time, of center frequency @ and duration f. Mathematically the input voltage can be
expressed as the sum of two periodic functions of frequency ® that are 180° out of phase,
one beginning at time =0 and one beginning at time r=t. The input voltage is then given

by
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V,=Vexp{iot} U(t)-Vexp{in} Ut -1) (166)
where V is the amplitude of the input voltage, i=v-1, and U(x) is the unit step function

defined as

0 if x<0
Ux) = (167)
1 if x20

The periodic nature of the signal in eqn. (166) and subsequent equations is expressed in
complex notation, but only the real part of the signal is to be considered.

The voltage output V, at the receiving transducer is found by considering the two

terms on the right-hand side of eqn. (166) independently and superposing the voltage

output associated with each input signal. Consider the input voltage V; given by the first '

term on the right-hand side of eqn. (166)
V. =Vexp{iot} U(t) (168)
The stress waves produced by a transmitting transducer with input voltage V" will have a
periodic character with respect to time. Therefore, the amplitude of the output voltage
associated with each wave path will also be periodic in time and the total output voltage
V/ must be found by the superposition of the contributions of each wave path.
Only those paths with 2m P waves and no SV waves will be considered. Eqn. (112)

can then be rewritten as

L
2mtan6(z’2,=-’: (169)
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where 0, @ is the characteristic angle of the path, L is the separation of the transducers

and A is the thickness of the plate. Eqn. (169) indicates that the characteristic angle of the

plate must satisfy

L
& —
03m arctan[2 J (170)

All the trignometric functions of 8, ® can be evaluated from eqn. (170) (see Fig. 13).

A P wave path with 2m P waves will be in phase at the receiving transducer with a P
wave traveling in a semi-infinite half-space to a point M, (see Fig. 14). The T, stress
associated with a plane progressive P wave is given by eqn. (3) and can be calculated at

point M_ as

%, =T, cxp{i[m (S,ML ~S, 2mh - tﬂ} a71)

where T, is the amplitude of the stress and S,_ and S, are the y and z components of the

slowness vector of the P wave, respectively. The stress 1, at the receiving transducer is

then

5= T.ocwof 0[5, -5,2m4 1) a7)

where 7,  is the amplitude of the stress and is given by eqn. (159). The output voltage V,

at the receiving transducer is found by substituting eqn. (172) into eqn. (146) to be

V, ‘(1) = Fy(w)T, cxp{i[u) (SML ~S, 2mh - :) + q)}} (173)
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where ¢ is a phase angle. The output voltage is then calculated using eqn. (144) and eqn.

(159) and including a pessible electrical signal amplification factor X as

, KF(@)F@VD}, (A% """

om RPZM

exp{i[m (S,ML =S,,2nh - t) + ¢]} (174)

where V is the amplitude of the input voltage, DX, is the appropriate directivity

exp{—aRP%} X

function, A, @ is the P wave to P wave reflection coefficient and R,,, is the total distance
traveled by the wave path. The total output voltage V,” is found by summing eqn. (174)

over all m and retarding each contribution by the delay time z,, to be

= KF(@F@VD5 (AL )"
Vv, =,.Z=1 R, expy—aR, X
cxp{i[m(SymL ~S, 2mh - :)+¢]} Ul -1,.) (175)

where t,_is given by eqn. (138) with s=0.

The output voltage V,” associated with the input voltage characterized by the second

term on the right-hand side of eqn. (166) is found similarly to be

= ~KF(@)F,@VDy, (AR
V,”= m2=‘,1 R exp{—oR,, X
exp{i[m (ShL ~S, 2mh - t) + ¢]} Ut -t +1,,,)) (176)

where 1. is the duration of the input signal.
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The output voltage V, associated with the input voltage V, determined by eqn. (166) is

found by adding eqn. (175) and eqn. (176) to be

= DAL
Y 2m
V, = KF,(0)F,(0)V MZ;,[ R exp{—aRPm} X

P2m

exp{i [co (S,ML - S,m2mh - t) + ¢]} {U@—-1,)-UG-(¢+t,,)} (177)

where DX (), is given by eqn. (151), (152), (153) or (154), A, ™" is given by eqn. (51),
R,,. is given by eqn. (133), s, is given by eqn. (31), S, is given by eqn. (28), 1,_is given
by eqn. (138), ¢, is the duration of the input signal and the characteristic angle 6, is
given by eqn. (170). The sum in egn. (177) does not include the effects of mode splitting,
therefore the predicted output voltage V, will not exactly equal the true output voltage.
However, the effects of mode splitting have been shown to be negligible for the initial

wave paths. Therefore, the initial predicted output voltage should correspond closely to

experimental data.

14. SUMMARY OF IMPORTANT RESULTS

The angle of reflection of an SV wave reflected by an incident P wave is determined
as a function of the angle of incidence of the incident P wave by eqn. (36).

The angle of reflection of a P wave reflected by an SV wave produced by mode
splitting is found to be equal to the angle of incidence of the incident P wave that
produced the incident SV wave, eqn. (45).

The amplitude coefficients of the P and SV waves reflected by an incident P wave,

Ar-» and A, are found as functions of the angle of incidence of the incident P wave by
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eqn. (50) and eqn. (51), respectively.

The amplitude coefficients of the P and SV waves reflected by an incident SV wave
produced by mode splitting, AP and A, are found as functions of the angle of
incidence of the incident P wave that produced the incident SV wave by eqn. (81) and
eqn. (80), respectively.

A path amplitude coefficient, A, is defined for any path from the transmitting
transducer to the receiving transducer in terms of wave indices r and s, defined as the
number of P waves in the path and the number of SV waves in the path, respectively, and
a reflection index n, defined as the number of SV wave to SV wave reflections in the

path, eqn. (114).

The number of paths having the same wave and reflection indices, N, , are counted in
accordance with eqn. (127).

A net path amplitude coefficient, A , equal to the product A N summed over all
values of the reflection index for a given pair of wave indices is computed in eqn. (141).
The product A N, . can be physically interpreted as the sum of the amplitudes of all
paths having wave indices r and s and reflection index n.

The magnitude of the longitudinal stress at a point in a hypothetical multilayered
half-space due to all paths having the same wave indices is determined by eqn. (163) for
all time after the arrival of the first path having those wave indices.

An output voltage from the receiving transducer is determined as a function of time by

eqn. (177).
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CONCLUSION AND DISCUSSION

The input-output characterization of certain fiber composite plates can be studied
using a transversely isotropic continuum model wh‘en the wavelengths under considera-
tion are long compared to the mean fiber diameter. For wavelengths close to, or less than,
the mean fiber diameter, a continuum plate model is no longer appropriate and the

inhomogenaities of the composite must be considered.

In the analysis of a transversely isotropic continuum plate an incident P wave is found
to reflect a P wave and an SV wave during each reflection at the top or bottom face of the
plate. The angle of reflection of the reflected P wave is equal to the angle of incidence of
the incident P wave and the angle of reflection of the reflected SV wave is uniquely
determined by the angle of incidence of the incident P wave. When the reflected SV wave
is in turn incident on the opposite face of the plate, a P wave and an SV wave are again
reflected. This second reflected SV wave is reflected with an angle of reflection equal to
the angle of incidence of the incident SV wave and this second reflected P wave is
reflected with an angle of reflection equal to the angle of incidence of the original
incident P wave. Thus, tracing a series of reflected P and SV waves through the medium
is simplified because all the reflected P waves are reflected with angle of reflection equal
to the angle of incidence of the initial P wave and all reflected SV waves are reflected
with angle of reflection equal to the angle of reflection of the initial reflected SV wave.
This simple relationship exists because the isotropic plane of the plate is parallel to the
top and bottom faces of the plate. If this special geometry is not present a more
complicated analysis considering each reflection individually is needed to trace a series

of reflected waves through the plate.
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A path from the transmitting transducer to the receiving transducer may contain both P
and SV waves (no SH waves are produced during the reflections). The path amplitude
coefficient is found from the product of the reflection coefficients encountered at each
reflection. Because more than one path may have the same number of P and SV waves, a
net path amplitude coefficient is found by summing the path amplitude coefficients of all
paths having the same total combination of P waves and SV waves. Table 2 shows the
magnitudes of the net path amplitude coefficients associated with paths containing no SV
waves to be an order of magnitude or more larger than the magnitudes of the net path

amplitude coefficients associated with paths containing SV waves.

Examining Figs. 5, 6, 7 and 8 reveals that the magnitudes of the reflection coefficients
for P wave to P wave and SV wave to SV wave reflections are generally close to one, |
especially for the small angles of incidence common for paths from the transmitting
transducer to the receiving transducer. On the other hand, the magnitudes of the reflection
coefficients for P wave to SV wave and SV wave to P wave reflections are much smaller
than one for small angles of incidence. Therefore, paths containing both P waves and SV
waves, which thus must contain at least one P wave to SV wave reflection and one SV
wave to P wave reflection in order to start and end with P waves, should be expected to
have path amplitude coefficients with magnitudes much less than the magnitudes of the
path amplitude coefficients associated with paths containing no SV waves. Table 1
reveals that for those values of the wave indices and reflection index for which the
mutiplicity function is large the magnitude of the path amplitude coefficients tend to be
much much less than one. Therefore, the increased multiplicity of paths containing both P

waves and SV waves does not cause a significant increase in the magnitude of the net
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path amplitude coefficient.

The magnitude of the net path amplitude coefficients associated with paths containing
P and SV waves can be expected to be much smaller than the magnitude of the path
amplitude coefficients associated with paths containing only P waves. Therefore, the
input-output characterization of a transversely isotropic continuum plate by P waves can
be carried out neglecting the effects of mode splitting and tracing only those paths

containing no SV waves.

This study enhances the theoretical understanding of the nondestructive evaluation
(NDE) of transversely isotropic media such as certain fiber composites. It also provides
impetus for further study on the input-output characterization of transversely isotropic

media by P waves by simplifying the analysis.

67



REFERENCES

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

J.D. Achenbach, "A Theory of Elasticity with
Microstructures for Directionally Reinforced
Composites," OSIM - Courses and Lectures, No. 167
(International Center for Mechanical Sciences),
Springer-Verlag, N.Y., 1965.

J.H. Williams, Jr. and P. Liao, "Acousto-Ultrasonic
Input-Output of Unidirectional Fiber Composite
Plate by SH Waves," NASA Contractor Report 4087,
August 1987,

E.G. Henneke II, "Reflection-Refraction of a
Stress Wave at a Plane Boundary Between
Anisotropic Media," Journal of Acoustical Society
of America, Vol. 51 Part 2, April 1972, pp.
210-217.

E.R.C. Marques and J.H. Williams, Jr. "Stress
Waves in Transversely Isotropic Media, The
Homogeneous Problem,"” NASA Contractor Report 3977,
May 1986.

M.J.P. Musgrave, "On the Propogation of Elastic
Waves in Aeolotropic Media, "Proceedings of the
Royal Society of London, Series A, Vol. 226, 1954,
pp. 339-355.

R.D. Kriz and H.M. Ledbetter, "Elastic
Representation Surfaces of Unidirectional
Graphite/Epoxy Composites,” National Bureau of
Standards, 2nd USA/Japan Conference in Composite
Materials, NASA Langley Research Center, Hampton,
Virginia, 1984.

Kenneth P. Bogart, Introductory Combinatorics,
Pitman Publishing, Marshfield, MA, 1983,

J.H. Williams, Jr., H. Karagulle and S.S. Lee,
"Ultrasonic Input-Output for Transmitting and
Receiving Longitudinal Transducers Coupled to Same
Face of Isotropic Elastic Plate," Materials
Evaluation, Vol. 40, May 1982, pp. 655-662.

68



Table 1 Characteristic angle oAHv~ number of P waves r,

number of SV waves s, reflection index n, number of
distinct paths N and path amplitude
r,s,n

coefficient »H s n are shown for all paths with 10
’ r

or fewer transits of plate.

(1)
e r s n N A
(degrees) r.s.n r.s.n
45.0 2 0 0 1 -0.907
37.5 2 2 1 1 0.106
31.5 2 4 3 1 0.069
27.5 2 6 5 1 0.049
24.0 2 8 7 1 0.037
30.0 3 1 0 2 ~-0.066
27.5 3 3 2 2 -0.050 .
3 3 1 2 0.003
23.5 3 5 4 2 -0.036
3 5 3 4 0.001
20.5 3 7 6 2 -0.027
3 7 5 6 0.001
26.5 4 0 0 1 -0.924
23.5 4 2 1 3 0.038
4 2 0 3 -0.001
21.5 4 4 3 3 0.031
4 4 2 9 -0.001
4 4 1 3 0.000
18.5 4 6 5 3 0.022
4 ) 4 15 -0.001
4 6 3 10 0.000
20.5 5 1 0 1 -0.023
18.5 5 3 2 4 -0.023
5 3 1 2 0.001
5 3 0 4 0.000
17.0 5 5 4 4 -0.019
5 5 3 24 0.001
5 5 2 24 0.000
5 5 1 4 0.000
s lﬁ!\ i =

(Table 1 Continued)
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Table 1

g (1)

18.5
17.0

15.5

(degrees)

(Continued)

~N NN [=2 3K )Mo W= s e\ We 0 ]

QO 0

10

wwwrH

OO

Bk BN O

QO OMFHMNWOKFHO

OO

-0.941
0.019
0.000
0.016
0.000
0.000
0.000

-0.016
-0.013
0.000
0.000

-0.952
0.011
0.000

-0.009

-0.956
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Table 2

Net path amplitude coefficient A

as functi
r,s ction of

number of P waves r and number of SV waves s for

all paths with 10 or fewer transits of plate.

— S: 0 1 2 k! 4 5 6 7 8
r »ﬁsm
2 -0.907 0.106 0.069 0.049 0.037
3 -0.132 -0.C94 -0.068 -0.048
4 -0.924 0.111 0.084 0.051
5 -0.023 -0.090 -0.052
6 -0.941 0.095 0.080
7 -0.096 -0.078
8 -0.952 0.077
9 -0.072
10 -0.956
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Table 3 Partitions, wave indices, reflection index and

multiplicity coefficients for sample wave paths.

Wave Path Partition

PPSVSVPSVPP

‘oo 'gdo oy
(47]
<

PSVSVSVPPPP

PP SVPSVPSVP

g U O
nnn
<< <

P SVPPSVSVPP

o'y oo

P
P
P
P
P

12



Direction of slowness vector
of reflected SV wave

Direction of slowness
vector of incident P wave

Direction of
(P) slowness vector
e of reflected P
wave

(sv

6 (1)

(1)

Fig. 1 Angle of incidence of incident P wave & "%
angle of reflection of reflected P wave
Q(P) and angle of reflection of reflected

(sV)

SV wave 6 shown in y-z plane of (x,y,2)

coordinate system.
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gl T P wave 7

Component of Slowness Vector in z direction, Sz (s/km)

Component of Slowness Vector in y direction Sy (s/km)

Fig. 2 First quadrant of slowness surfaces of P wave and SV wave

in fiberglass epoxy composite in y-z plane.
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Fig. 4 Incident P wave produces SV wave which
experiences mode splitting at opposite

face of plate.
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Transmitting , Receiving
Transducer l‘ * O(SV} Transducer
P
/
y /! P
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b

P
Fig. 9 Wave path P.SV.SV...P-SV.P from transmitting

transducer to receiving transducer containing

both P and SV waves.
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Point Load

Fig. 10 P wave traveling to point M in semi-infinite

body .
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Fig.

11

Transmitting

Transducer’<\\

(I)
2m, 0

p wave traveling in hypothetical half-space

travels distance R to point M .
?om 2m, 0
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sv

SV

(b)

(a) wave path P-SV-SV-P-SV-P

Fig. 12 Schematics of
wave path

in continuum plate and (b)
pP-SV-SV-P-SV-P visualized in hypothetical

multilayered half-space.
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Fig.

2mh

13

Right triangle from which trigonometric

functions of eéé’ are derived.
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Transmitting

Transducer l( )'
y
b
2mh
M
n
Fig. 14 P wave traveling in hypothetical half-space

to point Mn’ making angle eéé) with respect

to z direction.
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