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INTRODUCTION

This paper is restricted on processes in the troposphere and the lower strato-

sphere (higher atmosph, see MATSUHITA, 1983). General aspects of global atmos-

pheric electricity are summarized in Chapter Ill of NCR (1986), VOLLAND (1984)

has outlined the overall problems of atmospheric electrodynamics, and ROBLE

and HAYS (1982) published a summary of solar effects on the global circuit.

The solar variability and its atmospheric effects (overview by DONELLY et al,

1987) and the solar-planetary relationships (survey by JAMES et al. 1983) are

so extremely complex that only particular results and selected papers of

direct relevance or historical importance can be compiled in this article.

A LOOK BACK AT THE HISTORY

BAUER (1925) first suggested a correlation between the electric field (E) re-

corded from 1902-1922 at 5 stations and the sun spot number. Also GISH and

SHERMAN (1936) reported on solar effects in atmospheric electric data. Howe-

ver, ISRAEL (1961/1973) stated that solar influences on atmospheric electric-

ity are unlikely. Of course, sunspot numbers are not the best for such an in-

vestigation and long term observations also raise problems. Hence Reiter used

solar flares (SF) as well defined short term solar events. He showed that

after flares E and the air earth current (I) lncrease significantly by 20-

60% (REITER 1960, 1964/85, 1969, 1971) when they are recorded on mountain

peaks during fair weather and above the mixing layer. These findings have been

confirmed by COBB (1967) and SARTOR (1969). Then MARKSON (1971) considered in

great detail solar and other extraterrestrial influences on atmospheric elect-

ricity and thunderstorms by including also Forbush decreases (FD) in the

galactic cosmic rays (GCR) and the sector structure boundary passages (SBP) of

the solar magnetic field (based on WILCOX 1965 et ai.,1968). MUHLEISEN (1974)

executed an extensive work by applying radiosondes in order to study the long

term variation of the electric ionospheric potential (EIP) which was shown to

be correlated directly with the relative sunspot number 1963 - 1970.

In conclusion the following viewpoints particularly appeared as to be regard-

eded in further investigations (of course, some more could be drawn):

a) For relevant studies the use of short term events being well defined by

time and intensity and which are clearly linked with the solar activity seem

to be most useful: e.g. SF, SBP of the interplanetary magnetic field, solar

proton events, behavior of the solar wind and of the corona hole the im-

portance of which has been recognized recently.

b) When studying short term events it is important to consider the respective

phase of the solar cycle at the same time which can strongly modify the feat-

ure of the result (see REITER 1979).

c) For investigating solar-atmospheric electrical relations the parameters

should be recorded or measured exclusively during fair weather conditions and

above the mixing layer either on high mountain tops (REITER, COBB, see above)

or at very remote islands or polar regions, or by airplane (MARKSON 1976), by

balloons (MUHLEISEN 1974, OGAWA et al. 1967, 1969) and other carriers.

SEVERE CRITIQUE

Critique has been claimed concerning the seriousness of sun-atmosphere inves-

tigations. And since atmospheric electricity cannot be separated from the be-

havior of specific parameters of aeronomy and meteorology all of those have
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beenlumpedtogether by this concern(e.g. see SHAPIRO1979whodoubts the
workof PLa_RKSON 1971 and of WILCOX et al. 1974, 1976 on the SBP-vorticity in-

dex relation). A harsh refusal has been published by GREEN (1979) concerning

misconceptions and misinterpretations in the investigations of sun-weather

relationships. His reproach has been rather often repeated: lack of physical

mechanisms connected with an overvalue of pure statistical associations. Ano-

ther serious critique has been compiled recently in an extended article by

TAYLOR (1986) who reviewed also some work in atmospheric electricity. He main-

ly points out the controversy and the lack in the work based on SBP and the

suggestions of a link between cosmic ray induced changes in the stratospheric

ionization rate and thunderstorm activity (MARKSON 1978a, LETHBRIDGE 198l).

However, Taylor accepts the results on connections between FD (therefore also

SF) and the behavior of atmospheric electrical parameters as well as trigger

of stratospheric intrusions (REITER 1977b,1979). He points out that -if suc-

cessively isolated and explained- external forcing of short term variations in

the dynamics of the lower atmosphere would be of major accomplishment.

Another review of results of sun-atmosphere investigations has been given by

EDDY (1983) which is still worth mentioning also today: no equivocal connec-

tion between solar variations and meteorological processes has yet been estab-

lished. It must be made clear that studies of solar perturbations and their

influences on the lower atmosphere are undeniably a proper part of atmospheric

physics in general. Eddy concludes with three general recommendations the im-

portance of which is still unchanged: Ca shortened version)

a) The question of possible solar influence on special atmospheric phenomena

must be treated within the general framework of solar-terrestrial physics and

atmospheric science. Facts of adjoining disciplines must be fully regarded.

b) More effort should be devoted to the development of physical models and

mechanisms,

c) The data base on which all the studies rest should be expanded and streng-

thned. This needs apart of an enhanced and improved monitoring of all import-

ant parameters describing the solar activity also measurements of solar-indu-

ced perturbations in the upper, middle and lower atmosphere, Electric and mag-

netic fields and their changes by the incidence of solar particles should be

included.

Here, obviously, the overall criticism turns over in valuable recommendations

which should be accepted and applied without reserve.

SOME OF THE RECENT INVESTIGATIONS OF IMPORTANCE

HOLZWORTH and MOZER (1979) found a direct evidence of solar flare modification

of stratospheric electric fields. FISCHER and MUHLEISEN (]980) reanalyzed

their data on the EIP and found an influence of the SBP. TAKAGT et al. (1984)

also found an effect of SBP (only for -/+) on the fair weather electric field

on the earth's surface. He furthermore discussed the influence of cosmic ray

variations on the EIP, the currents from thunderstorms and on I. However, he

erroneously explained the SF effect by enhanced solar protons and attributed

the variation of the GCR to the solar activity in general. It is a matter of

fact that the SF effect is mainly based on the FD in the GCR and that energe-

tic solar protons which reach the lower atmosphere are extremely rare and do

normally not appear in connection with a flare except of very rare cases. Also

OLSON (1983) tried to interpret the solar influence on the atmospheric elect-

rical parameters. MEYEROTT et al. (1983) analyzed long term measurements (I0

years) of the EIP but found no correlation with variations of the GCR intensi-

ty. However, the EIP seems to be better correlated with the stratospheric

aerosol burden caused by volcanic eruptions (REITER ]986 et al., OLSEN 1983).

This again is a hint showing that long term investigations are not a reasona-

ble basis for solar-terrestrial studies.

Here some remarks on suggestions by MARKSON (]974, 1978b, 1981, 1983) are re-

quired. He claimed that a direct influence of solar events on the current bet-

ween the ionosphere and the earths surface exists. Those, so MARKSON argues,
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liberate cosmic rays which reduce also the columnar resistance above each

thunderstorm. By this way the upward electric current of positive charges

being accumulated on top of the thundercloud by the charge separation proces-

ses is enhanced and the generators put more charge onto the ionosphere. How-

ever, only in very rare cases (f.e. see the event in August 1972) solar pro-

tons have such a high energy that they can penetrate down to the lower strato-

sphere. After SF normally the FD occurs and the ionization rate in the lower

stratosphere and upper troposphere drops. But this is the inverse effect com-

pared with MARKSON's model. Finally it may be pointed out that some competent

reviews on solar-terrestrial relationships have been published recently: ROBLE

and HAYS (1982), NEWELL (1984), and ROBLE and TZUR (1986). These reviewers ag-

ree with the claim of solar effects on E and I and on stratospheric intrusions

published by the author.

THEORETICAL CALCULATIONS AND MODELING

A new era appeared with the theoretical treatment of atmospheric electrical

data. ROBLE and HAYS (1979), TZUR et al. (1983), TZUR and ROBLE (198S), ROBLE

(1985) and ROBLE and TZUR (1986) were successful in a mathematical modeling of

the global atmospheric electric circuit and they could show that their results

are in concordance with experimental results by REITER, COBB, and others.

MAKINO and OGAWA (1983, 1984) also calculated the pattern of the global circu-

it based on assumptions of the global thunderstorm distribution. They confirm-

ed the effect of solar flares on E and I (found by REITER 1960, 1964 and COBB

1967) quantitatively by incorporating the influence of the FD in 57.5°N on the

stratospheric ionization rate (Fig.ld).

RESULTS RECENTLY OBTAINED

Fig.l shows the departures of E and I from the mean fair weather values (in %)

some days before, during and after SF events. Fig.la recalls the finding by

COBB (1967). Figs.lb, Ic show the result by Reiter as it appears when a new

series of data (1977-1981) is added to the former (REITER 1971) of 19A7-1971.

There is no doubt that this extension over now 2 solar cycles (No.20, 21) suf-

ficiently confirms the previous results. The departures of E and I from the

mean fair weather values during solar quiet are more than 3o and consequently

significant. Fig.ld shows the theoretical result by MAKINO and OGAWA (1984)

for 3 km altitude ( =Zugspitze station). They calculated the departures of E

and I after SF based on the FD in the GCR for 57.5°N as expected in the mean.

MAKINO and OGAWA state: these results are consistent with the features of

Reiter's observation, By this way the recommendations b) and c) by EDDY (1983)

are realized: the amount of data was increased and the primary result could

be confirmed. A reasonable physical mechanism has been established by inde-

pendent investigators.

Although the applicability of SBP in solar-terrestrial investigations has yet

not been finally accepted, the results of two independent studies based on SBP

dates (by SVALGAARD 1976) are shown in Fig.2a. In the case of a passage of the

typ -/+, E and I measured on Zugspitze Peak in 3 km a.s.l, significantly de-

part (REITER 1976, 1977a) from the fair weather mean by +15 to +20% showing a

maximum in the +2 day. In the same figure the E and ! values are overlaid by

the daily mean concentration of the isotope Be7 (halflife time 53 days) in the

air at the same station. Be7 is constantly produced in the lower slratosphere

in 20-27 km by nuclear reaction of cosmic rays with air molecules and its con-

centration in the upper troposphere is normally rather low. However, by each

intrusions of stratospheric air through the tropopause near a folding, Be7

significantly increases also in 3 km altitude and indicates an intrusion con-

fidently (REITER et al. 1971, REITER 1977b, 1979). Fig.2a consequently shows

that the increase in E and I after SBP is coupled with an enhancement of stra-

tospheric intrusions. Fig. 2b confirms that this is significantly linked with

the solar activity: at the same time when the FD is initiated (drop Jn th,"

neutron density, upper panel of 2b) the concentrations of Be7 strongly increa-
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ses (the weakdropof the GCRintensity during a FDhasnodirect influence on
the Be7generation). This couplingof E,I effects with stratospheric dynamics
is in accordancewith recommendationa) by EDDY(1983). Thetrigger by solar
eventsof dynamicprocessesin the lowerstratospherealso appearsby consid-
ering the dayby day variations of the stratospheric 03 pattern. Fig.3 shows
oneexample(for moreseeREITER1983). FromMarchIO to March19 (Fig. 3b) a
FDlasted andduring the samesequencethe initially normaland rather smoo-
thedstratospheric 03profile becametotally scattered (3a): a complexoverlay
of stratospheric and tropospheric air strata abovethe tropopauseoccurred
(for moredetails seeREITER1983).
Using the values of 480 Om radiosonde flights during 37 sequences with 8 - 30

day by day ascents along the solar cycle No. 21 and the 35 cases of well es-

tablished FD, the scatter (C e) of the stratospheric 03 values before, during

and after the FD has been calculated (Fig. 4a). From the -2 day to the key day

the value of scatter increases significantly and then it consistently drops.

The increase of the 03 scatter on the key day amounts more then 2 times of its

standard deviation (sigma in Fig. 4a).

By using the same key days, also a significant (compare sigma values) change

in the tropopause height on and after the FD is shown (4b): it drops in the

average by 40 hPa. Also these results confirm the importance of the GCR for

solar-terrestrial studies of the stratospheric dynamics in accordance with

TAYLOR (1986). In this case the GCR may have the character of an indicator uf

important short term solar events. Here also the work of NEUBAUER (1983)

should be mentioned. He demonstrated solar impacts on dynamic processes in the

lower stratosphere which corroborate the findings shown in Figs. 3 and 4.

Last but not least a recent result of recordings (E, I, air conductivity, all

meteorological parameters) executed at a new private mountain station in 1780

m a.s.l, should be mentioned (Fig. 5). During an exceptional and long lastlng

fine weather period in January 1989 three strong and one heavy solar flares

(imp.3b) occurred during which the station was constantly above the _nixing

layer. Fig. 5b shows the behavior of the 10 cm flux, of the GCR intensity and

the flare calendar. A FD occurred on 16 January and the I0 cm flux showed a

peak at the same day. A magnetic sto_ was reported for January 20. From

January 17 to 18, E and I increased remarkably and remained until 21 January

by 30 - 70 % higher than the fair weather mean. This is a single event being

consistent with the results obtained statistically and demonstrated in FJg.l.
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FIGURE 4
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FIGURE 5
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without solar events (set = 100%, heavy line).

b) Daily mean values of the 10 cm flux and the galactic cosmic ray intensity

on the same days. Solar flares of importance 2b and 3b are inserted.

MSto = magnetic storm.
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MEASUREMENTSOF MESOSPHERICELECTRICFIELD UNDERVARIOUS
GEOMAGNETICCONDITIONS

A.A. Tyutin, A.M.Zadorozhny

Novosibirsk State University, USSR

The results of measurements of electric field strength in

the mesosphere are given for high and middle latitudes.

At high latitudes, there is observed a distinct dependence

of the height profile of electric field on the geomagnetic
disturbance level.


