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Nomenclature

a

a ,b

AR

(dt/dx)/2

dZ/dx

h

K

KO

M

OFW

R

Re

S

t/c

H,V,W

W

U

local velocity of sound normalized with respect to the freestream velocity

semi-minor, and semi-major axis of elliptic wing

aspect ratio

half thickness distribution slope of a panel

mean line slope of a panel

altitude

lift-dependent drag factor

Sears Haack factor

freestream Mach number

Oblique Flying Wing

range

Reynolds number

Wing area

thickness-to-chord ratio

perturbation velocity in x,y,z-direction normalized with

respect to the freestream velocity

weight

total velocity normalized with respect to the freestream velocity

G reek

A

1/4 C

O

n

symbot_

Prandtl's compressiblity coefficient: 3/ I_M 2

panel 1/4c sweep angle

quarter chord line of the panel

dihedral, positive with increasing z and y

total propulsive efficiency as used in the Brequet relation

slew angle (90°-A)

indices:

dd

EAS

f

1

n

P

PP

drag divergence

equivalent air speed

fuel

local

number of passengers

payload, pressure

powerplant
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1.1 Introduction

Background and Present Work

In the late fifties R.T. Jones [25, 1, 13] suggested that aircraft with asymmetrically swept

wings (or oblique wings) would offer many advantages over aircraft with conventional

wing design at high transonic and low supersonic speeds. The primary advantages of the

oblique wing arise from its improved structural arrangement and its reduced subsonic and

transonic drag. Recent work by Rockwell and NASA engineers [26, 29, 20] has provided

the tools needed for studying the oblique wing for transonic and low-supersonic speeds in

greater detail.

In this work we extend these analytic capabilities and apply them to the aerodynamic design

of oblique flying wings. Figure 1. shows an artist's impression of the oblique flying wing

and Fig. 2 shows a three-view of the baseline Oblique Flying Wing. The baseline wing

has a near elliptic planform, which can be swept from 35 ° at takeoff to 70 ° in cruise. The

passengers are located at the center of the planform inside the wing structure. Work done

by Van der Velden on NASA grant NAG-2-471 J41] indicated that this configuration could

provide economical supersonic transportation if the theoretical minimum drag based on

potential flow can be obtained.

Prediction Methods

Up to now, numerical calculations and windtunnel tests up to Mach 1.4 have been

published. Beyond Mach 1.4 only the theoretical minimum potential drag for this

configuration is known. At a higher Mach number, the occurrence of shocks and flow

separation may limit the applicability of potential flow methods, and we therefore require

analysis tools which include these effects. Though the Navier-Stokes equations could be

used to analyze the configuration, it is not yet possible to solve for the geometry on the

basis of a pressure distribution with this method. Apart from this limitation, thest: :olutions

are very time consuming for 3D flow. For 2D flow, fairly rapid solvers exist and they can

be used to analyze and design sections. The 3D wing can be analyzed with the Prandtl-

Glauert equation for supersonic Mach numbers from 1.5 to 3.0 if the shear-layer is thin and

the shocks are weak. The high Reynolds numbers assure that the shear layer is thin for the

attached flow, while the s¢.ction data is used to identify the local normal Mach number and

recovery distributions that are separation and shock-free.
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1.2 Summary

This study describes the aerodynamic design of a thick Mach 2 Oblique Flying Wing

(OFW). A preliminary design analysis indicates that the best payload fractions are obtained

for a takeoff wing loading of 2 kN/m2 at an altitude of 16 km and an unswept aspect ratio

of 10.

An optimization study projects that the highest payload fraction is achieved for a 16% thick

root airfoil. This airfoil, and the airfoil family derived from it, are designed with ARC2D, a

Navier-Stokes code. The OFW airfoil family allows a good utilization of the passenger

cabin and it achieves the required trimmed lift at the 0.32 chord location. This is the

rearmost location at which artificial stability and control by a narrow trailing edge flap can

be achieved.

Each member of the airfoil family has a different thickness and trimmed drag divergence

lift. By selecting the right airfoil at each station along the span it is possible to achieve a

Sears-Haack area distribution and an elliptic lift distribution. Such distributions minimize

the potential flow drag.

We present a new method for determining a wing's design pressure distribution based on

airfoil data. The pressure distribution is calculated from the potential flow velocity

perturbations for a given thickness distribution and the prescribed vorticity. The vorticity in

supercritical wing region_,_ is based on airfoil transonic normal Mach numbers and includes

the influence of local sweep, taper and three-dimensional induced velocities, so that the

appearance and the stren_;th of the shock waves can be expected to resemble those of the

airfoil. The vorticity in subcritical wing regions is scaled first with simple sweep theory,

and then to achieve the desired load distribution. The vorticity di:,tribution is then used to

solve for the wing's camb,_r with an inverse panel code. The induced velocity perturbations

of this cambered wing are used in the next iteration.

The potential drag of the wing designed in this fashion with a panel code was very ,'lose tn

the ones given by R.T. Jc,nes [2] and J.H.B. Smith 13] for a minimum drag oblique wing.

The method was also successful in constraining the local normal Mach numbers to the

values that would produc,_" only weak shocks. The moment and force characteristics of the

wing at the design conditi,:)n indicate that the wing could be trimmed and controlled without

high drag penalties.
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2 CONCEPTUAL AERODYNAMIC DESIGN

2.1 Objectives

Though there is no one set of missions that can be specified for a new aircraft, it is possible

to indicate which range of missions is most likely to result in an economically competitive

aircraft. The following section describes the rationale for the selection of mission

parameters in this work.

Cruise Mach number

We investigated designs optimized for cruise speed between Mach 1.2 and 3.0. The most

attention was paid to the Mach 2 cruise speed. At this Mach number the technology risk is

moderate and the cost of development can be acceptable. At Mach 3 the aircraft would be

twice as expensive [12].

Payload

Today a proven market exists for long range transports with up to 550 passengers or

100,000 kg payload. Within the geometric constraints posed by the accommodation of

passengers there is almost no difference in size between a 1-, and a 100-passenger flying

wing, and therefore only aircraft with a high payload will be considered.

Existing payloads are:

118 pax

247 pax

452 pax

(Concorde): Too small to be a successful flying wing, but would require the

least initial investment.

(SST): The target American payload for a supersonic transport. However, in

view of the growth of the market such a transport may still be too small when

it enters the market in 20 years.

(B747): Probably the best payload for a flying wing, but would require the

highest initial i avestmenc

Range

In this study a design range of 5000 nautical miles or 9000 km was used, the current

range of a B747 with maximum payload. Because all proposed Oblique Flying Wings have

a similar level of technology, a good optimization criterion is the payload to takeoff weight

IUL_m_INTENTION AI;.LYB_ 5
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ratio for a given mission [15]. On closer inspection this criterion encompasses both fuel

efficiency and depreciation of the airframe. This economic criterion was used to establish at

an early phase which configurations should be developed further, without the need of

dubious cost-analyses.

2.2 A Semi-empirical Model for the Conceptual Design

The semi-empirical methods developed in by A. Van der Velden in References 4 and 41

assume 1970s technology for all aircraft components. In this way, an unbiased comparison

with existing aircraft was possible. A short list of the basic assumptions and methodologies

is given below:

Geometry

To accommodate passengers comfortably, certain minimum geometric requirements have to

be satisfied. We selected a minimum passenger cabin aisle height of 75"=191 cm, and a

sitting height of 56"=142 cm. We also required that the cargo holds have an internal height

of at least 45" with a 6" clearance in order to allow the aircraft to carry the belly containers

of today's domestic subsonic transports as well as a range of IATA containers.

The required floor area per passenger is about 0.6 m 2 for an economy layout, and 0.7m 2

for a normal layout according to empirical data from Ref. 5. The cargo floor to passenger

floor ratio is approximately 1 to 4 for the configuration presented in Fig. 1.

Aerodynamics

The friction drag was calculated for each component based on the Prandtl Schlichting

equation. This equation assumes a fully turbulent boundary layer as a function of Mach

number and Reynolds number for a Prandtl number of 0.9:

ec°mp°nent ]1

0.455 [Lo 10[ R .-2.58Cfc°mp°nenr- 1+0.18M2/ g (1+0.18M2)2.SJ]

We added a form drag according to Ref. 5 pp. 499-501, assuming transition at 5% from

the leading edge.

The linear, supersonic, volume-dependent wave drag was based on J.H.B Smith's method



given in Ref. 3. The lift-dependentdrag was taken to beequal to the minimum lift-
dependentdragof anellipticobliquewingwith full leadingedgesuction,accordingto R.T.
Jones[2]. CDwaveis thevolumedependentwavedragandCDlift is the lift-dependent

drag asa function of Mach number,slew angle_t and root chord thicknesst from the
expressionsdevelopedin Refs.2and3:

CDwaVe= _2 Re
13-(_-4-iAIM+2iA )

[_2tM+iA}213/2

CL 2

CDlift = TRe 4 [132{M+iA) 2]

Aab
B

B :'/'v 2 2 , 2. 2a cos _+t_ sm
M_[b2-a2]sin_cos_

B 2

The wave drag of the other components was calculated from Wards' [28] transfer rule. In

particular, we approximated the drag of the nacelles in the presence of the wing by using

Swan's [42] estimate. The spillage drag coefficient was based on the engine mass flow

ratio, as suggested by Ref 7. The skin roughness drag was based on a material grain size

of 17_tm, turbulent flow and the method of Ref. 43. We estimated the drag from fabrication

type roughness from Ref. 46. Finally, the flap and systems drag were calculated with the

method of Refs 44 and 45.

Weight

As a guideline throughout the weight calculations Torenbeek's [5] itemized weight penalty

method was used. In Ref. 41 this method was adapted for the OFW. The pressure

differential gave the critical load for the passenger cabin, and the bending moment gave the

critical load for the outer wing panels. To convert these loads into structural we_j't, only

aluminum alloys or materials with the same maximum stress to weight ratio as aluminum

alloys were considered.

The fuel weight was calculated from the Breguet equation. We added to the cruise fuel

weight a range increment of 1200 km for diversions and a 7% allowance for climb:

_/-0.23(R+1.2) with R in Mm

7



Instead of using the usual Class II itemized weight penalty method and iterating to obtain

the correct weight, we can model the takeoff weight more conveniently by expressing the

takeoff weight by using a Class I method:

/)wpp w to+/)woe /)woe /)woe
Wto= Wfixed + 0(wto) - _ Wto + 0---if-S+ _ + Wp + wf

F/D

The variables and their values are given below:

Wfixed

/)WOe

/)S

/)wpp

_wto)

fixed weight items

variation of empty weight with wing area. This includes midsection,

outboard panels, flaps and vertical tails.

500 kg

35.2 kg/m 2

variation of nacelle and engine weight with lift-to-drag and takeoff

weight at h=16500m cruise. This includes nacelles, pivots and engines: 1.02

An expression for the power plant weight fraction with constant total

weight and variable altitude is given in section 3.3.

variation of the empty weight with takeoff weight. This includes the gear,

apu, instruments, and hydraulic, pneumatic, electrical and anti-icing systems. 0.071

variation of the empty weight with number of passengers. This includes the

operational items, furnishings and equipment, and airconditioning. 60

Propulsion

We assumed a conventional turbofan layout with 3D inlet and variable geometry exhaust.

Engine performance was estimated from isentropic work relations which were corrected

with realistic efficiency factors. FAR 36 stage 3 Noise requirements determined the bypass

ratio of the engines. The noise levels were determined by.an empirical relation from Ref.

4. between jet exhaust velocity and velocity profile.

Stability and Control

Ref. 41 indicated that sufficient control authority over an unswept OFW existed at a center

of gravity location of 32% mac with a 10% simple slotted trailing edge flap actuated by a

stability augmentation system at VEASmin = 130 m/s during climb. Vertical tailplanes with a

8



planform area of 5% of the wing planform area located near the wing tips provide adequate

control authority in case of engine failure.

2.3 Payload Size Affecting Wing Geometry

The wing can be tailored in such a way that we obtain a Sears-Haack area distribution,

elliptic lift and maximum utilization of the volume for payload and fuel. This was

accomplished with the following approach:

The total empty weight of the OFW for a given payload relates directly to the wing

planform area. So the maximum payload fraction is obtained at the maximum payload floor

fraction Sp/S. For a given payload the required wing size can be determined by the

assumption of the Sears Haack Area distribution and given minimum internal dimensions to

accommodate the payload.

Fig. 2.1 shows the available fraction of the planform area used by passengers and cargo

plotted against the maximum root section thickness and the root taper ratio of 0.7 for an

assumed NACA airfoil. The taper ratio of 0.7 was selected because it gave the least

variation in thickness-to-chord ratio over the span of the passenger cabin. Section 2.5 will

show that the design is constrained by the maximum local thickness-to-chord ratio. It is

therefore advantageous to use this maximum over as large an inboard span as possible to

maximize the available payload area and volume. Starting with a root chord of given

thickness, the wing is tapered up to the point where the internal height is less than that

required to store cargo, from this point on, the wing is tapered so it joins with the tip

geometry. The tip geomeu'y is similar to that of the NASA oblique wing demonstrator [20].

To provide some idea of the aisle layout, a 15.2 m root chord wa introduced. This value

was used for the baseline aircraft of Fig. 1. Fig 2.1 shows that, for a given payload, the

required area of the flying wing increases significantly below a root thickness of 2.2 m, but

it does not decrease significantly beyond a root thickness of 2.4 m. If we consider the

necessity of an additional aisle, then a thickness of 2.3 m becomes even more app,. "ling. It

is also clear that the volume, and hence the wave drag, does increase quickly for a vehicle

that becomes smaller but increases in volume. This would be the case if we where to use a

higher thickness.

The preceding data is not adequate to allow us to decide on a final geometry for the aircraft.

However, it has been shown that for an initial taper around 0.7 and a maximum thickness

around 2.3 m a good utiliTation of the available volume and area is achieved. In Section 3.3

we will present further proof of the validity of this choice.

9



.35

Fig. 2.1: OFW planform utilization

Sears Haack area distribution, NACA 00XX-30 basic thickness distribution

Sp/S

.30

.25

.2o

.15

.lO

Note:

Indicated are the minimum number

" of aisles required for a_

/ I _ _ o5c

o_ PAYLOAD i f 0.2C,.
span 0.85 1.

I _ 2 _ 3 aisle required

2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8

tmax (m)

8Woe 60.

Fig 2.2: Effect of technology on payload fraction
R=9000 km, Mach 2

8S

kg/m2

50.

40. 0.14

30. 0.16

20.

10.

O°

Wp

Wto

3.5 4.0 4.5 5.0 5.5

q L/D
10



2.4 The Impact of Technology on Economy

For conventional aircraft, wing loading is a powerful means to change the aircraft's

performance. For an oblique flying wing designed to accommodate passengers, this is not

the case, and the range of available wing loadings will be primarily a function of desired

operating costs.

One way of looking at the economy of a configuration is through parameters such as

payload fraction, fuel used per passenger and structural weight per passenger. As

discussed by Torenbeek [151 and Van der Velden [121 the payload fraction has the most

influence on the aircraft's economic performance since it contains terms expressing the fuel

and depreciation cost in about the right ratio. For a supersonic aircraft with a range of 9000

km a payload fraction of at least 12% should be achieved if the aircraft is going to be

economically competitive. A payload fraction of 16% represents a fraction not yet obtained

by subsonic technology.

In section 2.3 a maximum thickness of 2.3 m was selected and this corresponds to a

payload floor fraction of about 0.235. In section 2.2 the area required for one passenger

and cargo was found to be 0.8 m 2 for a half normal, half economy layout. The total weight

of a passenger and cargo is about 97 kg, which results in a payload loading (pl) of 119.38

kg/m 2.

The required wing area can now be expressed as: S= Wp/(pl Sp/s)

Inverting and dividing by the takeoff weight gives: WtO/s= 28.0 [mt°/mp]

The expression found for the wing loading results in values of the wing loading between

233 and 175 kg/m 2 for target payload fractions between 12% and 16% respectively. To

investigate whether such wingloadings can actually be achieved from a technological

perspective, we simplified the class I weight model further by expressing the tu:" three

terms as a fraction of maximum takeoff weight:

_Woe

Wto= 0.179 Wto+ _ S+ 1.69 Wp + wf

Fig. 2.2 shows that for a target payload fraction of between 12% and 16% and its

appropriate wing loading, only current technology is required. The variation of operating

empty weight with wing area can also be interpreted as an average structural weight per unit

11



areamultiplied by theratio of total wettedareato thereferencearea.Sincespanloading

wingsdo notexhibit arelative increasein structuralweight with an increasein size,this

numberrepresentsa level of structuraltechnologyindependentof size.The structural
weightperunit areavariesfrom componentto component,but for theOFW describedin

Ref. 41 an averagevalue of 35 kg/m2was found. An earlier parametric study of 7
supersonicdesigns[18] found that their averagestructuralspecificwing weight was38

kg/m2within a 10%range.

This meansthat theOFWs of interestwill havemaximumwing loadingsof around200

kg/m2for a rangeof 9000km and a payloadfractionof 14% usingonly conventional
technology.This is thesamepayloadfraction thattheB747achievesandmorethan50%
higherthanis projectedby thecurrentHSCT[16] studies.It is alsointerestingto notethat
thisnumberis notvery sensitivetoexpectedchangesin technologylevel.

2.5 Factors Determining Wing Size

The range of possible wing sizes for a given payload is limited by a number of constraints:

Passenger floor

For the near optimum root thickness of 2.3 m, a nearly fixed ratio between passenger floor

area and total wing platform exists, which determines the minimum size of any vehicle.

Thickness-to-chord ratio

For a given lift coefficient, freestream mach number, and a limit on local Mach number,

there will be a limit to the thickness-to-chord ratio for which we can design the wing. For

a freestream Mach number of 0.6, a normal local Mach number of 1.2, and limitations on

the pitching moment this thickness is about 16%. This result is discussed in more detail in

chapter 3.

Lift-to-drag ratio

There will always be a lift-to-drag ratio poor enough to render a given range prohibitive.

For the oblique flying wing and a range of 9000km this lift-to-drag ratio is near 6.5.

12
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Fig. 2.3 shows the influence of size on the performance of Mach 2 oblique flying wings

with the following parameters assumed constant :

altitude h=16.5 km

wingloading W/S= 2 kN/m 2

maximum thickness tmax=2.3

propulsive efficiency 1"1--0.45

The lift-to-drag ratio was calculated as a function of the ellipse ratio and the wing planform

area. The linearized expression for wing weight as presented in section 2.2, was used to

find the required fuel weight and therefore the required lift-to-drag ratio to obtain the

specified wing loading with a given payload.

Starting at point A in Fig. 2.3, an acceptable design, increasing the ellipse ratio with given

payload is possible up to point B, where the maximum thickness constraint limits further

reduction of the wing size. It is obvious that the smallest configuration with the highest

payload fraction occurs at point C. This configuration accommodates 500 passengers. In

this figure, lines of constant payload fraction are nearly horizontal. Increasing the lift-to-

drag ratio by increasing the aspect ratio for a given payload will directly increase the

payload fraction for a given altitude.

To be competitive, a new supersonic aircraft should have a payload fraction for this range

which is similar to that of the B747. This means at least a payload fraction at least greater

than 10%. A payload of 500 passengers constitutes an optimum since the payload fraction

does not increase beyond this point, while the number of aircraft required by the market

will go down.

For a given aspect ratio and aerodynamic refinement, the wing loading can be changed only

by increasing range or by making the structure heavier (Fig. 2.4). Again we are bound by

the minimum size aircraft constraint. If we start at A we can reduce the size of the vehicle

until we are limited by the size of the passenger floor or the maximum section thickness. It

is clear that the best configurations must employ very thick sections.

To obtain an economically competitive aircraft, the configuration should have a planform

area between 800-1500m 2, aspect ratios between 8 and 12, and root thickness-to-chord

ratios of at least 14%.

14



Fig. 2.5: Wave drag and induced drag of an oblique wing as

a function of sweep angle and Mach number
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2.6 Effect of Cruise Mach number, Sweep and Altitude

In Fig. 2.5 the potential drag for the OFW is depicted as a function of wing sweep and

Mach number. The factor KO represents the ratio of the volume-dependent wave drag to

the Sears Haak area distribution wave drag. The factor K represents the lift-dependent

drag. The total potential drag can now be expressed as

CD= KO CDsear s Haack+K CL 2

It is clear that in- or decreasing sweep by more than a few degrees from the optimum sweep

angle results in very high drag penalties. The supersonic area rule, as presented by Robert

T. Jones [19] and Harvard Lomax [221, provides us with an explanation. It states that the

wave drag of a supersonic configuration is related to the average wave drag of all the

equivalent supersonic bodies. The beginning and end of an equivalent supersonic body is

determined by the intersection of a line along which pressure differences can travel [M+ to

M-] and the body center line.

For a Mach number of 1 all equivalent bodies have the same length and the average wave

drag of the wing is just the minimum, KO=I. Increasing the Mach number will increase the

difference in length between the shortest equivalent body and the longest equivalent body.

Since the wave drag is quadratically related to the amplitude of the area distribution, the

average wave drag of the area distributions is much higher at Mach 2.8 than at Mach 1.2.

Further increase of the Mach number will make the leading edge supersonic. For a

supersonic leading edge, the equivalent body length associated with the M- lines will go to

zero for an oblique wing of infinite aspect ratio. For an unswept aspect ratio of 10.2 the

volume-dependent wave drag will be 25 times higher than the minimum value obtained at

90 ° sweep.

Using the aerodynamic model of section 2.2, we can calculate the lift-to-drag ratio of the

configuration as a function of Mach number and the Mach number normal to the average

sweep angle. For each Mach number, a different wing normal Mach number gives the

maximum value of lift-to-drag.

Mach<l.6 Mn=0.7

1.6<Mach<2.2 Mn=0.6

Mach>2.2 Mn=0.5

The sweep of the long axis of the ellipse can be found by taking the inverse cosine of the

16



Fig. 2.6: Effect of Mn Number on Lift-to-Drag ratio
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ratio of normal to freestream Mach number. It is clear from Fig. 2.6 that designing an

airfoil for Mn=0.6 will result in good lift-to-drag ratios over the entire Mach range.

In Fig. 2.7 the lift-to-drag ratio and the payload fraction of the configuration with varying

altitude are shown based on the full model described in 2.2. Even though the maximum

lift-to-drag ratio is obtained for the highest altitude considered for every Mach number, an

altitude of 16 km will result in near maximal payload fractions over the entire range of

Mach numbers considered. Beyond 16.5 km the engine weight will increase almost as

quickly with altitude as the fuel weight saved by the lift-to-drag ratio increase. [Note: 1]

From these considerations it follows that a CLM 2 of 0.3 will be usable for any OFW

cruising at Mach numbers between 1.5 and 2.8. Since we established in section 2.3 that

for a given altitude, maximum lift-to-drag ratio and payload fraction are interchangeable we

could use lift-to-drag ratio as the new objective function.

If we were to change the design range, the initial cruise wing loading and altitude would

change, but, to first order, not the design lift coefficient. Kuchemann & Weber [10] as well

as Torenbeek [ 15] have pointed out that the optimum ratio of the cruise lift coefficient and

the lift coefficient at which the maximum lift-to-drag ratio is achieved remains constant for

long range aircraft. Since increasing the range will mean taking on additional fuel with

constant wing area the maximum lift-to-drag ratio will remain constant except for the

influence of altitude on Reynolds number. The following chapters may therefore be

applicable to any range between 6 Mm and 12 Mm.

Note:

Ill In a private communication Robert T. Jones disagreed with this

statement.He agreed that one needs a greater engine diameter for flight at higher

altitudes, but he argued that the loads on the engine didn't change so the

weight of the engine shouldn't change either. The bigger engine should than

be downrated for operation at lower altitudes.
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3 DEVELOPMENT OF THE AIRFOIL

3.1 Objectives and Requirements

In the previous chapter we showed that an airfoil for which CL M 2= 0.3 and which has a

thickness of at least 14% will give the configuration an economically competitive payload

fraction.

The airfoil must be designed with a sufficiently small transonic wave drag. For current

subsonic transports, a drag rise of 20 counts (0.002) is considered acceptable for the high-

speed cruise condition. According to simple sweep theory, a 70 ° swept wing with airfoils

operating at this drag rise condition will have a total drag increase of only 1%.

The airfoil should be designed for Mach numbers between 0.5 and 0.7, to be used for the

full range of OFW sweep angles and Mach numbers. We will attempt to reach this goal

with just one airfoil-family design. In section 2.2 we mentioned that if control authority is

provided by a narrow trailing edge flap, the location of the liftvector is limited to 32% of

the chord.

Other considerations in the design were related to the utilization of the geometry by

passengers. The relative thickness distribution over the chord was chosen to enable

maximum use of the cabin Since passengers only accept very small inclinations of the

cabin floor, the airfoil bottom was designed in such a way that for most of the operation the

floor will be level. The airfoil section should also provide adequate space for the landing

gear and systems.

3.2 Baseline Airfoil Design

We designed the airfoil for a Reynolds number of 200 million, and set the transition ,:t 2%

from the leading edge, to simulate the cruising conditions. For a two aisle layout the best

utilization of the cabin is obtained with the maximum thickness at 35% of the chord.

At Mach 0.7, the upper surtace normal Mach number distribution needs to be close to the

maximum shockfree value over half the chord if we want a resultant lift vector at 32% of

the chord. We found that an airfoil with a flat pressure distribution at Mach 0.7 had the

same drag-rise CL M 2 between Mach 0.5 and Mach 0.7.
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Therecoverywasdesignedwith Head's[ 17] turbulentboundarylayermethod.Wedefined
the separationpoint at H=2.0. Low-speedairfoil designswill havethe highestpressure
gradientsat the beginningof the recovery. But suchsteepgradientswill changethe
locationof the shockat the higherMachnumbers,andthereforetherecoveryhasto start
moregradually.The lower surfaceand theaft uppersurfacearethen tailored to get the
appropriatepitchingmomentandthickness.

TheOW701014[20] airfoil hadtherequiredflat supercriticalpressuredistributionatMach
0.7. We thereforemodified the pressurerecoveryof this airfoil to satisfy the pitching
moment requirements,while leaving the first half of the upper pressuredistribution
undisturbed.Thesemodificationsweredonewith Panda,an interactivesubsonicairfoil
designprogram. After eachmodification,weanalyzedtheairfoil pressuredistributionfor
Mach0.5, 0.6 and0.7 at therequiredlift with ARC2D. For mostof this designphasea
coarsegrid (Fig. 3.1) wasusedsincethisenabledusto run jobs of lessthan200seconds
on theCrayXMP. As canbeseen,mostof thegrid pointsarein theboundarylayer.

Fig. 3.2 shows the iso-Mach lines at the design condition of Mach 0.7. The rapid
accelerationof the flow at the noseandthe constantlocal Machnumberof 1.2on the
rooftoparevery notable.Thewavinessof the lines iscausedby grid coarseness.It is also
possible to look at the boundarylayer velocity in moredetail. Figs. 3.3a,bshow the
nondimensionalizedvelocity and Mach numberacrossthe boundarylayer during the
recovery.Theflow is fully attachedandtheboundarylayeris very thin.

Figs.3.4a,b,c,dshowthe 16%OFWairfoil pressuredistributionat thedragdivergencelift
coefficientfor Mach0.50,0.6, 0.65and0.7.For all of theseMachnumbers,therequired
trimmedlift wasjust obtainedwith thepresentbaselinedesign.Onecanclearlyobservethe
shocktravellingfromtheleadingto thetrailingedgeastheMachnumberincreases.

Figs.3.5a,b,cshowthecharacteristicsof theairfoil designaccordingto ARC2D.We have
also includedresults from an analysisdonewith the BAUER-code.The BAUER code
predictssignificantlylessdragthantheARC2Dcode.However,oncetheARC2D grid is
refinedfive-fold, thedragof thesectiondecreasesby 30countsandthepredicteddragsare
very close. The pressuredistribution, and therefore the pitching moment and lift
characteristics,remainedunchangedbythegrid refinement.
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Fig. 3.4c
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3.3 Thickness Trade-off

After the baseline t/c=16% airfoil was designed, it was possible to design a family of

airfoils with the same pitching moment characteristics but different thicknesses. Since the

upper surface of the airfoil is already designed close to the optimum, only the lower surface

remains as a variable. In addition, in order not to disturb the flow on the upper surface we

had to maintain the lower surface leading and trailing edge geometry.

Airfoils of this kind can be obtained by adding or subtracting a thickness distribution

represented by a transformed sine function over a 0 to n range. The added thickness

distribution is zero on the trailing and leading edge and reaches a maximum at 40% of the

chord. Adding this thickness distribution to the lower surface did not change the location of

the center of pressure. These airfoils are shown in Fig.3.6. Instead of referring to them by

their actual thickness t/c we use t/c*,.which is defined as 1.5 times the section volume

parameter (=area/t c). This variable has more physical significance than t/c if we want to

relate the achievable lift to the section thickness.

Figs. 3.4 e, f show the 12% and the 14% thick airfoils with their pressure distributions at

ot=3.3 ° and M 0.6. In Fig. 3.7 and 3.8 one can see the lift, drag and pitching moment of

these airfoils for the drag-rise condition, with and without trim. We trimmed the airfoil with

a 10% narrow trailing edge flap. As expected, lift is lost when thickness is increased. Since

we know the drag-rise characteristics of the airfoil and the CL at which drag-rise occurs for

each airfoil, we can now model drag-rise in the aircraft polar.

To select the best maximum thickness for our configuration, we express the change in

takeoff weight relative to the baseline configuration (point C in Fig. 2.3) as a function of

the maximum thickness-to-chord ratio. The size of the passenger cabin and the takeoff

weight are fixed.The maximum thickness ratio influences the takeoff weight because it

1) changes the planform area required to accommodate the passengers, and this area

determines the structural weight fraction, and

2) changes the lift-to-drag ratio, and this ratio determines the fuel weight fraction.

The lift and drag coefficient at the drag-divergence condition can be expressed as:

CL ar=CL ad,2D cos 2A

CD dd=(CD parasite,rel-CD wave.ref)+CD wave,ref +K CLal
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where:

CLdo,2o

CD par asite,re t-CD wave,ref

CD wave,ref

K

Drag diverergence CL for varying t/c* from Fig. 3.7

0.00413 from Ref. 41

0.00133 from Ref. 41 or Section 2.2

0.370 from Ref. 41 or Section 2.2

The required ratio of planform area to reference planform area for a constant cabin floor

area follows from the relation in Fig. 2.1. For a given ellipse ratio this corresponds to a

certain t/c* which, in turn, can be converted to a lift-to-drag ratio by the previous relations.

The fuel weight fraction can be calculated with the I3requet equation. The change in

planform area will also influence a fraction of the structural weight. If we assume a

constant total weight and a varying payload fraction, the structural weight fraction that

depends on the wing area will vary linearly with the planform area. For a constant total

weight the powerplant weight fraction will increase linearly with drag and inversely with

ambient density:

IWpPref0 fCL.fCO}:IWP refCOS)w ,j lW- o, fa cD--6-7 fCLlWtoro----TCD   ,

The combined effect on the weight fractions due to variation of the thickness ratio is shown

in the last column of table 13.3.1. As observed before qualitatively, the best root thickness-

to-chord ratio is around t/c*=O.153. Serious penalties can be expected for deviations of

more than 10% from this wdue.

table 3.3.1: Structural and Fuel Weight Fraction as a Function of Thickness Ratio

[S l=[Spref I Wf Ws
[tmax] I_-?JL--_-oJ [t/c*] [L//DIDD [W-go] [W-_o] tWtoj[Wpp] [W_Wf+Wpp]

2.1 1.81 0.104 11.6 0.38 0.33 0.19 0.91

2.2 1.24 0.132 10.7 0.41 0.22 0.12 0.76

2.3,ref 1.00 0.153 9.89 0.43 0.18 0.10 0.72

2.4 0.92 0.166 9.29 0.46 0.17 0.09 0.72

2.5 0.85 0.195 7.82 0.51 0.15 0.09 0.76

2.7 0.73 0.229 6.01 0.62 0.13 0.08 0.83
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Fig. 3.7: Thickness tradeoff
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4 THREE DIMENSIONAL WING DESIGN

4.1 General considerations

The following considerations play an important role in the determination of an acceptable

pressure distribution on the Oblique Flying Wing:

1. The wing has to provide sufficient resultant lift at 32% chord location. This can be

achieved by scaling the airfoil pressure distributions with simple sweep theory.

2. The loading of the wing should be nearly elliptic in both the y- and x-projection to

minimize the induced drag of a supersonic oblique wing. It can be shown that for a high

(unswept) aspect ratio oblique wing, the loading is near-elliptic in the x-projection when it

is elliptic in the y-projection I2].

3. A Sears-Haack area distribution minimizes the volume-dependent wave drag of the

wing [3, 48].

4. In the design of the airfoil we used a Navier-Stokes code. This code models shocks and

shock-induced flow separation. We designed the airfoils in such a way that shocks

gradually move to the tailing edge and gradually increase in strength with increases in angle

of attack. The linear theory that is used to design the three-dimensional wing does not

model these non-linear effects, but if the wing has the same transonic local normal Mach

numbers distribution as the airfoils, we can expect it to have similar non-linear behavior.

5. To prove that the three-dimensional wing is separation free we wJuld have to do a three

dimensional boundary layer analysis. In the absence of this analysis we should at least

show that the flow has a positive velocity in the direction normal to the isobars.

6. The prescribed pressure distribution should result in a geometrically realizable w, qg. It

is for this reason that we propose to specify the thickness distribution and warp the mean

camber surface of the wing to satisfy all other requirements.

4.2 Wing Planform and Basic Thickness Distribution

We find the wing planform and the airfoil selection along the wing span from the following
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considerations:

a) A minimimsizewingwithoutexcessivedragis obtainedif thedragdivergencelift
coefficientCL,dd(t/c*) is achievedover thewholewingspan(Fig. 3.7).

b) A wingwith minimuminduceddragisobtainedwithelliptic loading.Foragiven
CL(t/c*)c attheroot wecanfind theCLCatagivenspanwiselocationy.

c) A wing with minimum volume-dependent drag is obtained with a Sears Haack area
2

distribution. For a given A(y)= 5- [ c2 t/c*] at the root we can find the A(y) at a given

spanwise location y

If we select a root t/c*--O.153, as suggested by the analysis in section 3.3, we know the

distribution of CL,ddC and A over the span. We now have two known quantities (i.e.

CL,dd and A) and we have to solve for the two unknows t/c*(y) and c(y).

In Fig. 4.1 the spanwise distribution of chord, thickness-to-chord ratio and local lift

coefficient are depicted for a wing with a Sears Haack area distribution and elliptic loading

with OFW-airfoils. The wing planform resembles an ellipse, but is slightly more tapered.

The higher taper ratio, and therefore decreased wetted area, is possible because the airfoils

become thinner near the tips. Thinner airfoils have higher lift coefficients, so less chord is

required to carry a given load.

To simplify the manufacturing the wing consists of a limited number of linearly tapered

sections instead of a continually curved leading and trailing edge. It is clear that deviation

from the ideal area-distribution will result in extra volume-dependent wave drag. However,

such small deviations from the elliptic loading will not cause significant additional induced

drag.

To evaluate the trade-off between the number of linearly tapered sections and the drag we

wrote a program to calculate of volume-dependent wave-drag of area distributions based on

the Eminiton-Lord method [21]. This analysis showed that the wave drag of a linearly

tapered oblique wing is almost twice that of a Sears Haack body. This would mean a

decrease of 18% in lift-to-drag ratio of the OFW. Even the absolute wave drag of a linearly

tapered wing was a third higher than that of a Sears-Haak area distribution although the

volume was less. With the OFW wing design presented in Fig. 4.2 we obtained a wave

drag that was no more than 13% higher than the theoretical minimum (AL/D=2%).

32



Fig. 4.1: Wing design on the basis of the airfoils
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4.3 From a Two-Dimensional Pressure Distribution to a

Three-Dimensional Wing

Introduction

In the 1960's Lock [23] developed techniques to transfer the pressure distribution from an

airfoil to a wing based on local normal Mach number. He pointed oot that the major

disadvantage of the transformation lies in the fact that the magnitude of the velocity

determines the local Cp, but its direction determines the local normal Mach number.

Therefore, this transformation can only be made if one assumes that the local velocity has

the same direction as the freestream velocity. This assumption is incorrect for low-aspect

ratio wings as well as near the tips of high-aspect ratio wings. Another disadvantage is that

if the upper surface pressures are determined by the airfoil normal Mach number

distribution, the lower surface pressures, and therefore the loading (Cp,lower-Cp,upper), are

determined by the thickness distribution. To control the loading, the thickness distribution

has to be changed which may result in unrealizable geometries. This is probably the reason

that simple sweep theory is often used to transfer pressure distribution from airfoil sections

to the wing. Simple sweep theory relates the wing pressures to those of the airfoil with the

following expression:

Cp,3D = Cp,2D c°s2Aref

Instead of using the angle between the quarter chord line and the Y-axis as the reference

sweep angle, Boppe [36] proposes using the angle between the line of two-dimensional

shock locations projected on the wing and the Y-axis (see Fig. 2). Although this will assure

a correct transformation based on normal local Mach number near this line, the

transformation is incorrect for other locations and, in some cases, the shock may well

appear elsewhere.

Boppe used an inverse panel code to find the slopes of the wing camber surface after he

determined the desired pressure distribution based on simple sweep theory. It could be

argued that with a non-linear inverse design code such as Boeing's A555 [38], a wing with

any thickness and pressure distribution can be designed. There are however two major

disadvantages in using non-linear inverse codes. First, they require more storage and speed

than a linear potential code. Another disadvantage is that the perturbations due to thickness

and camber can no longer be added, depriving us of a powerful tool in wing design. We

will show that it is possible to use this linearity to determine the pressure distribution for a

low-drag, geometrically-realizable wing.
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Overview

Unlike previous method, ff_e present method accounts for the influence of local taper, local

sweep and three-dimensional induced velocities to specify the wing pressure distribution

based on airfoil data. In an iterative way, the pressure distribution is calculated from the

potential flow velocity perturbations for a given thickness distribution and the prescribed

vorticity. The present method combines the philosophy of Lock's and Boppe's method to

prescribe the vorticity on the wing. The vorticity in supercritical wing regions is based on

airfoil transonic normal Mach numbers and includes the influence of local sweep and three-

dimensional induced velocities, so that the appearance and the strength of the shock waves

can be expected to resemble those of the airfoil. The vorticity in subcritical wing regions is

scaled first with simple sweep theory, and then to achieve the desired load distribution.

Fig. 4.3 presents the computational algorithm. The airfoils, which were designed with a

Navier-Stokes code [24], were analyzed with the potential flow code that was used for the

three-dimensional wing geometry, at the same Mach number and angle of attack. The

vorticity and the local nomlal Mach number predicted by the potential flow code were used

to specify the vorticity (Uvort) distribution on the wing. In turn, the vorticity distribution is

used to solve for the wing's camber with an inverse panel code. The induced velocity

perturbations of this cambered wing are used in the next iteration.

Like those mentioned in the introduction, this method does not include a three-dimensional

boundary layer analysis. Such an analysis is required if we want to check for flow

separation. In the absence of such an analysis we would at least have to show that there is a

positive velocity in the direction normal to the isobars according to potential flow. If a

three-dimensional boundary layer analysis shows separation, the effective boundary layer

may be added to the geometry and the present method repeated. 1¢ the separation occurs

because the induced velocities increase the adverse pressure gradients relative to the

airfoil's, the airfoil pressure recovery must be redesigned.

Detailed Description

From the arguments mentioned in the introduction it follows that specifying the vorticity

distribution based on local normal Mach number will generally not result in a wing that has

the desired load distribution. On the other hand, if one specifies the vorticity based on

simple sweep theory one cannot control the location of the shocks, and the non-linear

pressure distribution may look very different from the linear pressure distribution.
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Fig. 4.3: Determination of the wing camber distribution
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We therefore propose to use different criteria for different parts of the wing:

To satisfy the loading constraints we scale the vorticity of wing regions with subcritical

pressures based on simple sweep theory. To obtain elliptic loading on the wing, it may be

necessary to scale this distribution again with a correction factor MY). To avoid the

occurrence of shocks and separation the local normal Mach number should be limited to

positive subsonic values:

Uvort,3 D = _. Uvort,2 D coS2Aref but; Uvort,3 D (Mn=0.0) < Uvort,3 D < Uvort,3 D (Mn=l.0)

If the transonic normal Mach numbers of the wing are the same as the corresponding airfoil

Mach numbers, the non-linear effects on the three-dimensional wing will correspond

approximately to those of the airfoil. Therefore it is sufficient to transfer only the

supercritical pressures with the local normal Mach number criterion:

Un3D

MI,n,3D "-- a3 D - M2D"

Using second-order small perturbation theory, we can write expressions for the local

normal velocity and the local speed of sound to obtain the local normal Mach number. All

the velocities are normalizexl with the freestream velocity:

Local normal velocity

Local velocity

Local velocity of sound [301

Un,3 D = 5/{(l+u)cosA+vsinA} 2+w2

UI = 3/(l+u)2+v2+w 2

a= "_/I'/M 2+_(7-1 )( 1-U '2)

In these expressions: M is

Ais

ti,W,V are

the freestream Mach number,

the panel quarter chord sweep angle, anu

the normalized x, y, z- perturbation velocities.

Fig. 4.4 shows the panel geometry representing the wing. For the upper surface, the

perturbations on each panel of the aircraft can be expressed as:

= =U'+uUtop Uthick + Ulift + u vort vort,

.... V' R 1 andVtop Vthick + Vlift (dt/dx)/2 sin® u vort R1 - u vort '
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Wtop = Wthick + Wlift + (dt/dx)/2 cosO - u vort R2 = W' - u vort R2.

For the lower surface they can be expressed as:

Ubo t = Uthick + Ulift - u vort = U'-u vort '

Vbot = Vthick + Vlift + (dt/dx)/2 sinO + u vort RI = V' + u vort R1, and

Wbo t = Wthic k + Wlift - (dt/dx)/2 cosO + u vort R2 = W' + u vort R2.

In these expressions the subscripts thick and lift refer to the perturbations due to thickness

and lift on the panels due to the other panels. R 1 and R 2 are the tangents of the vorticity in

the YZ and the XY plane respectively:

(Y2-Y1) (X3-X 1-X4+X2+X2-X 1)

R 1 = ((y2_Y1)2+(Z2_Z1)2)

(Z2-Z 1) (X3-X 1-X4+X2+X2-X 1)

R2= ((Y2-Y 1) 2+(Z2-Z1) z)

For a planar wing these expressions are simplified: Wthick=Ulift=Vlift=0. We can now

write the equation for u vort,3D based on local normal Mach number:

M2D = MI,n,3D

M2D a3D-Un,3D = 0

M2D 2 [1/M2+l/2(Y--1) (1-(l+u)2-v2-w2)l - [{ (l+u)cosA+vsinA}2+w2}] = 0

a u vort2+b u vort+C = 0

where:

C _

a = - Q- Q R12- Q R22- C2- R12 $2+ 2 R 1 S C- R22

b = -2 Q+ 2 v' R1 Q+ 2 W' R2 Q- 2 C2+ 2 v' R1 $2+2 R 1 S C+ 2 U' R1 SC+ 2 W' R2

M2D2/M 2 - 2 Q U'-Q u '2- Q v '2- Q w '2- C2- 2 u' C2- u '2 C2- v '2 s 2- 2 v' S C - 2 u' v' SC- w '2

2
Q = I/2(Y--I) Mto p , C = cosA, S = sinA.

The solution is:
-b + _/[b2-4ac]

Uvort,1,2 = 2a

The largest u root violates the small perturbation assumption, so we select the one with the

smallest absolute value. Problems may occur when the actual normal Mach number of the

panel is far from its design normal Mach number.
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Fig. 4.4: Oblique wing sign conventions
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For example; when the normal component of the freestream Mach number on a panel

exceeds 1.0 and a subsonic normal Mach number is prescribed on the top and the bottom

of the panel, we are unable to resolve the discrepancy by changing the vorticity. Such

problems can be solved by increasing the panel sweep.

We can now compute the target pressure distribution over the wing, using a first or a

second order approximation:

First order: Cp = -2u

Second order: Cp = M2u2+( 1-UI 2) = M2u2+ 1-[( 1+u)2+w2+u 2] .

The final perturbation U 1 can be corrected with Riegel's correction [37] to improve the

pressure coefficients estimates near the leading edge:

U21,top,Riegels = Ui2/(1 +( (dt/dx)/2 + dz/dx) 2)

U 2 = Ul2/( _l,bot,Riegeis 1+( (dt]dx)/2 dz/dx)2).

Which expression is superior depends on the code that is used to calculate the wing

camber. If the code uses only the first order relation to determine the panel mean line slopes

than we should use ACp (=4Uvort) as input. The final result will still be second order

accurate if the final perturbations are combined to a second order accurate pressure

distribution. If the panel slopes are determined by higher order relations, the second order

expression for ACp should be used. The inverse code will return the required induced

velocities and incidence (dZ/dx) for each panel. These values are used for the next iteration.

The perturbations to start the iteration can be obtained from an analysis of the wing with the

original airfoil camber.

The panel code used in this paper was written by Ralph Carmichael and later modified by

the authors for oblique wing research. The modifications include the method described in

this paper and an improved drag calculation. The original code WING3D is based on work

by Woodward [39] and Carmichael. WING3D solves the Prandtl-Glauert equation in

subsonic and supersonic flow:

( 1-M2)_xx+t_yy+_zz=0.

The perturbations are defined as: u=_/Sx, v=5O/Sy, w=5_/Sz.

Sources, sinks and vortices that are distributed continuously over each panel are solutions
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to the Prandtl Glauert equations.Sincewe know their inducedvelocity distribution in
space,we canusethemto constructtheflow field aroundthe wing. For this purposean
aerodynamicinfluence matrix [AI] containing the induced u-perturbationsfor each
singularityis setup, invertedandmultiplied throughby acolumnvectorrepresentingthe
wing meansurfaceboundaryconditions.In thiswayweobtaintheu-perturbationsat each
panel:

[4 Uvortl = [A CP]= [AI] -1 [dZ/dx-O_l.

It is also possible to solve ffpr the wing camber if the u-perturbations are known:

[dZ/dx-0_]= [AI] [4 Uvort1.

Application of the Method

First we investigate the pressure distribution over a 16% thick airfoil with ARC2D, a

Navier-Stokes code and WlNG3D, a potential flow code. Fig. 4.5a shows the pressure

distribution at _x=3.3 ° and Mach 0.6 calculated with ARC2D. We used a coarse 193 x 40

grid. There is a weak shock just aft of the leading edge. The center of pressure of this

section is at 32% of the chord. Fig. 4.5b shows the pressure distributions calculated using

WING3D with and without Riegel's correction. The distributions look similar to the one

generated by ARC2D, though the pressures are a bit too high on the first part of the upper

surface, resulting in an undcrprediction of the lift coefficient by about 7%, and the center of

pressure is at 36% of the chord. In this case, probably due to the coarse panelling, Riegel's

correction does not increase the accuracy. We will use the vorticity and the local normal

Mach number distribution of the sections analyzed with the potential flow code for the

inverse design. The reason the potential flow solution is preferred over the ARC2D

solution can be easily understood in the two-dimensional case. If the pressure distribution

from 4.5b were used to inversely design the camber distribution, we would get back the

same airfoil. This airfoil _ould give the non-linear pressure distribution of Fig. 4.5a if it

were analyzed with the ARC2D. To first order, this is also true for wings.

Next, we apply the method to the 72 ° swept oblique flying wing SST. Fig. 4.6a shows an

artist's impression of this transport. Because the normal component of the freestream Mach

number changes as much as 0.4 from the leading to the trailing edge, the effective local

sweep and taper must be included in the transformation. In addition, the low aspect ratio

may induce significant three dimensional lateral velocities that change the local normal

component of the flow.
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Oneinversedesignof theobliqueflying wing wasbasedon themethodpresentedin the
previoussectionandanotherusedthesimplesweepmethod.Bothdesignshada straight
32%chordline. Becausethereferencesweepson theforward andaft wing aredifferent,
Boppe'smethodresultedin a wing with unequallifts on thewinghalfs.Forcingthenormal
Machnumberto be the sameeverywhereon thewing, asLock proposed,would bevery
difficult becauseof thelargevariationof thefreestreamnormalMachnumbercomponent.
For an elliptically loadedwing this would result in intolerablechangesin the thickness
distribution aswell as largewavedrag. We limited thenumberof panelswith thickness
representingthedesignto 400to improvetheconditionnumberof theaerodynamicmatrix
andtoreducethecomputationtime(20panelsof thesamewidth in spanwisedirectionand
20panelsof thesamefractionalwidth in chordwisedirection).

Fig. 4.6bshowsthecruisepressuredistribution.The suctionpeakon the uppersurface
decreasesfrom theforward tip to theaft tip. This is becausethesweepangleof thepanel
increasesin this direction, and moresuctionis requiredto producethe sametransonic
normalMachnumbers.In Fig. 4.6dweseethat thenormalMachnumberson the leading
edgeof thepresentmethoddesignarethesameasfor theairfoil, while thesimplesweep
designovershootsthis targetby asmuchas0.1. Thesimplesweepdesignalsohasa weak
shocknearthe 60% chordlocationof the aft tip. Fig. 4.6c showsthat thecontrol of the
normalMachnumberby thepresentmethodis achievedby varying theloaddistribution
from tip to tip with respectto thesimplesweeploaddistribution.The loadingis decreased
significantly on theleadingedgeof theforwardtip andthe60%chordlocationof theaft
tip. Becausethecenterof thewing is untaperedandthelateralinducedvelocitiesaresmall,
its loaddistributionsareverycloseto thedistributionsaccordingto simplesweeptheory.

In Fig. 4.6f the effective angleof attack of the meansurfaceis shown.The camber
distributionresemblesthelinearantisymmetricdistributionsuggestedby previousoblique
wing research[20,29]. The forward-facingwing tip is substantiallymorecamberedthan
the rearward-facingtip. Using the scaling factor, X, we were able to producea nearly
elliptic loadfor aplanarwing asshownin Fig.4.6e.

4.4 The Calculation of Drag with Coarse Paneling

We designed the wing for target pressure distributions, but after this is done we still have

to analyze the wings off design characteristics. If we use pressure integration to calculate

the drag of wing, very dense paneling is required with any panel code. More than ten

panels on the first 1% of the chord are needed to get the leading edge suction right, and
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Fig. 4.5: The Pressure distribution of the OFWA 16
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Fig. 4.6a: The oblique flying wing
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even with such fine paneling the induced drag cannot be predicted with an accuracy of more

than about 10%. The Woodward code assumes that the wing is thin (i.e. dt/dx<l) and

therefore additional errors would occur if we were to use fine paneling near a rounded

nose. In this section we will investigate whether it is possible to get reasonably accurate

results for the drag with coarse paneling.

Lift-dependent drag

The induced drag of each wing strip can be expressed as:
n

CDi/q=_(ACPi dZ/dxi Area i + ATx,ile/q)
i=l

where: Area. is the projection of the panel area on the XYplane

ATx,i le/q is the leading edge suction in X-direction

R.T. Jones [25] gives the following expression for the X and Y component of suction

force on leading edge panels of wings with subsonic leading edges:

ATx, i/q= -2_x ,_-l-m 2) limx__xlU2(x-xle), and ATy,i/q=ATx, i/q tan A

Multhopp [11 ] and Garner [91 evaluated this limit for incompressible flow assuming that u-

perturbation on the chord is expressed in Fourier coefficients:

so;

u=b/_:c [7 cot (0/2) +4l.t {cot (¢_/2)-2sin_}+_c{cot (_/2)-2sinO--2sin2_}..]

limx_>xleU2(x-xle)=(b/Tzc)2 [_,+4_t+_ ..... ]2

The first two terms of this expansion can be related to the lift and pitching moment

coefficients of a strip formed by the corner points of the panels over the le_qth of the

chord, as follows: ¥ =CLc/2b and la = CM b4"c/2b

In this expression the peturbations other than 7 represent the u-distribution at the ideal angle

of attack. Therefore, we could also write the limit as:

2c2 __ 2

limx_>xle u (x-xle)= _ ICL+ _ CM1/41 _=-ICLi/CMI/n,rcf]
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Thevariable_ is theratioof pitchingmomentto lift attheidealangleof attack,e.g.,the
conditionwhereu--0on theleadingedge.It shouldbeevaluatedwith thesamecodeand
panelingasis usedfor thedragcalculation.Forawing witha narrowchordit is reasonable

to usethe2Dvalueof _ sincethereis notmuchinducedcamber.Forwingswith significant
inducedcamberthevalueshouldbefoundby:

CLi= CL [1-_/14
(CDi,ell-CDi,ref)

CXsuc,ref

The ref(erence) condition denotes the Mach number and angle of attack for which the wing

loading is near elliptic, and full suction is assumed (_=0) Since this expression does not

include wave drag due to volume, it can only be used for subsonic Mach numbers.

Generally, a discontinuity in _ is observed between subsonic and supersonic speeds. The

supersonic value can be found by setting the induced drag equal on both sides of the speed

of sound. The reference pitching moment is the weighted average pitching moment due to

the u-perturbations around the quarter chord of the strips.

In Fig. 4.7a the lift-dependent drag for a flat straight wing, a flat delta wing and the OFW

are compared with their theoretical values as presented in Ref. 14 and Ref. 2. The values

predicted by the panel method correspond quite well up to Mach 3 .The induced drags of

the OFW and the delta wing are about the same above Mach 2. If we unsweep the wing the

induced drag can be significantly lower for speeds below Mach 2 (see also Fig. 2.5).

Volume-dependent drag

For thin wings the volume-dependent drag can be expressed as:

n

CDvol/q=i_ 1 (CPt dt/dx i Areai) and: Cp t =-2 Uthic k

Fig. 4.7b gives the volume-dependent drag for a flat straight wing and a flat delta wing.

The drag values are very close to those predicted by potential flow theory [14, 3]. For

subsonic speeds the volume-dependent wave drag is correctly integrated to about zero. The

oblique wing has a lower volume-dependent drag below Mach 2, but above this Mach

number the drag rises sharply, while the volume-dependent drag of the delta wing keeps

dropping. One could reduce the volume-dependent drag somewhat by sweeping the wing
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further,but it would notbepossibleto keepthelocal normalMachnumberstransonicdue
to theeffectof wingtaperon the effective sweep of each panel.

4.5 Evaluation of lhe Forces and Moments

We can now analyze the OFW with the improved WlNG3D code. The sign convention is

given in Fig. 4.4. All forces and moments were calculated on the basis of second-order

pressure coefficients. The design condition for the wing analyzed with the linear potential

flow code was CL=0.07, Cm0.32 = -0.0035, and an elliptic lift distribution was required.

Fig. 4.8a shows that the lift increases linearly with angle of attack. The required cruise lift

is achieved at the reference angle of attack (0_=0). The potential drag (Fig. 4.8b) is within a

few percent of the theoretical minimum given in Refs. 2 & 3. The wave drag due to volume

0.0013, and the lift-dependent drag value of 0.37 are very close to the values calculated

earlier in the conceptual OFW study [ 411. The side force (Fig. 4.18c ) is the component in

the Y-direction of the leading edge suction. It increases quadratically with the lift

coefficient. The value of the sideforce is zero at cruise conditions, and is at most one

percent of the value of the total lift at the off-design conditions.

At the cruise Mach number of 2, the pitching moment (Fig. 4.8d) is close to zero and the

aircraft has a static margin of 0.13. At subsonic speeds, the static stability is almost neutral.

The yawing moment (fig. 4.8e) reaches its minimum at the condition of elliptic loading.

The yawing moment increases when the angle of attack is increased from the condition of

elliptic loading. In this case, the increased upwash on the aft wing half tilts its lift-vector

forward, which creates a positive yawing moment. The yawing moment also increases

when the angle of attack is decreased from the condition of elliptic loading. When the angle

of attack is decreased, the lift on the aft wing half is re&_ced much _aster than the lift on the

forward wing half. The resultant of the induced drag shifts in the positive Y-direction and

creates a big positive yaw,ng moment. The rolling moment (Fig. 4.8t3 is ahnost zero at the

required lift and increases with angle of attack because the rear wing loading i_lcreases due

to the upwash from the fo_"ward wing half.

The lift-to-drag ratios presented in Fig 4.8g predict a maximum value around 11 for Mach

2.0, close to the values predicted by the method in Ref. 3 (point C in Fig. 2.2) for the same

parasite drag.In Fig. 4.8h the relation between K and CL is shown. At the design angle of

attack, the lift distribution is more elliptical and the K factor approaches the theoretical

minimum [2]. The force and moment curves are qualitatively similar to those published in

Reference 6 of a highly swept oblique wing.
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Fig. 4.7: Aerodynamic comparison for selected wings
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.20

Fig. 4.8: Warped OFW in potential flow
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c" Side force
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4.6 Control Authority

Control authority is the capacity to maneuver and trim the aircraft by generating moments

and forces. One can obtain the desired pitching and rolling moments by deflecting the 10%

trailing edge flap suitably along the span. In this way, the flap deflections can be directly

used to control the aircraft by an artificial stability and control system. The required flap

deflections are found by setting up a matrix with the partial derivatives of the rolling and

pitching moments with respect to a suitable deflection along the span, inverting this matrix

and then solving it for the required pitching and rolling moment. As an example we will

calculate the symmetric deflection (s) and an asymmetric (negative on leading tip) deflection

(a) required to balance the aircraft due to a 1 degree angle of attack change at CL=0.0065

and Mach 2:

[:] 8Cm/Ss 8Cm/Sa ]-1[ CM required [-0.00435-0-00139]-1 0"00325 ]j0"095]= 8Croll/SsSCroll/Sa Cronrequircd =[ 0.0053 -0.0057 [ [-0.00100][-2.61]

To trim the aircraft we need to deflect the flap at the leading tip 2.7 ° downward, and we

need to deflect the flap at the trailing tip 2.5 ° upward. Between the trailing and leading tips

the flap setting varies linearly. For a trimmed OFW, the lift gradient is 10% higher than for

an untrimmed OFW and the induced drag remains approximately the same.

Recent research [27] has revealed that high side accelerations in pitch maneuvers are

unacceptable to pilots. In the case of the OFW, for a 1.3 g pull-up maneuver at cruise a

sidefore of 0.03g is created. This sideforce can be easily compensated by deflecting the two

most inboard vertical tailplanes (shown in Fig. 1) in the same dire'_tion. Since each fin has

an area of 1.7% of the wing planform and a lift gradient of 0.04/o, we would only have to

deflect them by 0.2 °. However, higher side forces can be expected during subsonic

maneuvering.

Yawing moments are generated by deflecting the fins on each wing half in opposite

directions. The yawing moments due to changes in the angle of attack are of the same

magnitude as the side force. But, the one engine out condition is the most important, and

this condition dictated the size of the vertical fins as described in Ref. 41 .The trailing fin

gives the aircraft a directional stability of Cnl3=0.04/rad, slightly higher than the minimum

value recommended in Ref.5.
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Conclusions

An earlier study [41] suggested that the Oblique Flying Wing (OFW) would be

economically attractive if it could achieve cruise lift-to-drag ratios that are comparable to

those of other supersonic configurations. Because the OFW is able to adjust its sweep

angle for each Mach number, it achieves a higher lift-to-drag ratio than any existing

configuration up to Mach 2.0. Fig. 5.1 compares the lift-to-drag ratio of the OFW to that of

the B747 and the Boeing High Speed Civil Transport [16].

The structural weight of the OFW will also be less than that of conventional configurations

because the cabin is used as part of the wing. The wider span does not lead to a higher

bending weight because the load is distributed over the span. (Fig 5.2).

Improvements in lift-to-drag ratios and empty weight will lead to better payload fractions.

Since the payload fraction is directly related to Direct Operating Costs [15, 12] the

improved payload fractions will result in lower DOC and therefore better economic

performance. Fig. 5.3 compares the OFW and the 1989 HSCT designs on the basis of

payload weight fractions. The OFW achieves payload fractions that are very close to that of

the B747, while the HSCT configurations [34, 35] have significantly lower payload

fractions.

Fig. 5.4 gives a general comparison between the Oblique Flying Wing, the current Boeing

High Speed Civil Transport and the Boeing 747. We see that the OFW is lighter, carries the

same payload and requires less runway than the B747, while being almost as fast as the

HSCT.

Current and Future Work

Current research on the Oblique Flying Wing includes an environmental and an operational

impact study. The research discussed for this paper and the current work was funded by

NASA AMES.
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Main Advantages of the Oblique Flying Wing
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Fig. 5.1" The OFW has better performance and requires less fuel
than other aircraft because it has higher lift-to-drag ratios.
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span and the cabin is part of the wing.
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Software References

The following software tools were used for the parametric studies:

AVSAD (by A.J.M. Van der Velden, TUDelft/UC Berkeley/Stanford U Pascal,
IBM XT) General parametric configuration design program Detailled

description in Chapter 2 -code made available upon request

The airfoil was designed with the following software:

PANDA (by. I.Kroo, Stanford AA, Fortran, Macll):
Interactive inviscid analysis of a 2D airfoil by Riegels Method. Weber
R&M 3026, a modification for thin airfoil theory. 180 points to define

the airfoil. -code available from author

ARC2D (by T.Pulliam, NASAS AMES, Fortran, CRAY XMP)
Solution of the Euler and thin layer Navier Stokes equation. The airfoil
was defined with a 193x40 C-grid generated by HYGRID and later with

a 500x100 C-grid, first mesh point 5e-7c from the wall for the NS
solution.

LBAUER (by L.Bauer, Fortran, VAX)
Solves the 2D linear potential equation for transsonic flow over the
airfoil geometry + boundary layer. We used an 160x80 O-grid.

To design and analyse the 3D Oblique Flying Wing the following software tools were
developed:

WAVE (by A.J.M. Van der Velden, Stanford AA, Fortran, MaclI)
Eminton Lord code voor volume-dependent wave drag
-code made available upon request

PANEL (by A.J.M. Van der Velden, Stanford AA, Fortran MaclI)
Panneling of configurations based on arbitrary input comer points and
defined transformation and transformation of 2D-->3D pressure
distributions with second order CP's. Output for Wing3D, SHADE and
QUICKPLOT-code made available upon request

WING3D (by R. Carmichael, modified by Van der Velden, Fortran, MaclI VAX)
Woodward linear potential flow code for subsonic and supersonic flow,
with second order pressure distributions and leading edge suction
correction. -code made available upon request
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