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1.0 Accomplishments

• Designed, assembled, and tested a prototype 2-color optical pyrometer on the

105-meter Microgravity Materials Processing Drop Tube at NASA Marshall

Space Flight Center.

Researched the application of holographic elements to optical fiber sensors.

• Demonstrated use of holographic matched filters for processing outputs

from fiberoptic modal domain sensors.

• Demonstrated writing of evanescent wave gratings in the modified

cladding of an optical fiber.

• Researched techniques for doping optical fibers and glass rods with lanthanide

rare earths for low cost fabrication of optical amplifiers and temperature.
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1.1 Summary K'.'!
t

The primary goal of this research program was the investigation and application of noncontact

temperature measurement techniques using optical techniques and optical fiber methods. In

particular, a pyrometer utilizing an infrared optical fight pipe and a multiwavelength filtering

approach was designed, revised, and te_ted. This work was motivated by the need to measure the

temperatures of small metallic pellets (.t-3 mm diameter)'ln free fall at the Micro" gravl"ty Materials"
,I

Processing Drop Tube at NASA Marshall Space Flight Center. In addition, research under this

program investigated the adaptation of holography technology to optical fiber sensors, and also

examined the use of rare-earth dopants in optical fibers for use in measuring temperature.

The pyrometer development effort involved both theoretical analysis an experimental tests. For the

analysis, a mathematical model based on radiative transfer principles was derived. Key parameter

values representative of the drop tube system, such as particle size, tube diameter and length, and

particle temperature, were used to determine an estimate of the radiant flux that will be incident on

the face of an optical fiber or light pipe used to collect radiation from the incandescent falling

particle. An extension of this work examined the advantage of inclining or tilting the collecting

fiber to increase the time that the falling particle remains in the fiber field-of-view. Those results

indicate that increases in total power collected of about 15% may be realized by tilting the fiber.

In order to determine the suitability of alternative light pipes and optical fibers, and experimental

set-up for measuring the transmittance and insertion loss of infrared fibers considered for use in the

pyrometer was assembled. A zirconium fluoride optical fiber and several bundles of hollow core

fiber of varying diameters were test_.=JResutts indicated that these waveguides suffered from high

_ _t_enuation,-_.hd that the ineid6fit p6_ver fluxes measured at the detector were insufficient to

: maintain an adequate signal-to-noise ratio when used to measure the temperatures of small

particles. A one-inch diameter calcium fluoride rod was later successfully tested, and subsequently

incorporated into the pyrometer design.

A prototype two-color pyrometer was assembled and tested at V'trginia Tech, and then tested on the

Drop Tube at NASA Marshall SFC. Radiation from 5 mm diameter niobium drops failing in the

Drop Tube was sucessfully detected, and recorded for later analysis.' Subsequent analysis

indicated that the imaging of light output from the light pipe onto the detector active areas was not

..... identical for bo!h detect0rs,._ In addition, this variation between detector coupling appears to have

depended on the position of the falling particle as it fell. This variation in coupling introduced a

large error into the data, resulting in a large uncertainty in establishing the actual temperature of the

failing particle.



Researchinto theapplicationof holographytechnologyto opticalfiber sensorswasconductedin
two areas:theuseof holographicmatchedfilters for processingtheoutputsof fiberoptic "modal
domain"strainsensors,andthewriting of holographicgratingsinto thecladdingsof modified
opticalfibers. Holographicmatchedfilterswereusedto improvetheprocessingof outputsignals
from opticalfiber strainsensorsthatutilize mode-mode interference in a few-mode fiber (so-called

"modal domain sensors"). The holographic filter approach should prove more rugged than

alternative processing approaches since the matched filters lend themselves more easily to

construction in a monolithic package. Evanescent wave gratings were successfully written in a

dichromated gelatin emulsion that was integrated into the cladding of an optical fiber. The gratings

demonstrated the diffraction of light propagating in the optical fiber through the interaction of the

evanescent field of the propagating modes with the grating. The evanescent wave holograms are

expected to have applications in optical time domain reflectometry (OTDR) based sensors and for

controlling the modes in modal domain sensors.

Research was initiated into the development of low cost techniques for doping glass rods with

lanthanide rare earth in order to render the rods capable of amplification of optical signals.

Samples were prepared by indiffusion of neodymium into soda lime glass, but the level of doping

could not be measured due to limits of the available spectroscopic instruments. Optical signal

amplification was not observed experimentally. Optical fibers doped with rare earths are expected

to have applications for signal amplification in optical communications, and as distributed

temperature sensors due to the temperature dependence of the fluorescence of rare earths.

1.2 Acknowledgements

We gratefully acknowledge the sponsorship of NASA Langley Research Center. Additionally, we

are indebted to Dr. Mike Robinson of NASA Marshall Space Flight Center for making the Drop

Tube available for tests. Tom Rathz of the University of Alabama, Huntsville, and his crew at the

Drop Tower were extremely helpful during testing.

We are also obliged to Prof. Guy Indebetouw of the Virginia Tech Physics Department for

providing laboratory space and equipment for the matched filter experiments, and for outlining the

theoretical analysis for those experiments.



2.0 Optical Fiber-based Ratio Pyrometry

The main emphasis of this research program has been the development of an instrument capable of

measuring the temperature of a small (-3 mm diameter) metallic pellet in free fall. Such pellets are

typical of experiments performed at the NASA Marshall Space Flight Center Drop Tube in

Huntsville, Alabama. The Drop Tube is an evacuated, 105-m tall tube which allows researchers

the facilities to perform materials processing experiments in a low-g environment? Typical Drop

Tube experiments to study solidification or containerless processing start by heating a small sample

of material at the top of the tube by an electron-beam furnace or an electromagnetic levitation/RF

heating furnace. After the sample becomes molten, it is dropped into the tube. As the drop falls

for the 4.5 seconds of free fall, it cools and solidifies. The sample can be retrieved from a trap at

the bottom of the tube, and materials analyses are then performed on the sample.

It would be highly desirable to determine the temperature history of a sample as it drops down the

tube. Currently, this is estimated by applying the principles of heat transfer to the known initial

temperature of the sample and the elapsed time of the drop. 2 Some confidence in this analytically

determined temperature history could be provided by measuring the temperature of the sample at

one or more points along its drop with a noncontact temperature measurement system. Preliminary

experiments towards this end were performed by Hoffmeister and Bayuzik? Their approach

utilized two-color pyrometry with silicon detectors, a fused silica lightpipe, and bandpass filters

centered at 900 nm and at 650 nm. The use of silicon detectors effectively limits the measurement

range of the instrument to a minimum of about 1600 ° C, due to the abrupt drop in responsivity of

the detectors above 1.1 I.tm. The pyrometer developed in this research was intended to extend this

temperature range down to 200 ° C by adopting indium antimonide detectors, calcium fluoride

lenses, and a calcium fluoride light pipe.

2.1 Analytical Studies

Every physical body above absolute zero in temperature emits spectral radiation which is dependent

on its temperature. Planck's law describes radiation of the ideal thermal radiator, a blackbody, and

is given below:

C1

Wx : _5 [eC2l(xr ) _ 1]
(2.1)



where:

WZ. : hemispherical spectral radiant energy

C1 : 37,413 [W I.tm4/cm 2]

C 2 : 14,388 [l.tm K]

% : wavelength of radiation [gm]

T : absolute temperature of blackbody [ K]

The radiation of a greybody, a real thermal radiator, deviates from blackbody radiation by a

quantity called the hemispherical spectral emittance, CZ.,T, and is defined by:

The radiation

Wxa (2.2)
E_, T =

and total power, respectively, from a greybody can be written as:

Wxa- C1 CX'T (2.3)

_5 [eC2/O.a3.1]

" E_TWta = C1 _.5 [eC2 ¢0-T) - 1]

dX (2.4)

Note that E_,,T varies with both X and T, and is usually different for different materials. The ratio,

or two-color, pyrometry technique can measure temperature relatively independent of variations in

emissivity. The method requires that the total power, Wta, be determined for two different

wavelengths and then the ratio of these two WtaS be taken as a measure of temperature. If the

wavelengths are closely spaced so that the emissivity has not changed significantly, then the

spectral emittance, e_.,T, can be approximated as constant and will cancel from the ratio. This can

be shown numerically as:

where EXI = EX2"

Wtal _ E___.L(_.2 /5 e(C2/T)(1/_.2 - 1/X_)

Wt_a e_ _111
(2.5)



2.1.1. Configuration Factor Analysis

The free fall of the heated pellet in the drop tube results in its presence within the field-of-view of

the fiber for a very short interval of time. Consequently, the amount of radiant flux incident on the

fiber face is very small. A mathematical model has been derived to determine the amount of radiant

flux incident on the fiber face. Using this model, a computer program was written to yield

numerical values representative of the proposed measurement system.

The following assumptions were made:

(1) The pellet is falling through the geometric center of the drop-tube.

(2) The pellet is spherical in shape.

(3) The fiber face area is negligible compared to the pellet surface area.

(4) The radiation emitted by the pellet towards the fiber, as it is in the process of 'entering' and

'leaving' the field-of-view of the fiber, is neglected. In other words, the radiation when the

pellet is in the field-of-view is considered to be constant from point (1) to point (2), as shown

in Figure (1).

(5) The radiation from the fiber towards the pellet is neglected.

(6) The velocity of the pellet within the field-of-view of the fiber is constant.

(7) The temperature of the pellet within the field-of-view of the fiber is constant.

One of the mathematical difficulties in treating radiative transfer between surfaces is accounting for

the geometric relations involved in how the surfaces view each other. A method of accounting for

the geometry is introduced in the form of a quantity called the "geometric configuration factor."

This greatly simplifies the analysis.

First the configuration factor of the system as shown in Figure 2.1 will be found. Figure 2.2

shows the fiber face area as a differential element dA 1, and the pellet as a sphere of surface area

A 2. The orientation is such that the normal to the center of the differential element passes through

the center of the sphere. The standard result of the configuration factor of the system shown in

Figure 2.2 is

Fdl-2 = [_]2. (2.6)

For the case when the pellet is directly in front of the fiber as shown in Figure 2.1, equation 2.6



becomes

(2.7)

whereL = radiusof thedrop _ube.

Figure2.1. Geometryfor radiativetransfermodel.

Sinceweareconsideringtheflow of radiantflux from A 2 to dA 1, we need to find dF2_dl (the

configuration factor needed for calculating energy flow from A 2 to dA 1). The reciprocity relation

between a differential element and a finite area states that

A2 dF2-dl =dm Fdl-20 (2.8)

or



dA1 Fdl-_
dF2-dl = A---2-

(2.9)

where

dA 1 = area of fiber face

A 2 = surface area of the pellet.

h

HdA 1

A 2

Figure 2.2. Geometry for configuration factor.

Since A1 = r_, then dA1 = 2rcrldrl and

27_-r_ Fdl-2 drl.
dF2-dl = A---2-

(2.10.a)

The area of the sphere presensted to the fiber is A2 = _, so

dF2_dl = 2nr! Fdl-2 drl. (2.10.b)
nr 2

The relation in equation (2.10) assumes that the normal to the fiber face passes through the center

of the spherical pellet. Therefore, in order to consider for the cases when the pellet is at some

angle, the component of the fiber face area is taken which is such that the normal to the component

always passes through the center of the spherical pellet.



Thereforeequation(2.10)becomes

dF2_dl _- 2_rI cos 0 [_]2. (2.11)

Now, 0 is a function of "x," as shown in Figure 2.1, and 0 is related to the geometry by

cos 0 - L (2.12))

2 + (X-x}2

In equation (2.12), the quantities "L" and "X" are constant and "x" varies with time "t."

Writing "x" in terms of"t," we get

x=( x)tAT

where,

AT = Time for which the pellet is in the field-of-view,

2X = Total vertical distance traveled through the field-of-view,

and "t" varies from t1 to t2 as shown in Fig. (2.1).

Now, equation (2.12) becomes

cos 0 - L (2.14)

/L2 +{ x'[2xlt/2_aTIJ

Substituting (2.14) in (2.13), we get

dF2_l = 2rl [ r--2-/2dr1. (2.15)

_/L2 + {X - (2_--_)t}2'L,

The radiant flux incident on the incremental area dA1 of the fiber end at a given time t is

dQ2_dl(t) = _ K 4 A2 dF2_dl(t), (2.16)

m

where



dQ2_dl= incrementalflux incidentonthefiber face,

o = Stephan- Boltzmannconstant= 5.66961x10-8W/m2K4,

K = temperatureof pellet (source),and

A 2 = surface area of the pellet.

To find the total flux incident on the entire fiber end over the entire time that the pellet remains

within the fiber field-of-view (FOV), equation 2.16 is integrated over the area of the fiber end and

over the time interval that the pellet is within the fiber numerical aperture. Since the fiber is

horizontal, and its field-of-view is symmetrical with respect to the horizontal, the total time

duration of the fiber in the FOV is twice the time interval h-t0 (Figure 2.1). Thus

ItO la

Q2-1 = 2 o K 4 A2 dF2_dl(t) dt

= oK4/t_2 /g_/L2+i_l_(_T}t}2 ' drldt

(2.17)

where a is the radius of the fiber core. Simplifying this result and performing the first integral
leads to

Q2-| _

,tO

O K 4 _2 a2

+2X
_/Lz+X2- (A6_T)t (AT) 2t2

dt. (2.18)

As it is assumed that the temperature of the pellet remains constant during the short interval of time

the pellet is in the field-of-view of the fiber, we find that equation (2.17) has all the terms constant

except dFz_dl, which varies with time.

Let

A = L 2 + X 2,

B =- (4X2/, and
_AT/

10



SubstitutingA,B andC in equation(2.18),wehave

_ _ K 4 _ a2Q2-1 = }/A + Bt + Ct 2

From standard integral tables

dt. (2.19)

f dx = 1 log(2 _/c [a + bx cx2] + 2cx + b )1/a + bx cx 2 ¢e
(2.20)

then equation (2.19) becomes

Q2-1 =
K 4r 2a 2A'V_-/_/lo_(_; 2_/2X[[L 2+X 2)_(4X2]t0+{2X]_] +__4Xt0 4X2}_

ATL [AT! kATt J AT AT!

-l°g[2"_/2X[(L2+X2) {A_-)tl (AT) _] +4Xtl
V AT L AT ATI[

(2.21)

Equation (2.21) is the expression that relates the total radiant flux incident on the fiber face to the

fiber parameters and the speed with which the pellet transits the fiber's field of view.

The derivation above requires the assumption that the fiber end face area is negligible compared

with the pellet area. An alternate technique developed by Feinhold and Gupta to calculate the

configuration factors in radiation from spheres does not require this assumption. In addition,

complex formulae involving multiple integrals, which often could only be solved using numerical

methods, can be avoided.' This technique leads to extremely simple formulae and was used to

determine the configuration factor for the drop tube geometry.

When employing the Feinhold and Gupta technique, it is not necessary to assume that the fiber face

area is negligible with respect to the pellet area. The configuration factor obtained is valid for

general A 1 and A2, and does not limit A 2 >> A 1. It is found to be

11



_ 11Vl, ra / (2.22)

Applying the Binomial Theorem to the above result (for r I << L) results in

1( _ 1 )_-1(1_ 1(/L})Fl_2= 1 _ 1 + (rilL)2 1+ rl

(2.23)

The configuration factor thus obtained (equation 2.23) from the method of Feinhold and Gupta

agrees in magnitude with the relation (equation 2.7) that requires that A 2 >> A1.

2.1.2. Numerical Simulation

The model derived in Section 2.1.1 was coded into a FORTRAN computer program named

NASA 1 FORTRAN (Appendix A). The resulting data gives the resulting incident radiant flux "Q"

in watts for different temperatures "K" in Kelvin, for the time that the pellet remains in the field of

view at various distances "H" down the tube in meters, starting from the top of the drop tube. For

these calculations the pellet was assumed to be 3 mm in diameter, and the fiber had core diameter

of 200 pm and NA of 0.4. Also, the drop tube was assumed to be of radius 6 inches.

The results indicated that the radiant flux incident on a 200 micron fiber (with NA of 0.4),

10 meters down the drop-tube and at temperature 773 K is 0.45x10 11 Watts. This number

decreases as we move down the drop tube (e.g. at 190 meters down the drop-tube it falls down to

0.5x10 -13 Watts). Further, at higher temperatures, we find that the amount of incident radiant flux

increases. At a temperature of 3773 K and 10 meters down the drop-tube, the value becomes

0.25x10 -8 Watts. It should be noted that these numbers are for an ideal case, as the falling pellet is

assumed to be a blackbody. These numbers would further decrease if the falling pellet is

considered to be a gray body and other effects like attenuation of fiber, such as an anti-reflection

coating, or stray reflections from the inside wall of drop-tube are taken into account.

The field-of-view and hence the transit time of the pellet in the field-of-view can be increased by

orienting the fiber at an angle with respect to the vertical wall of the drop tube. This approach is

12



horizontal 1
reference

line _

falling pellet

X

Figure 2.3. Geometry for tilted fiber.

shown in Figure (3). Here 13,the angle by which the fiber is tilted, is assumed to be less than 0,

where 0 = sin -1 (NA), where NA is the numerical aperture of the fiber. The relations for increased

fiber tilt were programmed into program NASA2 FORTRAN (Appendix B).

The results from program NASA2, corresponding to a pellet temperature 2773 K, show that the

radiant flux incident on the fiber-face, 10 meters down the drop-tube, and tilted at an angle of 20 °

with respect to the horizontal, is 0.87 x 10-9 Watts. This corresponds to a 17.6% increase in the

incident radiant flux over the case of the non-tilted fiber. Similarly, at 190 meters down the drop-

tu be, with the fi ber tilted at 20 °, it becomes 0.1 x 10-10 Watts, which corresponds to a 12.4 %

increase in the incident radiant flux. As we move down the drop-tube, both the time in which one

pellet remains in the field-of-view and the incident radiant flux decrease appreciably.

2.1.3. Model for Ratio Pyrometry

A set of infrared narrow band f'dters was selected to investigate ratio pyrometry experimentally. To

take advantage of the temperature range of an IRCON blackbody calibrator (650 o C-1200 ° C) that

was chosen as a source, the bandpass filters with specifications shown in Table 2.1 were chosen.

The spectral characteristics of the filters are shown graphically with respect to theoretical radiance

curves of the blackbody calibrator in Figure 2.4.

13



FILTER 1:

F1LTER 2:

center waveleneth

2.8225 l.tm

3.1191 I.tm

h_lf peak bandwidth

119 nm

107 nm

Table 2.1

Filter Spectral Characteristics

A Fop'rRAN program was written in order to determine a theoretical model for the radiant energy

available at the detectors after filtering (see Appendix C). The program uses a numerical

integration subroutine which evaluates Planck's equation describing blackbody radiation, over the

wavelength limits of each filter respectively as the temperature is varied from 500 ° C-3500 ° C. The

filter output as a function of temperature can be expressed as

I tk, T C 1FI(T) = , X5 [eC2/(XT) - 1]

d_, (2.14)

and

Iz EX,T ClF2(T) = _5 [eC2/(XT) _ 1]
d_.. (2.15)

The program then calculates the ratio of the energy, F1/F 2, at each temperature to obtain a single-

valued curve which is a function of temperature and independent of source spectral emissivity. The

theoretical model obtained is shown in Figure 2.5.

n
.a

-i

Jr

2r_

-2-

.-6

1.0 1.5 2.0 2.5. 3.0 3.5 4.0 4.5 5.0

wavde_llth [_un]

Figure 2.4

Spectral Characteristics of Blackbody Radiation and Narrow Band Filters
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Theoretical Pyrometry Curve

2.2 Laboratory Studies

2.2.1 Detector Linearity Test

Two EG&G JUDSON Indium Antimonide (InSb) detectors were selected for use in the pyrometry

experiments. The detectors, which are liquid nitrogen cooled, are responsive to light from 1-5 _tm.
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DetectorLinearity
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Usingcalibratedneutraldensityf'dters,thelinearityof both detectors was investigated. With the

blackbody source radiating at 1200 o C, the results are shown in Figure 2.6. The results illustrated

in Figure 2.6 show that both detectors behave linearly.

2.2.2 Filter Tests

In order to determine if the filters selected for the pyrometry experiment would yield a single-

valued curve with respect to source temperature, a simple experiment was performed. The

experimental set-up is shown in Figure 2.7. As the temperature of the blackbody calibrator was

varied from 650 ° C-1200 ° C at increments of 50 ° C, detector voltage values were recorded for both

narrow band filters. The results of the ratio of the detector voltages at particular temperatures are

shown in Figure 2.8. An exponential curve is shown interpolated to the experimental data, and the

theoretical model has been overlaid for comparison.

The experimental results were extremely close to the theoretical model which was discussed earlier,

with differences probably due to idealized filter parameters used in the theoretical model.

Pre-Amp

f .,'1 N Fi, 

Data Acquisition System InSb/"
Detector

Blackbody
Radiator

Figure 2.7

Experimental Set-up for Filter Tests

2.2.3 Optimization of Light Guide

In order to determine if enough power is present at the detector when using fibers to guide the

infrared radiation, the experiment illustrated in Figure 2.9 was performed. First, a single

zirconium fluoride fiber, one meter long, was investigated. Due to the small core diameter

(200 I.tm) and high losses in the test grade fiber, insufficient power was intercepted from the

blackbody, and the power delivered to the detector was below the noise floor of the detector. Due
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to the expense and limited availability of experimental IR fibers such as zirconium fluoride,

experiments with IR fiber bundles were impractical. For this reason, a circular bundle of hollow-

core optical fibers, drawn at V'trginia Tech's Fiber & Electro,Optics facility, was investigated.

Recent studies involving hollow-core fibers and tubes have shown their ability to guide IR

radiation 5'6: . Hollow-core fibers, which use air as the radiation transmitting medium, guide

radiation by a different mechanism than step-index fibers, which rely on a sequence of total internal

reflections at the core-cladding interface. In hollow-core fibers, only rays with a very small angle
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Shield

I Optical

Fiber

Data Acquisition System
InSb

Detector

Blackbody
Radiator

Figure 2.9

Experimental Set-up for Fiber Tests
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of incidenceto theair-wall interfacewill besignificantlyreflectedbacktowardsthecenterof the
fiberandconsequentlyguided.Dueto thismannerof light guiding,oneof themostserious
problemsin hollow-corewaveguidesis high lossdueto bending,aswell aslossdueto smallNA.

Twobundlesof hollow-corefiberwereinvestigated.Oneof thefiberbundlesinvestigated
consistedof 35 fibersdevelopedandmanufacturedat VirginiaTech, all onefoot long,with inner-
corediametersof 245_tm.Thesecondbundle,manufacturedbyHughesAircraft Company,
consistedof 3 fibers,onefoot long,with inner-corediametersof 42mm. Thetotalouterdiameter
of bothfiberbundleswasapproximately5.6mm. Thefiberswereheldstraightandashieldwas
placedin front of theInSbdetectorto insurethatonly thelight whichpassesthroughthefiber
bundlearrivedatthedetector.Thedetectorvoltagewasrecordedasthetemperatureof the
blackbodysourcewasvariedfrom 650° C-1200° C at50° Cincrements.Theresultsareshownin
Figure 2.10.
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Figure 2.10

Detector Voltage using Hollow-core Fiber Bundles

The results obtained from the experimental test are consistent with theory. Experimentally, we

observe more power being guided through the fiber bundle as the temperature of the source is

increased. We also see that the bundle of fibers with the larger core diameters transmitted more
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power. Althoughthetransmittanceof thesebundleswasgreaterthanthatof thezirconiumfluoride
fiber, it wasnotsufficientfor a highsignal-to-noiseratiowhenusedin conjunctionwith the
narrow-bandinfraredf'dters.Theoptionof largerbundleswasconsidered,but problems
implementingtheseat thedroptubewereforeseen.Dueto thehollow natureof thesefibers,
evacuatingthedroptubewouldbecomeaproblem.A calciumfluoridesubstratewouldneedto be
vacuum-fittedto thetubein theflangeto preventoutgassing.Thehollow corefiberswould then
view themoltenparticlethroughthis substrate.In orderto avoidthiscomplexity,otheroptions
wereconsidered.Themostfeasibleapproachwastoobtainandtestacalciumfluoriderodof a
standarddiameter,sothatcommonvacuumfittingscouldbeeasilyobtainedandusedatthedrop
tube.A calcium fluoride rod, 1 inch in diameter and 6 inches in length, was obtained and tested in

the laboratory. The resulting were promising and the rod was incorporated into the pyrometer set-

up.

2.3 Prototype Pyrometer Design

2.3.1 Physical Set-up

A portable box with removable lid was consmacted in order that the pyrometer could be mounted

on the drop-tube at Marshall Space Hight Center (MSFC) in Huntsville, Alabama. Figure 2.11 is a

top view of component location in the prototype box. A detailed list of components used is given

in Appendix D.

TOP VIEW

/ Preamp

I _ _ _ Indium Antlmon_de

.]./Oetector
I [ I i 3.1  Narrowb d
/ I I _ I_ Filter

_j Calcium Fluoride Rod

__ Calclum Fluoride Beamsplitter

N_ _lSteT Narr°wband

Calcium Fluoride Lens

Figure 2.11
Portable Pyrometer Set-up
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2.3.2 Prototype Pyrometer Testing

In order to determine the temperature of a molten object within the pyrometers field-of-view, an

experiment was run to establish a calibration curve. The experiment was run several times in order

to look at the repeatability of the experiment. The set-up for the laboratory experiment is shown in

Figure 2.12. The Ircon blackbody radiator (model BCH), which has an emissivity > 0.99 and is

calibrated for the temperature range of 650 ° C - 1200 ° C, was placed 6 inches away from the end of

the rod. A metal sheet with a variable speed shutter and variable iris was placed between the

pyrometer and blackbody to ensure the the calcium fluoride rod did not sustain any thermal damage

from prolonged exposure to the high temperatures of the blackbody calibrator.

TOP VIEW

Calcium Fluoride
IR Shield with variable

Rod (l"x 6")

syutter (set at 1/250 sec)

and iris

._...---._[ . 6 Inches

:_-.+ .............

[_! Beam Splitter

ILeCm Calcium Fluoride Lenses
1 2,, InSb Detectors

Epson Equity 11 'k _

Computer Model 9450 _" [] Pre-amplilters

Digital Oscilloscope U Narrowband Filters

Figure 2.12
Laboratory Set-up
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TheIndium Antimonide(InSb)detectorswerecooledwith liquid nitrogen for 2 hours before

beginning the experiment to ensure minimal drift of the detector offset voltage. With the blackbody

calibrator set at 650 ° C and the shutter open, the heights and distances of all the components as well

as the angle of the beam splitter were adjusted to allow for a maximum signal in both channels of

the LeCroy digital oscilloscope. As the temperature of the blackbody calibrator was increased from

650 ° C to 1200 ° C at 50 ° C increments, the magnitude of the voltage of the detectors was recorded

at each 50" C increment in temperature. For each data point, the shutter was opened for 4 ms, to

simulate a molten particle dropping by the pyrometer. The initial detector offset, which is due to

dark current in the detectors, was also recorded. The change in detector voltage was determined by

subtracting the initial offset from the detector magnitude for each channel at different temperatures.

The ratio of the change in detector voltage for each channel was then taken and plotted with respect

to the corresponding temperature. The test was repeated three times. The resulting calibration

curves are shown in Figure 2.13. A theoretical curve, calculated with a FORTRAN program

{Appendix C} using Planck's Law and parameters (central wavelength, _.o, and half peak

bandwidth) obtained from the filter transmittance curves, is shown along with the calibration

curves. Each set of data, including the theoretical data, has an exponential curve fit to the data.
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Figure 2.13

Pyrometer Calibration Results

The offset between the theoretical and experimental curves is probably due to the idealized f'dter

parameters and component alignment in the pyrometer box.
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2.3.3 Test of Effects of Iris Diameter

The set-up shown in Figure 2.12 was used to determine how the size of the molten particle to be

evaluated would affect the performance of the pyrometer. The blackbody radiator was set to 1000 °

C. The diameter of the iris, measured by digital calibers, was varied from 2 mm to 13 mm in

increments of 1 mm. The shutter was opened for 4 ms, and the change in detector voltage was

recorded for both channels. The ratio of the change in detector voltage for each channel was the

determined numerically. The results are shown in Figure 2.14. A plot of the signal-to-noise ratio

(SNR) is also shown in Figure 2.15.

Because a variable iris in front of the blackbody aperture does not strictly model a small radiating

particle, the results do not necessarily give a limitation on the size of the particle. The results do

show, however, that as the size of the particle decreases, the performance of the pyrometer is

adversely effected.
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Figure 2.14
Effects of Iris Diameter
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Effects of Iris Diameter on SNR

2.4 Field Tests of Prototype Pyrometer at NASA MSFC

During field tests of the pyrometer at Marshall Space Flight Center, niobium drops were

processed. At the top of the drop tube, a niobium wire (62 mil diameter, MARZ grade) was fed

into an electron-beam (EB) furnace. As the end of the wire was heated, the melted niobium formed

a drop on the end of the wire. Once the size of the drop was large enough (5.485 to 5.543 mm in

diameter), it broke away from the wire and began to fall down the tube. The size of the drop,

which remains constant for a set diameter of niobium wire, is determined by the liquid-to-solid

surface tension and the mass of the material. The particle cooled and solidified before hitting the

bottom of the tube. The prototype pyrometer was set up to observe the niobium particles as they
dropped down the tube.

2.4.1 Calibration

The prototype pyrometer was set-up and calibrated using the blackbody calibrator as in Figure

2.3.2. The signal in both channels of the digital oscilloscope was optimized at 650 ° C, by

adjusting the heights and distances of the components. After this, data was taken at four different
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temperatures to obtain a calibration curve for the experiments to follow. The calibration points,

calculated from the data, are shown in Figure 2.16 with an exponential curve fitted to the data.

Also shown is the theoretical curve for comparison.
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Figure 2.16

Calibration Curve at MSFC

2.4.2 Mounting Details

With all components properly mounted in the box, the pyrometer was moved to a port 22.6 meters

below the E-beam furnace. The calcium fluoride rod was carefully fed through a 2 3/4" Conflat

vacuum flange, making sure that none of the components in the pyrometer box were bumped and

knocked out of alignment. A flat black stove-pipe section had been inserted at the 12 th level port in

order to decrease stray reflections from the drops on the tube. The stove pipe section was slightly

skewed in the drop tube, thereby obstructing a small portion of the instrument port on the 12th
floor.

Care was taken to minimize ground loops. The preamps of the pyrometer were attached to an

instrument ground that was provided throughout the drop tube building. Once the pyrometer had

been securely mounted to the drop tube, the drop tube was evacuated to approximately 10 -6 torr.

2.4.3 Data Acquisition

A silica photodetector, located immediately below the drop tube furnace, was used as a trigger for

the data acquisition. The data from the detector preamps was acquired by the digital processing
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oscilloscopeat asamplingrateof 10 kHz. A program {Appendix E} was written in order to

transfer the data from the digital oscilloscope to a file on the hard drive of the computer. Backup

copies of these files were also made on floppy disks. A plotter was used to copy data obtained on

the digital oscilloscope.

2.4.4 Data Analysis

2.4.4.1 Processing of Original Data

A software package called MATLAB TM was used to determine the initial detector offset and the

magnitude of the voltage when the particle was detected. MATLAB TM is an interactive software

package for scientific and engineering numeric computation. Figure 2.17 shows a sample of the

drop data obtained from the niobium processing.

Drop Number 2730 Chonnel 1

0.02, , , , _ i '. ! '

i I

{o.o,_1-.._- ...... i.'..---l_,t...._ ' i...........t.........!.......1

"o.o"t..........................'-.............._v....i..........i..........._........i_t
| : _- i '_ t i .1

T_rne [2 rns/div]

Drop Number 2730 Chonnel 3

I 1i ,
0.01 O 20 40 60 80 1OO 120 140 160 180 200

_me [2 rn_/div]

Figure 2.17

Data Obtained from Niobium Processing

MATLAB TM was used to determine the initial detector offset by having the software package

determine the mean value of a specific number of points before the drop event occurred. In the

data in Figure 2.17, the initial offset was determined by taking the mean of points 1 through 80 on

the time axis. The magnitude of the voltage when the particle was detected was determined by the

same method. Due to the noise present in the detected signal, determining a value for the

magnitude of the voltage when the particle was present was difficult. Therefore, a digital filtering

technique, discussed in the next section, was adopted. Table 2.4.1 shows the official drop number

and the ratio of the channels for each drop detected.
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OP/iclal
Drop
Number

2695 2730 2734 2735

Ratio 2.364 1.409 1.375 1.238

2737 2738 2745 2747 2748 2752 2753 2757 2759 2760

1.591 1.071 1.556 2.077 1.875 1.182 0.800 1.538 1.714 !0.970

Table 2.2

Ratio of Unfiltered Data

2.4.4.2 Processing of Filtered Data

Due to high frequency noise present in the detector outputs, digital f'dtering techniques were

investigated to reduce the influence of the noise. Figures 2.18.a and 2.18.b show the power

spectral density of the noise floor for both detectors on channels 1 and 2 respectively, as calculated

by a Fast Fourier Transform (FFT) routine.

Two types of low-pass digital filters were examined these were the Butterworth filter and the

Chebyshev filter. A Butterworth filter design possesses maximum flatness in the passband at the

cost of less stopband attenuation. As the order, n, of the filter approaches infinity, the amplitude

response of the Butterworth filter approaches an ideal lowpass filter characteristic; however, the

filter delay also approaches infinity. A Chebyshev frequency-response characteristic possesses

ripples, or increases and decreases in gain, within the passband while maximizing the attenuation
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Power Spectral Density for Channel 2

in the stopband. 8.9 Different orders of the filters were looked at as well as different cut-off

frequencies. Plots of the data using cut-off frequencies from 200-600 Hz were examined. Cut-off

frequencies of 300 Hz and lower washed out the signal obtained from the drop of niobium.

Frequencies above 400 Hz did not significantly filter the noise within the signal. The cut-off

frequency of 400 Hz was chosen because the noise component around 337 Hz only added a small

ripple to the signal and did not appear to affect the signal detrimentally. The Butterworth filter was

chosen as a better filtering technique for this application than the Chebyshev due to the ripple

2nd Order Butterworth FTIter Chonnd 1

0,02 ........ 1

olt i i i : i i i ; i /
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Figure 2.20

Butterworth Filters with cut-off @ 400 Hz
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associatedwith thelatter. Theoriginaldatawasfilteredby differentorders(lst through4th)of the
Butterworthfilter. MATLABTM was again used to determine the initial detector offset and the

magnitude of the voltage when the particle was detected. In Figure 2.20 sample data from Figure

2.17 is shown filtered using a 2nd order Butterworth filter with a cut-off frequency of 400 Hz.

Table 2.2 below shows the the official drop number and the ratio of the channels for each drop

detected using different order filters.

Official
Drop 2695 2730 2734 2735 2737 2738 2745 2747 2748 2752 2753 2757 2759 2760
Number

Ist 1.500 !1.160 1.300 [1.143 1.240 0.562 1.333 1.667 1.462 1.172 1.133 1.200 1.318 1.226

._ 2nd 1.625 II.167 1.421 1.150 1.292 0.667 1.381 1.556 1.462 1.259 1.107 1.222 1.350 1.167
I

3rd 1.625 1.125 1.500 1.100 1.304 0.647 1.450 1.556 il.462 1.269 1.107 1.222 1.300 1.207

4th 1.588 1.160 1.474 1.143 1.320 0.667 1.409 1.667 1.429 1.241 1.133 1.200 1.429 1.226

Table 2.3

Ratio of Filtered Data

2.4.5 Experimental Results

2.4.5.1 Original Data

Figure 2.21 shows the ratios of the two channels from the original data. For all the drops detected,

the ratios of the unfiltered detector voltages show a standard deviation of 0.432 and a mean of

1.483 for the ratio of the channels. According the calibration curve in Figure 2.16, the ratios of the

drops indicate a range of temperatures from 400 ° C to well over 3500 ° C, and a mean temperature

of 1800 ° C.

2.4.5.2 Filtered Data

Figure 2.22 shows the ratios of the two channels from the filtered data for each order of filter.

The ratios of the filtered data show a standard deviation of 0.24 and a mean value of 1.27 for the

14 drops analysed. The variance between the different order Butterworth filters was small, as can

be seen from the figure above, but different means were obtained from that of the unf'fltered data.
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According to the calibration curve in Figure 2.16, the ratios of the drops, excluding the drop

number 6 (2738), indicate a range of temperatures from 700 ° C to 2300 ° C, and a mean temperature

of 11O0 ° C.

2.5 Conclusions / Recommendations

Since the melting point of niobium is 2468 ° C, we should expect to see pellet temperatures below

that at a port 22.6 meters below the furnace. This was not the case for the results obtained from

the non-filtering approach. The use of digital low pass filters to analyse the data is a preferable

approach because of the smaller variances between the drops than the unfiltered drops and the

consistency between the different orders of the filtered data.

Although the variance in the filtered data was smaller than that of the unfiltered data, estimating the

temperatures with the use of the calibration curve leads to a wide range of possible temperatures,

from 700 o C to 2300 ° C. This wide range of possible temperature values shows that the prototype

pyrometer did not operate as anticipated. A possible explanation for the poor performance of the

pyrometer is possibly the deviation of the molten particle from the center-line of the drop tube.

In some of the drops obtained at NASA, a signal was observed in only one of the two channels of

the oscilloscope. The channel which did not record the signal from the drop varied with the drop.

The oscilloscope was assumed to be working properly because signals were observed in both

channels for most drops. These drops lead to an assumption that the power incident on each

detector may be dependent on the angle of incidence of the drop on the rod looking into the tube.

This angular dependence could also be the reason for the variance between the drops detected at the

drop tube.

Future tests of this pyrometer design should investigate this possible angular dependence of the

pyrometer. Suitable methods to eliminate or minimize this effect could also be investigated.

Possible options could include physically narrowing the field-of-view (FOV) of the pyrometer, or

more specifically, the calcium fluoride rod. This may be accomplished by masking the rod,

possibly with photolithographic techniques, so that it only sees the drops which fall down the

center-line of the tube. Another method of narrowing the FOV may be to recess the rod in the

flange of the drop tube instead of allowing it to penetrate into the drop tube diameter.
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3.0. Optical Fiber Holography

Optical fibers have been successfully employed as sensors for detection of a wide range of

observables, such as strain, temperature, displacement, electric and magnetic fields, and acoustic

fields. Due to their small size and flexibility, optical fibers configured as strain sensors show great

promise for applications where they can be embedded in a host material. So configured, the fibers

may be used to determine vibrational modes, acoustic emissions, integrated or localized strain, or

temperature. Possible applications include sensing strain within smactural members of the

proposed space station and national aerospace plane.

Two approaches for strain sensing that have been extensively researched at Virginia Tech are

mode-mode interference in few mode fibers _0, and optical time domain reflectometry, it In this

project, the principles of optical fiber-based holography have been applied to extend these results.

Publications based on the results of this research are presented in Appendix E

3.1. Holographic Matched Filters for Processing Modal Domain Sensor Outputs

Holographic matched filters were used to improve the processing of output signals from optical

fiber strain sensors that utilize mode-mode interference in a few-mode fiber. The holographic filter

approach should prove more rugged than alternative approaches since the matched filters lend

themselves more easily to construction in a monolithic package.

Optical fiber sensors employing the interference between two or more propagating modes in a fiber

have been termed "modal domain sensors." Typically the sensor fiber is operated in a wavelength

regime where only a few modes propagate. By adjusting a coherent source of the proper

wavelength to achieve the correct excitation conditions at the input of the fiber, the far-field output

pattern exiting the fiber can be made to assume the form of a small number of intensity lobes that

rotate or oscillate in a predictable fashion when the fiber is strained. For example, when a

nominally single-mode circular-core fiber is injected with light of a wavelength shorter than the

second mode (LP 11) cutoff wavelength, more than one mode may propagate. The wavelength and

fiber parameters may be chosen such that only the first two linearly polarized modes LP 01 and

LP11 (including degeneracies) may propagate. This will occur if 2.405<V<3.832, where V is a

dimensionless propagation constant defined by

V : _ (n_- n_) '/2
(3.1)

where a is the core diameter, _. is the wavelength, n I is the core refractive index, and n 2 is the

cladding refractive index. When an axial stress is applied to the fiber, strain will be imparted to the

fiber, resulting in three changes: the fiber elongates, the refractive index of the fiber core changes

31



due to the elasto-optic effect, and the core diameter reduces slightly due to the Poisson effect. The

last two effects change the propagation constants of the LP 0 z and LP zz modes differently, yielding

a net change in the far-field intensity pattern. If, for example, only the LP01 and the even LP 1z

modes are excited at the input of the fiber, then the far-field pattem will assume the form of a two-

lobed pattern (Figure 3.1), ,and the intensities of the two distinct lobes will alternate in an

oscillatory manner with increasing strain. The modal domain sensor is therefore equivalent to a

fiber optic differential interferometer, with both arms of the interferometer contained in a single

fiber. The elimination of the need for couplers and a separate reference fiber renders the

construction of the modal domain sensor simpler than the classic fiber optic Mach Zender

interferometer. However, the differential detection inherent in the modal domain sensor results in a

sensitivity three orders of magnitude less than that of the Mach Zender sensor.

Figure 3.1.

Typical output farfield pattern for two-mode fiber

Techniques for processing the far-field output of a modal domain sensor include using a pin-hole

aperture to sample the intensity distribution at a single point, and the use of a fiber optic bundle

connected to a detector array. ,2 With pinhole detection, a small aperture is used to sample the far-

field pattern at a point as in Figure 3.2. A photodetector placed behind the aperture measures the

fiber

II_""Aj _ photodetector

r_,_ v- two lobed

s_ far-fi;Id pattern

Figure 3.2.

Pin-hole processing of modal domain sensor output
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intensity at that point. As the fiber is strained, the oscillation of the lobe intensity is converted to a

changing electrical signal by the detector. In order to linearize the detector output and maximize the

sensitivity, the aperture must belocated at a position where it samples equal intensity in each lobe.

This position defines the quadrature point of the lobe oscillations. With full-field processing, the

entire far-field is sampled by a fiber bundle connected to a photodetector army. The output of the

detector array is fed to a computer, which determines the centroid of each lobe. As the far-field

pattern evolves with the application of strain to the sensor fiber, the strain can be calculated by

tracking the change in the centroid location and magnitude.

A major disadvantage of the use of a fiber/detector array or camera for processing the sensor

outputs is the slow speed of such a system. Detector arrays or CCD cameras must be read out

serially to the computer, and after that the complexity of the required algorithms make it difficult

for the sensor system to respond to high frequency perturbations in real time.

3.1.1. Holographic Matched Filters for Modal Domain Sensors

Holographically prepared optical matched filters have been used for pattern recognition and

correlation 13, but it is believed that the application described here is the first for processing of the

output of an optical fiber sensor. In this use, the output of a coherent source is split by either a

beamsplitter or a fiber optic coupler, with one output being injected into a single-mode reference

fiber, and the other injected into a two-mode modal domain sensor fiber (Figure 3.3). The far-field

I Laser

I"1
BS L1 Beam 1 _1_

_.+, Sensor (two mode)fiber" __J

i Spatial Type 131

= Filter _ Beam 2 Plate

Mirror

Figure 3.3.

Experimental set-up for writing matched filter
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outputfrom thetwo-modesensorfiber is interferedataholographicemulsionwith thefarfield
outputof thereferencefiber. After development,theholographicemulsionbecomesthematched
f'dter.Thefilter is thenplacedin thesameposition,relativeto thesensorfiber,andthereference
fiber is removed.If theoutputof thesensorfiber thenduplicates(correlateswith) thefarfield
patternusedto write thefilter, the light incident on the falter will be diffracted so as to reconstruct

the previous reference beam. A lens may be used to collect this diffracted light and direct it to a

photodetector (Figure 3.4). As the fiber is progressively perturbed, the far-field pattern will

evolve, and the light detected by the photodetector will decrease, indicating a reduced correlation

with the original, unperturbed pattern.

i Laser

Lens

orDetector _ •.......

I I
Aperture i t_::._i..:!_

!•_:%_._:_._
i _.,._t:_i:i.,'.t..!hi

IL. BS ensor (two .fiber .._...!!.-:_'1"...mode ) ::'_:_:_:":"
L"_J_ .................. 1 _ " [_-4_'.-._(_._1 Mirror

l_ Holographic

Linear translator stationary mount Plate
with micrometer

Figure 3.4.

Experimental set-up for processing sensor output with matched filter.

3.1.2. Theory

Let the electric field strength at the output end of the sensor fiber be denoted as Eo(x,y ), and the

field at the reference fiber end be R(x,y). The far-fields incident on the holographic film are related

to the fiber outputs by the Fourier transforms of the outputs:

{Eo(x,y)} = Eo (i.t,rl), and

{R(x,y)} = R (It,n).

(3.2)

Since the holographic film is a square law medium, the resulting filter amplitude transmittance will
be given by

T,(It,n) _[Eo (It,T1)+R (g-go,n)] 2, (3.3)
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where the I.to parameter indicates the angular offset of the incident reference wave with respect to

the object (sensor fiber) wave, and where tx indicates proportionality.

After development, the holographic Falter is repositioned with the identical orientation with respect

to the sensor fiber as when the filter was written. Thereafter, when the sensor fiber is strained or

otherwise perturbed, the far-field incident on the f'dter will take the form E l(I.t,rl), and the wave

diffracted by the filter will be

C (It,n) = E1 ([1,1]) 't(l.t,'l'l) {I E 1 (]1.,1]) [E o (I].,II)+R (g-go,n)] 2 (3.4)

The component that will be diffracted into an output wave in the same direction as the reference is

the component given by

Cref (ld-,II) =El (g,rl) Eo 2 (g,rl)R2(g-l.to ,rl) (3.5)

It is this component that gives the correlation of the sensor signal output with the holographic filter

function. A lens collects this component and focuses it onto a photodetector. This lens performs

the inverse Fourier transform, so that the component incident on the photodetector is

C(x,y) = _-l{E 1 (It,n) E; (Ix,'I_)R (g-go,n)}

a f E1 (x',y') E* (x'-x,y'-y) dx' dy'.
(3.6)

Due to the small area of the photodetector, a small portion of this field is sampled, yielding

I 1Co = E1 (x,y) Eo (x,y) dx d (3.7)

The magnitude of this correlation function depends on the similarity of the output of the perturbed

fiber with the f'flter transmittance function that was formed with the output of the unperturbed fiber.

As the fiber is further strained, the far-field continues to evolve, further decorrelating with the filter

and yielding a further drop in output from the photodetector. In the case where the sensor fiber is a

two-mode fiber, we can expect a cyclical output from the detector, since the two lobed output from

such a fiber demonstrates a periodic cycling of power between the two lobes as the perturbation of

the fiber is increased.
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3.1.3. Experiment

To verify experimentally the concepts outlined above, a demonstration was assembled as shown in

Figure 3.3. The output of a helium neon laser was divided by a 50/50 beamsplitter and one of the

resulting beams was then focused into the sensor fiber, a polarization-preserving single mode fiber

with a second mode cut-off wavelength of 850 nm. When operated at 633 nm, the sensor fiber

supported propagation of the LP 01 and LP 11 linearly polarized modes. A portion of the sensor

fiber was supported between two posts, one fixed, and the other capable of longitudinal

movement by a linear translator. By measuring the movement of the translator and and the

separation of the posts, it was possible to calculate the strain imparted to the fiber. The output of

this fiber was collimated by a 16 cm focal length lens and directed to the holographic film at

normal incidence. The second beam was collimated and directed toward the holographic film at a

30 ° incidence from the normal, resulting in an interference region on the film of approximately 4

cm in diameter. The length of the sensor fiber was adjusted to equalize the optical path lengths in

the object and reference beams. The film employed was a 2"x2" Kodak high speed type 131 plate.

The plate was mounted on a two-axis micropositioner so that it could be accurately repositioned

after development. An exposure of 1/50 second and processing in Kodak D-19 developer led to a

diffraction efficiency of about 8%.

Before returning the developed plate to its position on the two-axis positioner, the output lens,

photodetector, and aperture were put in place. To achieve this, the output of the sensor fiber was

blocked, and the lens, aperture, and photodetector were placed as indicated in Figure 3.5. The

component positions were then carefully positioned to maximize the output of the photodetector as

the detector output was monitored. After development, the plate was returned to the two-axis

positioner, and the reference beam was blocked and the sensor fiber output unblocked

(Figure 3.4). The position was adjusted to maximize the light detected by the photodetector.

The sensor fiber was then strained by using the translator to increase the separation between the

supporting posts. The fiber strain for each increment of post separation was calculated and the

detector output at that strain was recorded. The results are illustrated in Figure 3.6. As expected,

the periodic exchange of output power between the two lobes of the sensor fiber far-field result in a

sinusoidal variation in detector output. The decreasing maxima exhibited in the detector output

may be due to mode coupling effects. The effect that a maximum does not exist at the point of zero

strain is likely due to the difficulty in accurately repositioning the plate after developing. The

deviation from exact periodicity is the result of loose tolerances in the translator that was used to

apply stain to the fiber.

The experiment was duplicated with a pinhole substituting for the matched f'flter, as explained in

Section 3.1. The results of the experiment with pinhole detection are shown in Figure 3.7. The

data is arbitrarily scaled vertically to facilitate comparison.
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Figure 3.5

Alignment of mirrors and detector.

3.1.4. Experimental Results for Matched Filter Holography

The data in Figure 3.6 illustrates graphically the feasibility of the use of holographic matched filters

for processing the output of modal domain sensors. Comparison with the output of a pinhole-

processed sensor graphed in Figure 3.7 indicates that the matched filter processing yields very

similar results. However, the matched filter approach offers several advantages. First, the

matched filter may be easily assembled into a ruggedized, compact in-line configuration by using

gradient index lenses (GRIN) rather than conventional bulk optical components. In addition, the

filter may be matched to any arbitrary fiber output and is not restricted to use with two-moded

fiber. In fact, preliminary experiments directed at the use of multimode fiber as a sensor fiber

indicate that it is much more sensitive to strain than the two-mode fiber, and the filter-processed

response does not exhibit periodic behavior. This result suggests that it may be possible to tailor

the sensitivity of the system by adjusting fiber parameters to change the number of modes

propagated by the fiber. Finally, by using real-time holographic materials it may be possible to

reNize adaptive filters with responses that may be changed dynamically.
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3.2 Evanescent Wave Holography

Optical fibers have been used for holography in a variety of ways. Optical fibers have been used to

transmit holographic images for recording and analysis at locations remote from an actual test

object. 14._5.1_ Single mode fibers have been utilized as illuminators for holographic

interferometry. _7.1,.1s Fiber bundles and large diameter individual fibers have been used as flexible

illuminators for pulsed laser holography. _9.zo.2,.z2 Individual fibers and coherent fiber bundles

have also been used in local and remote holographic systems including double exposure, _.z,._3.x,

time average, _ and real time systems. _,v._

A number of previous efforts have been directed towards producing gratings in or along optical

waveguides. Photosensitivity of a germanium-doped core has been exploited to form longitudinal

Bragg reflection gratings? 9 A photoresist grating placed in the evanescent field region near the

core of a side-polished fiber has been the key element of a proposed single mode optical fiber

spectrometer? ° A technique using photoresist has been used to fabricate surface-relief gratings for

narrow band filtering in optical fibers?' A similar concept has been reported where ultraviolet

light has been used to write a phase grating along the core of an optical fiber. 32

This project researched the development of holograms with are recorded in a layer of holographic

storage material coated in the cladding area of an optical fiber. The fiber cladding is ground down

to an extent that the evanescent field of the fiber comes in contact with the holographic storage

material. The evanescent field (U r) is used as both the reference wave for recording and the read-

out wave for recording and the reconstruction of the hologram. To make the hologram, the

evanescent field is superimposed on an object wavefield (Uo) to form an interference pattern. The

interference pattern is recorded in a very narrow region in the holographic storage material. The

penetration depth of the evanescent wave thus determines the thickness of the hologram. The

hologram exhibits a grating-type structure due to the nature of the interference phenomena.

Similar waveguide holograms have been investigated in planar optical wave guides and a thorough

theoretical treatment has been given? 3

All the papers involving holography and waveguides together have been restricted to experimental

or theoretical investigations of grating type holograms along planar waveguides. To our knowledge

this research is the first attempt to implement the expertise gained by working with waveguides and

holographic storage materials, such as dichromated gelatin (DCG), to optical fibers. As mentioned

before, work has been done with photoresist and etching techniques but no experiments with

holographic storage materials, in or along optical fibers, has been reported. It is the primary

attempt of this research to demonstrate experimentally the feasibility of developing a grating

hologram in the cladding region of an optical fiber. Holograms of this type may turn out to be

extremely useful as will be discussed in the next section.
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3.2.1 Principles of Evanescent Wave Holography with Optical Fibers

The basic underlying idea of evanescent wave holography with optical fibers is to use an

evanescent wave as the reference and read-out wave. The field distribution of a lightwave

propagating in an optical fiber is periodic inside the core and evanescent outside of this region. The

degree to which the field extends outside the core is typically on the order of a fraction of the

wavelength and greatly depends on the order of the mode (higher order modes penetrating further

outside). Due to the small penetration depths, the core region and the hologram storage material

must be in direct optical contact. The refractive indices must also fulfill the condition for total

internal reflection:

ncore > nstorage. (3.8)

Figure 3.8 schematically shows the recording of the hologram in an optical fiber.

Uo /.--storage material

/(DCG)

cladding [__

,__ r c°e 0

Figure 3.8

Recording of evanescent wave hologram in optical fiber.

The field distribution of a guided mode is considered. Its evanescent part in the core is the

reference wave U r. The object field U o interferes with U r and this interference is recorded. The

thickness of the actual hologram is thus given by the penetration depth Dy and not by the core

diameter. The storage material must hence be able to sustain volume holograms and not surface

relief holograms, since the latter would require a storage material thickness which is small

compared to the penetration depth of the evanescent wave. The theory developed here describes

volume holograms made with evanescent waves.

The refractive index of the storage material must also be capable of a high modulation index since

the effective thickness of the hologram is determined by the penetration depth of the evanescent
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wave.If astoragematerialwith a weakmodulationof therefractiveindexis used,wemust
compensatefor thisbymakingtherecordinglayerthicker.Thiswouldbeuselessdueto thelimited
penetrationdepthof theevanescentwave,andthushighmodulationof therefractiveindexis
desired.It is for this fundamentalreasonthatdichromatedgelatinis chosenasthestoragemedium

comparedto othermaterials(suchasphotoresist)whichhavebeenusedbefore.

C
storage(DCG)material --_ uo

&z.h \L

cladding [___

lCcore
Figure 3.9. Refractive index variation of hologram in DCG.

Using a plane wave as the object wave will result in a hologram structure of regular periodic shape.

The assumption is that the interference of U o and U r in the storage material will produce a

proportional variation of the index of refraction which is periodic along the fiber, and periodic but

multiplied by an exponential decay transverse to the fiber. The following figure shows this

schematically.

The slanted lines extending a distance Z H into the storage material indicate loci of constant

refractive index. The distance Z H is very small and due to the slanting of the lines of equal

refractive index, the hologram is comparable to a blazed surface relief grating. The following figure

shows the reconstruction of the hologram.

The guided read-out wave U T is propagating in the same direction as did the reference wave during

recording. This is diffracted by the hologram structure and reconstructs the object field U o. In

additional to U o, a second weaker field U o' is generated which is a mirror image of U o with

respect to the y = 0 plane. The condition for reconstructing the object wave exactly is that the read-

out wave be identical to the reference wave. In other words the read-out and reference waves must

have the same wavelengths and mode numbers for exact reconstruction of the object wave. The

mirrored field Uo is generated by the diffraction of the read-out wave by the hologram and is not a

reflection of any type from the boundaries. Reflection of the object field U o does take place and

only contributes to the intensity of U o. In principle, reconstruction is also possible by any of the

following methods shown here schematically in the following Figures 3.11 through 3.13.

41



Ccladding

Uo

_o

/r-hologram structure

(___ )

Figure 3.10

Reconstruction of the hologram.

I. cladding

Uo

hologram structure

• /

Figure 3.11.

Illumination with the conjugate reference wave Ur ° resulting in the conjugate object wave Uo*.

Ur* essentially has the same mode number as U r except that it is traveling in the opposite direction.
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storage material u_

cladding

(

Figure 3.12.

Illumination with the object wavefield Uo resulting in the guided wave Ur. This case is of

importance especially if the object wavefield is a laser beam (i.e. laterally limited plane wave) in

which case we have a type of grating coupler.

(Sl_e matlria' "- _

( cladding T_!r_( (1{_u r core

Figure 3.13.

Illumination with the conjugate object wavefield resulting in the conjugate reference wave Ur*.

Again we have a type of grating coupler as in the previous figure.
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3.2.2 Theory

The theory presented in this chapter describes holograms with a plane wave as the object wave and

a guided wave inside the optical fiber as the reference wave. The theory is totally adapted and

extracted from reference 31 and is presented here with the particular case of evanescent wave

holography with optical fibers in mind. The recording of the hologram is discussed first and the

reconstruction process is presented. A brief discussion on diffraction efficiencies is also given.

Table 3.1 is presented to clarify the symbols and notations used in the following discussion

U e

Up
n

n'

zo

U c'

U d'

evanescent wave

plane wave

refractive index of recording medium

refractive index of surrounding medium

thickness of recording medium

illuminating wave
diffracted wave

Table 3.1 Symbol notation

Note that waves with a "prime" are outside the recording medium and "unprimed" waves are

inside the medium.

3.2.2.1. Recording of the Hologram

The recording of the hologram is schematically shown in Figure 3.14. In that figure, U e' is the ray

that exceeds the critical angle within the core region and creates the evanescent wave U e inside the

recording medium. Up' is the plane wave incident upon the recording medium and Up is the

transmitted part with the recording medium, which interferes with U e.

Assuming TE-polarized vectors we have:

Ey(x,z) = u(x,z);

E x=E z=0; Hy=0;

0U. and1
Hx(x,z) =- jc0g0 0z'

Hz(x,z)--. 1 OU (3.9)
lc0g0 3x "
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Figure 3.14.

Definition of beams employed in recording and reconstruction.

The time dependence exp(-jcot) is omitted and all fields are assumed periodic with angular

frequency co. In the recording medium we have

Ue(x,z) = Ue exp[j(keex x + keezZ) ]

= U e exp[jkeex] exp[- keez], (3.10)

where

Also,

with

kex > k, and

kcz = j[(kex) 2- k2] '/2.

Up(x,z) = Up exp [j(kpx +kpz)]

(3.11)

(3.12)
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kpz= [k- (kpx_] '12 (3.13)

The amplitudes U e and Up in the recording medium can be obtained from Ue', and Up ,

respectively, with the Fresnel transmission coefficients:

where

The intensity is defined as

U' = ts - 2kz
U (kz + kz')

rs = ts - 1.

(3.14)

(3.15)

I(x,z) =(E 2 (x,t))= 1 *U (x,z) U(x,z)

Then the intensity of the interference between Ue and Up is

(3.16)

_(x,z)=l[u_(x,z)+uo(x,z)]"[Up(X,,.)+ uo(x,z)]
1 2 * U2 exp (_2k_,z)= _-{Up exp [j(kpz- kpz)z] +

+u: upexp_ko_-_)x+(kpz-k:z)z]
+ Ue Up exp [j(l%x - kpx)x + (_z- kpz)z]} (3.17)

For our case where Up is a plane wave, (that is, _, is real), this expression reduces to

I(x,z) =l_-{Up+2 U2exp(_2kezz)

+ 2Re{U: Up exp 0_(kpx - kex) x + kpzz])} exp(-kezz)} (3.18)

Inspection of equation 3.18 shows that an identical intensity distribution would result if the waves

Ue*(X,Z ) and Up*(X,Z) interfere instead of Ue(x,z ) and Up(x,z). Complex conjugation is

equivalent to the time-reversal transformation t to -t. The waves Ue* and Up* can then be

understood as U e and Up respectively, traveling in the opposite direction.

In the theory presented until now, no consequential assumption has been made. Now the

assumption is made that the photosensitive or recording medium is homogeneous and weakly

absorbing and equation 3.18 is a fairly good approximation to the intensity distribution.

Furthermore, the response of the recording medium to this intensity distribution is that the

dielectric constant e is a linear function of the local intensity. More specifically,

e(x,z) =III(x,z)_] (3.19)
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wherex is the exposure time. The recorded hologram is therefore a dielectric grating with

e(x,z) = g+ 5e(x,z) (3.20)

where _ is the mean dielectric constant of the hologram, and

3e(x,z) = } _-{U: Up exp (j[(kpx - l%x)x + (kpz- k_z)z])

+Uo (l(ko -k,x)x+(ko,-k;z)z])}
which is the spatial variation of £ due to the interference.

(3.21)

Since a linear function f(I(x,z)) was assumed, 3e(x,z) can be thought of having two separate

interference terms, as given by

8e(x,z) = 8el(x,z) + 8e2 (x,z),
where

and

8el(x,z) =l (deI *2 dX' Ue Up exp (j[tkpx - kex) x + (kpz- k_z)z])

(3.22)

(3.23)

(3.24)

The significance of this shall become clear later.

It should be noted that the interference fringes are periodic in the x-direction and multiplied by an

exponential decay in the z-direction. The fringes are slanted with an angle g) given by

kpz (3.25)
tan _ - (Vex-kpx)

3.2.2.2. Reconstruction of the hologram

Reconstruction of the hologram can, in principal, be accomplished in different configurations as

explained in Section 3.2.1. Here it is assumed that the hologram is illuminated with a TE-polarized

plane wave U c' where the frequency may be different from the frequency used upon recording of

the hologram.

U'c(X,Z) = U'c exp [j(k_xx + k_zz)] (3.26)

where

with

"--' _01
k'cx=k ' sin 0%, and k = n ____c,

C
(3.27)

ct c = incident angle

_' = mean refractive index of surrounding medium.
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Thetimedependenceexp(-jcoct)is againomitted.Thetotal field insidethehologramcanbe

representedas

U(x,z) = Uc(x,z) + Ud(x,z)

with
U¢(x,z) = illuminating wave, and

Ud(X,Z ) - diffracted wave.

(3.28)

By solving

we find that

with

and

[ 0_'X22 +-- +(-COz2_2 O)c_ E(X,Z)] U(x,z) = 0

Uc(x,z) = Ue exp [j(l%xx + kczz)]

kcx = kcx

(3.29)

(3.30)

(3.31a)

(3.31b)

Equation 3.31a describes the reconstruction of the form indicated in Figures 3.10 and 3.11.

Equation 3.31 b describes the reconstruction of the form indicated in Figures 3.12 and 3.13.

Solving for Ud, the assumption is made that the penetration depth of the evanescent wave is much

larger than the thickness of the recording medium, Z o. The wavelets scattered by each volume

element of the hologram are calculated using a Green's function and integrated over the volume of

the hologram. U d is found to have two components:

where

and

with

Ud(X,Z) = Ud(X,Z=O) + Ud(X,Z=ZO)

(_cc) de Uc Ue Up exp(jkxx)Ua(x,z=O) =
dI kz (kz+ kcz+ kpz-k_z)

Ud(X,Z=Z0)= dEUoU; Upexr kxx +kzzo)]
/2cl dI kz (-kz+ l%z+ kpz-k_z)

kx = kcx + kpx - kex.

(3.32)

(3.33)

(3.34)

(3.35)

The physical interpretation of this result is that upon reconstruction of the hologram, two diffracted

waves are generated. One is radiated toward the boundary z = zo and the other is radiated toward
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theboundaryz = 0. ThesearedenotedUo÷ andUd-,respectively,with kdx+-- kax= kxand

( [_-2_ (kdx) 211/2 iflkdxl ____ (3.36a)k_z=-kdz= j[(kdx}2-k 2] if_<d_>k (3.36b)

For our present case with optical fibers we are interested in only the observable parts which are
transmitted into the surrounding medium. These observable parts occur when Ikdx] < k and when
-- --t

k < [kd ---k . The first case is obvious from the mathematics; however, the second case needs to

be explained. When k < _ < k' we are left with evanescent waves at the boundary z = 0. Then

U d is thus radiated into the cladding with an angle kXd'l > ItXcriticall via the evanescent wave, but

Ud+ (unprimed i.e. inside holograms) decays before it reaches interface z = zo and is therefore not

observable.

The figures presented in Section 3.2.1 can now be understood more clearly keeping in mind the

dielectric structure (equations 3.23 and 3.24). In Figure 3.10, illumination with the reference

wave Ur(x ) reconstructs the object wavefield Uo(x) by interaction with the term Ur*U o in the

dielectric structure of the hologram. Figure 3.11 is the case when the hologram is illuminated with

the conjugate reference wave, Uo*, and this interacts with the terms Ur*U o in the dielectric

structure of the hologram. In Figure 3.12, illumination is via the object wavefield, U o, which

interacts with Ur*U o term of the hologram. Finally, Figure 3.13 is the case of illumination with the

conjugate object wavefield, Ur*, which interacts with the terms Ur*U o.

3.2.2.3. Diffraction Efficiency

The diffraction efficiency, rl, is defined as the ratio of the diffracted power Pd, and the illuminating

wave Pc, both measured in the medium surrounding the hologram:

11= Pd/p c (3.37)

Each of these powers is defined as the product of the illuminated area of the hologram, A, times the

z component of the time averaged energy flow density, <Sz>, as given by

where

and

P = A <Sz>

S = E x H (all quantities are vectors)

<Sz> = [1/(jt.ol.to) ] U 2 Re{kz}.

However, r1 is dependent on which terms in the dielectric structure are subject to interaction (see

equations 3.21 - 3.24). Two separate efficiencies are found. For the interaction with Ue*U p we
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have

71+(UeUp) (_.RrdE2 _,_ [k_ i k_2= (dl)[Ue_[Up]2_C_z+kc_2_iz+kd_1_kdz+kcz+kpz"
(3.38)

This is for the case where [kdx] < k and for the configurations of Figures 2.3 and 2.4. Note that if

< Ikaxl < k ', then

*U_+(Ue p) ---0 (3.39)

and rl_(U_Up) is given by equation 3.38.

For the interaction with the term U_Up we have for Ilq,d <

_±(UeUp) [ooc_ Idel2= ,T- _l _d2[Up]2

For k _<]kd -<k ', we have

and for 1_ > k,

[k_ _ 1

Ik;z+a_ _ +_g I-_ +_z+_z-k;__
(3.40)

rl+(UeUp) = 0 (3.41)

Uri±(eUp) --- 0. (3.42)

3.2.3. Experiment

This section presents the details of the actual experiment performed. The experiment consisted of

the following steps:

1) Fiber Preparation

2) Fiber Coating

3) Experimental Set-up

4) Sensitization of Gelatin

5) Exposure and Development

6) Data

Dichromated Gelatin (DCG) was employed as the holographic emulsion for the evanescent wave

holograms produced in our experiments. DCG has been extensively used for hologram recording,

and is a gelatin colloid that is sensitized to light with a ammonium dichromate solution. Upon

exposure to light of a wavelength of 514 nm or shorter, cross-linking of the sensitized gelatin

occurs where it was illuminated by light energy?' After exposure, the DCG emulsion is immersed
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in abathof water which swells the unexposed gelatin, while the cross-linked gelatin remains fixed.

The refractive index of the cross-linked gelatin differs from that of the unexposed gelatin, making

the resulting structure a phase hologram.

3.2.3.1. Fiber Preparation

The fiber utilized for the experiment was a Coming fiber with a 1521 glass code and a dual acrylate

coating. The core diameter was 9 lam and the cladding diameter was 125 I,tm. The fiber had a

single mode cutoff wavelength of approximately 1200 I.tm. A length of approximately 1.5 m of

fiber is selected and the acrylate jacket was stripped by a razor blade near the middle. The length

that is stripped was approximately 6 cm. The buffer layer between the jacket and the cladding must

be chemically cleaned with isopropanol.

At this point the fiber was ready to be attached to special microscope-type slides prepared

specifically for side-polishing of fibers. The microscope-type slides are ordinary slides of glass of

a 6 to 7 cm length and approximately 2 cm width. One side of the slide is rounded with a radius of

curvature of 10 inches (see Figure 3.15). It is on this curved side that the fiber is attached for side-

polishing. The slides are placed in a wedge cut into a small block of wood so that they may stand

upright with the curved portion on top. A thin layer of adhesive is spread onto the curved portion

of the slide. The adhesive used is Revlon Clear Nail Polish which is chosen for its ease of

spreading, relatively quick drying, and hardness. Before the nail polish dries, the stripped portion

of the fiber is carefully placed on top and held slightly taut along the curved portion of the slide. It

must be ensured that a small length ( 0.5 cm) of jacketed fiber extends onto the slide at both ends

as this will provide extra mechanical strength. Also, care must be taken so that the fiber is not

placed near the edges of the slide but is near the middle of the thickness of the slide. After the nail

polish is relatively dry and the fiber is securely in place, an extra drop of polish is placed near the

ends of the slide where the 0.5 cm of jacket is extending onto the slide. This is for extra mechanical

strength (see Figure 3.15). The fiber/slide combination is then allowed to dry overnight in such a

position so that the fiber is free to hang vertically from the edges of the slide.

After the fiber/slide is allowed to dry overnight, the fiber is ready for side-polishing. The slide is

attached to a special apparatus designed at FEORC for side polishing of fibers. A helium neon

laser beam is injected into the fiber and the output is constantly monitored via a power meter.

The slide is carefully lowered onto a polishing wheel with a 0.3 mm Aluminum oxide polishing

pad. The wheel is turned at a moderate speed while water is flowing on the polishing pad. The

slide is gently moved radially inwards and outwards along the wheel. Care must be taken to move

the slide radially and also to avoid the very center and the outer edge of the wheel. Otherwise

mechanical stress is placed in the fiber, which is easily broken.
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Stripped fiber
epoxied to slide

Extra drop of
epoxy

fiber

slide

Figure 3.15.

Attachment of fiber to glass slide mount.

As the polishing is being performed, the power throughput of the fiber is constantly monitored.

Since the fiber is in few mode operation, approximately 20% - 30% of its power is in the cladding

region. As the side of the fiber is slowly polished and more of the cladding is removed, a portion

of the cladding power escapes to the outside of the fiber. Generally, after 3 to 4 minutes of

1_/2

d

Figure 3.16.

Geometry for determination of depth of polish.
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polishing an approximately 3 dB of power drop is encountered. This signifies that the evanescent

region has been reached. At this point the slide is carefully removed and a drop of index matching

fluid is placed on the polished portion of the fiber. The index matching fluid facilitates the radiation

of escaped light, and eases the monitoring of the length of the portion of the cladding which has

been removed. This length gives information as to how deep into the cladding we have penetrated

as shown in Figure 3.16.

If the depth of polishing is found to be insufficient, the fiber is once again placed onto the

polishing wheel. In the experiments performed, the depth polished was generally between 40 and

55 I.tm (The upper cladding later was only 60 l.tm thick). After the fiber has been polished to a

satisfactory level, it is then ready for coating with gelatin.

3.2.3.2. Fiber Coating

Preparation of dichromated gelatin (DCG) film has been extensively discussed in the literature.

Numerous methods and techniques for recording holograms in DCG films have been proposed.

The number of variables affecting the outcome is enormous and strict control over every step of the

process is necessary. For this reason, a detailed explanation of the steps and considerations

involved in coating fibers for evanescent wave holography with DCG will be presented here.

In preparing the DCG for coating of fibers in this experiment, the general steps outlined in

reference 31 were followed. The experiments reported by reference 31 dealt with producing

holograms along planar optical waveguides utilizing the same principles of evanescent waves as

discussed in the previous chapters.

The first obstacle to be overcome was that of satisfying the condition for internal reflection:

ncore > nlX_.

The approach taken in the experiment is as follows. The index of refraction of the core is 1.458

and that of the cladding is 1.455. The index of refraction of water is approximately 1.3; therefore

preparing a gelatin solution in water with the least amount of gelatin possible would raise the index

of refraction of water by a very small amount. A 12% solution by weight of gelatin in water has

an index of refraction of 1.54 (which further increases when sensitized, see section 3.2.3.4 and

reference 33), so that the amount of gelatin needed for our experiments had to be less than 12%.

Another important consideration in determining an acceptable gelatin to water ratio was that if there

was not enough gelatin present, the solution would be useless since it would not be able to sustain

a useful hologram. This was tested by making ordinary microscope slide DCG plates and
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developingsimpleholograms.

Thefollowing stepswereperformed.Startingwith deionized water at 40 ° C, an amount of gelatin

was gradually added and the solution was stirred for approximately one hour. The gelatin to water

ratio (by weight) was varied from 12% to 1% in increments of 1%. The gelatin used was Fisher

gelatin with a bloom strength of 200.

Each time a solution was made, it was coated onto the fiber/slide by dipping the fiber/slide into it.

The fiber/slide was then pulled out so that the polished edge of the fiber came out last and a fine

film of gelatin clung to this polished edge. The thickness of the fine f'dm remaining is not important

as long as it is much larger than a few wavelengths of the light used for exposure (i.e. 441.6 nm).

Care must be taken so that no air bubbles are allowed to cling to the fiber as this will distort the

results. At this point the fiber is hung up for overnight drying in such a manner that the polished

edge is facing down so that most of the gelatin is allowed to flow to the polished edge. The

polished edge was parallel to the ground so that a uniform film coated the polished edge of the

fiber.

When the gelatin had dried overnight, it was then prehardened for 15 minutes in Kodak Rapid

Fix ® and rinsed in running water of approximately 22 ° C for another 15 minutes. The reason for

the prehardening step is to make the gelatin insoluble in water when further processed.

The f'dm was again allowed to dry overnight in the same manner as discussed previously, and was

then ready to be tested for the internal reflection condition. The test performed is as follows: Each

time a film was prepared with a different gelatin content (varying from 12% to 1%), a helium-

cadmium laser was injected into one end of the fiber. If the condition for internal reflection was

met, then no light should escape from the polished edge of the fiber. This condition was met for

gelatin solutions of 1%, 2% and 3%. However, when these concentrations were used to prepare

conventional holograms of simple objects using these DCG concentrations on ordinary microscope

slides, all attempts failed. This indicated that these concentrations (1%, 2%, and 3%) were

insufficient for writing holograms with sufficient depth of refractive index modulation. A

compromise had to be made between the amount of index mismatch tolerable between the fiber and

DCG, and the ability to obtain useful holograms. For this reason the concentration of gelatin was

again increased in increments of 1% until a satisfactorily conventional DCG plate and an ordinary

hologram was obtained. Satisfactory results were achieved with gelatin concentrations of 5% and

6%. At 5% and 6% concentrations a small amount of light did escape near the polished edge of the

fiber but this had to be tolerated in order to obtain useful holograms. All the experiments reported

from here with optical fibers were performed with a gelatin concentration of 5%.
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3.2.3.3 Experimental Set-up

A number of factors were kept in consideration upon arranging the set-up illustrated in

Figure 3.17. First, successful results were obtained with a helium-cadmium laser emitting at

441.6 nm in a TEM00 mode. The coherence length of the laser was measured to be approximately

7 cm, so the optical path length difference of the two interfering beams measured at the polished

spot had to be much less than 7 cm. Since the fiber propagated more than one mode at 441.6 nm,

determining a value for the exact path length difference requires solving for the path length of the

various modes within the fiber. This was simplified by assuming that the velocity of each mode is

equal to c/n 1 (where n I is the fiber core refractive index, and c is the free space speed of light) and

then solving for the path length within the fiber.

Beam splitter

Microscope lens

Laser I .......
i[ ................................../ Fiber

...,..

. .. ,,-

. ,...,.

.., ,...
, .., ..,- "

Mirror

Diverging lens

Figure 3.17.

Experimental set-up for exposure of hologram.

Another consideration was the ratio of the beam intensities. Generally a reference to object wave

ratio of 3/1, to 6/1 is recommended for good holograms. In our experiments this ratio was difficult

to determine since the exact intensity of the reference or evanescent wave was unknown. A good

approximation to the intensity of the evanescent wave is to view the amount of light that is leaking

out at the polished spot due to the index mismatch of the fiber and the gelatin. This would provide

a lower-bound estimate of the strength of the evanescent wave, due to the fact that most of the

power of the evanescent wave would remain very close to the fiber and only a small portion travels

away. In the experiments performed, we attempted to maintain the beam ratio at 3 to 1. This was

achieved by using a 80/20 beamsplitter and injecting the stronger beam into the fiber.
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3.2.3.4 Sensitization of Gelatin

In the experiments performed, sensitization of the gelatin film with ammonium dichromate

[(NH4)2Cr207] also proved to be more complicated than anticipated. The first problem

encountered was the determination of the proper concentration of the ammonium dichromate.

Recipes for concentrations of 4% up to concentrations of 7% ammonium dichromate in water exist

in the literature. Experiments performed in evanescent wave holography with planar optical

waveguides suggest the use of concentrations of 1% to 2% of ammonium dichromate. _ The

concentration changes the index of refraction of the film drastically from 1.54 for a concentration

of 0%, to 1.58 for a concentration of 3%. 33 In order to keep the index of refraction as low as

possible, we required the smallest concentration of ammonium dichromate. The figures cited are

for a gelatin concentration of 12% by weight. Again since we need a very low film index (for

lightwave guidance in the fiber), both the gelatin concentration (as discussed in section 3.2.3.2)

and the ammonium dichromate concentration needed to be as low as possible but high enough to

yield sufficient modulation of refractive index in the recorded holograms. The appropriate

concentration for ammonium dichromate was determined empirically through a series of well-

controlled trials. That is, each time a certain concentration of gelatin was tested, the test microscope

slides were sensitized with concentrations of 0.5% and 1.5% of ammonium dichromate, and then

simple holograms of ordinary objects were attempted. At a concentration of 0.5% of ammonium

dichromate, the attempts of making simple holograms failed both at low and high concentrations of

gelatin. At a concentration of 1.5% of ammonium dichromate, attempts of making simple

holograms failed for gelatin concentrations of up to 3% but were more successful at higher

concentrations.

Again a compromise had to be made between the gelatin concentration, ammonium dichromate

concentration and the index mismatch tolerable between the fiber and the DCG. Best results were

obtained with a gelatin concentration of 5% to 6% and an ammonium dichromate concentration of

1%.

Another practical problem was the technique of sensitization. The film had to be sensitized after the

fiber had been aligned with the lens and the two laser beams. This was required since the film

would have to be exposed to the laser beams for alignment, if the film were sensitized before

alignment, and this would prematurely expose it. For this reason, the fiber was aligned and then

the film was sensitized very carefully without misaligning the fiber. The f'flm was then allowed to

dry for approximately 24 hours in place and in a light tight box, again without misaligning the

fiber. The actual sensitization was accomplished by dipping the fiber/slide in the ammonium

dichromate solution for 4 to 5 minutes.
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3.2.3.5 Exposure and Development

The next step in making the holograms is the exposure. Numerous attempts were made at various

angles of incidence and with different exposure times. Best results were obtained with exposure

times of 20 seconds and 30 seconds. The angle of incidence varied from 15 degrees to 90 degrees

as shown in Figure 3.17.

Development of the fill was fairly straight forward. To develop the film, it was ftrst washed in

running water at approximately 20 ° C for 15 minutes. As the f'tlm is pulled out of the water it was

rinsed with a jet of isopropyl alcohol to remove excess water. The film was then bathed in fresh

isopropyl alcohol for 2 minutes and finally pulled out slowly while simultaneously being dried

with a stream of warm air. If all steps involved in making the hologram were successful, at this

point the hologram was now recorded.

3.2.3.6 Data

Data is presented in Table 3.2 for three separate holograms illuminated as in Figure 3.10. The

diffracted waves were measured by a detector with a wedged cap on it. The slide was carefully

inserted into the wedge so only the diffracted wave being measured is incident upon the detector.

Even with the precaution of using a wedged cap, a small amount of stray light was still present.

The reconstructing(reference) wave was measured by a cut back technique, after the diffracted

waves were measured. The fiber was cut near the slide without moving it with respect to the lens

and the laser beam. The cut end was then cleaved and the total power in the fiber was measured.

It must be realized that at the wavelength of 441.6 nm approximately 10% of the total power is in

the cladding and it is this 10% which illuminates the hologram. Therefore, the efficiencies are

calculated with this 10% figure and not the total power measured.

0 i U o U o Power in Fiber

Power 1"! Power rl Total 10%

15 .0006 3.79% .0012 7.59% .0158 .158

45 .0018 4.10% .0019 4.34% .0438 .438

60 .0021 2.17% .0037 3.83% .0965 .965

Table 3.2 Measured efficiencies for hologram reconstruction.

Efficiencies varied from 2.17% to 7.59%. The efficiency for Uo is generally higher than that for

U o. The efficiencies are not very high and techniques for improving the efficiencies have not been

investigated yet. Illumination as shown in Figure 3.12 was attempted but was not successful,

57



andadiffractedbeamwasnotobserved.Tworeasonsmayexplainthefailureof thismodeof
illumination. First, theangulardependenceof thismodeof illuminationis verystrong. In other
words, if Uo is not incidentataverypreciseangle,UTis notdiffracted.The secondreasonfor this
maybe thatupontheinteractionof Uowith thehologram,atrueevanescentwaveis notgenerated
alongtheboundarydueto scattering,andthereforeUr is notobserved.

3.2.4 Discussion

The evanescent wave holograms made in our experiments demonstrated a sensitivity to injection

conditions at the fiber input. A diffracted beam was not always seen even when light was injected

into the fiber. Only after adjusting the fiber with respect to the input laser beam and changing the

launching conditions, was it possible to see a diffracted beam. Also, when the power launched into

the fiber was monitored and maximized, the diffracted beams were not necessarily maximized.

Only by changing the initial launching conditions could the diffracted beams be maximized. The

reason for this is probably that the hologram reconstruction is most efficient for specific

propagating modes: that is, those modes which constructed the hologram initially, most likely the

higher order modes with greater evanescent field penetration into the fiber cladding. Changing the

launching conditions changes the power distribution among the modes and therefore the hologram

efficiency.

We also attempted reconstructing the holograms with two different wavelengths simultaneously.

A helium-neon (632.8 nm) laser beam was combined with the helium-cadmium output (441.6 nm)

by using a beamsplitter. Due to the Bragg-grating-like structure of the DCG, the hologram should

angularly translate these different wavelengths to different output angles. In other words the two

different wavelengths would be diffracted at different angles and would thus be viewed at different

positions. This phenomena was not clearly observed in our experiments. A number of possible

reasons for this exist, the In'st and most important being the low efficiency obtained with our

emulsions. Another reason was the inability to visually resolve this angular separation. Viewing

the angular separation was made difficult by the large amount of the helium-neon light being

scattered into the cladding and blurring the diffracted beams. Changing the launching conditions

would result in either helium-neon laser light being diffracted or helium-cadmium light being

diffracted. The launching conditions thus determined which wavelength was being diffracted. An

efficient hologram which separated the wavelength efficiently could be of great interest for

communications technology and could be used as a type of fiber spectrometer as proposed in

reference. 13

The lifetime of the hologram is also found to be rather short. Since the temperature, humidity and

cleanliness of the lab environment was not controlled, the holograms deteriorated with time. One or
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two daysafterexposure(dependingon thefactorsjustmentioned),thehologramwould
completelydeteriorate.Thisproblemcanbealleviatedbyencasingthehologramin aplateof glass
or anopticalcement.However,thiswasnot investigated.

3.2.5 Conclusions

The experiments performed demonstrate the feasibility of developing a grating hologram along an

optical fiber. The steps involved are summarized in Table 3.3.

1) Stripping of fiber coating and adhering to glass slide with 10 inch radius edge.

2) Dry overnight.

3) Gelatin coating with 5 to 6 percent gelatin in de- ionized water.

4) Dry overnight in vertical position.

5) Prehardening in Kodak Rapid Fix for 15 minutes.

6) Rinse in running water for 15 minutes.

7) Dry and store.

8) Alignment of optics including fiber/slide.

9) Sensitization in 1% solution of ammonium dichromate for 4 - 5 minutes without

disturbing alignment. This is done approximately 24 hours before exposure.

10) Exposure at a wavelength of 441.6 nm.

11) Development: a) wash in running water (I'= 20 C) for 15 minutes.

b) rinse with a jet of isopropyl alcohol for 2 minutes.

c) immerse in fresh isopropyl alcohol for 2 minutes.

d) Pull out slowly while simultaneously drying with a stream of

warm air.

TABLE 3.3

Procedure for fabrication of Evanescent Wave Holograms in Optical Fibers

The efficiencies obtained varied from 0% to 7.5% depending on the mode of reconstruction. These

efficiencies are fairly low but the intent of the experiment is to demonstrate only the feasibility of

evanescent wave holography with optical fibers. Certain modes of reconstruction need to be better

controlled so as to improve efficiency. Temperature, humidity and cleanliness of the environment

in which the experiment is performed is critical and must be controlled. Preserving the hologram

by an optical cement or a plate of glass must be investigated. The experiments performed show that

evanescent wave holography with optical fibers is indeed possible and further investigations

should improve technique and hologram efficiency.
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4.0 Active Fiber Technology

Research was initiated into the development of low cost techniques for doping glass rods with

lanthanide rare earth in order to render the rods capable of amplification of optical signals.

Samples were prepared by indiffusion of neodimium into soda lime glass, but the level of doping

could not be measured due to limits of the available spectroscopy instruments. Optical signal

amplification has not yet been observed. Optical fibers doped with rare earths are expected to have

applications for signal amplification in optical communications, and as distributed temperature

sensors due to the temperature dependence of the fluorescence of rare earths? 3

4.1. Rare-earth Based Glass Amplifiers

The main project goal for development rare-earth glass amplifiers was to examine the existing

technique of manufacturing rare earth-based optical fiber and to develop some novel inexpensive

techniques to fabricate such a fiber/glass rod. An experiment to demonstrate light amplification

with a newly developed glass rod was also performed. However, a significant amount of

amplification could not be observed due to the unavailability of a suitable pumping source.

4.1.1. Existing Technique to Manufacture Rare-earth Fiber/Glass Rod

The technique presently used for manufacture of active fibers is an extended modified chemical

vapor deposition (MCVD) process. 33 It allows the fabrication of both singlemode and multimode

optical fibers containing rare earth ions at concentrations of up to 0.25 percent by weight in the

core region. The process is shown in Figure 4.1. The starting material can be a rare earth halide,

e.g. NdC136H20 (99% pure, melting point = 758 ° C). It is first inserted into a dopant carder

chamber, where it is dehydrated by heating under a C12 atmosphere. This step also fuses the

anhydrous NdC13 crystals to the chamber wall, thus preventing them from passing clown the tube

and forming bubbles in glass subsequently deposited. The inside of the glass tube is then cleaned

by gas-phase etching using SF 6 to remove any dopant deposited during the drying process. After

this drying stage, the cladding glass is deposited.

During the core deposition, the dopant carder chamber is heated to about 1000 ° C by a stationary

burner which produces small amounts of NdC13 vapor. This vapor is subsequently carded

downstream, is oxidized to form Nd203, which in turn is incorporated in the core. This process

takes place in the hot zone which is formed by the moving deposition burner. In order to produce

low-loss fibers, a second drying stage is also introduced. In this process the core, consisting of

SiO 2, GeO 2 and a small amount of Nd203, is deposited unfused at a low temperature. This porous

core layer on the inside of the deposition tube is subsequently dried by heating in a C12

atmosphere, after which it is fused to form a clear nonporous layer. The tube is then conventionally
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Figure 4.1

Extended MCVD process for fabrication of rare-earth-based optical fibers

collapsed to form a solid rod and then pulled into a fiber. This is a very flexible technique as any

kind of rare earth ions can be incorporated. Fibers fabricated by this technique have produced

losses as high as 3000 dB/Km in the visible and near infrared regions, and < 2 dB/km in the low-

loss window between 950 and 1350 nm.

4.1.2. Diffusion Technique to Fabricate Rare-earth Fiber/Glass Rod

A novel technique to fabricate rare earth-based fiber/glass rod was investigated by diffusing the

rare earth ions from the outside surface of a glass rod. The glass rod selected for this experiment

was a soda-lime glass rod (Fisher Cat. No. 11-375C). This type of glass contains a relatively large

amount of easily displaceable impurity ions, and hence the process of diffusion by the ion

displacement technique can be made possible.

Several techniques were attempted which involved coating different rare-earth compounds on the

outside surface and then subjecting the glass rod to high temperatures for various durations of

time. One of the problems faced in coating the glass rod was that the rare-earth compound did not

adhere to the glass surface very f'mTdy because if its smoothness. As a result, a uniform layer of

coating was not achieved. This problem was alleviated by first sand-blasting the glass rod, at the

expense of adding higher transmission losses in the rod due to scattering at the roughened surface.

The rare-earth compound used was neodymium 2,4-pentanedionate. This compound has the

advantage that it readily dissolves in acetone, and once this paste was coated on the glass rod, the

acetone evaporated leaving behind a uniform coat of this rare-earth compound. The coated glass
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rodwasthenheatedin atubefurnaceatatemperatureof 500° Cfor aperiodof ten days (the

softening point of this glass rod was 700 °C). Different temperatures ranging from 550 ° C to

650 ° C were also tried. However, this resulted in the bending of glass rods when a few hours had

elapsed. The initial part of the experiment was performed under a fume-hood since neodymium

2,4-pentanedionate emits carbon monoxide, carbon dioxide, and other toxic fumes before forming

Nd203._ Figure 4.2 shows the experimental set-up for this process.

glass rod coated with
neodymium 2,4-pentanedionate

Figure 4.2

Set-up for diffusion experiment.

The diffused sample was observed across its diameter with a cathode luminoscope, while the

neodymium ions were bombarded by electrons to cause their excitation. Typically, a zoning effect

would determine the presence of a particular kind of impurity in the bulk material. A zoning effect

could not be observed to a significant amount with this sample. However, a bright blue layer, of

the order of a few microns, close to the circumference, was observed. Again, this did not confirm

the presence of Nd doping since the presence of a high concentration of Nd203 on the surface can

possibly give an impression of diffusion when the sample is observed under a microscope.

Further characterization of this sample is required to determine the exact nature of the diffusion

effect on the glass rod.
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Experiment for measurement of optical signal amplification.

4.1.3. Optical Signal Amplification Experiment

The experimental set-up which was used is shown in Figure 4.3. A 2x2 multimode FBT coupler

was used to combine the pump signal and the signal to be amplified onto a single fiber. A quarter-

pitch gradient index (GRIN) lens collimated the light from the fiber into the test piece, thereby

allowing end pumping of the test piece. This test piece was the diffused sample described earlier.

The pumping source used was an 830 nm LED and the signal to be amplified came from a 1060

nm LED. This LED, which had a 30 nm full width half maximum linewidth (FWHM), was

selected because the main transition line occurring from the transition 4F3/2-_ 4111/2, was assumed

to be within this region. No prior information for the main transition line was found in the

available literature. No significant amount of amplification was observed. This can be attributed to

the fact that most of the neodymium ions, if any, were concentrated close to the surface of the glass
rod.

4.2. Discussion

The lack of success in either measuring optical gain in the glass rod or even a detectable level of

dopant suggest that a simple diffusion of neodymium into a soda-lime glass rod will not yield a

dopant concentration sufficient to support amplification. Even if a suitable concentration level had

been achieved, the sandblasting of the rod surface would have resulted in very high surface

scattering losses. Had such a neodymium-doped rod been incorporated into a silica tube and

collapsed to form an active fiber preform, the attenuation of the resulting fiber drawn from such a

preform would have been large from core-clad interface imperfections.
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NASA I

10

40

50

FORTRAN A1 08/Z9/88 Z3:36 F 80 45 RECS 09/22/88 "

PROGRAM NASAl

IMPLICIT REAL*8 (A-Z)

PI=3.1415927DO
DO SO K=773.0DO,3773.0DO,500.O DO

DO 40 H=IO.ODO,ZOO.ODO,IO.ODO

DI=0.2DO
RI=D1/2.0DO

AI=PlwtRli_wZ

DZ=3.000

RZ=DZ/Z.ODO

A2=4.0DO*PI*IRZ)_Z

L=O.15Z4DO

G=9.806DO

NA=O.4DO

THETA=DARSIN(NA)

X=L*DTANITHETA)

SI=H-X

S2=H+X

VO=( Z. ODO*G*H )w*O. 5

VI=! 2. ODOwGwS1 )wwO. 5

VZ=( Z. ODOwGwSZ )w*O .5

TO:VO/G

TI:V1/G

T2=VZ/G

T=ITZ-T1)

DT=TNIO00.0D0

SF=5.66961D-8

R=I ! R1/1000.0DO )**Z )/( 4. ODO*L I

A=( L**Z)÷(XW*Z )

B=-( 4. ODO*X**2 )/T

C=( ( 2. ODO*X )/T ).wwZ

DFO=CW( TOw*2 )+BwTO+A

DFI=CwI TI*wZ ]+B_TI+A

C1=C**0.5
DF2=( 1. ODO/C1 )wDLOG! DFO_WO. 5+TONCI+B/( 2"C1 ) )

DF3=! 1. ODO/C1 )*DLOG! DFI*WO. 5+TI*CI+B/( 2wC1 ) )

DF=Z.ODO*R*(DFZ-DF3 )

Q=SFW( K_4 )wOFul AZ/! 1000. ODOww2 ) )

HRITE (9,10) H, DT, Q, K
FORMAT (2X,F6.1,2X,FIO.5,2X,D18.10,ZX,F6.1)

CONTINUE
CONTINUE

STOP
END
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NASAZ FORTRAN A1 09/Z2/88 ZZ:04
F 80 67 RECS 09/tF../88

PROGRAM NASA2

IMPLICIT REALW8 (A-Z)

PI=3.14159Z7DO

K=3773.0DO

DO 40 H=IO.ODO,2OO.ODO,IO.ODO

DO 30 BETA=I -ODO,ZO'ODO'I"ODO

DI=O.ZDO

RI=D1/Z.ODO

AI=PI*(R1)*_2

DZ=3.0DO

RZ=D2/Z.ODO

AZ=4.0DO*PI*IRZ)W*Z

L=O.1524DO

G=g.806DO

NA=O.4DO

THETA=DARSIN(NA)

THETAI=(180.ODO/PI)WTHETA

BETAI=THETAI+BETA

BETAZ=IpI/180.ODO)*BETA1

NXI=L*DTANIBETAZ)

BETA3=THETA1-BETA

BETA4=(PI/180.ODO)*BETA3

NX2=LwDTANIBETA4)

NX=h_I+NXZ

SI=H-NX1

S2=H+NXZ
VO=IZ.ODO*G_H)_H*0-5

VI=(Z.ODO*G*S1)_O.5
VZ=IZ.ODO_G*S2)_O.S

TO=VO/G

TI=V1/G

TZ=VZ/G
T=ITZ-TI|

DT=T*IOOO.ODO

SF=5.66961D-8

R=ItR1/IOOO.ODO)_*Z)/14-OD O-L)

A=( L*WZ )÷l (NX1)**Z )

B=-( 2. ODO*NXI*NX )/T

C = ( NX/T )**Z

DFO=C.(TO**Z)+B*TO÷A

DFI=C.tTI**Z)÷BwTI÷A

C1=C**0.5
DFZ=(1.0DO/C1)_DLOGIDFO*_O.5÷TO_CI*B/(2*C1))

DF3=(1.0DO/C1)*DLOG(DFI*WO,5+TlWCI+B/(2_C1))

DF4=R*(DFZ-DF3)

AI=I L**Z)÷I INXZ)**2 )

BI=-I Z. ODO*NXZwNX )/T

CZ=( NX/T )w*Z
DF01=C2*( TZW*2 )*BliTZ÷A1

DFll=CZ*( TOw*2 ) +BI*TO÷A1

C3=CZ_H_O. 5
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NASA2

I0

3O

q+O

FORTRAN A1 09/ZZ/88 ZZ:04 F 80 67 RECS 09/_?../B8

DFZI=II.ODO/C3 )_DLOGIDFOl_O.S{TZ_cC34B1/IZNC3))

DF31=(1.ODO/C3)_DLOGIDFll_O.6÷TO_C3÷B1/IZ_eC3)|

DF41=R_IDFZ1-DF31)

DF=DF4÷DF_I

Q=SF,IK**4)*DF*IA2/(ZOOO.ODO*_Z))

HRZTE 19,10) Hp BETA_ DT_ Q
FORHAT I2XpF6.ZpZX3F6.ZpZXpF6.3p?--XpDZS.ZO)

CONTINUE

CONTINUE

STOP

END
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* THIS PROGRAM EVALUATES THE INIEGRAL OF PLANCK'S EQUATION OVER THE *

* WAVELENGTH LIMITS OF TWO IDEALIZED FILTERS, SEPERATELY. IT THEN *

* TAKES IHE RATIO OF THESE RESULTS TO OBTAIN A SINGLE-VALUED CURVE *

* WHICH IS USED FOR THE RATIO PYROMETRY EXPERIMENT. *
SARA MONEYHUN *

**************************************************************************

PROGRAM PROOF

SDEBLIG

EXTERNAL F

COMMON K,EMM

INTEGER T

REAL AI,BI,EPS.RI,EI,KF1,KEI,K,F,CI,C2,EMM_A2,B2,R2'E2'

& KF2,KE2,RT

OF EN(2,FILE='PROOF.DAT ' )

OPEN(3,FILE='FILTER1.DAT')

OPEN(4,FILE='FILTER2.DAT')

OPEN (5 IF ILE=' RAT I0 .DAT ' )

M = 30

WRITE (2 ,*) M

PARTICLE EMMISSIVITY

EMM=O .8

WRITE (3,50) EMM

WRITE (4,50) EMM

WRITE (5,50) EMM

SET FILTER LIMITS

ai=2.763

bi=2.882

a2=3.0465

b2=3.1535

I0

50

I O0

150

151

152

153

154

EPS=O. 01

WRITE(3,150) AI,BI

WRITE (3,151)

WRIIE (4,152) A2,B2

WRITE (4,153)

WRITE(5,150) AI,BI

WRITE (5,152) A2,B2

WRITE (5,154)

_.IO I0 T=500,3500,I00

K=T+273.0

CALL H2AI (A; .BI,EPS,RI,EI,KFI,KEI)

CALL H2AI (A2,B2,EPS,R2,E2,KF2,KE2)

WRITE (3,*) RI,T

WRITE 14,*) R2,T

RT=R 1/R2

WRIIE(2,100) RT,T

WRITE (5,*) RT,T

CONT INUE

FORMAT(3X,'Partlcle Emmisslvity =',F5.4,/)

FORMAT (FI4.9, IX, IX)

FORMAT(5X,'FILTER RI where AI=' ,F6.3,1X,'and B1=',F6.3,

& ' tin microns)' ,/)

FORMAT(15X,'R1' ,IOX,'T' ,/)

FORMAT(5X,'FILTER R2 where A2=' ,Fb.3,1X,'and B2=' ,F6.3,

& ' (in microns)' ,It

FORMATI15X,'R2' ,IOX,'T' _/)

FORMAT(gX,'RI/R2' ,13x,'T' ,/7

STOP
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The following components were mounted on rails for ease in positioning:

1 - Calcium Fluoride (CaFz) Rod

- manufacturer: Glass Fab

- 1" X 6" rod with polished endfaces

1 - Calcium Fluoride Beamsplitter

- manufacturer: Oriel Corporation

- model number: 44373

2 - Infrared Narrowband Filters

- manufacturer: Corion

- center wavelength 2.82 mm (half peak bandwidth 119 nm)

- center wavelength 3.12 mm (half peak bandwidth 107 nm)

2 - Calcium Fluoride Lenses

- manufacturer: Ealing Electro-optics

- catalog number: 34-3483

2 - Indium Antimonide (InSb) Detectors

- manufacturer: EG&G Judson

- J10D Series

_ Preamplifiers

- manufacturer: Perry

- model number: 481-44

75



Appendix E.

Data Transfer Program

76



x_ lhis is a C program to acquire _Javeforms from _ LeCrov 9450

oscilloscope via _ GP'IE_ Inter_ace. */

l_includ_- <stdio.hi'

_t i T_C I ude <math .h i:

IlJrmltlde <_tdl Jb.lli::

#include <strinq.h:::

il_nclude ,:decl .hi:,

/* deletes character from strinq _/

void strdel (char sir(I, int n)

(

strcpv(&strEn] , &str'[n* I]) :

]

x_ ,_SC crlnvert () _I

/_ r'eturn_ ÷l_ating point values from ascii string *I

void asc_L_onvert (_her wave[], float value[])

(

int c_unt 2 ,po J rlts=(_ ,t ime ,hum, count "

int position _

char tempi12] :

COUfgl[ :_ I-) :

whil e(count :1: 19000)

(

_; (_,3ve[count] _- ' ' ,.... w,_ve[count] t= .... )

(

count2 = 0 :

while(wave[count] != ' '_¶, wave[count] != '"')

{

/* printf ("Xn wave[%d] = %c".count,wave[count]) : */

temp[count2÷+] = waver_count+÷] ;

)

for(position = count2: positlon<ll; position++}

(

st _rtel (Letup,count2) :

}

value[points] = atof (temp) :

/_ print f ("\ntr_mp = "Zs\n" ,temp) :

pr_ntf ("\nvm11_r÷[7.d] = %fXn",points,value[points]] ; *I

point.s+* :

}

el se

count++ :

]

)

main ( )

(
char commandlETO],command217q]],c°mmand3170]'c°mmand4170]'c°mmandS[703 !

char command6[7_],commandTr70],command8[70] _command9['70] ,comm10[70]

char commll[-70],comm1217]],comm131703,c°mm1417I:_]'c°mmlS[70]'r°mm16[TO]!

int lec, board, start _ count=O, i :

char wave[21Z)_-_]:

char pc[ ] = "GF'IEIk_";
cll,_r' deviceS[ | = "D[--_VS,":

f l oat value[ _ _',i:lO]:

r ILE *fpi , *gp2:
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if ((board = ibfind (pc)) < 0> printf(" can't find boardXn") |

if ((lee = ibFind (device5)) ". 0) prlntf(" can't flnd deviceXn") ;

if( (fpl = fopen( "rodl.dmt","w" )) != NULL )

if( (fp2 = Fopen( "rod2.dmt",".w" )) != NULL )

/w r_,r,_,_t_ tl_(_(ul _r'iflq,_ fcll' rlll11_r_Ltr_icatinq with the Let'.r(_y _I

!ldefine commandl "L]RILI LIUAL_"

ttdefine command2 "_DIV .5S"

Itdef in_ command3 "CI :VDIV 20MV"

#fief Irle r':ommarld"_ "(]2:KqITV 21111V"

(tdef ir_e common(15 "(]1. : TI'(!.IL I',IFI_"

i_def ] ne command6 " 1 RM[I S J N[_LE"

fldef ine command7 "Ir-(IL_L .5S"

#define command8 "CHDR [IFF"

#define command9 "CP:TRCP DC"

fldefine commlO "CI :CPL D50"

#define commll "C2:CF'L DSO"

IWlefine comml2 "CI:INSP? 'SIMPI_E' .FI_OAT"

#define comml3 "C2:INSF'? 'SIMFLE' ,FLOAT"

ltdefine comml4 "WFSU SP,O,NP,15_JO,FP,24800"

#define comml5 "CMFT DEFg,BYIE,BIN"

/* ibclr(lec) " MI

ibwrt (lec,commandl,9)

ibwr't (I ec ,comm_nd2,_3) ;

/_ ibwrt(lec command3,12) :

_bwrt (lec comm_nd4,12) : _/

ibwr_t (lec com,nar_dh,l t) :

ibwr't (lec_ colnmarTd6,1 I) I

ihwrt (lec commandT,8) ;

ihwrt (Irec: commaod8,8) ;

ibwr't (I ec _commandg,]O) :

ihwrt (lec ,comm10,10) ;

ibwr't (lec comm_] ,)0) ;

Jbwrt (lec comm14,26) :

ibwrt(lec comm15,18) :

ibwr'L(lec,comm12,23) ;

ibrd(lec,wave,2C)O00) ;

pF'intf("\n FILTERI DATA = %sXn",wave):

asc_conver-t (wave ,val oo)

for( i=O: i<1425: i++)

fpcintf ( (pl, "\n%f", value[i)) :

fnlr_se( fPl )

ihwrt (lec,comm13,23)

ibrd (l ec ,w_ve,20000) :

pt-ir]tf("Xn FILTER2 DATA = "/.skn" ,wave)l

asc_convert (wave,value) -"

fnr( i=O" i<1425: j.*4)

fprintf( fp2, "\n%f", value[i)) :

Fclose( fp2 ) ;

ibclr(lec)

ibsic(board)

ibsre (board ,O)

ibsic (board) :
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Correlation-Based Fiber Sensor Using
Matched Filter

A Holographic

PINYI ZHANG, KIMBERLY D. BENNETT, AND GUY INDEBETOUW

Abstract--The principle of a fiber sensor based on an optical corre-

lation technique is described and assessed for its feasibility. The device

measures the correlation between the far-field radiation pattern of a

multimode sensing fiber and a reference pattern stored in a holo-

graphic matched filter. The output is expected to be a monotonically

decreasing function of the changes in the pattern caused by the per-

lurbance applied to the fiber. The results of some preliminary experi-

ments are discussed and some drawbacks of the technique are pointed

out.

INTRODUCTION

OST fiber sensors based on interferometry are very
sensitive and cyclic. In many applications, how-

ever, the output should ideally he a monotonous function

of a perturbance (strain, temperature changes, etc.). In

this paper, we explore the possibility of using a matched

filtering technique to achieve this goal. To our knowl-

edge, matched filtering techniques have not been studied
in connection with fiber sensors. Yet, modern fiber tech-

nology and holographic techniques have sufficient matu-

rity to justify a study of the potential usefulness of such

an approach. The aim of this paper is to present the results

of some preliminary experiments assessing the feasibility

of the technique.

MATCHED FILTERING OF FIBER OUTPUT

Holographic matched filtering techniques [1 ] have been
used extensively for optical signal detection, pattern rec-

ognition, and the measurement of pattern difference [2].
These applications are based on the measurement of the
correlation between a reference pattern which has been

stored on a hologram and a different pattern or the same

pattern which has undergone some changes. The corre-
lation peak is taken as a measure of the similitude of the

two patterns or of the changes which have affected it.
A fiber sensor based on this principle would use the

changes in the far-field radiation pattern of a multimode
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fiber which occur when the fiber is being perturbed. The

output of the sensor is the degree of correlation between
the modified pattern and the original pattern stored holo-

graphically. This output is expected to drop monotoni-

cally with increased perturbation.
There are two possible ways of incorporating a holo-

graphic matched filter with a fiber sensor. The first uses
a transmission hologram (Fig. 1) and the second uses a

reflection hologram (Fig. 2). In the device of Fig. 1, the

hologram is recorded by mixing the far-field radiation pat-
tern /_'0(_, rl) of the multimode test or signal fiber with

that of a single-mode fiber R (/z, _/) excited with light from

the same laser. The far-field pattern of the fiber is pro-

portional to the Fourier transform of the field distribution

Eo(x, y) at its output end. For a multimode fiber, the far

field is a speckle pattern with a speckle distribution which

depends on the fiber's numerical aperture. The far field of

the single mode is taken as a reference beam.
In Fig. 1, the far fields of the fibers are taken at the

output side of a quarter-pitch GRIN lens. This has the

advantage of small size, ruggedness, and tolerance to me-
chanical vibration during the hologram recording. The en-

tire structure is also sufficiently compact to be sealed into

a single unit.
After development, the amplitude transmittance of the

hologram has the form

T(p., "r/) cc [Leo(p., TI) + R(p. - P.o, rt)l 2 (1)

where _t0 is the average angular displacement of the two

interfering beams. The result of this average displacement
is that the developed hologram acts as a grating, diffract-

ing an incident beam into the angular directions -t-t_0. For
example, if the hologram is illuminated by the far-field

pattern/_(#, _) of the perturbed signal fiber, as shown in

Fig. l(b), one of the diffracted beams will travel in the
same average direction, #0 as that of the reference beam.

The amplitude of this beam, at the output of the hologram

is

C'(p., 7/) _: ce(#, _/)_'0(_, _/)R(p. - P-0, _)" (2)

A second GRIN lens focuses this beam into an amplitude

distribution which is proportional to the inverse Fourier

transform of C'(/x, rt). From the correlation theorem of

Fourier transforms, this amplitude distribution is propor-

tional to the two-dimensional correlation of the output

field of the perturbed fiber with that of the unperturbed

123501.00Q 1990 IEEE
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Fig. 1. Fiber sensor using a transmission holographic matched filter. 1)

Recording of the matched filter as a hologram of the far-field speckle

pattern at the output of the multiunode signal fiber. 2) Real-time mea-

surement of the correlation of the signal-fiber output with the stored pat-

tern.

fiber:

C(x, y) oc I e(x', y')E_(x' - x, y' y)dx' dy'. (3)

The correlation peak (i.e., the square of the value of
the correlation distribution at the origin) is conveniently

used as a measure of the similitude of the two patterns.

As shown in Fig. l(b), the correlation peak can be esti-

mated by measuring the energy coupled into a pick-up

single-mode fiber centered where the reference beam
would come to a focus at the output of the second GRIN

lens. The pick-up fiber acts as a spatial filter and the power

delivered to a detector gives a signal proportional to

Co = I I E(x, y)E*(x, y) dxdyl 2. (4)

This signal varies from a maximum when the two patterns
are identical to a small value when they become uncor-

related.

The pattern used in this correlation technique is the far-

field speckle pattern of a multimode fiber. This pattern
results from the interference of a large number of modes

with uncorrelated phases. As the fiber is perturbed, the

relative phase of these modes changes, and so does the

speckle pattern. We therefore expect the perturbed pattern

to be completely uncorrelated with the original one when

the relative phase of the modes has changed, in average,

by about a'. The amount of perturbation necessary to pro-
duce such a result depends on the effective number of

speckles on the hologram. Just as the fringe sharpness of
an N-beam interferometer increases proportionally to N,

we expect the rate at which the correlation peak drops

with increased perturbance to sharpen with the number of

speckles in the hologram. This oilers a simple means of
tailoring the sensitivity of the device to different appli-

cations.

When the two patterns become uncorrelated, the cor-

relation peak drops to a small value. Further changes in

the perturbed pattern can never bring it back to its original

shape, so the average correlation peak value remains
small. It may, however, exhibit random fluctuations, the

average amplitude of which depends on the exact statis-

tical property of the pattern.
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Fig. 2. Same as Fig. I but using a reflection holographic matched filter.

Fig. 2 shows a similar arrangement using a reflection

hologram as a matched filter. With this configuration, it
is easier to usean external reference beam such as a plane

wave to record the hologram. The correlation peak is again

proportional to the energy coupled into a single-mode pick

up fiber located where the reference beam is brought into

a focus by the GRIN lens. Reflection holograms require

more demanding conditions of stability for their recording

but they have a unique advantage. They can be made

spectrally and angularly selective, an invaluable property

for the design of many multiplexing schemes.

Although it is outside the scope of this paper to discuss

specific design considerations, it should be mentioned that
the choice of a holographic material is open to a broad

range of possibilities, from photoemulsions, dichromated

gelatins, or photoresists for permanent holograms to reus-
able materials such as thermoplastics or photoconductive

devices [31.

EXPERIMENTAL RESULTS.

To check the feasibility of the idea described in the pre-

vious section, we constructed a matched filter by record-

ing the interference of the far-field pattern of a multimode

fiber with a plane wave. For these first experiments, we
used a conventional lens with a 15-cm focal length instead

of a GRIN lens. The hologram was about 1.5 cm in di-

ameter and the average speckle size was approximately

3 mm. In later experiments, we made holograms with a

GRIN lens having an approximate quarter pitch of 10 mm.

The dimensions of the speckle and the hologram were then

reduced proportionally by a factor of 15. The correlation

peak was selected by a 25-/_m pinhole and measured by a

photodetector. The technique used to stress the fiber was

simple but crude. Two areas of fiber about 15 cm apart
were stripped of their cladding and glued at the top of two
vertical rods. The unit of strain was taken as that pro-

duced by a 100-#m translation of one of the rods.
The value of the correlation peak as a function of strain

is shown in Fig. 3. It is seen to drop monotonically and
then to fluctuate somewhat randomly. With this particular

hologram, the amplitude of these fluctuations were rather

large because the speckle field included a few speckles of

larger size than average. To test the reversibility of the
measurement, the strain on the fiber was reduced. The

signal followed the same curve back, within experimental

error, except for a loss of correlation smaller than 10%
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Fig. 3, Correlation peak value as a function of applied strain. The strain
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for details), a) Increasing strain, b) Decreasing strain.

near the maximum. This can easily be accounted for by

some irreversible factors in the way the strain was applied

to the fiber. Several runs with increasing and decreasing

strain gave reproductible results, within experimental er-

rors
In most holographic matched filtering setups, reposi-

tioning the hologram is a critical issue. It is clear that a
translation of the hologram by an amount comparable to

the average speckle size has the same effect on the cor-

relation peak as that of a change of the input pattern cor-

responding to a 100% decorrelation. To estimate this ef-

fect quantitatively, we made another hologram, with

speckles more evenly distributed in size. We compared
the value of the correlation peak versus strain with the

hologram correctly positioned with the result with the hol-

ogram translated by 1 and 2 ram. The result is shown in

Fig. 4 where the hologram displacement is measured in
terms of the angular shift _ = A/f, where A is the lateral
translation of the hologram andfis the focal length of the

lens. For example, the same effect as that shown in trace

b, which corresponds to a 1 mm translation of the holo-

gram in our setup (i.e., E -- 7 × 10-3), would be ob-
tained with a 70-/.tin translation of a hologram taken with

a GRIN lens of 10-mm quarter pitch.
A factor of perhaps more critical importance than hol-

ogram repositioning is the fact that in such a sensor, the

launching conditions must be invariant. Indeed, a slight

change of coupling conditions may produce great changes
in the far-field speckle pattern, making it necessary to re-

cord a new hologram. There are two ways to possibly al-

leviate this difficulty. One is to use sealed devices in which

the input conditions will not change unless the entire unit
has to be replaced. The other is to use a real-time holo-

graphic technique, at the price of increasing the technical

difficulty by several orders of magnitude.

CONCt.USION

We have described a fiber sensor based on a holo-

graphic matched filtering technique. Incorporating a hol-
ographic filter into a fiber sensor may, at first sight, ap-
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Fig. 4. Correlation peak value as a function of strain for various position-

ing errors of the hologram, a) Hologram in perfect position; b) angular

positioning error _ = 7 x 10-3; and c) angular positioning error _ = 1.5
× 10 -2 (see text for definition).

pear to be an unnecessarily complicated proposal. Some

preliminary experiments have shown, however, that the

systems requirements are by far less critical than were

originally expected. The system is relatively easy to align

and the method is reproducible.
This new type of sensor opens up a number of design

possibilities. For example, the mode pattern used can be
tailored to the selective detection of a particular physical
observable, if this observable affects different modes dif-

ferently. The mode pattern can also be modified to vary
the sensor's sensitivity. Finally, the hologram can be

multiplexed for the simultaneous detection of several pa-

rameters.

Some preliminary results were obtained using the spec-
kle field at the output of a multimode fiber. From these

experiments, the main drawback of the technique appears
to be that the speckle field is not only sensitive to the

measured fiber's perturbation but also depends on the

launching conditions and on the quality of the fiber's end.
A hard-sealed device or a real-time holographic technique

could presumably alleviate this problem.
As a final point, one may mention that there exists other

possible means of measuring changes in the far-field spec-

kle pattern of a multimode fiber. Speckle interferometry

is an example.
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Holographic Matched Filter for Full-Field In-Line

Signal Processing of Optical-Fiber

Sensor Outputs
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Abstract--A holographic matched filter is used to measure the

changes in the output of a dual-mode fiber undergoing axial strain. The

hologram is formed by interfering collimated light from a single-mode

reference fiber and an unstrained dual-mode sensor fiber on a small

piece of holographic material. When the hologram is illuminated by

the strained sensor fiber, the cross-correlation field comparing the dual-

mode output and its previous state, as recorded in the hologram, is

collected, focused into a pick-up fiber, and sent to a photodiode. This

arrangement allows fi_r a compact, in-line method for full-field pro-

cessing of the strain-induced changes in phase and amplitude in the

__ sensor fiber. Other uses of such fiber-based correlators are suggested.

|. INTRODUCTION

T has now been well over ten years since research in
the field of fiber-optic sensors began in earnest. Work-

ers have reported monitoring a host of mechanical and
environmental observables, such as strain and tempera-

ture, by causing the observable to interact with one of the

fundamental parameters of the light inside a fiber. These

include the optical phase, intensity, wavelength, polar-
ization, modal content, and propagation time. It is well

known that the most sensitive fiber transduction mecha-

nism involves modulation of the optical phase of either

the light in one single-mode fiber with respect to that in

another fiber [1] or the light in a mode versus that in an-

other mode within a single fiber [2]. The latter method,

herein referred to as modal domain sensing, has received

much attention in the literature, and has been successfully

applied to the measurement of such perturbations as
acoustic emissions and structural vibrations, as well as

electric current, temperature fluctuations, and simply in-

duced axial strain [3]-[81.
The most basic modal domain sensor consists of a sin-

gle-mode fiber operated slightly below its cutoff wave-
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length, such that only the two lowest order modes prop-

agate. For ordinary communications-grade fiber, this
implies that the LPol and LPll modes are employed, gen-

erally resulting in a two-lobe interference pattern in the

output, represented in Fig. 1. It can be seen analytically
that as the fiber is axially strained, power in the output is

transferred periodically from one lobe to the other [7].

That is, a dual-mode fiber can act as a strain sensor by

monitoring the intensity of one or both output lobes. De-

tection is most often accomplished by imaging a single

lobe, or part of a lobe, onto a photodiode through a pin-
hole. Sensors based on this mechanism are predictably

three orders of magnitude less sensitive than conventional

two-fiber interferometers [2], [91, but they offer the ad-

vantages of stability and simplicity, while retaining high

sensitivity relative to other fiber-optic sensor types. It has

also been pointed out that sensitivity could be signifi-

cantly enhanced with the use of a specialty fiber which

was designed to increase the difference between inter-

modal phase velocities.
A concern with modal domain sensors arises from the

fact that most of the energy emerging from the fiber does

not reach the detector. Also, the position of the detector

in the output field is imoortant to maintaining the highest

signal quality. This can present complications in systems

involving long-wavelength radiation, in miniaturized or
encapsulated devices, and especially in sensors utilizing

many modes.
One approach aimed at addressing these concerns has

been to employ a detector array which collects intensity

information from the entire output field [10]. Computa-

tions are then performed in order to track the movement
of the lobes and infer the fiber strain. It is noted, however,

that a trade-off exists between resolution and processing

time. For example, a typical charge-coupled device

(CCD) array containing several thousand individual ele-

ments offers high spatial resolution of the output field, but

complicates the electronic processing requirements and

increases the processing time, as well as raises the system

cost. The optimum number of detector elements varies

depending on the number and arrangement of lobes in the

output and the strain mechanism being monitored.
In this paper, we explore the possibility of using holo-

graphic matched filters [11] as full-field signal-processing
elements. To our knowledge, matched filtering and opti-

0733-8724/90/0700-1039501.00 © 1990 IEEE
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IZig. I, Representation of a two-lobe pattern typically observed emerging

from a dual-mode fiber.

cal correlation | 12] methods have not been studied in con-

nection with optical-fiber sensors, although using a ho-

logram to provide the reference beam in a multimode
acoustic sensor has been proposed [ 13]. Yet modern fiber

technology and holographic techniques have sufficient

maturity to justify a study of the potential usefulness of

such an approach.
The paper is organized as follows. In the next section,

we develop the theory of an optical correlator with a ho-

lographic filter matched to the pattern of a dual-mode fi-
ber, and derive an expression for the output of the corre-

later as a function of fiber strain. In Section II1, we dis-

cuss some approximate relationships useful in calculating

the values of several parameters needed for a particular

setup. The results of preliminary experiments are de-
scribed in Section IV and are followed by a conclusion

and some final remarks.

II. THEORY

The device to be analyzed is shown in Fig. 2. We first

describe briefly the principle of its operation and then

study it quantitatively.

The far-field pattern of the dual-mode sensor fiber is

recorded holographically on the back face of a quarter-

pitch GRIN lens. The reference beam which is made to
interfere with the mode pattern for this recording is pro-

vided by a single-mode reference fiber. Upon illumination
with the field from the strained sensor fiber, the developed

hologram acts as a matched filter, reconstructing a dis-
torted reference beam. This beam is focused by a second

GRIN lens on the input face of a single-mode pick-up fi-

ber. This fiber acts as a spatial filter, and the amount of

power detected is proportional to the cross correlation of
the pattern emerging from the strained fiber and that re-

corded on the hologram. This correlation signal measures
the similitude of the two patterns and consequently is a

measure of the strain-induced changes.

Using the terminology of holography, we call the field

exiting the sensing fiber when recording the hologram the

object field. In our experiment, the sensing fiber was a

hologr aphlc

matched hirer _._

__ _ single mode
Single rnooe . _1 I pick-up

d ......... d_........

,ooso,,,oo " I/t

GRIN lenses

Fig. 2. Miniaturized optical correlation using quarler-pitch GRIN lenses

and a holographic matched filter.

two-mode fiber. Under the assumption of weak guidance,

wherein the difference between the core and cladding re-

fractive indexes is considered to be small, the object field

can in general be written as the sum of the LP0t and the

LPtl pseudomodes 121

Fobj(r) = Eo + El, + Ere (1)

with

Eo = Aofo(r) e -ioo (2a)

for the LPol mode, and

Et, = At_ft(r) cos 4_e-lOt, (2b)

Eh, = Al,,fl(r) sin 4_e -i°'° (2c)

for the even and odd LPtt mode. In these expressions,

A.'s are constants, and 4) is the azimuthal angle in a plane
normal to the direction of propagation. The phase terms

0. can be expressed as ( g.z0 - Oi), where the/3, terms
are the propagation constants of the LP.t modes, z0 is the

length of the fiber, and 0i is some arbitrary initial phase.
The transverse amplitude distributions are included in the

factors f. (r)

f,(r) = J,(ur/a), for r < a (3a)

f,(r) = K,(wr/a), for r > a (3b)

where J, and K,, are the nth-order Bessel function of the

first kind, and the modified Bessel function of the second

kind, respectively. Furthermore

u = koa 4n 2 - (fl/ko) 2 (ha)

w = koa N/(/3/ko) 2 - n_ (4b)

where a is the fiber core radius, k0 is the wavenumber in

free space, and nl and n2 are the indexes of refraction of
the core and the cladding, respectively. The appropriate

boundary conditions at r = a are assumed satisfied by a

proper choice of the constants. Similarly, the field at the
exit of the single-mode reference fiber can be written as

Fr_ef( r) = ARfo( r)e-l(O, z.-O.) (5)

The fields in (2) and (5) are all oscillating at the same

frequency w and are assumed to be nmtually coherent.
This will be the case if the object and the reference fibers

are excited with radiation from the same laser and if the
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time of propagation in the two fibers differs by less than
the coherence time of the source. Under these conditions,

the object and reference fields can interfere to form a
hologram. It is further assumed that all the fields are in

the same polarization. If it were not, one should project
each field onto two orthogonal sets and superpose the two

independent holograms thus formed.

Measuring all phases relative to the phase of the refer-
ence field at the exit of the reference fiber, the total am-

plitude distribution in the front plane of the first lens can
be written as

U(r) = Fobj(r) + FRet( r -- d.r) (6)

with

Fobj(r) = Aofo(r)e-i°° + A,,fl(r) cos ¢be -i°'' (7)

+ Aiofl(r ) sin _be-i0,o

and Fact(r) is given in (5), and where .r is a unit vector

along the x axis. Equation (6) reflects the fact that the

object (or sensing) fiber is centered on the axis of the lens,
while the reference fiber is offset by a distance d along

the x axis, as seen in Fig. 2.
Stress-induced axial strain in the sensing fiber intro-

duces an additional relative phase shift between the LP0t

and LPtt modes; these changes are presumed to be large
relative to any changes in their constituent vector modes.

Calling this phase shift Os, the field at the output of the

stressed sensing fiber can be written as

Fs(r) = Aofo(r)e-"°°+°s_ + Ai,ft(r) cos q_e-i°"

+ Aiofl(r) sin _be-i°'° (8)

where an unessential phase factor has been dropped.

Within the limit of paraxial approximation, the rela-

tionship between the field amplitudes in the front and back

faces of the quarter-pitch lens is the same as that between
the front and back focal planes of a conventional lens. A

plane wave entering the lens at an angle ¢x with respect to
its axis is focused on its back face at a lateral distance d

= 2Za/Tr from the axis, where Z is the length of the
GRIN lens. Similary, a point source in its front plane ex-

its as a plane wave. Thus, the field in the back plane of

the lens is proportional to the Fourier transform of the

field in its front plane [14] as for a conventional lens,

provided that we replace the focal length of the conven-

tional lens by

f = 2Z/_r. (9)

Denoting the Fourier transform by a tilde, we have

0(p) = -#obj(P) + _,ef(P) e+'2"_a/xf (10)

where p is the coordinate vector in the plane of the holo-

gram, _ is the axis parallel to the x axis, X is the wave-

length in vacuo, and f is the effective focal length of the

lens. Expression (10) is the sum of two terms, the object
field traveling on axis, and the reference field traveling at

an angle 0 = sin -t (d/f) with respect to the z axis. The

I0-I I

interference of these two fields is recorded on a quadratic

medium to form the hologram.

As is customary, we assume that the hologram is re-

corded linearly. This means that after appropriate pro-

cessing, the amplitude transmittance of the hologram is

proportional to the local intensity with which it was irra-
diated. The hologram amplitude transmittance can thus be

written as

Tn(p) = To(p) + AT(p) e+i2"ta/x!

+ AT,(p)e -i2"_a/xf (lla)

where

and

T0<e/ =+ IP.o.( )I21(llbl

AT(p) = ,lP  j(p) (11c)

Here, 7/is a constant of proportionality and * indicates a

complex conjugation.

In the sensing mode, the hologram is illuminated by the

field /_s (P) from the strained sensing fiber. The part of

the field carrying the correlation information is the com-

ponent scattered by the hologram in the same direction 0

as the original reference field, shown in Fig. 2. Using (8)

and (11), this component is found to be

U(p) = rlPs(P) F_bi(P) l_R*f(a) e +'2"_a/×¢ (12)

The field in the back plane of the second lens is again

proportional to the Fourier transform of the total field
scattered by the hologram. The component On (p) pro-
duces a distribution centered at a point located a distance

d from the axis and proportional to

Un(r) oc [Fs(r) ® Fobj(r)] * FR, f(r) * 5(r -- de)

(13)

where * and @ stand for convolution and correlation op-

erations, respectively. In obtaining (13), it was assumed
that the two GRIN lenses were identical. A second lens

of different focal length would only introduce a scaling of

the distribution [14]. As can be inferred from (1 la), the
two other waves scattered by the hologram are traveling

parallel to the axis and at an angle -0, respectively, so
that if d is large enough, they do not overlap with the

correlation term in the back plane of the second lens.

The parameter measured by the sensor is the peak of
the correlation distribution described by (13). The corre-

lation signal is proportional to the power collected by a

single-mode pick-up fiber of small diameter centered at
r =di in the back plane of the lens. As is usually done

in the analysis of the response of optical correlators [ 12],
we will assume that the detector, or here, the core diam-

eter of the pick-up fiber, is small compared to the width

of the correlation peak. Some approximate expressions

will be derived in the next section, allowing one to quan-

titatively estimate the needed values of these parameters.
It should already be clear, however, that a trade-off will
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have to be adopted. A high sensitivity is obtained with a

small core diameter pick-up tiber. The price is of course

a low signal level. With a large core diameter fiber, the

signal contrast is considerably reduced because the total

energy scattered by the hologram is, to a large extent,

independcnt of the changes in Fs. Only the distribution of

that energy, and in particular the amplitude at r = d.f, is
affected.

With a small core diameter pick-up fiber, the collected

power is simply proportional to the correlation peak value

p Ig.(d )l2

_ o o Fs(r) F_bj(r) rdrd_ (14)

Using (7) and (8), this becomes

p _x Age -i°s f2o(r)27rr dr + ½1A2le
0

+ A_ol [. f](r) r dr . (15)
d 0

The sensor output signal can be written in a normalized
form as

with

pox 1 + mcos0s (16)

and, using (13),

co=I °
0

Here,

2I"

m- 1 + r z (17a)

r = 47rC°Ag (17b)
C,(A_, + A_o )

oaj2(ur/a) r dr + K2,(wr/a) r dr. (17c)
a

Os = A/3z0 - AOi (17d)

where A I3 is the difference in propagation constants for'

the LP0t and LPtl modes, and AOi is the difference be-

tween their initial phases. Significantly, this term contains

z0, the length of the sensor fiber. Thus, (16) describes the

oscillatory sensor response expected due to a strain-in-

duced phase shift in the dual-mode fiber.

III. APPROXIMATE SOLUTIONS

In the preceding section, the relationship between the

correlation signal P and the strain-induced phase shift 0s
was established. In designing a system, however, it would

be useful to have additional expressions allowing one to
estimate the needed values of parameters such as the ho-

logram size or the pick-up fiber diameter. In this section,
we derive some approximate expressions for this purpose.

The approximation used consists of assuming that the
fields at thc end of the [iber falls within a Gaussian en-

velope. Comparison to the actual field profile in the core

and the cladding of a weakly guiding fiber seems to con-

firm this assumption as being reasonable. One could fur-

ther argue that the choice of an approximate beam profile
is not at all critical in the theory of the correlator. It is

known, for example, that except for a scaling factor, the

output of the correlator is not greatly affected by spatial
variations of the hologram transmittance. The quantity of

importance is the change of phase distribution in the ob-

ject wavefront. In fact, recording nonlinearities make am-

plitude distortions practically unavoidable and hardly
controllable. In addition, a phase-only hologram, which

has a higher throughput, a higher diffraction efficiency,

and a sharper correlation peak, should be used in a prac-

tical system I15], [161. The relationships derived in this
section are not exact but may be regarded as good ap-

proximations in most practical cases.

Using the Gaussian envelope approximation, we thus

write the object and reference fields of (5) and (7) in the
form

Fobj(r) = [Aoe-i°° + At, cos $e -i°''

+ AIo sin 4_e-i°'°]e -c_/_°)2 (18a)

and

FR_f(r) = ARe --(r/all)2 (18b)

where the radii ao and aR of the Gaussian envelopes are

related, but not necessarily equal to the core radii of the

respective fibers. These parameters can be calculated for

a best fit to the actual field profiles.
The field recorded on the hologram can be calculated

by taking the Fourier transform of (18). This gives

l:'n(O) = [Ao e-_°° + A,_ cos Ce -i°''

+ Aio sin ¢e-iel°]e-t'a°a/xf)2

+ e -('a°°/xf)_e +i2,td/Xf (19)

where ¢ is the azimuthal angle in the hologram plane. It

should be noted that except for a scaling factor, the fields

in the plane of the hologram have the same amplitude dis-
tributions as the fields exiting the fibers.

A linearly recorded hologram has an amplitude trans-

mittance given by

Tn(p) oc I/_H(O)2. (20)

Using (19) we see that the intensity distribution in the

hologram plane has a Gaussian envelope with a radius

(measured at 1/e 2) equal to

Rn = ;kf (21)

_r(a_ + a_) 1/2'

The field from the strained dual mode sensing fiber can

be expressed as

l_s(p) = [Aoe-i(_+es) + A,, cos _be -ie''

+ Aio sin iI.,e-ie'"]e -('a°°)2 (22)



I.NDEBETOUW et al: HOI.OGRAPIIIC MATCHED FILTER FOR SIC;NAL PROCt-SSIN(;

Upon illumination by this field, the hologram scatters a
wave toward the pick-up fiber, which can be written as

UH(P) = rl[Ao el°° + Al* cos "s/,ei°''

+ AIo sin Ce i°'] [Ao e-"°°+°s)

+ Ale cos _e -iO'' + AIo sin _/e -iO'']

(exp [-Tr2(2a_ + a_)o2/)'2f2])

• (e +i2,_d/Xr). (23)

This field is brought to a focus at x = d in the back plane

of the second lens. The amplitude distribution about that

point is given by the Fourier transform of (23). From the
Fourier transform of the broad Gaussian envelope, one

can infer that the correlation peak, centered at x = d, has

a radius (measured at l/e 2) equal to

Rc : (2a , + '/2 (24)

The general effect of a change of phase distribution at

the output of the sensing fiber is to broaden the correlation

peak and to reduce its amplitude. The sensitivity of the

technique thus depends on the relative size of the corre-
lation peak and ap, the radius of the pick-up fiber core.

For ap > Rc, the signal is large, but the sensitivity or
signal contrast is poor since the entire correlation peak is
collected by the fiber. For ap << Rc, the detected power

is proportional to

e o_ OH(o)p do d_b . (25)
0 0

In this case, the sensitivity is optimum but the signal is

small. A generally acceptable trade-off is to choose a

Rc/n, with 1 < n < 4. In this case, the sensitivity re-

mains good and the detected power is still a large fraction

of the total power of the correlation peak.

Using (25), the normalized correlation signal is found

to be equal to

p oc 1 + m cos Os (26a)

with

87rA 2 2o( Ale + a_o) (26b)

m = 16a.2A _ + (A]_ + A]o) z

which is the same expression as found in the previous sec-

tion if we use the approximation that Co/Ct "_ 1.

IV. INITIAL EXPERIMENT

For the sake of simplicity, the initial setup used to fab-

_ ricate the holographic matched filter employed bulk op-

tics, as depicted in Fig. 3. Light from a 5-roW polarized
He-Ne laser was divided into two beams, one of which

was launched into a polarization preserving single-mode

optical fiber operated below its cutoff wavelength, result-

ing in the dual-mode operation described above. The far-

field pattern was projected in the back focal plane of a 16-
-- cm focal length lens. The reference beam was redirected,

filtered, and collimated as shown. The length of fiber was

its.5

chosen so as to equalize the optical path lengths of the

two beams. The two beams interfered at an angle of about

30 ° on a 2 × 2 in Kodak high-speed holographic plate

type 131. The diameter of the exposed area on the plate
was about 4 era. Exposure time of - 1/50 s and devel-

opment of -3 rain in Kodak D19 yielded a reasonable
diffraction efficiency, but no attempt was made to opti-

mize this parameter.
In the sensing mode, the hologram was illuminated by

the fiber output, as shown in Fig. 4. The reconstructed
reference beam was focused onto a pinhole P which fil-

tered the correlation peak. The correlation signal was de-

tected by a silicon photodetector. The fiber was mounted

rigidly between two posts, one of which was fixed, while
the other was itself mounted on a micropositioner. As ax-

ial strain was applied by turning the micrometer, the fiber-

output pattern changed, changing the correlation signal.

A plot of the reconstructed output intensity as a func-

tion of applied axial strain appears in Fig. 5. As was the-

oretically expected, increasing perturbation caused a pe-
riodic exchange of power between the lobes of the dual-

mode fiber, resulting in a harmonic output. The fact that

the zero strain point was not an absolute maximum in out-

put intensity may be attributed to the spatial variation of
diffraction efficiency existing in the hologram field, while

the decreasing maxima result from mode coupling effects.

The output of the correlator is also compared to the signal

picked up by a small pinhole located near the center of
one of the lobes of the far-field pattern of the fiber. Both

data were arbitrarily scaled to ease the comparison. The

slight difference in periodicity is due to a certain degree

of irreproducibility in the method used to apply strain to

the fiber.
A miniature correlator, such as that shown in Fig. 2 was

also constructed and tested. In this device, the sensor and

reference fibers were rigidly coupled to the front face of

the first GRIN lens, and the hologram was recorded in its

back face on a small piece of holographic emulsion. The

hologram was about 2 mm in diameter.
After recording, developing, and repositioning the ho-

logram, the reference fiber could be removed or decou-

pied from the sensor. A second GRIN lens collected the
field scattered by the hologram when the latter was illu-

minated by light from the sensing fiber. The correlation

peak was collected by the pick-up fiber and detected. The
device was found to be easy to align, although a 3-D po-

sitioner was needed to accurately position the pick-up fi-

ber.

BS LI " 0

L4

P

• _ L3

Fig. 3. Setup for holographically recording the output pattern of a dual-

mode optical fiber: BS beam splilter; L lens; F dual-mode fiber; H ho-

lographic plate; M mirror; P pinhole.
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Fig. 4. Setup for using the hologram asamatched filler to detect changes

in the fiber output due to axial strain: L lens; F dual-mode fiber; H_(2_
movable (fixed) fiber holder; M mirror; FH fiber holder and positioner;

H hologram; P pinhole; D photodetector; DVM digital volt meter.
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Fig. 5 Comparison of the =_utput intensity (normalized) of tile correlator
using a holographic matched filter and the pinhole detection of a single
lobe.

V. CONCLUSION

A method for optically processing the output of a fiber

sensor has been presented. The technique makes use of a

holographic matched filter to record an initial sensor state

and provide a reference against which changes in the fiber

output due to axial strain can be compared. The theory of

the optical correlator was developed for the case of a dual-

mode fiber sensor and a number of useful expressions were

derived to facilitate practical implementation of the de-

sign. Initial experiments were performed to determine fi-

ber strain, and the results agreed well both with predic-

tions and conventional test procedures.

Several advantages accrue to the application of optical

correlation methods to fiber-optic sensor technology. For

one, rather than collecting light at a single point in the

output field, the full-field omput is collected, potentially

ofl'cring higher signal power. For another, the need for

precise positioning of a pinhole at the spatial Q point of

the output field is considerably relaxed, especially if po-

larization preserving fiber is employed. A number of fun-

damental fiber parameters, such as core eccentricity or fi-

ber model content could also potentially be dclcrnfincd

using matched filters. To this effect, fibers having a more

complex mode paHern may be used in connection \_ith

filters matched to specific modes. Multitnode fibers could

also be used to provide a monotonically decreasing cor-

relation signal.

Sensing via holographic matched filtering has two ad-

ditional advantages which may greatly enhance the ver-

satility and power of the technique, namely, the capability

of multiplexing and the possibility of real time operation.

For example, multiple sensors, or multiple states of a sin-

gle sensor could be monitored simultaneously by using a

multiplexed holographic filter matched to a number of dif-

ferent fiber modes. Similarly, filters could be stacked or

sequenced to perform logical operations on sensor out-

puts. Finally, real time holographic methods could be em-

ployed to provide the ability of updating the filter and al-

lowing time-dependent measurements. These last two

features are particularly appealing since they open up the

possibility of applying optical data processing techniques

directly on the optical signals of the sensors, that is, be-

fore transferring the data to the electronic domain. For

complex or high data rate sensors, this may lead to a

higher speed or more elegant architectures.
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