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ABSTRACT
The optimal control of rhree-dimensional large-angle rapid
maneuvers and vibratioas of a Shuttie-mast-reflector gystem 18
~spsiderad. The nonlinear eqguaions of motion are formuliated DY

t

nsing Lagrange's formula, with the mast modeled as a continuous
bHeam subject to thres dimensional deformations. The ncnlins=ar
teyrms 1n the 2guations come from the coupling hetween the anguiar
v2lmcities, <he madal coordinates, and the mcdal rates.
Pontryegin & Maxinum Principle is appl:ed to the slewing prcbliem,
t> derive the necessary conditions for the optimal controls,
whichk are bcunded by given saturation levels. The resulting two-
ro1nt boundary-value protlem is thern solved by using the
guasilinearization algorithm and the method of particular
colutions. The numerical results for both the linearized system
and the nonlinear system are presented to compare the differences
in their time responses.

The study of the large-angle maneuvering of the Shuttle-
bear-refle-tor spacecraft in the plane of a circular earth orbit
is extended to consider the effects of the structural offset
connection, the axial shortening, and the gravitational torgue on
*he slewing motion. The offset effect is analyzed by changing
+he attachment point of the reflector to the beam. As the
attachment point is moved away from the mass center of the
reflector, the responses of the nonlinear system deviate from
+hose of the linearized system. The axial geometric shortening
effect induced ty the deformation of the beam contributes to the
system =quations through second order terms in the modal
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amplitudes and rates. The gravitational torque effect s
relatively small.

Finally ths effect of additicnal design paramet=rs (suach asg

r2lsired to addit . -nai payload requirement) on the LQR based
Jesign of an croLrting sonTro L/structural system 1S examlaed.
Zaz=d ¢ e 4t.sd ct.on of sume desirec control properties to
roe SETIMAL 27STe 1 S8 1& muirti-objectives for the 1nteliral
ot ot oataoctns sl dezign are fefined as the qguadratic cost
fuiotion oand its pavrtial v-riation abont the redesiguet
ArsmeEL-rs Tz -opetraznts oot only include ths limit=ad mas:s
and coroool roes for S system DAt oansc in.iude Toe control
LLCTSrties such 23 t1s tTans1er - response time of tie gystem,

cptinal multicriterza ars derivedq sor miaimizing the ccst
Zynctiecn and -ettinc the variation of the cost function wita
respect to the design variables fo zero. The simple models of
aniform s-olid and tubular beams are demonstratad here with two
typical additional payload masses: (1) symmetrica.ly Zdistrisut=d
with respsct to the center of the beam; {2) asymmetr.caily
distributed with respect to the center of the beam. For the
c~1id and tubular beams, the length and material properties are
assumed equal. By considering the trans:ient response of pitch
angle and free-free beam deformations in the orbital plane, the
optimal outer d:iameter of the beam and all feedback control can
be determined by numerical analysis with this multicriteria

approach.
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I. INTRODUCTION
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The present grant, N5G-:1414, Suppl. 12 extends the
initiated in May 1977 and veport=d in Refs. 1-15 for the grant

years May 1977 - May 1989. This effort hes focised »n the

rroblen of shaps and crientation control of largs, 1nherentily
flexible propcsed spacs svystems. Possiple appl.cati-ns priporssc”
fcr these large space systems (LSS) include: Earth sbservation
and resource sSensing systems; orbitally based =lectronic mal.
t-a1sm.oss1°on; larjJe s-ale multi-beam antenna ctommunicZation
cvstems; as platiorms for oriital-based telesccpe systems; and as

1n-crhit test mode.s cdesigned to compare the performance of LSS
systems with thaz predicted based cn scale mcdel Earth-based
lasror=tory exper.mei.ts and/or computer simulations. 1In the last
several yesars the grant rssearciy has focused on the crbital mcdel
of the Spacecraft Control Laboratory Experiment (SCOLE).""

The present report is divided into five chapters. Chapter
II is based on a paper presented at the 1990 International
~onference on the Dyrnamics of Flexible Structures in Space and
describes rapid three dimensional maneuvers and vibration
suppression of the asymmetrical flexible SCOLE configuration.
Pontryagin's maximum principle is applied to both the linearized
and nonlinear system equations to develop the necessary
corditions for the optimal multi-control problem. The resulting

two point boundary value problem is then solved based on the

"References cited in this report are listed separately at the end

of each chapter.
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guasilinearization algor>thm and the method of particular
s~lutions. The numerical results for both the linear and
nonlinear systems are presented to compare the differenctes in
th=il t1Ns I'2spOnsss.

hapter III 1s motivated by a paper presentecd at the 17%h
Tnterrational Symoosium on Space Tecshnology and Science in which
the effects of zhe structural cifset Ior asymmatrical
corfizuratiors {suc. as 3CCLE,, axial shortening, and

Ww are evaluated. For this

1"

¢ravitaticnal torgue duriny a rapid sl
study a two dimer.sional model of the SCOLE Shuttle - (flexible)
beam-reflector s stem 1s consider=d4. Both linear and nonlinear
sys-em medels are treated.

In Chapter IV the effect of additional system design
parameters |(such as those related to the placement of additional
payloads) on the LQR based design of an orbiting control/
structural system is analyzed. This multicriteria numerical
ocptimizaticrn approach 1is sonsidered for minimizing an LQR type=
cost function where the system design parameter 1is the outside
diameter of a solid and/>r tubular beam, subject to constraints
on the total system mass, control saturation levels, and
transient settling time. Different combinations of additional
payload masses are considered.

Finally, Chapter V describes the main general conclusions
together with general recommendations. The thrust of this effort
has been redirected to provide more direct support to the new
NASA Cecntrols/Structures Interaction Program (CSI), particularly

as evidenced by <Chapter IV, and our follow-on proposal, Ref., 18.
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II. OPTIMAL LARGE ANGLE MANEUVERS OF A FLEXIBLE SPACECRAFT

1. INTRODUCTION

Many authors have considered the problem of large—angle rapid maneuvers
of flexible spacecraft [1-5]. The direct solution of the open—loop two-point
boundary-value problem (TPBVP) for three-dimensional (3-D) slews of flexible
spacecraft resulted in numerical problems with rank-deficient matrices as
stated by Chun [3]. However, a different numerical method may be used to
overcome this difficulty. In this paper, the problem has been solved
successfully by using the quasilinearization algorithm and the method of
particular solutions for 3-D slews of an asymmetrical flexible spacecraft,

namely, the Spacecraft Control Labratory Experiment (SCOLE) configuration.

The open-loop slewing approach has several obvious distinct properties.
First, the control law is easy to implement in practice for both ground tests
and space flight tests. Second, the open-loop solution may serve as a good
reference for the feedback control law design, as proposed by Chun {3], and
Meirovitch [4], in which the open-loop solution for a rigid (instead of a
flexible) spacecraft is used as the nominal reference trajectory. As an
extension to Refs. [3] and [4], it may be helpful if the open-loop solution
for the 3-D slew of a flexible spacecraft system could also be used as a
nominal reference solution. In addition, through the present study, we can
also see how different are the responses of the nonlinear system from those of
the linearized system, and the differences between the flexible and rigidized

systems.

2. PORMULATION OF THE STATE EQUATIONS

2.1 System Configuration
As shown in Fig. 1, the orbiting SCOLE configuration [6] is composed of a
Shuttle, a flexible mast, and a reflector antenna. Both the Shuttle and the

reflector are considered to be rigid bodies. One end of the mast is fixed to
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the Shuttle at its mass center, o , while the other end is firmly connected to
8

the reflector at an offset point, a

Three coordinate systems, (1 3 k), (1 3 k ), and (E 3 k),
o o) L] -] 8 8 r r r

representing the orbit's local vertical/horizontal reference system, the
Shuttle body axis coordinates, and the reflector axes, respectively, are
adopted in Figure 1. The mass center of the reflector, o, is located at (xr,
. 63) or four

2
quaternions (q0 a, 9, q3) are used to describe the attitude of the Shuttle

y ) in the reflector axis system. Three Euler angles (61, 6
r
with respect to the orbiting reference system.

The undeformed mast is assumed to be oriented along the z axis of the
Shuttle coordinate system. The 3-D deformation of the mast consists of two
bending deflections U(z,t) and V(z,t) in the x-z and y-z planes, respectively,
and torsion ¢(z,t) about the z axis. It is assumed that these deformations are
small as compared with the length of the mast and can be expressed by the

following modal superposition formula {71:
U:§Ei(2)ai(t). V=§ni(2)ai(t). ¢=§Ci(2)ai(t). (1)

where Ei, ni, and ci are modal shape function vector components normalized by
a common factor, and o, is a scaled modal amplitude associated with the ith
mode. The free vibration of this structure can be considered as a space
free-free beam vibration problem with boundary conditions including the masses
and moments of inertia of the Shuttle and the reflector. The partial
differential equation formulation for this problem [6,7] can be solved by
using the separation of variables method. The first five natural frequencies
and mode shapes have been obtained by Robertson [7], and will be used in this

paper.
2.2 Kinetic Energy

The kinetic energy of the system about the mass center of the system, c,

can be expressed as
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EENERTE l“ |t 2dm - ;U |§|dm]2]
2 2 m
8 b t* b

Al 50 19 0 0

t b r

=T +T +T -T (2)
s b r c
where T is the position vector from o to an arbitrary mass element in the
8
system and m is the total mass of the system. The integration subscripts,
"s", "b", and "r", mean that the corresponding integration is throughout the

Shuttle, the beam, and the reflector, respectively.

Kinetic Energy of the Shuttle The first term in Equation (2) is the

rotational kinetic energy of the Shuttle about o>
T = %(.)TJ ) (3)

where ® is the matrix describing the angular velocity vector of the Shuttle,

w, and J is the inertia matrix of the Shuttle.
8

Kinetic Energy of the Mast As Shown in Figure 2, the position vector of an

element dm and its velocity are, respectively,
T<b+p,  BeUl +V3 +zk | (4)
s & s
r=v. + @ (z)x p (5)
where 5 is a vector within the cross section of the beam and

+WVij+oxb (6)

b 8 s

<
1)
=

ab(z) is the angular velocity of the element,
0 (z)=0+di+é3+dk (7)
where ¢x=-(6V/az), ¢y=8U/82, and ¢z=¢.
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During the integration process of equation (2), one needs to do the

following calculations,

I R zdm=JL{w: [ f (p"pE-pp’ )dA] wb}dz (8)
b o A

where mb is the matrix representation of ab and E is an identity matrix. Por
the circular cross section of the beam assumed here, the inner integration in

Bquation (8) turns out, in the local beam coordinates, to be,

[IA (p' pE-pp’ )dA] =1

O ONI=
oONI= O

0
0 = J(I") (9)
1

where Ip is the polar moment of inertia of the beam. Due to the small
deformation of the beam, the local beam axes is assumed to be related to the

Shuttle axes by a transformation matrix,

¢
(10)
1

(r)

Therefore, J in Bquation (9) can be transformed to the Shuttle axes by the

following similarity transformation:
J('). RorJ(r)(Ror)T (11)

After substituting all related terms into the second term of Equation (2), and
neglecting all the third and higher order terms in the modal amplitude vector,
a, the modal rate vector, a, and their coupling, one can arrive at
1.7 1-T, - T
= +

Tb—Ew wa e Iba +0 hb (12)
where Ib is a constant matrix. The elements of matrix Jb and the vector hb
have the following forms,

- T T
(Jb)ij ci’+u m M

_°T *T
i £y (hb)iﬂ! g, Gia (13)
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where ¢ , and Gi are constants, constant vectors, and constant

, m , M
i] 13’ & ij
matrices, respectively.

Kinetic Pnergy of the Reflector After using a development process similar to

that for the mast, one can obtain,
T=—=0Jow+ %&TIr& +wThr (14)

Here the inertia matrix of the reflector needs to be considered in the

development process.

The Coupling Term in Equation (2) can also be written in the form of Equation
(12) for consistence,

T =20"Jw+ "I« +w'h (15)
c (] 2 c c

After substituting Bquations (12,14,15) into Equation (2), one obtains,
17 17, T
= +J + + +
T;w{JoJiJz}uz-uIam{hlhz} (16)

where Jo’ J J2 are 3x3 matrices, hi' h2 are 3x1 vectors, I is an nxn

1'
constant matrix, and

_ _T T
(Jo)ij constant, (Ji)lj—a m , (Jz)lj—a M o

i3 i

(h), = d&'s,, (h,), =&Ga (17)

where m , g‘, M

13 y and Gl are constant vectors and matrices.

iJ

Potential Energy
The elastic potential energy of the flexible part is

L 2,22 L 2.2 2 L 2
v —‘;{IoBIEz_n dz+JloBI[:Tn dz#J‘oGIP[z—-:] dz} -—;a'm (18)

where EI is the bending stiffness and G is the modulus of rigidity of the
beam.
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Generalized Forces

The virtual work down by the controls is

- 4- -—
5w=n-8§+§n-5r (19)

where 30 is a variation vector which has the direction of an axis of rotation
of the Shuttle and the magnitude of the rotation angle about this axis, 6?)
are the virtual displacements of the position vector r at the location of the
controls, ﬁl is the control torque vector on the Shuttle, and ﬁj are the
control force vectors on the beam and the reflector. The shift of the center
of mass of the system is also considered in this development. After expanding
these terms by using the associated relations and the transformation matrix

(10), dropping all third and higher order terms in «, one can get,

5 w=59*[f z r e, ]+ 8" js:zyjfj (20)

where f [f f1 f ] f [ j 17, are control variables; the elements of
matrlces F and Y have the 81m1lar form as those in Bquation (17), and up to
the first order terms in a have been retained for later use. Then, the

generalized forces are,

4
QG f‘l+j§2rjfj Qa= §2'jfj (21)

Dynamical BEquations
After constructing the Lagrangian, L=T-V, and using

L@+ B

one can get the following equations by discarding second order terms in o, &,
and their coupling, and retaining a constant mass matrix represented by the

coefficients for & and a,

Jo +ls, g, g, )’ =[wM(e) 6 +Hi(@)o +Q, (23)
(e, &, 8,] 0 + Ia =[mN() |6 +6(cx)o +Q Ka (24)
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where

T
=|2 2 2

= W, 0w w 25
® [w © JCICCN 102] (25)

After finding the inverse of the mass matrix, a state form of Equations

(23) and (24) can be obtained as,

)

y = =(A +B )& +(C.)0 +Da +(E +F Ju (26)
B o B a
wher? B=a, Ba=[Bia PoBa feeed Bsa], CB=[018 i C,B i C38]. and Pa=[F1a i Pa
{...}{ Pa], with A, B, C, D, B, F_ being constant matrices; and u=[f f
9 i i i 1x 1y

£ if £ if £ if f 17 Por the purpose of comparison, the dynamical
1z° 2x 2y’ 3x 3y’ 4x 4y

equations for the rigidized (rigid) spacecraft can be obtained by deleting all

terms related to o and B, this is,
@=AG+Eu (27)

where A and E are 3x6 and 3x9 constant matrices, respectively. A linearized

form of Equation (27) can also be obtained by deleting all nonlinear terms,
y = Dx + Eu (28)

The kinematic equations for the quaternions are

0 - -w

1 9 3

W 0 w —w

- 1~ ~ 1 3 2
Z - where © = 9
1=z924a, - o w 0 o (29)

2 3 1

A (A 0

3 2-"’1

where q is the 4x1 quaternion vector.
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3. DERIVATION OF THE OPTIMAL CONTROL PROBLEM

Necessary Conditions
A quadratic cost function is used,

1 tr T T T T
J—-i[ ) («’Q0 +0"Q,0 +87Q B +u'Ru)de (30)

where Qi. and R are weighting matrices, tr is the given slewing time. The
magnitudes of the controls, u, are bounded,

|u‘|$ u i=1,--., 9, (31)

b

The following technique is used to solve this problem [8]. Pirst, the
necessary conditions based on Equations (26, 29, 30) are derived. Then, the
constraints (31) are imposed on these necessary conditions to modify the

controls.
The Hamiltonian of the system is,
H=2(a"Qa +'Q0 +67Q8 +u'Ru +p'da) +y"B
ATL(A 4805 +(Cgdo +Da +(E +F )u] (32)
where p, y, and 1=[11 IZ]T are the costate vectors associated with q, «, ®,
and B, respectively. By using the Maximum Principle, the necessary conditions

for the unrestricted optimal control problem are the dynamical equations (26,

29) plus the following differential equations for the costates,

P=Sa=3ir (33)

1 =-§g = Q& -D'x ~(BA)5 ~(FA)u (34)
1,55 = Q-tale -1\ (B ) Jo ~(E™ (35)
A, =55 = P T (G (36)
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and the optimal control,

oH “i 0.0 T

—_— = == = +

3a 0, > u==R" "(B+F ) A (37)
The control resulting from Equation (37) is then modified by the

following saturation considerations,

-u , ifu £ -u otherwise,
ib ic ib

u = , u=u ==[R (B+F )Tx) (38)
. i fc a
u , 1fu 2 u
ib ic ib i=1, ..., 9.

By substituting the control expressions into Equations (26) and (34), one can
obtain a set of 4(n+3)+2 differential equations for the states and the
costates. To obtain the control, u, one needs to solve these equations with

the given conditions: q(0), «(0), w(0), «(0), and q(tf), a(tf), w(tr)’ &(tr).

4. Two-Point Boundary-Value Problem (TPBVP)

One way of obtaining the optimal control law is to transform the above
necessary conditions into the following TPBVP. Let x represent the state
vector, and A represent the costate vector. After substituting the control
expressions (38) into equations (26) and (34), one can obtain two sets of

ordinary differential equations for the states and the costates,

i=f1(x, 1)('nzn)xi (39a)
i=f2(x, 1)(702n)x1 (390)

with the following boundary conditions,
x(0) and x(tf) prescribed, A(0) and k(tf) unknown . (40)

Due to the known boundary conditions being specified at the two ends of the
slewing time, this problem is usually called the two-point boundary-value
problem. This kind of split boundary conditions usually result from the

large—angle maneuver requirements, in which the initial (t=0) and final (t=tt)
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states of the system are specified. By solving this problem, we can obtain the
optimal control (based on the necessary conditions). The often used solution
strategy is to change the boundary value problem to the initial value problem,
i.e., find 2(0), the missing initial costates. Once A(0) is obtained, one can
solve the equations (39) as an initial value problem by using any numerical
integration method. However, owing to the nonlinearity of the equations, there
is generally no analytical solution to this problem or simple numerical method
to obtain the solution except for some very simple cases such as the linear
time-invariant case. The numerical iteration method is the general approach to

the this problem.

To start an iteration process, one usually needs an initial guess of
1(0)(0). Then, equations (39) or their equivalent form (the linearized version
of (39)) are solved and a x(O)(tr) is obtained. Based on the difference
Ax(tf)=x(o)(tt)-x(tt), the correction to A(0), AA(0), is obtained. This gives
us a new initial value of A(0), 1(1)(0). Hence, the next iteration begins. The
iteration process can be terminated when |1(k*1)(0)—1(k)(0)| is less than a
given error limit. One can see immediately that if the beginning guess 1(0)(0)
is close to the true value (converged value) of A(0), the solution will
converge and less iterations are needed. However, a "good" guess of A(0) is

often difficult to obtain for the general nonlinear problems.

Therefore, the effort for solving the TPBVP is two fold. The first is try
to establish a good iteration (correction) method with a wide convergence
interval so that it can guarantee convergence even for a "poor" initial guess.
The other is try to find a "good" initial guess based on the characteristics
of the practical problem and using some simplified mathematical models. In
this report, we use the quasilinearization method. We also use the solution of
2(0) from the simplified linear, time-invariant model of the system as the

initial guess for starting the iteratiom process.
4.1 Linear and Time~Invariant TPBVP
For linear, time~invariant versions of equations (39) (refs. 1-2),

z=Az, where z' =[x, 1] (41)

its transition matrix (constant exponential matrix),
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can be used to obtain the initial costates (closed form solution):
-1 _
1(0)-A12[x(tf) Alix(O)] (42)
4.2 Nonlinear TPBVP

The continuation (relaxation) process (to increase the participation of
the nonlinearity in the solution) and the differential correction (for
determination of the initial costate variables) have been used in references
1-2 for the 2-D slewing problem. However, as stated in ref. 3, the extension
of these techniques to the 3-D slewing problem has encountered a numerical

problem: rank deficiency.

In refs. 5, 10, and 11, the quasilinearization method has been
successfully used. In this method, one needs to linearize the differential

equations (39),

z=g(z), where z'=[x", A"}, s'=[fI. f;] (43)
about an approximate solution of this equation in the following form (a series

of linearized, time-variant, nonhomogeneous equations):
i(k01)=(68/az)z(k§1) + h(z(l)) (44)

where z(k) is the kth solution of the same linearized equation. It is also the
kth approximate solution of the original nonlinear equations (43). Here, the
boundary conditions, (40), are naturally adopted as the boundary conditions of
the linearized equations, (44). The control expressions, (37), also need to be
linearized (ref. 8):

u(k+1)=u(k)_R-ll'P'(M)]Tl(k)_R-i[n+§(a(k))]TM (45)

where Aa=a("1)-u(k’, and A1=1(k’1)-1(k). By assuming that
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u(k)=-R-l[E+§(a(k))]Tl(k) (46)
for the unbounded control case, equation (45) can be rewritten as,
u(k#l):_R-i[F(Aa)]Tl(k)_R-i[E+§(a(k))]Tx(koi) (47)
However, in the bounded control case, equations (38) are considered, that is,

-u or u
ib ib

u:k)' (48)
-{R-1[E+i(a(k))171(k)}i

(k+1)

Accordingly, at the (k+1)st step, u can be determined by

-u or u. ., if |{R-i[B¥i(a(k))]T1(k)}i|z u,
u(k#i)_ (49)
‘{R-l[i(M)]Tl(.)’R-i[E*‘i(G(l) )]Tl(k”)}i

So far, an iteration process is formed. In each iteration, only a linear TPBVP
is solved. It is this property that gives this approach the name

quasilinearization method.

The linear TPBVP can be solved by many ready-made methods. One of the
frequently used algorithms is the method of particular solutions (ref. 9).
Let m represent the number of the states (also the costates). Bquations (44)

can also be rewritten in the following form,
x(£)=6(t)x(t)+H(t)a(t), A(t)=I(t)x(t)+I(t)r(t) (50a,b)

From the theorem of the linear system, any solution equation (50a) can be

expressed as the linear combination of its wtl particular solutions, i.e.,

ne+l mel

x(t:)='12_2‘l c‘x‘(t), as long as 1§1 c‘=1 (51)

where c1 are constants and xl(t) are the ith particular solution vectors. The
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method begins by integrating equations (50a, b) forward mtl times, with the

initial conditions,

[ x(0)] [ x(0)] [ x(0)] [ x(0)]
1 0 0 0
0 1 0 (1]
2= 0|, 2= |, ..., M= |, and 02| O
0
| o L o [ 1 L o
This gives us wmt+l particular solutionms, x’(t), xz(t), cee, x"’(t).

Substituting these solutions into equations (51), and setting t=tf, we have

mel ' m4+1
1§1 c X (tt)—x(tr), 1§1 c‘—l (52)

This is a set of mtl algebra equations for m+l unknown constants, c - By

assuming the existence of inverse of the coefficient matrix, we can obtain the

solution, c=[c’ c, " c.]T and ooy By doing the following manipulation,
[ me1 ; ] [ x(0) ]
T c x (0)
mel N im1 1§ (:1
z(0)= L, ¢z 0= e, 1 e
c 2
.2 »
| e, ILoe, |

one immediately realizes that c=A(0), the missing initial costates.

4.3 Transformation of Attitude States and Costates

The following procedure is designed to obtain the solution of the
nonlinear TPBVP. Pirst, the linear TPBVP based on equation (28) is solved and
a nominal trajectory is produced, in which the control is unbounded and the
initial costates are calculated by using the transition matrix method. Then, a
converged solution for the linear TPBVP with bounded controls is obtained by
iterations starting from the previously obtained trajectory. Note that the
Buler angles are used in all the above computations.
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Next, to obtain the starting solution for the nonlinear TPBVP, the 3
Euler angles and the 3 associated costates are transformed to the 4
quaternions and their 4 costates (from t=0 to t:tt)' Refs. 10-11 provides us

the following relationship between the quaternions, q(t) and their costates,

p(t):

Po 4 4, 9, 4, %
Pl 4 4% 9 % (53)
P2 4 4% 4% %
Ps d 4, 4 4% %

where d‘ are constants. For the case q(0)=[1 0 O O]T, we can choose po(0)=0,
d0=0. Then,

- _4T
[p,(0) p,(0) p,(0)]=[d, 4, 4 ]=d (56)
The vector d can be determined by
d= 2 [initial Ruler angle costate vector] (55)
This result can be proved if one compares the related state and costate
equations for both linear and nonlinear TPBVPs (for the case w(0)=0). After
finding the q(t) by using a nonsingular transformation between q(t) and the

Euler angles, Bi(t), Gz(t), and Oa(t), one can use equations (53-55) to obtain
p(t).

Pinally, the nonlinear TPBVP is solved through the quasilinearization

process and the method of particular solutions [9].

5. NUMERICAL RESULTS

The following parameters of the orbiting SCOLE are used in this paper
[6]. The inertia matrices of the Shuttle and the reflector, about the mass

center, o and o, respectively, are (slug-ftz):
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905443 0 145393 4881.375 O 0
0 6789100 0o i, 0 4969.5%4 0
145393 0 7086601 0 0 9921.969

The material properties of the mast are: EI=GIP=AE+7 lb-ftz, pA=0.09554
slug/ft, pI =.9089 slug-ft, and L=130 ft. The masses of the Shuttle, the mast,
P
and the reflector are (slug): 6366.46, 12.42, and 12.42, respectively. The
location of the mass center of the reflector is xr=18.75 ft, and yr=32.5 ft.
The control saturation levels are: 'f |=|f |=|f |$ 1E+4 ft-1b,
1x 1y 1z
£, |=]f ]=|f |=|f |< 10 1b, If |=| £ | < 800 1b. The first five natural
2x 2y 3x 3y ax 4y
frequencies are (hz): .2740493, .3229025, .7487723, 1.244013, 2.051804.

The numerical tests based on the previously described method have been
performed for the roll-axis slews, pitch-axis slews, as well as arbitrary-axis
slews. All these tests are rest—-to-rest slews and the iteration process 1is

terminated after the initial costates are reached within five digit accuracy.

The following procedure is designed to obtain the solution of the
nonlinear TPBVP. Pirst, the linear TPBVP based on Equation (28) is solved and
a nominal trajectory is produced, in which the control is unbounded and the
initial costates are calculated by using the transition matrix method. Then, a
converged solution for the linear TPBVP with bounded controls is obtained by
iterations starting from the previously obtained trajectory. Note that the
Euler angles are used in all above computations. Next, the Puler angles and
the associated costates are transformed to the quaternions and their costates
[10, 11], to obtain the starting solution for the nonlinear TPBVP. Pinally,
the nonlinear TPBVP is solved through the quasilinearization process and the

method of particular solutions.

Case 1 is a 90 deg slew about the roll(x) axis with only three torques on the
Shuttle as the control, i.e., u=[f1x fiy faz]T' The weightings for the state,
Ql. Qz' and 03 are chosen to be zero matrices, with the consideration that a
non-zero choice will improve the responses [5]. The control weighting is
selected as R=Diag[1B-6, 1B-6, 13-6]', since the small values here imply the
small costates (which is advantageous for the numerical convergence) for the
same control (see Equation (37)). The slewing time, tr=28 sec, makes the slew

near the minimum—-time-slew as used in [5] for the planar SCOLE configuration.
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The results for this slew are shown in Figs. 3, in which the solid lines
represent the responses of the linearized system (27), while the dotted lines
stand for those of the nonlinear system. The three attitude angles are plotted
in Pigs. 3a-c. The roll angle, 91, for both systems is almost the same, but
the pitch (y) and yaw (z) angles are different although the magnitudes are
quite small. Associated with these differences are the differences in the
controls fly and flz' shown in Pigs. 3j-k. The roll-axis torque, fix, (Pig.
3i) is near the bang-bang type. There are little differences in the first
three modal amplitudes (Figs. 3d-f) between the two systems, but the 4th and
the 5th modal amplitudes (Figs. 3g-h) present larger relative differences.
Since the second mode describes mainly the deformation of the mast in the y-z
plane, which is perpendicular to the slew (x) axis, the second modal amplitude
has the largest peak value among all the five modes.

Case 2 1is a 90 deg slew about the x axis, but using all 9 controls. Ql=2,
i=1,2,3, and R=Diag{1E-6, 1E-6, 1BE-6, 8E-2, 2BE-2, 9E-2, 4E-2, BE-4, 3e-4]".
Due to the increase in the control effort, the slewing time can be shortened.
tr=12 sec is selected numerically by the judgment that the maximum
displacement of the mast at the reflector end is less than 10% of its total
length, to be consistent with the small deformation assumption. To make a
comparison, the slewing results for the rigid spacecraft model (Equation (27))
are also obtained by using the same Q!'s and R. Pigs. 4 give the results for
the present slew, where the dashed lines represent the time histories of the

rigid nonlinear system.

The three systems have less differences in 91 (Pig. 4a). 92 and 63 (Pigs.
4b-c) are still very small, but the peak values are several times larger than
those in Pigs. 3b-c. The differences between the flexible and rigid nonlinear
systems are small, but the differences between the flexible nonlinear and the
the flexible linear systems are relatively large. The reason is that the
quadratic terms of the angular velocity of the Shuttle, ®, (Bquation (25)),
have been used both in the rigid and flexible nonlinear systems, but do not
appear in the flexible linearized system. Therefore, these quadratic terms
play an important role the 3-D large-angle rapid slewing problems. The similar
differences in the three systems are also reflected in the control histories
(Pigs. 4i-p). The small differences between the flexible and rigid nonlinear

systems are caused by the deformation of the flexible mast. For the rapid
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slews with large control torques and forces, the deformation will further

increase, and so will the differences between these two systems.

The five modal responses are quite different from those in Case 1. Some
of the peak values increase about 30 times, and the response phases change.
For example, before t=tr/2, «, is mostly positive in Case 1, but negative in
Case 2, and this change reverses after t=tf/2. This change is caused by the

controls at the reflector [5].

In the present slew, 61 is the main attitude angle and mode 2 has the
largest deformation in the y-z plane among all the five modes (Pigs. 4d-h).
Within Pigs. 4, after comparing the responses of the linearized system with
those of the nonlinear systems, we see that there are less relative
differences in 91 and «, than in 92 (93) and other modes. These results imply,
for the slew considered here, the major modes (rigid 6‘ and flexible az) have
the largest overall displacements but the smallest relative differences
between the linear and nonlinear systems. On the other hand, the secondary
modes (92, 93, @, a, as) have smaller overall displacements but larger
relative differences. As a consequence, the major controls (f‘y) (Pigs. 4q)
and all the remaining secondary controls (Figs. 4i-p), as well as the major
deformation V(z,t) and secondary deformations U(z,t) and #(z,t) (Pigs. 4r-t)
also yield the same results. These results may lead to the following
conclusion: the linearized equations can represent very well the nonlinear
equations for the major slewing motion even for large displacements, but not
so well for the secondary motions, even for small displacements. The
explanation for this fact might be that the magnitudes of the nonlinear terms
have a certain level which is 1less than that of the linear terms
representative of the major motions, but is great enough to compete with that

of the linear terms for the secondary motions.

It should be mentioned that these facts can not be observed in the planar
slewing problems studied by many authors (for example, Refs. 1, 2, and 5). In
those researches, the differences between the linearized system and the
nonlinear system are very small because all the modes are planar modes and,

hence, the first several modes are all major modes.
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Case 3 Pigs. 5 show the results for a simultaneous three-axis slew (9 =60,
6 =30, 9 =45 deg). The weightings for the states are Q ‘Q -Q =0. In this case,
The Shuttle torques (f , fly, and f ) and the reflector forces (f , and

) are used. The assocxated we1ght1ng for the control is R= DIAG(IB-4 1B-4,
18—4 0.6, 1.4-3). The slewing time, t , is 40 sec. The solid lines in the
figures 5a-h responses of the rigidized nonlinear system, equation (27), while

the dotted lines represent the slew results for the flexible nonlinear system.

6. CONCLUSIONS

The application of Pontryagin's Maximum Principle to the large angle
slewing maneuver problem has been extended to the slewing of a 3-D flexible
spacecraft (SCOLE). A numerical simulation procedure based on the
quasilinearization algorithm for solving the resulting nonlinear TPBVP has
been established and tested successfully for several examples. The general
nonlinear dynamical equations developed here contain all the quadratic terms
of the angular velocity of the main body and their coupling with the first
order modal amplitudes and modal rates. It is suggested that higher order
terms be included if a further analysis is conducted. The numerical results
show an important fact that the linearized system can represent the nonlinear
system adequately for predicting the major motions but not as well for the
secondary motions. The quadratic terms (nonlinear) of the angular velocity of
the main body (Shuttle) cannot be neglected for large—angle rapid maneuvers.
The differences between the responses of the rigid and flexible nonlinear
systems are small because the deformation of the flexible part (mast) is
small. Por further research, it is recommended that the applicability of this

method to more complicated systems be established.
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Figure 2. (a) Deformation of the mast, (b) An element in the mast.
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Fig. 3. Case 1, 90 degree roll axis slew, Shuttle torques only.
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Pig. 3. (continued) Case 1, 90 degree roll axis slew, Shuttle torques only.
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Fig. 4. (continued) Case 2, 90 degree roll axis slew, all controls.
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Fig. 5. Results for the 3-D slew, Case 3: 60-30-45 deg-Slew,
Shuttle Torques + Reflector Forces,
R=Diag(lE-4, lE-4, lE-4, 0.6, 1.4E-3).
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III.  EFFECT OF STRUCTURAL OFFSET AXTAL SHORTENING, AND
GRAVITATIONAL TORQUE ON THE SLEWING OF A FLEXIBLE SPACECRAFT

1. Introduction

The direct application of Pontryagin's Maximum Principle to the attitude
maneuvers of spacecraft has been conducted by many authors (Refs. 1-2).
Recently, some effort has been made to wutilize this principle to more
complicated structures (Refs. 3-4). In Ref. 3, the rapid slewing of a
2-dimensional flexible orbiting spacecraft, a Shuttle-beam—reflector system,
has been considered. It is observed (Ref. 3) that the time response history of
the nonlinear system has a shift from that of the linearized system, but the
reason for this was not clear. In continuation of this study, the present
paper will first answer this question by examining the equations of motion and

by presenting more numerical examples.

The so called axial shortening effect of a beam induced by its transverse
displacement has been brought to attention by some authors (Refs. 1-2, 5).
Although the shortening terms have been included in the equations (Refs. 1-2),
their effect on the slew lacked quantitative analysis; specifically, the
numerical examples with and without these terms were not provided. On the
other hand, a numerical example in Ref. 5 shows that large differences do
result between models with and without the shortening effect. But the
numerical example is only for an uncontrolled dynamical response case and the
main body's motion is prescribed. In the present paper, therefore, the
shortening terms are considered in the formulation of the equations of motion
and numerical examples both with and without these terms are presented to

compare the difference between them.

Finally, the gravitational torque terms are modeled and included in the

equations to show their effect on the slewing motion.
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2. Dynamical Bquations

System Configuration

The spacecraft model used here (see Fig. 1) is composed of two rigid
bodies, representing the Shuttle and a reflector (Refs. 3-4, 6), connected by
a flexible beam through fixed joints, in the plane of the Barth orbit. One end
of the beam is assumed to be connected to the mass center of the Shuttle,
while the other end is, in general, not connected to the mass center of the
reflector. This offset is represented by X in the ir direction of the
reflector's coordinate system, (ir, kr). It is this offset parameter that will
be examined in this paper. 8 is the rotation angle of the Shuttle fixed
coordinate system, (;., i’), with respect to the orbital coordinate system,
(io, ko). u(z,t) and ¢(z,t)=0u/dz describe the transverse displacement of the
beam and the rotation angle of its cross section from its undeformed position,
respectively. Both u and ¢ are assumed small and can be expressed by the modal
superposition formula u=§§i(z)a‘(t), ¢=¥§;(z)ai(t): where Ei is the ith modal
function, @ is the ith scaled modal amplitude, and §;=d§‘/dz.

The effect of the offset on the slewing is analyzed by changing the value
of x . Towards this purpose, the partial differential equation for the free
vibration of this structure has been solved by using the separation of
variable method. The natural frequencies and modal shape functions have been
obtained (the assumed mode method was used in Refs. 1-2, 5), for different
value of x . It is observed that the natural frequencies decrease as the

offset distance increases.

Kinetic Energy

The kinetic energy of the system about the mass center of the system, c,

can be expressed as T=T +(T +T )-T , or
[] b r c
1P (52 1 <2 1 = 2 =
r-3f |r|dn+;['[ |r|dn-;U Irldn]---U |r|d-]z]
s b+r tY b tYr

- %t Ubf-dm) . U ida] (1)



where © is the position vector from o.(Shuttle mass center) to an arbitrary
mass element in the system and m, is the total mass of the system. The
integration subscripts, "g", "b", and "r", mean that the corresponding
integration is throughout the Shuttle, the beam, and the reflector,
respectively. T. in Eq. (1) represents the kinetic energy of the Shuttle about
o, T. = %I.éf, where éféﬂ.)o, wo is the orbital rate and I. is the moment of

inertia of the Shuttle.

Two assumptions for the deformation of the beam have been made: (1) The
length of the beam does not change; (2) The rotary inertia and the shearing
force are neglected. Consider now an element dm on the beam (see Fig. 1),
which has a coordinate, z, before deformation and, z-Az, after deformation

along the ﬁ. axis, where Az is the "shortening” amount due to the deformation

and can be determined by solving the following functional,

z-Az 2 z-Az 2
_ du . 1{du
z—Io 1+(—az) dz or approximately, mj.o [1+ i[g—z] ]dz
where small (3u/dz) is assumed. Then,
-Az 2 z 2 z-Az 2
10 [au] 1 [au 1 [au}
Azn El 32 dz= -il 32 dz+ -il 3z dz
0 z (4] z z z
z 2 2
1
A8 e 3eo B
0
By dropping the second term, which is a higher order term, we have
21 Z(au 2
“"1[0[3';] dz

This indicates that Az is a function of z and u(z,t) (a function). Also,

z=z€[z-Az,z]

Az is is a second order term in the modal amplitude, «o. Equivalent
developments for the shortening effect are also presented in Refs. 1 and 5.
The position and velocity vectors of a mass element dm on the beam and the

reflector are, respectively,
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T=ui+(z-Az)k; ;=[ét(z-Az)+ﬁ]1-(étMAi)i: (k, §)=(i., ‘i.);

?=(ur +x)1+(L-AL-x¢r )k; and —1.‘= [ét (L—AL-xor )'O't'lr ]i"[ét(ur +x)+Aiﬂ'x$r Ik

where L is the length of the beam. Tb, Tr, and 'I‘c in BEq. (1) can be obtained
by using the following equations:

Ib mzdm——;j:pu [ I : [g—‘;] Zdy] dz
T ] TR e
J.bAzdm%I:pA[J‘: [%\;] Zdy] dz

=—p [zf (—] dy] -I z[—] dz; = AI L-2 (—] dz
2 o9y 0 Vo \OZ =2 0 oz
After dropping third and higher order terms in modal amplitudes, «, we obtain
_1 2 T T T 1°T,
T —i(émo) (I+2x m ‘o Mza) +(éﬂo°)a (-Z*M‘a) o Maa
where 1, -., n M, M, and Ha are constants, vectors, and matrices,

2’ T2 4
respectively.

Potential Energy

The gravitational energy and the elastic energy of the beam are

o (-]

L 2 32
VY= -ﬂ BIE—"] dz + 202 & -k
e ¢ 2 27
0 z
_1r 32 . 2 2 .
= 5 Ko + iuo(Jnsxn (] +J33cos (2] -Jiasxnw)
where i°=-;sirﬂ + icose, EI is the constant flexural rigidity of the cross

section of the beam, and J is the inertia temsor of the system, with J“ being

the functions of the modal amplitudes, ao.
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Generalized Forces

The shortening effect is also considered in developing the virtual work
of the controls and the associated generalized forces, QG and Qa' For example,

the force arm for a control force is affected by the shortening effect.

Dynamical Egquations

By using the Lagrangian equations, we can obtain the dynamical equations

of the system in the following matrix form

T T { T "
+ : +
I+2ax ma+u Mza ! (|n2 Mqa) 0

m M a { M «
2 4 H 3

~20c" (m +M a)—o'M o -3V /30
| T Y @
-ZBM.a+G (m.+M2a)‘Ku-6V¢/au *Qu

where M=M +M . m , M and M_ are linear functions of x . M M_ contain the
4 a 5 a = 5 r 5

,
components of the shortening terms. From these equations,zwe see that the
terms containing = and M; are nonlinear terms of first order in a or a,
while the terms containing Mz' M‘ and Ms are of second order. Therefore, for
moderate nonzero values of X, the influence of the structural offset can be
greater than the shortening effect. The linearized equations can be obtained

by neglecting all nonlinear terms,

1w é 0 -av /38
BN N e --.‘/“-+Q9 (3)
m, M, a -Kat -avd/au *Q, LN

where "LIN" means constant and linear terms. Note that on the right side of

Eq. (3), the structural offset and the shortening terms disappear.
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3. Optimal Control

The optimal control for the slew problem is derived by using the
techniques similar to those used in Ref. 3 and will not be repeated here. The
controllers are provided by one control torquer on the Shuttle (ul), one
control force on the reflector (u4), and two force actuators on the beam (u

2
at L/3 and u  at 2L/3). Each of the controls has its own upper and lower

T
saturation levels. The cost functional, J=%I ' Ru dt, is used in the present
0

paper, where u is the control vector, R is the control weighting matrix, and T
is the slewing time. The resulting two-point boundary-value problem is solved

by using the quasilinearization algorithm.
4, Numerical Results

The parameters of the orbiting SCOLE (Ref. 6) (Spacecraft Control
Laboratory Experiment) are: EI=4E7 1b-ft?, pA=0.09554 slug/ft, L=130 ft,
m_=6366.46 slug, m =12.42 slug, I =12.42 slug-ft”, 1 =4881.375 slug-ft?,
uo=0.001 (rad/s) (orbital altitude w981 km). The natural frequencies (hz) for
xr=0 and xr=32.5 (ft) are: 0.3365257, 2.062547, 5.316669; and 0.3199540,
1.287843, 4.800169, respectively. All numerical similations are 90 degree

rest—-to-rest slews and can be represented by:

Case 1 xr=0, ﬁ=u1, R=1E-6, T=27.6 (s)

Cage 2 x =0, u=[u u, u u‘]T. R=DIAG(1E~-6, .15, .21, 1E-4), T=8.196 (s)
Case 3 x =32.5 (ft), u=u , R=1E-6, T=27.6 (s)

Case &4 x =32.5 (ft), wlu wu, u u4]Y, R=DIAG(1E-6, .15, .21, 1E-4),

T=8.196 (8)

Pigs. 2a-g display the time histories of 6(t), u(L,t), ¢(L,t), u(t) for
Case 4. Clearly, the response of 0(t) for both linear and nonlinear systems
are very close. However, there exist some differences between the two systems
in u(L,t), ¢(L,t) and the controls, u. The difference is primarily due to the
offset x_ (here, xr=32.5 ft). When xr=0. this difference can be reduced
markedly, regardless of whether the shortening effect and gravitation are
considered. It is also interesting to know that the controls have large

differences only around the mid-slew—time.
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Table 1 Tip Displacement and Tip Angle
Max-Disp | Min-Disp Max-Ang Min—-Ang e-Disp
(fv) (ft) (deg) (deg)
e e — e
Case 1 Linearized 0.37727 ~-0.37727 0.27402 -0.27404 —_—
0. 5= AL=0, © =0 0.37727 | -0.37727 0.27403 -0.27404 0.0%
x TV, uTul AL#0, 0°=0 | 0.37727 | -0.37727 0.27402 -0.27404 0.0%
T=27.6 s | AL#O, mg¢0 0.37728 | -0.37728 0.27403 -0.27405 0.0%
# '—‘_—__L————“———

Case 2 Linearized 13.072 -13.072 9,.6216 -9.6216 —_—
0. T=3 | AL=0. © =0 13.186 -13.186 9.7050 -9,7050 0.87%
X TV UTU | A120, ©,=0 13.154 | -13.154 9.6847 ~9.6847 0.63%
T=8.196 s | AL#0, w 0 13.153 -13.154 9.6842 ~9.6845 0.62%
Case 3 Linearized 0.38812 -0.38812 0.30342 -0.30340 —
40, Teu | ALT0, © =0 0.38590 | -0.40802 0.29110 -0.33940 | 5.13%
X7V, UTUL L ALZO, ©3=0 | 0.38600 | -0.40732 0.29118 -0.33884 | 4.95%
T=27.6 s | AL#0, v #0 0.38586 | -0.40803 0.29094 -0.33981 | 5.13%
Case & Linearized 12.191 -12.191 9.1082 -9.1082 —
x 20, Teg | AL=0, © =0 12.734 -12.061 9.4541 -9.1299 4.45%
PP UYL AL20, w0=0 12.796 -12.052 9.5067 -9,2030 4.96%
T=8.196 s | ALzO, mg¢0 12.795 -12.054 9.5052 -9,2061 4.95%




Table 1 lists the maximum (minimum) values for the displacement, u(L,t),
and angle, ¢(L,t), of the beam during the associated slews for all cases. The
first line in each case lists the results for the linearized system, while all
remaining lines represent those for the nonlinear system with different
considerations. For example, AL=0 means the shortening effect is not
considered. The last column gives the largest relative displacement error,
with respect to the linear results, based on

( )*=Max[|MAX*-MAX“l|/|MAX“l|, |MIN*-MINL"|/|MINL"|]

e
Disp

Nonlinear System vs. Linearized System Pirst, let us examine line 1 and line
2 in each case. In Case 1, since no offset, the differences between the two

lines are very small. In Case 2, where more controllers are used and the
slewing time is shortened, the differences increase symmetrically
(|MAX|=|MIN|), in spite of xr=0. Case 3 uses the same slewing conditions as
used in Case 1, except xr=32.5 ft. This offset shifts the envelop of the
response downwards and results in a larger relative displacement error than
that in Case 2. Case 4 is the combination of Cases 2 and 3. The shift now is
upwards which is due to the inclusion of more controllers. When more
controllers are used (Ref. 3), the phase of the response reverses, so do the

maximum (minimum) amplitudes.

Shortening Effect By comparing line 2 and line 3 in each case, we can see
that the shortening terms (1) reduce the amplitude (Cases 2 and 3):; (2)
increase the amplitude (Case 4); and shift the response upwards (Cases 3 and
4). These observations coincide with the fact that Az is only a second order

effect compared with the offset effect.

Gravitational Effect By observing lines 3 and 4, we can conclude that the
addition of the gravitational torques into the equations of motion has a very
small effect on the slew, although they shift the response downwards. This is
because the orbital rate is much smaller than the slewing rate and the
magnitude of the gravitational torque term is much smaller than that of the

active control torque term.
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5. Conclusion .

Generally, the linearized system can predict the system dynamics very
well in the slow slewing case. However, in the rapid large-angle slewing
problem, the responses of the system deviate noticeably from those described
by the linearized equations if the effects of structural offset and axial
shortening are included in the simulations. The structural offset (if any)
results in a first order nonlinear effect. The shortening effect causes only a
second order nonlinear effect and may not be considered, in the controlled
simulations, unless the deformation is out of the 1linear range. The
gravitational effect can be safely neglected in the slew motions considered

here.
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IV. THE EFFECT OF ADDITIONAL DESIGN PARAMETERS ON THE
LQR BASED DESIGN OF A CONTROL/STRUCTURAL SYSTEM

[. Introduction

Some of the difficultics encountered in controlling large space structural sys-
(ems arc attributed to their inherent fexibility. As the size of these systems increases,
duc to payload limitations. the total mass cannot e significantly increased. In the
cvolution of such systems, it often becomes necessary 0 include additional cle-
ments into the design such as those resulting from additional actuators, sensors, or

cxperimental modules I

Sometimes the resulting control may be optimal only for a prescribed struc-
tural design. But if we try to later change some of the structural design paramelers
—— cven hy a small amount — then the previously designed control may no longer
he able (o satisly the mission specifications. If we try to change some of the structur-
al design parameters, perhaps the control system performance will be better than
before in some sense —— i.c. more robust, better transient time constant, reduction
of initial overshoot amplitudes, etc. On the other hand. a change of some other
structural system parameters may improve the structural design, but at the expense
of control system performance.

In Ref. 2, a combined structural and control optimization problem was for-
mulated using an optimality criteria approach for the orientation and shape control
of a free—free beam in orbit. The combined cost function included a form of the
regulator cost, augmented with the (constrained) weight of the whole structure
together with the appropriate Lagrange multiplicr. Optimality criteria were derived
for minimizing the combined cost function and the configuration of the structure

4.1
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ohtained was used for the synthesis of control laws using lincar quadratic regulator
theory. The configurations obtained by the combined approach required less con-
trol effort for shape and orientation control of the orhiting bcams than that asso-
ciated with the separately designed structure and LQR-hased control systems.

For the large scale space structural design, it is important to reduce the mass
of the structural system. The satisfaction of the control requirements during the
combined control/structural design is also important. The multicritcria optimiza-
tion approach will be needed for use in the ficld of structural redesign, which
should allow a large amount of freedom and variety in sclecting the potentially
farge number of design variables. In this study, we try to usc the quadratic cost
function and the control properties, such as the transient response time of the
system attitude, as design criteria. The maximum allowable valuces of the structural
mass and the saturation levels of the forces and torques provided by the control
actuators arc used as the system constraints. A frec—frce orbiting uniform beam
with an articulated payload will be considered herc as a simple model. The addi-
tional design of the beam diameter is based on LQR techniques using multicriteria
which include the cost function and the transient responsc time of the attitude
motion of the beam, subjected to the limited mass of the structure and the satura-
tion levels of the actuators. The numerical optimization procedure and simulation
is donc using the IBM mainframe computer system.

1. Equations ol Motion

The dynamics of a long flexible heam in the plane of the assumed circular

orbit can he expressed (after neglecting the second order effect) as Z

’ ,
0 +3w0=T/1 (1)
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MY+ KY= FV (2)

Equation (1) descrihes the pitch motion of bcam type catellites (rigid body motion)

and cquation (2) gives the vibratory motion of the same beam without damping,

where

6 is the pitch angle

T, is the pitch torque

™, js the orbital [requency

1 is the transverse moment of inertia

M is the n x n positive definitc mass matrix

i< the n x n positive definite stiffness matrix
is the n x p input distribution matrix

is the n x 1 displacement vector

4 - 7| R

is the p x 1 vector of force inputs

Here the uniform beam with two additional masses in a circular orbit is
considered ( Fig. 1). D and d stand for the outer diameter and the inner diameter

of the heam. respectively. Based on the finite element method *. the heam is as-
sumed to he divided into four elements with cach clement having the same gcomet-
rical size and material properties. Five force actuators and one torgue actuator are
assumed to he added to cach of the {ive joints and at joint 3, respectively. The force
actuators arc assumed to produce forces parallcl to the positive Y direction. where-
as the torque is assumed to act about the Z axis. The two additional masses, m and
m, . arc assumed (o be attached to the joints 2 and 4, respectively. The mass matrix

can he cexpressed by the sum of the heam mass matrix and the attached mass

matrix. that is
M = M_ + M (3)

The beam mass matrix is represented by A
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— ,:ﬂ (1) -
M, M, 0 0 0
() (2 (21
M, M +M, M, 0 0
M = (2) (2) (3 ()
oS 0 M, M.+M, M, 0
(roxam (N () (4
0 0 M, M, +M, M,
(4) (4
L0 0 0 M, M
The attached mass matrix
0 0 0 0 0
0 M I 0 0 0
Mi=1 09 0 0 0 0
(10x10)
0 0 0 M. 0
L 0 0 0 0 0
where

M 2 2
i PAGL L 220 41 T3 3
M. 420 | 54 131 156 221

4.4

(H

(5)



M = and M R =

Also the stiffness matrix of the beam can be expressed by

(N S n
0 kl? 0 0 ;
(1) (" (2 ()
K, K,+K,, K,, 0 0
K = 0 K(Zw K(2)+Km Km 0 (6)
12 kR a3 34
(10x10) (3 (M (4 (4)
0 0 K“ K44+ K44 KJVS
(4) (4
L 0 0 0 54 KS'S -
where
(k) (k) 12 61 el
K. K. :
i Ul E I 61 41 -61 21
» » = T
K “ K . i -12 -6/ 12 61
L 6/ 21 :-61 a1’

The joint between two elements i, jis referred by (i) and the clement number varies
as k=1,2,3.4; /is the length of cach clement of the beam; p is the mass density; and

E is Young’'s modulus. A; and [ arc section arca and section moment of incrtia of

the beam, respectively, which are dependent on the beam diameters, D and d.

Equations (1) and (2) can be written in state variable form as:

X = AX + BU (7)
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where the 2(10+1)x1 vectors, X. X, and the 6x1 vector, U, are given by:

vo=[T, Vv, Vv, VY, v.]

arc given by

0 I
(- ixiy (ixih
\ — ] e
—3(\12 0 (R)
._‘ O
0 MK (rixarty
[~ 1
0
(11x6)
B - ‘ ........... (q)
J 0
-1
L 0 MF

I1I. Additional Design Based on LQR

Based on LOR theory * . in general, the quadratic cost function is deflined by
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T T
(X QX + URU) dt (10)

-

suhiect Lo the state cquation of the system from equation (7)

X = AX + BU

The cost function, 1. is minimized under the optimal feedback control given by

-1
U =-R BPX (1

where P is the positive definite solution of the steady-state Riccati equation, which
is

T -1 1
PA+AP-PBR BP+Q=0 (12)

From cquations (4) and (5). we find the control systcm properties not only
depend on the weighting matrices, Q and R, but also depend on the parameters of
the structure and the actuator locations. If the structural parameters are fixed, the
regulative range may bhe very limited for control design. Tt is possihle that the
change of structural design parameters could extend the regulative range and make
(he control and structural design satisfv the mission requircments.

Now we consider a class of additional design parameters, Z. which could be
varied while we design the control system. This means the control, U, is now a
function of Q, R, Z and t. So the cost function. J, also is a function of Q, R and Z.

v . » . * *
Using the extremum principle, assuming that Z results in an cxtremum of the
system, we have as a nccessary condition for the minimization of J

3J (QR.Z)

=0
13
07 . (13)
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subject to some special control propertics

g(X. Z 1)=1g, (14)

where g ) is given from the design (mission) requirements.

. * . + . '
From cquation (13). Z is obtained, for special cases analvtically, or. more

generally, hy numcrical means. The extremum point, Z " may be not unique: thus,
all extremum points must be compared in order to find the point at which the
structural performance is optimal, such as the minimization of the total mass of the
structure. Then, the optimal value of the structural design parameters may he in-
corporated into the control design to obtain the optimal control.

In the given simple model (Fig. 1), for cxample, we may sclect the scction
diameters, D and d. as the redesigned system variables and fix the transient re-
sponse time of the pitch motion of the heam. Using the feasible dircctions of the
search approach, the optimal values for the diameters would he obtained for the
given system modcl and other parameters. For a diffcrent given model or parame-
ter values, the optimization solution would be expected to yicld different results.

IV. Dcsign Multicriteria

In the LQR process, the assignment of Q and R values normally results [rom
a step by step numerical scarch procedure. For actual LSS design, the intcresting
properties arc the required mass of the structure, the system response time for
damping rigid motions, and suppressing vibration, as well as thc maximum values
for the actuator forces, etc. A knowledge of the possible expected range of the
houndary conditions will be helpful in selecting the weighting matrices. Q and R.
For the combined control/structural optimal design, some design variables for both
the structure and actuators should be considered. According to these, the control/
structural design multicriteria for the system with additional design parameters, Z,
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could he expressed by

(o o] i

T(QRZ) = [ [X(ZOQX(Z1)+
n

i
U(ZORU(Z U | dt (15)
0J ( Q. R.Z)

=0 (16)

07

7 =1

subiject (0

X(Z 1) = AN(Z)X(Z O +B(Z) W Z 1) (17)
g(X. Z 1)=1g, (18)
M( Z) < M max {19)
[tz 0| < Unax (20)

where g, is a design requirement
Mmax is the limited mass of the structure
Umax is the vector of maximum actuator {orce
7. is a vector of time—invarient design parametcrs

When g . Mmax, Umax and the structural configuration arc given. we can

v . * . * . [y
design the optimal structure, Z . and optimal control, U . using the additional
design formulation based on LQR techniques
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V. Numerical Analysis

We have analvzed and designed an orbiting frec—free beam using this tech-
nique. with pitch and other in—plane flexible modes included as degrees of free-
dom (sce Fig. 1). Herc we considerced two cascs. Case 1 is a uniform solid beam
(inner diameter d=0). Casc 2 is a uniform tubular hcam whose wall thickness is

assumed constant (D=d=0.04 (0. The material density of 200 /It . Young's

modulus of 6E+9 I/ . length of the beam of 130 Tt and six actuator locations

are assumed equal Tor both cases. Also the initial pitch angle. 8, . is assumed 6

degrees (0.105 rady and the other initial state components and rates arc assumed
sero. Without losing general meaning, the weighting matrix, Q. is assumed con-

< . . .
stant  and a diagonal matrix, that is

Q = trace | 1000, ..., 1000, 100, ..., 100 |
(S (I

11 (R

and the weighting matrix, R, is assumed a unitary matrix multiplied by a variable
coclficient. By regulating the weighting matrix. R, the responsc time for the rota-
tional motion of the beam will satisly the design requircment (here assumed ten
seconds). Then the cost function values which depend on the diameter of the beam
can he calculated by the multicriteria given by cquations (15)—(20).

First, we supposc the additional payload mass to be 100 1h and to he added
symmetrically to the beam at joints 2 and 4. The variation of the cost function with
the outer diameter for the two cases is shown in Figs. 2 and 3. The first cost
function extremum points for case 1 and case 2 arc determined as D=0.45 ft and
D=0.32 ft, respectively. 1f the beam diameters at these points satisfy the mission
requircments, the structural design is optimal and so is the corresponding LQR
based control design. Otherwise, the structural configuration, actuator locations or
material properties should be changed. Comparing the two cases, we find the cxtre-
mum points to be different, such that the op—timal diameter for the solid beam is
larger than that of the tubular beam. In this situation. the solid beam is heavicr than
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the tubular beam for the same required response time. According to the minimum
mass requirement for large space structural design, the tubular hbeam may be much
better hecause its mass is much less than that of the solid beam. From Fig. 2, we
also can imply that the system may contain an additional extremum point [or the
cost function and its valuc may be less than the [lirst extremum. 1f this happens, the
first extremum point valuc of the diameter of the beam should be sclected as the
optimal solution.

Second, we try to increase additional payload mass up to 1,000 1h and still
maintain symmetry. There also exist extremum points (sce Figs. 4 and §). but the
diamcter values corresponding to the extremum points differ from those when the
pavload mass is 100 Ib. Comparing Figs. 2 and 4, or Figs. 3 and 4, we find the
optimal diameter of the bcam increases when the additional payload mass in-
creascs. This result indicates that the optimal values of the structural paramcters are
dependent on the payload added. Table 1 lists the optimal diameter valucs and
their payload ratio for the uniform solid and tubular beams with three different
pavlioads: 100 b, 200 Ib and 1,000 Ib. It is clear that the payload ratio of the
tubular beam is greater than that of the solid beam for the same control require-
ment (ten seconds of the transient responsc time). The payload ratio of the sohid
beam decreases when the payload increascs, but the payload ratio of the tubular
bcam increases.

When additional payload masses are added asymmetrically with respect to
the center of the beam, there are no big differences between the cost functions for
the symmetric and asymmetric payloads (scc Table 2). This may be cxplained by
the fact that the incremental moment of inertia about the Z axis duc to the payload
masscs is designed to be the same for both the symmetrical and asymmetrical distri-
bution of the additional payload. Thus for practical system design it is probably
useful to emphasize the symmetrical distribution of the additional payload wherev-
er possible.

Figs. 6=9 provide the transient responses of pitch angle, two deformations,
and corresponding control torque and forces for the ncarly optimized uniform
tubular beam (Fig. 3). Here the outer diameter of the heam is 0.3 ft which is near
the optimal value. The wall thickness is still maintained at 0.02 ft. The transicnt
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response time of pitch angle and all deformations are about (cn seconds. Since the
additional payload masses on the beam arc symmetrically distributed, the deforma-
tions al joints 4 and 5 arc the same as the deformations at joints 2 and 1, respective-
lyv. but their directions are opposite to cach other. The maximum torquerequired is
less than 5,000 ft=1h. All actuator forces are small and do not exceed 25 1h. If the
solid heam is used instead of the tuhular heam, for optimization, the control system
requires 6,905 ft—Ib maximum torque and 133 Ih maximum force, which are
larger than those for the tubular beam.

V1. Conclusion

This paper revicws the cffect of additional design parameters on the LQR
based optimal design of space structural system. A multi-objective cost function
which includes a form of the standard LQR regulator cost and its partial variation
with respect to the additional design parameters is considered. The constraints are
extended to the desired control properties. The optimal multicriteria are derived by
minimizing the cost function and setting the variation of the cost function with
respect to the design variables to zero. This approach is used to determine the
optimum diameter of an orbiting frce—free uniform beam with additional payload
masses added. From the numerical results for two design models——a uniform solid
heam and a uniform tubular beam, with two typical additional payloads added
symmetrically and asymmetrically about the center of the beam, it is found that the
optimal diameter occurs at the [lirst extremum point of the variation of the cost
function with respect (o the diameter. It is also found that the tubular becam is
superior to the solid beam for meeting both minimum mass requirements as well as
desired transient and control requirements. The study proves that the multicriteria
design approach should give better results from both the structural designer’s and
the control designer’s points of view.
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Table 1: Comparison of Optimal Diamcter and Payload Ratio of Uniform Solid
and Tubular Beams [or Pavloads: 100, 200 and 1.000 1b

Pavload Diameter (ft) Payload Ratio
(Ih) Solid Tubular Solid Tubular
) Wl()ﬂ B 0.45 0.32 2.4 2277
200 0.75 0.42 2.0 0%
1,000 1.60 1.50 1.9% 30

Table 2: Comparison of Cost Function Value Varied with Diameter, D, for Sym-
metric and Asymmectric Payloads (500 & 500 1h; 900 & 100 Ib) lor the Uniform
Solid and Tubular Beams

Diameter Solid Beam Tubular Beam
D Jsym Tasym Joymm Tasym

13 30,025 30.024 34.437 34.530
1.4 28.902 28.901 33.939 33.937
15 27.525 27.524 33.845 33.843
1.6 26.505 26.504 33.856 33.853
1.7 27.942 27.941 33.865 33.863
1.8 29.152 29.151 33.875 33.873
1.9 30.778 30.777 33.885 33.883
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Fig. 1 Configuration of Orbiting Free—free Uniform Beam with two Additional Payload Masses
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Fig. 2 Cost Function vs Diameter of the Uniform Solid Beam (here d=0) when two
50 Ib Payloads are Added to the Beam at Joints 2 and 4, Symmetrically
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V. CCNCLUSIONS AND RECCMMENDATICNS

ot
-
pa1
I

Pcntryagin's maximum principls has been applied to study
apid slewing of -he SITOLE orbital. configuraticn in three
dinensiins. The quasil:inearizaticn technigue for solving the
resul-ing nonliinzar two po.nt boundary value purosblem has Seen
sucoezsfully used for several differeat examples. The resulte

indicate that the linearized system model c¢an represent the

ot

neniinear system adeguiatery for simulating the major motiosns, Lu
not as weil Zor :the secondary metions. The nonlinear guadratic
z21ms 2f the mais bedy (Shuttle) angular velocity can act be
L+glected Zor large-amplitude rapid maneuvers. The differences

betwe=zr. “he ricit and flexible nonlinear system responses are

a0

smal’l because th=2 flexible vibratcions are successfully suppressed
during the maneuvers simulated here.

In addition 1t is seen that the structural offset of the
SCOLZ mast attacament to the reflector is associated with a first
osrder noualinear =2ffect. The mast chortening is asscciated with
c1.ly a sgecond order rnonlinear effect and should be considered
when the mast deformaticns are outside of the lienar range.
GCravitaticnal-gradient effects may be safely neglected for ali
rapid slew maneuvers considered.

For further research it is recommended to extend the
apelication of the maximum principle and the two point boundary
value proklem to mere complicated systems proposed for the future
CSI program.

A multi-okjective cost function which includes a form of the

standard LQFE r=gulator cost and its partial variation with
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respect to additional design parameters is studied nere. This

apprcach can be employed tec detarmine the optimal diameter of a

free-fres orbiting uniform Deam with additicnal payload masse

adéed when constraints are placed on the maximum total mass

I

S

control saturation levels, and transisnt settling Times.  This

gtudy proves tha-t the nulticriteria design approach should
nroduce superior results as compared with combinations of
sepavate structural anrd contr2l system design apprcaches.
Extensicis are racommerndad to consider more complex systems
ra2presertat.ive oI proposed candidate CSI systems.

The current 1990-21) grant work has been redirectad to

greater suppcert o the Controls/Structures Interaction (CSI)

program anc focuses on specific CSI evolutionary configuratio:

1S .
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