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Abstract

This paper presents buckling and postbuckling re-
sults for simply supported aluminum plates loaded
in compression. Buckling results have been plot-
ted to show the effects of thickness on the buckling
stress coefficient. Buckling results are given for var-
ious length-to-width ratios. Postbuckling results for
plates with transverse shearing flexibility are com-
pared with results from classical theory for various
width-to-thickness ratios. The plates are considered
to be long with side edges simply supported and
free of stress. The plates are subjected to a lon-
gitudinal compressive end-shortening displacement.
Characteristic curves indicating the average longi-
tudinal direct stress resultant as a function of the
applied displacements are calculated based on four
different theories: classical Von Karman theory, first-
order shear deformation theory, higher order shear
deformation theory, and three-dimensional flexibil-
ity theory. Present results indicate that the three-
dimensional flexibility theory gives the lowest buck-
ling loads and. therefore, the most accurate results.
The higher order shear deformation theory has fewer
unknowns than the three-dimensional flexibility the-
ory but is not as accurate. The figures presented
show that for postbuckling small differences occur
in the average longitudinal direct stress resultant, in
the maximum values of the transverse stress resul-
tant and shear stress resultant, and in the maximum
transverse displacements calculated when the effects
of transverse shear flexibility are included in the var-
ious theories.

Introduction

The increasing interest in minimum weight de-
signs for aeronautical and acrospace structures has
generated substantial interest in the analysis of the
elastic stability and postbuckling behavior of struc-
tures subjected to compressive in-plane loads. For
thin homogeneous plates, classical plate theory pre-
dicts deformations and in-plane stresses that are
comparable to those of three-dimensional elasticity.
Transverse stresses in thin plates are generally small
compared to in-plane stresses, and thus both clas-
sical theory and first-order shear deformation the-
ory give satisfactory results. However, since both
theorics are two-dimensional, they are not accurate
enough to predict transverse stresses directly. Accu-
rate nonlinear theories are required for the analysis
of thick plates, in which these transverse stresses be-
come more significant.

It is often sufficient to use an accurate non-
linear two-dimensional theory to solve some three-
dimensional nonlinear elasticity problems. One such

theory has been derived in reference 1 for laminated
and thick plates with three-dimensional flexibility ef-
fects. 'This theory can predict directly the trans-
verse stresses as well as the in-plane stresses by using
trigonometric terms in addition to the usual constant
and linear terms representing through-the-thickness
variation of the displacements. However, this theory
cannot satisfy the surface boundary conditions of a
plate.

The purpose of the present paper is to present the
results of an investigation of the buckling and post-
buckling response of isotropic plates loaded in com-
pression using classical nonlinear Von Karman theory
and three nonlinear transverse shearing theories and
to compare results for these four theories for differ-
ent values of plate width-to-thickness ratios in the
postbuckling range. The nonlinear transverse shear-
ing theories are first-order shear deformation theory
(refs. 2 and 3), higher order shear deformation the-
ory (ref. 4), and three-dimensional flexibility theory
(ref. 1. The present derivation of the higher or-
der shear deformation theory has the advantage of
having nonlinear through-the-thickness terms with-
out contributing additional unknowns to first-order
shear ceformation theory. In addition, it satisfies the
surfacc boundary conditions of the plate. The es-
sential difference between the theories is the use of
cubic or trigonometric terms in addition to the con-
stant and linear terms that represent the through-
the-thickness variation of the in-plane displacements.
The present paper presents the derivation of the non-
lincar plate equations for buckling of plates loaded
in axinl compression for both higher order theories.
This paper also presents postbuckling results for the
average longitudinal compressive direct stress resul-
tant and maximum stress resultants as a function
of the applied displacements, and maximum out-of-
plane displacement as a function of the applied dis-
placement. The plates considered in this paper are
long with side edges simply supported, free of nor-
mal stress, and free to slide along the edges to give
constant strain. Results of the four theories are for
aluminum plates loaded in uniaxial compressive end
shortening.

Symbols

A, A2, Ao, A3, plate extensional

Ay, A55, Age stiffnesses

a,b,h dimension of rectangular

plate parallel to X, Y,
and Z axis, respectively

stiffnesses used in
Hooke’s law

Ch1.("12,Co2,C33,
Cy4. Cs5,Ces



D11, Dy, Das, Dgg plate bending stiffnesses

E Young's modulus

Hyy, Iyq, 19, Jog, plate stiffness components

Jos, K12, K22, Kgg

Ly Ly, L; Ly, L;:, moment resultants in the
Loy, My, My, M, plate

ordinary differential equations and variationally con-
sistent boundary conditions, which are solved by a
computer program based on Newton’s method.

The displacements considered for each theory arc

Classical Kirchhoff theory:

u(e,y,2) = ulz.y) — S (z,9);
v(z,y, z) = vz, y) - w,, (x,y)% (1)
w(z,y,2) = w'(z,y)
First-order shear deformation theory:
u(e,y,2) = u(z.y) + u(z. )
v(z,y,z) = v(x,y) + vz, y)% (2)

w(z,y,2) = w’(z,y)

Higher order shear deformation theory:

N Ny, Ngy in-plane stress resultants
in the plate

Nyz, Ny, transverse stress resul-
tants in the plate

Ny av average axial stress
resultant

Nier value of N; 4y at buckling

Q.Qy functions of y defined in
appendix

U applied end-shortening

u, v, w displacement in , y, and
z direction, respectively

T plate coordinates

81, o functions of x and y
defined in the appendix

€y €y, €2, strains in the plate

Yyzs Yz Yoy

A buckle half-wavelength

I Poisson’s ratio

Oz, 0y,0z, stresses in the plate

Tyzs Trz, Try

Theory

A brief outline of the derivation of the four differ-
ent theories compared in this paper is presented in
this section. The derivation of equations using clas-
sical Kirchhoff theory has been presented in refer-
ence 5. The derivation of equations using first-order
shear deformation theory has been presented in refer-
ences 2 and 3. The two higher order theories are not
given in detail elsewhere, so they are presented in the
appendix. The general approach used in deriving the
cquations to be solved is the same as in reference 6.
First, the displacement functions for each theory are
identified. The nonlinear strain-displacement rela-
tions and the assumption that the displacements are
sinusoidally periodic along the length of the infinitely
long plate are incorporated. Stress-strain relations
are defined for a “specially orthotropic” plate, and
application of the principle of virtual work leads to

2

u(.y.2) = u’(z,y) + {uﬂu.y) -2 {“a(i‘y’

3
cwsen] ()]

p=ad IR

w(r,y,z) = w"(r,y) J

Three-dimensional flexibility theory

u(r,y, z) = u’(x,y) + u’ (i, y)% +u®(z,y)sin %

v(x,y, 2) = vz, y) + 1,r”(x,y)% + v*(x,y) sin % (4)
w(z,y,z) = w’(x.y) + w'(x,y) cos %

Both the classical Kirchhoff and the first-order shear
deformation theories have in-plane deformations u
and v which are linear in 2. Classical theory, however,
has the additional assumption that there is zero
transverse shearing (v;: = yy. = 0), thus eliminating
u® and v® in favor of derivatives of w?°.



Higher order shear deformation theory considers
in-plane deformations u and v which are cubic in z.
As explained in reference 6, the squared-in-z term
vanishes and the cubic term does not introduce any
new variables beyond those that appear in first-order
shear deformation theory if the boundary conditions
are satisfied at z = +h/2. The three-dimensional
flexibility theory considers trigonometric terms in
u, v, and w beyond the expressions considered for the
deformations of first-order shear deformation theory.
In this paper, the superscript o corresponds to the
constant-in-z terms, the superscript a corresponds to
the algebraic-in-z terms, and the superscripts s and
¢ correspond to the trigonometric-in-z terms.

To account for the applied displacement U

w(z,y) = ~US +Uj(r.)
(5)
v(z,y) = viy) + V(. y)

where numbered subscripts for loads, displacements,
and curvatures indicate a y-depcndence only. To
satisfy the assumption that the displacements are
sinusoidally periodic along the length

All the other u coefficients can be expressed as func-
tions of y multiplied by cos mz/A, where X is the
half-wavelength of the buckled plate. All the other
v and w coefficients can be expressed as functions of
y multiplied by sin 7mz/A. The strain-displacement
relations used are

| )
€r = Uyr +§w71
1 2
Gy = ’U,y +§w,y
€z = W,z \ (7)

Yyz = Vsz +Wyy

Yz = Uz +w’.’l}

Yoy = Uy TV +W,p Wiy

Hooke's law relating stresses to strains for a “spe-
cially orthotropic” material is used here

ar (Cyy G2 0 0 0 07 |er
ay Cig Coo 0 0 {) 0 €y
o 0 0 Cy 0 0o 0 € (8)
Ty 6 0 0 Cy 0O 0 gz
Tr 6 0 0 0 Gy 0 Vrz
oy Lo o 0o 0 0 GCe [y

Ordinary differential equations and variationally
consistent boundary conditions are derived using the
principle of virtual work, and the equations are solved
by Newton's method in a computer program dis-
cussed in reference 7. The principle of virtual work
applicd to the internal forces of a three-dimensional
body considered here is

a b phy2
N / / / (orbe, + oy bey + 0, 06
o Jo J-hnj2 ‘

+ Tyz 6'7yz + Trz 6"{‘[; + T,ry é'y_ry) dZ dy dI
(9)
and the set of simple support boundary conditions at
y =0 and y = b used are

u="U
ANry = 0
10
v (10)
M, =0

The half-wavelength X of the assumed deformations
for the long plates considered is chosen to minimize
the buckling load for each given applied deformation.

Results and Discussion

The results obtained in this study for aluminum
plates with geometry as shown in figure 1 are based
on the mechanical properties of Young's modulus
E = 10.7 x 10°% psi and Poisson’s ratio u = 0.33.
Buckling results presented in figure 2 for an alu-
minum plate show the variation of buckling stress
coeflicient with width-to-thickness ratio b/h given by
the four theories for a range of length-to-width ra-
tio a/b. The differences in the buckling results for
aluminum plates with width-to-thickness ratios less
than 10 illustrate the need to include the effects of
transverse shearing in determining the compressive
buckling stress.



Characteristic curves for different values of b/h
are presented in figure 3 for the postbuckling re-
sponse of rectangular aluminum plates loaded in
compression. For a b/h value of 100, only one curve
is shown, since the corresponding results for ecach
theory are approximately the same. For lower val-
ues of b/h, figure 3 shows that the normalized end-
shortening U is larger for a shear deformable plate
than for its infinitely rigid counterpart for a fixed
value of normalized stress resultant N, ... Present
results indicate that three-dimensional flexibility the-
ory gives lower buckling loads and therefore more ac-
curate results. The shear deformation theory results
arc converged solutions for all values of b/h inves-
tigated, and this theory has the advantage of fewer
unknowns than the three-dimensional theory. Re-
sults for the normalized stress resultants Ny max and
Nzymax, for different values of b/h, are presented
in figures 4 and 5, respectively, and corresponding
results for the normalized maximum deflection wpax
are presented in figure 6. The results presented in fig-
ure 4 show that the higher order shear deformation
theory gives the lowest value of normalized Ny max
for a given value of normalized end-shortening U.
The results presented in figure 5 show that the
normalized Ny max as a function of the normalized
end-shortening U is nearly independent of the width-
to-thickness ratio b/h for the cases investigated. Re-
sults for the normalized maximum deflection wyax
show that the value of the deflection becomes in-
creasingly dependent upon the width-to-thickness ra-
tio b/h as the value of the normalized end-shortening
U increases.

Detailed numerical results for the four theories for
the range of b/h ratios investigated for the normal-
ized end-shortening displacement parameter U = 14
are presented in tables I through IV. The value of this
applied displacement parameter equal to 14 is well
into the postbuckling range. Results are presented in
each table for the applied average in-plane stress re-
sultant N ,v, the maximum values of the other stress
resultants, and the maximum transverse displace-
ment. Table I shows that for 6/h = 100, there is
very little difference in the results given by the dif-
ferent theories. Table II indicates that as the b/h
ratio decreases, that is, as the width of the plate
narrows, small differences between the theoretical re-
sults occur. In tables III and IV, these differences
become more pronounced, and although the three-
dimensional flexibility theory does give more accu-
rate results, the numerical procedure has difficulty
converging for thicker plates. The omission of the
first-order shear deformation theory results presented
in tables III and IV and the omission of the three-
dimensional flexibility theory results presented in ta-
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ble IV correspond to those values of b/h for which
results were not obtained. An explanation for this
inability to obtain results has not been determined.

The principle of virtual work requires only that
the geometric boundary conditions be satisfied. The
inclusion of additional terms in the representation of
the through-the-thickness variation of the in-plane
displacements will lead to convergence and the sat-
isfaction of natural boundary conditions in the limit
if a complete set of terms is used. An alternate ap-
proach is to use terms that satisfy the boundary con-
ditions. A complete set of these terms also leads
to convergence. For the present problem, the threc-
dimensional flexibility theory uses terms that do not
satisfy the natural boundary conditions. In the
higher order shear deformation theory, coefficients of
u and v of the assumed displacements in equation (3)
are chosen such that v;, = 0 and ~,; = 0. The coef-
ficients are written in terms of the existing unknowns
u®, v%, and w? in a form which satisfies the natural
boundary conditions at the top and bottom surfaces
of the plate. Comparisons of results are valid whether
or not natural boundary conditions are satisfied.

Concluding Remarks

This paper presents buckling and postbuckling re-
sults for simply supported aluminum plates loaded
in compression. The buckling results have been plot-
ted to show the effects of varying plate width and
thickness on the buckling stress coefficient. Buckling
results are given for various plate length-to-width ra-
tios. The buckling results for aluminum plates with
width-to-thickness ratios less than 10 illustrate the
need to include the effects of transverse shearing
when determining the compressive buckling stress.
Postbuckling results for plates with transverse shear-
ing flexibility are compared with results from classi-
cal theory for various width-to-thickness ratios. The
plates are considered to be long with side edges sim-
ply supported and stress free, and the plates are sub-
jected to a longitudinal compressive end-shortening
displacements. Characteristic curves indicating the
average longitudinal direct stress resultant as a func-
tion of the applied displacements are calculated based
on four different theories: classical Von Karman the-
ory, first-order shear deformation theory, higher or-
der shear deformation theory, and three-dimensional
flexibility theory.

Present results indicate that the three-
dimensional flexibility theory gives the lowest buck-
ling loads for the four theories considered, and there-
fore the most accurate results. The higher order
shear deformation theory has fewer unknowns to de-
termine than the three-dimensional flexibility the-
ory but is not as accurate. The figures presented



show that, for postbuckling, small differences oc-
cur in the average longitudinal direct stress resul-
tant, in the maximum values of the other stress
resultants, and in the maximum transverse displace-
ments calculated when the effects of transverse shear
flexibility are included in the various theories. Be-
cause of small differences in the resnlts from the var-
ious theories, results are given in tables for the ap-
plied edge displacements into the postbuckling range.
The principle of virtual work used in this study re-
quires only that the geometric boundary conditions
are satisfied. The most accurate results are obtained
from the three-dimensional flexibility theory where
enough terms are selected to satisfy the geometric
boundary conditions but not the natural boundary

conditions. In the higher order shear deformation
theory, it is possible to select coefficients of the as-
sumed displacements such that the transverse shear
strains ~r, = 0 and y,; = 0. These coefficients are
written in terms of the existing unknown displace-
ments ©*, v?, and w° in a form which satisfies the
natural houndary conditions at the top and bottom
surfaces of the plate. In this manner, results are ob-
tained from the higher order shear deformation the-
ory that are nearly as accurate as those obtained from
the three-dimensional flexibility theory, but with con-
siderablv fewer unknowns.

NASA Langley Research Center
Hampton VA 23665-5225
May 25, 1990



Appendix

Derivation of the Governing Equations for the Higher Order Shear Deformation

Theory and the Three-Dimensional Flexibility Theory

Governing differential equations are derived in more detail in this appendix for the two higher order theories

considered in this paper.
Higher Order Shear Deformation Theory

The displacements used in this theory are given by equations (3) as

ute.y2) =) + {wle) - F [0 4 ug @] (2)') 2
) =) + (e - 5 [0 sug )] (2)°) 2
w(z,y,2) = v(.y) )

Substitution of equations (3) into equations (7) gives the strain-displacement relations

z 47z
Yoy = Uy +0,3 +W,5 W,y + (u,z +v,g) 53 (_

e (vs ) - ()]
we=(wi ) - (5)] |

The assumption of sinusoidal periodicity along the length leads to

) (wg 0.8 +202, h)

x 21z
= -U= +uf(y)sin —=
u 4 + u§(y) sin )

a_ Tz
u? = ul(y) cos iy
w’ = w{(y) sin — 3
2nx
v = vg(y) + v§(y) cos Y
T
v® = v§(y) sin 5N J

(A3)



Stresses are determined from Hooke's law according to equation (8), and stress resultant forces and moments
are determined by the following integrals through the thickness

2rx h/2
Ngg + Ny COS—)‘— = /—h/z oy dz

2nx h/2
N, + Ny, sin — = / oy dz
Yo 2 A —h/2 Yy

T h/2 422
N P in— = ] _ d
yzo SN i\ /_h/2 Tyz 2 z

h/2 422
Tr ¥4
NIZQCOS—/\— = ‘[Ah/Q Trz (1 - —h—2> dZ

2nx h/2
N. in— = d
Ty SID X -/—h/2 Try d2

h/2
M, sin LES / orz dz (A4)
A ~h/2

T h/2 4 zZ\3
Mg sin — = —= —
z, Sin 3 /h/2 Shgr(h) dz
h/2
My, sinE :/ oyz dz
A
T h/2 4 z\3
M, sin — = —=h —
y; Sin 3 /h/2 3 oy(h) dz

Fifes
My, cos N = / Try? A2




Substitution of the stresses and strains into the virtual work expression, equation (9), and performing the

variation leads to the differential equations

27 1 T N,
uyl = Wem - MSWQMM + \»MMM

1 \AHN 2 1 2 (T 2 N,
Op— g2 _ A2 oM b a2 (T e 7]
Uy 1 9 \»mw ﬁ:w I\ + &ﬁ: A\/v + \wmm
udr ve — — 2 — —
—b= =1 MLy, — (Deg + Bes) = | / (Do + 2 D6 + Beg)
h hA A
d%\ — = 5 Fava) :%s.
- = § Be2 (My, — My,) — Do My, + (D13Bay — Dy5Dyy) 5

- — T T\ 2 2
+ (D12B22 - B12D92) T%M + wy AMV : Ammmmmm ~ bmwv

’ 4 Ao 4 A Ags
27
2.%@& = M’ )
27
\/@m = |H\<&.m\.~
™ QD T
M M.S == (Myy + M) + Ass ANHI + E%Mv
/ ™ . ‘C%
My, = May, + Asg 5 T
!
2,5_ =0
N2 1 T\ 2 Q% - 1 .
@M\ = AMV Ab&ﬁ: + M&e\.ﬂmv S% — \v&aw AMV + \Am.w Aﬂ + gwwv + MZHSEMW/.
1 1 s 2m @
\5\: = AZ@: 5 Sv B + mZaSSWM + HES: Ay Aﬂﬂ +va >y

The stiffnesses of the plate are given by

IS
~
1
s
~—
(%]
a
L
™
(™)
jx W
&N

(A5)

(A6)



where the Cj; are the stiffnesses in equation (8). Using the definiticn By = w’{l gives the following two differential
equations, which complete the set of equations (14 equations with 14 unknowns) without squares of derivatives

of the unknowns:

U)(l)/ = 62

u

—

=|
>0

v - _ —
Gt = ——}11— — {D‘22 (J\Iy() — AI.UI) — DQQ]Uyl + (DQQDlQ — D22D12)

@

_ o ra - -
+(D22D12 = DnBio) [—h% +uf (5) 1}/ (D2Ba - Di»)

Squares of the derivatives are not retained in the computer program used.
The boundary conditions at y = 0 and y = b that correspond to equations (10) are

Ny() - Ny?. =0
wiy =0
My, = My, =0

Three-Dimensional Flexibility Theory

The displacements used in this theory are given by equations (4) as

u(xr,y, z) = u’(z, y) + u'(z, y)% + u’(z,y)sin E}—lz—
oy, 2) = (ay) 0 () -+ 0 ) sin

. V94
Wy, 2) = w.y) +w (2, y) cor 7

(A7)

(A8)

(A9)

Substitution of equations (4) into equations (7) and neglecting the nonlinear terms involving w’ gives the

strain-displacement relations

1 z . Tz 3
€x = U iw,g? +ug at u,5 sin W
1 z Tz
0 02 a 8 o3 e
€y = U, =W, TV, T + Uy SN —
y v o™y Y h Y h
T e, TZ
€, = — -w sIn —
¢ h h
= u’ +vl + 0wl a4yt :_+_ 5 4 pS E
Yry = Uyy FUz TWp Wy Uy TV ) 5 U,y +U,; ) sin N
a
¥ —wlt+— + (wc—i—zus)cosﬁ
rz — W- N
T h T h h
(2 -~
Yyz = A w,y + (zvs + w,z) cos "
h h ’ h J

(A10)



The assumption of sinusoidal periodicity along the length leads to

x 2mz
= —{/— 0 in —
u Ua + u5(y) sin 3

5 _ ikl
u’ = uj(y)cos iy
2
v = uf(y) + v§(y) cos =
f (A11)
v?® = v (y) sin ket
A
5 _ 8 Yain TE
v® = v{(y)sin 3
w’ = wi(y)sin liked
A
c_ ,.c . TT
w’ = wi(y)sin 3 J

Stresses are determined from Hooke’s law according to equation (8), and stress resultant forces and moments
are determined by the following integrals through the thickness

2mT h/2 b2 o (2 s . Tz 2
Ny, + N, cos -~ = /_1,/2 oy dz My, = /_h/2 [le (E) + 7oy sin T] 5 dz
h/2 h/2
. 2nx z . w2zl . w2
Ny, sin > = /_1,,/2 o, dz Ly = /_h/2 [ag (5) + olsin —h—] sin == dz
h2 h/2 z T2 Tz
— a 8 - N
Ny, = /442 Ty d2 Ly, = /._h/2 [oy (E) + oy sin TJ sin == dz
h2 h/2 nz
Npsy = / To, dz L, = /h/ a? sin’ W dz r (A12)
—h/2 —h/2
h/2 h/2
ny,z sin 27!'_:1] = / Tgy dz Lyzl = / T;z C052 E dz
A ~h/2 Y h
h/2 h/2
My = [Ug (i) + o7 sin E} Z de Ly, = 1<, cos? T2 4z
2 h k) s h
’ h/2 af? s . Tz] z h/2 e (2 s . mz] . wz
M, = " [ay (ﬁ) + oy sin T} 5 dz Ly, = o [Txy (ﬁ) + T4y sin 7] sin —~ dz
J
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Substitution of the stresses and strains into the virtual work expression, equation (9), and performing the
variation leads to the differential equations

2 1 T N, 3
0, — o L oon ™ | iVry
2 A V2 2 wif A + Agg
1 A2 2r 1 Ty 2 N,
W= -2 212 0f% 02 (2 Y2
2 &QH Ago _H:m A F AE» Ayv % + Aogsy

Koy J22

v T.\S My, A J12 D19
Koo Jao

A Je6 Dege
e%\nﬁgl.@# Ammlwmvmm Ko i) 7] /(K2 I
Joo Dao Jo Dy h A J22 Dag) A J22 Do

Em\llﬁ AZWS - WEV A@lm@.v

s Tt 4 Ahas ,»SHSV AN% k%v

g
H\
i

h \Hi Iy Hy I
wir = Imew _ AZS_ _ ,hcﬁv AP|A B @v w (A13)
h Aga Hyy Hy Ay
ZH.S\ = w\/HZbS
Nyt = IW\/NZ@S
EaS\ = Nz — \Sﬁm
My, 7 = Ny + \Sﬁsw
Lyt = haﬁm - hﬁm
Lyzyt = haﬁw - hﬁm
Lyt = Ly M + hHSW
@= (M3 e Y ug (1) 4 DT+ e | |
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The stiffnesses of the plate are given by

/2 w
Ay = Cij dz
“ —h/2 Y
h/2
Dy; :/ Cijz° dz
—h
h/2 .
H;j = Cj; cos dz
~h/2
h2 f (A14)
Ji; = C;izsin dz
Y o Y
h/2
K;j :/ Cijsin® — dz
—h
h/2 T2
I; = Cijeos? == dz
ij hjp Y n %

where the Cj; are the stiffnesses in equation (8). The definition 8; = w{/ is not used in this theory because of
the difference in the unknowns in the theories. Instead, the following definition of 3; is used

U(f 1 1x Ly Aqq H44) N, <A44 H44)
_. _ 71 o N ol  Fyz ol .4 1 Y2 s A Al
o { h [H44 (Q 2A Iyzwl) 144 ]/ (H44 144 N 2Hy4 Hyy Iy (AL5)

which results in the completely defined set of equations (16 equations with 16 unknowns) without squares of
derivatives of the unknowns, which are not retained in the computer program used.
The boundary conditions used at y = 0 and y = b that correspond to equation (10) are

(A16)
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Table 1. Stress Resultants and Transverse Displacement for b/h = 100 at TU = 14

Theory Ny av Ny,max ny,ma.x Wrax/ M
Classical 7.63970 2.69335 1.95480 0.15466
First-order shear 7.65298 2.70474 1.95260 .15465
deformation

Higher order shear 7.65165 2.73821 1.97692 15571
deformation

Three-dimensional 7.61673 2.67665 1.96602 .15468
flexibility

t Barred quantities are nondimensional quantities given by

U= U(All - A%Q/Aﬂ)bz N _ Nr,av b2 N _ Ny,max b2 N _ Nry,max b
~ ayDyDyn? T D Dpr?t VT D Dprt T T /Dy Dyg n?
Table II. Stress Resultants and Transverse Displacement for b/h = 20 at TU = 14
Theory Niav Ny max N 1y max Wmax /P
Classical 7.63970 2.69335 1.95480 0.15466
First-order shear 7.55385 2.65594 1.97912 15416
deformation
Higher order shear 7.60060 2.64025 1.92883 15255
deformation
Three-dimensional 7.51680 2.68240 1.97278 .15389
flexibility

14

I Barred quantities are nondimensional quantities given by

U: U(All —A%Q/AZZ)bQ N — ]V:z,avb2 N _— Ny,maxb2 N _ Nzy,max b2
ay/Dy1 Dy n? P /Dy Dagm? YT Di1Dgyn? =T Dy1Dgy 72



Table IIL. Stress Resultants and Transverse Displacement for b/h = 10 at 17 =14

Theory Nzav Nymmc Nry.max Winax/
Classical 7.63970 2.69335 1.95480 0.15466
Higher order shear 7.37103 2.53324 1.92198 .15039

deformation
Three-dimensional 7.20968 2.70648 1.99174 15011
flexibility

t Barred quantities are nondimensional quantities given by

U= U(All - A%Q/AQQ)bQ N _ Nr.av b2 N — ]Vy.max b2 N — Nry.max b2
a D11D22 7'['2 4V I,av /——DllD22 7[_2 Y. rmax /—‘——D11D22 7‘[’2 Ty max /——'—‘D11D22 71'2
Table IV. Stress Resultants and Transverse Displacement for b/h = 5 at U =14

Theory N N‘IT‘RV Ny‘mux NIy.nmx u"max/h

Classical - 7.63970 2.69335 1.95480 0.15466
Higher order shear ‘ 7.26598 2.48961 1.97121 14796

deformation |
t Barred quantities are nondimensional quantities given by
U(All - A%2/A22)b2 ~ Nz av b2 N Ny.max b2 = ANJ:y.max b2
N;ry.max =

U=

A‘N av —_— N N —_
== DnDpn? T VDuDnr

D11 Dgy
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Figure 2. Critical axial stress resultant Ny cr versus plate length-to-width ratio a/b for different width-to-
thickness ratios b/h and different theories for aluminum plates of finite length.
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Figure 3. Average axial stress resultant Ny av versus applied end-shortening U for different width-to-thickness
ratios b/h and different theories for aluminum plates of infinite length where U /a is finite.
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Figure 4. Maximum transverse stress resultant Ny max versus applied end-shortening U for different width-to-
thickness ratios b/h and different theories for aluminum plates of infinite length where U/a is finite.
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Figure 5. Maximum shear stress resultant Nzymax versus applied end-shortening U for different width-to-
thickness ratios b/h and different theories for aluminum plates of infinite length where U /a is finite.
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Figure 6. Maximum out-of-plane displacement wmax versus applied end-shortening U for different width-to-
thickness ratios b/h and different theories for aluminum plates of infinite length where U /a is finite.
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