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Abstract

The inverse kinematics solution, a modal position control algorithm, and path planning results

for a 7 degree of freedom manipulator are presented. The redundant arm consists of two links
with "shoulder" and "elbow" joints and a spherical wrist. The inverse kinematics problem for

tip position is solved and the redundant joint is identified. It is also shown that a locus of tip

positions exists in which there are kinematic limitations on self-motion. A computationally simple
modal position control algorithm has been developed which guarantees a nearly constant closed-

loop dynamic response throughout the workspace. If all closed-loop poles are assigned to the same
location, the algorithm can be implemented with very little computation. To further reduce the

required computation, the modal gains are updated only at discrete time intervals. Criteria are

developed for the frequency of these updates. For commanding manipulator movements, a 5th-order

spline which minimizes jerk provides a smooth tip-space path. Schemes for deriving a corresponding

joint-space trajectory are discussed. Modifying the trajectory to avoid joint torque saturation when

a tip payload is added is also considered. Simulation results are presented.

Introduction

Configuring and designing robotic systems for space applications involve many considerations not

present in terrestrial systems. Safety and versatility are of prime importance. For example, safety
concerns create a need for obstacle avoidance algorithms. Versatility demands may necessitate

the manipulator's ability to perambulate between locations. Redundant manipulators meet these

requirements because the additional degree(s) of freedom allow inclusion of obstacle avoidance

algorithms and increase the maneuverability of the manipulator. The redundant joint configuration

presently studied consists of two links with identicM two degree-of-freedom "shoulder" and "elbow"

joints and a spherical wrist, making a total of 7 degrees of freedom. This particular joint geometry
has favorable characteristics with respect to singularity avoidance, obstacle avoidance, and simplicity.

It is a candidate for use in several NASA applications on the Space Shuttle, Space Station, Polar

Platform, and OMV.

Since this paper deals with quantitative results for a representative space-based manipulator, it

is necessary to summarize the assumed system requirements. The fundamental task required is a

pick-and-place motion involving a payload of mass up to 100 kg and tip forces of 100 N. Speed
of operation is not deemed a high priority, so the manipulator has been designed to achieve tip
velocities of 0.5 m/see. The workspace should be roughly 4 m across, therefore the links are each

1.0 m long. As a result, the joint must be capable of exerting 200 Nm of torque to meet the 100 N

tip force requirement. Each link has a mass of 30 kg, including the associated joint.
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Kinematics Analysis

Figure 1 shows the manipulator configuration. The arm consists of two links of length L1 and L2
connected by a two degree of freedom rotational joint (the "elbow"). The base link is attached

to the ground by an identical joint (the "shoulder"). Each joint has one rotation axis parallel to
the inboard link (roll) and one perpendicular to it (pitch). The shoulder roll axis is normal to the

ground surface. The joint angles are denoted 01, 62, 03, and 64 and called shoulder roll, shoulder

pitch, elbow roll, and elbow pitch, respectively. Joint angle limitations are not being considered.

The four degrees of freedom in the shoulder and elbow joints thus provide redundancy for positioning

the manipulator tip A three dimensional wrist can then be used to orient the end effector. Assuming
a spherical wrist, its kinematics are decoupled from those of the rest of the arm and are not treated
in this analysis.
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Figure 1: Joint Configuration of Redundant Manipulator

The forward kinematics of the arm are easily solved using a variety of methods. In the present

analysis, homogeneous transformation matrices derived from the Denavit-Hartenberg parameters

were multiplied together to produce the vector reaching from the base point to the tip [1]. The
result is

x = Llcls2 + L2 (els2c4 - SlS3S4 + clc2c3s4)

Y = LI$1S2 dr L2 (SlS2C4 Jr ClS3S4 Jr SLC2C354) (1)

z = Llc2 + L_ (C2C 4 -- S2C384) .

where Cl denotes cos 01, etc. The reachable workspace is a sphere of radius L1 + L2 centered at the
base.

Every redundant manipulator is capable of self-motion, that is, the tip can be fixed while the joint

angles are varied. For the present manipulator, self-motion consists of "orbiting" the elbow joint

in a circle. During orbiting all four joint angles must change. In particular, the elbow roll angle
varies from 0* to 360*. It follows that for a given tip position, an inverse kinematics solution can

be found for any elbow roll angle. The same cannot be said for the other three degrees of freedom,
therefore the elbow roll angle is the redundant joint. (For some tip positions, there exists a kinematic
limitation on the elbow roll angle. This will be addressed later.)

Specifying the tip position and elbow roll angle does not uniquely determine the other joint angles -
there are still four possible solutions. These solutions determine one of two possible positions of the

elbow joint and one of two possible orientations of link 1. For example, if the tip lies in the zy-plane

(see Figure 1) then a point on the side of link 1 could "face" the z-axis or the xy-plane. Also, the
elbow joint may be above or below the zy-plane.
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Figure2 shows an inverse kinematics "tree" containing the equations for these four solutions. The
first step in obtaining a solution is arbitrarily choosing the elbow roll angle, 03. The elbow pitch

angle , 04, is found next by examining the triangle whose sides are the two links and the vector from
base to tip, _'. Since all three sides are known, the angle between the links is easily computed. Its

supplement is/94. This solution has two values corresponding to the ambiguity in the sign of the
inverse cosine. Physically, this corresponds to the elbow bending "up" or "down" and determines
one of the two possible elbow joint positions. Once one of these two configurations is chosen, the

appropriate branch of the tree is selected. The shoulder pitch angle, 02, is computed next. Its

equation is found by manipulation of the forward kinematics equations. The sign ambiguity in this

equation corresponds to link 1 facing "up" or "down". This choice of sign determines the final
branch of the tree. The shoulder roll angle is now uniquely determined.

03 chosen arbitr_rilyJ

102= atan2(A,C) [02 = atan2(A,C)

- t n2 1
02 = atan2(A,C) 02 = atan2(A, C)
-arab2 (z, +v_)I -atan2 (z, -vr-DD) I

For all solutions, I01 = atan2[Bx + (As2 + Cc2) y, (As2 + Cc2)x - By] I

C -_ L2s4c3

D =- A 2 + C2 - z2

Figure 2: The Four Inverse Kinematics Solutions

It has been noted that for some tip positions, there is a kinematic limitation on self-motion, meaning

that the elbow roll angle cannot take on an arbitrary value. Mathematically, this limitation can be

derived from the equation for 02. If D, equal to A 2 + C 2 - z 2, is less than zero, then no solution

exists. This occurs when A and C are both "small". A is the length of the arm projected onto the

vector parallel to link 1, so A decreases as the arm is folded onto itself. C is proportional to cos03,
thus it decreases as 03 nears 90 °. From this qualitative analysis two results may be concluded: 1)

When the arm is relatively far extended the elbow roll angle can take on any value and thus complete

orbiting is possible, and 2) When the arm is folded towards itself the elbow roll angle must be near
0°. Both of these conclusions can be restated rigorously. Assuming L1 = L_. = L, it can be shown

that for tip positions lying outside of the volume defined by two spheres centered at z = =t=L aud

having radius L, the elbow roll angle may take on any value. For tip positions lying inside of this

volume, the elbow roll angle is constrained to

10 1< arccos - ,
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where7 = (L_ + L_ - r_)/(2LtL_.). This range of angles is centered around 0a = 0. Figure 3 shows
the regions of limited orbit capability.

WOItI(SPACE Z

\ t /TL
L,-ta.- L

Figure 3: Regions of Limited Orbit Capability

For maximum maneuverability, Figure 3 indicates that it is desirable to keep the workspace near
the xy-plane. An interesting parallel exists between this workspace location and the dexterous

"workspace" of the human arm. The human arm is kinematically similar to the manipulator if
we visualize its "z" axis extending horizontally out the sides of the shoulder. Our arms are most

dexterous in front of us, which is near our xy-plane and corresponds to the manipulator area of
complete orbit capability.

Controller Design and Analysis

The controller design for a space-based manipulator is primarily driven by requirements to maintain

a specified closed-loop bandwidth with a minimum of computational complexity. The bandwidth

is specified to accurately follow commanded trajectories. Disturbance rejection and modeling

error impacts will be discussed later. Computed torque controllers, which use feedforward, will

provide good dynamic response throughout the workspace; however, their computational complexity

may preclude their use in space applications. The modal control algorithm presented in this
paper is designed to maintain a nearly constant closed-loop dynamic response with a minimum
of computation.

The equations of motion of any space manipulator take the form

r< = M(O)O + v(e, O) + F(O, O) - rd, (3)

where rc is the joint control torque, O is a vector of joint angles, M is the mass matrix, and V is

the nonlinear "velocity-squared" term of the dynamics, F is the friction terms, and ra is the joint

disturbance torque arising from tip disturbance torques. For purposes of controller design, V and
F can be viewed as a disturbance torques. Therefore, assuming the controller will have sufficient

disturbance rejection and/or V and F are sufficiently small, the controller can be designed based on
the approximate equations of motion given by

rc = M(O)_. (4)

If constant gain colocatedjoint control is applied to a manipulator the dynamic response varies widely
throughout the workspace. Equation 4 shows that for slow motions this variation is primarily caused

by the changes in the mass matrix as a function of O. (Physically, the apparent inertia at each joint
changes with arm geometry.)
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The modal control algorithm applies colocated joint torques using feedback gains which vary with

configuration in order to ensure a nearly constant closed-loop bandwidth throughout the workspace.
The feedback gains are computed from the mass matrix as follows. The mass matrix M is always

real positive definite and thus may be transformed such that 5q'MS = D, where D is diagonal and

firs = I. The simplified equations of motion (equation 4) then become

ST MSij =. STre ' (5)

where r/= sTe. The elements of 77are called the modal coordinates. Equation 5 may be rewritten

(6)
as Oi_= u,

where u = STr is the modal control torque. Placing the poles of this system using modal position
and rate feedback is almost trivial because D is diagonal. Its diagonal elements are the modal

inertias, denoted hi. The modal control torque thus takes the form

ui = -(Kp,irli + I(r,iili), (7)

where Kp,i = ,'_iwY and K_,i = 2,,_i_iwi are the ith modal position and rate gains, respectively, which

give the closed-loop poles associated with _?i a damping of {i and a frequency of wi. The modal
control torque is transformed back into joint space to give the joint control torque as

where Kp and K_ are diagonal matrices containing the position and rate gains given in equation 7.

The control torque may be rewritten as

Since eigenvalues are preserved under a similarity transformation, the feedback scheme of equation 9
results in the same closed-loop poles that were assigned to the modal coordinates using equation 7.

As a result, a constant dynamic response throughout the workspace is assured for sufficiently slow

manipulator motions.

The choice of closed-loop frequency and damping is the result of hard requirements and engineering

judgments. The requirements arise from desired tracking accuracy. This will be discussed later.
The engineering judgements include considerations of disturbance rejection, positioning accuracy, tip

force application, and noise sensitivity. Other factors which impact system stability and performance
include structural flexibility, modeling errors, and time delays. Further, the control must be

implemented on actuator/drive subsystems which contain their own dynamics [2]. The influence
on all of these factors on choice of closed-loop pole location are topics of continuing research.

Reducing Control Computation

Implementing the algorithm described above requires diagonalization of the mass matrix and several
matrix multiplications involving S. Much of this computation can be avoided by a simple restriction

on the pole placement, namely, that each of the poles corresponding to the r/i be placed at the same

location. In this case, the position and rate gain matrices become

lip = Dw 2

K_ = 2D(_, (10)

where ( and w are the damping and frequency, respectively, of that one pole location. As a result

equation 9 reduces to
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Thecontrolgainscanthusbecomputedsimplybymultiplyingthemassmatrixbya scalar.The
restrictionthat all modalpolesbeplacedat thesamelocationis notunrealistic.Fortrajectory
following,it is only necessarythat their frequenciesaresufficientlvhighand their dampingisadequate.

Furthercomputationreductioncanbeachievedby updatingthe controlgains(the matrixof
equation9)lessfrequentlythaneverymicroprocessorcycle.Thusthesamecontrolgainsareusedfor
severalcycleseventhoughthemanipulatorconfigurationischangingslightly.Thegaincomputation
canthenbespreadoverseveralcycleswith thegainsbeingupdatedonlyaftertile computationiscomplete.

Analysishasbeenperformedtodeterminehowoftentheseupdatesneedtotakeplace.Theminimum
gainupdatefrequencydependsonhowfastthemassmatrixischangingsincethegainsarecomputed
fromit. Forthepresentmanipulator,themassmatrixismostsensitiveto theshoulderandelbow
pitchangles.Theshoulderpitchanglechangestheapparentinertiaabouttheshoulderroll joint
becauseit movestheentiremanipulatoreithercloseror fartherfromthatjoint'saxis.Theelbow
pitchanglefoldsthearmeitherinoroutandthuschangestheapparentinertiaaboutbothshoulder
joints.Asa result,thegainupdatefrequencyshouldbesetaccordingto expectedpitchanglerates
foragivenmanipulatormotion.It hasbeenfoundfromsimulationthatthegainsshouldbeupdated
no lessthanonceevery5° of eitherpitchanglerotation.Suchrotationschangethetermsin the
inertiamatrixby lessthan10%,providedthearmis notfullyextended.

Tip-Space Stiffness and Contact Forces

Of interest in the design of a position controller are the forces of contact generated when the

manipulator tip approaches a desired location and touches the environment. These forces are

important in determining how well a manipulator performs a given task and whether there is a

possibility of damaging the environment. For these reasons, it is important to quantify the contact
forces which a given controller generates.

Contact forces are generated by a manipulator under position control when an obstacle prevents

the tip from reaching its commanded position. For example, if the tip is commanded to a position

behind a wall (due to position sensor inaccuracies or an error in modeling the environment) the tip
will be stopped by the wall but continue to exert a force on it as the tip tries to reach the commanded

position. The magnitude of the resulting contact force depends on how far the commanded position

is behind the wall and the Cartesian "stiffness" of the control system. This stiffness can be expressed
as a matrix K in the relation

F = -nAz, (12)

where F isthe forceactingon the wall and Az the distancefrom the commanded positionto the

wall. Equation 12 alsoexpressesthe relationbetween a forceexertedon the tip in freespace and
the resultingtipdeflection.

Any manipulator under position control exhibits such a stiffness due to position feedback in tim

controller. In steady-state, the control law can be written re = -GAO, where G is the position gain
matrix given by G = SKpS "r when using modal control (see equation 9). It is well-known that the

Jacobian J relates tip deflections to joint deflections by JAO = Az and tip forces to joint torques by
jT F ---- 7-. Substituting these two relations into the steady-state control law above and rearranging
yields

f = --(JSI(flsTj T)-IAx. (13)

Thus the apparent stiffness matrix of the manipulator under modal control is K = (JSK_ 1S T jT)- 1.
The properties of this matrix as a function of the controller gains and joint angles is a topic of
continuing research.
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Path Planning for a Redundant Manipulator

The simplest problem in path planning is computing a tip-space position, velocity, and acceleration

trajectory that moves the end effector from one point to another. A 5th-order spline has been chosen
for this purpose because it can give zero velocity and acceleration at the end points. The solution is

= + (67- - 157-'+ 107-3)( i - (14)

where xi and x! are the initial and final positions and 7" (defined as t/T) is normalized time with T
the total maneuver time [3]. It can be shown that this spline also gives the minimum jerk for any

polynomial trajectory. Hollars recommends that the controller have a bandwidth of at least 4/T Hz
to adequately track this spline. The same spline is used for all three tip-space coordinates. As a

result the trajectory is a straight line between the start and end points.

The next task in path planning is generating a joint-space trajectory corresponding to the desired

tip-space trajectory. For redundant manipulators, there exists an infinite number of joint trajectories
for each tip trajectory. In the present case there is one redundant degree of freedom, therefore one
additional constraint must be added in order to produce a solution. This constraint could arise from

considerations of singularity avoidance, obstacle avoidance, tip-space stiffness, etc.

The present manipulator has no internal singularities within the region of complete orbit capability.

Therefore, an easy singularity avoidance scheme consists of limiting the workspace to this region.
A constraint still needs to be chosen to solve the inverse kinematics. The constraint 03 = 0 is one

simple possibility. This leaves four possible solutions for the other joint angles (see Figure 2). A

single one can be selected based on how the links are to be oriented during the motion (elbow "up"
or "down", etc.). This choice could be driven by constraints on the position of the elbow itself

arising from obstacle avoidance concerns.

Another possible constraint is minimizing joint velocities. This can be accomplished by resolved-rate
control in which a desired tip velocity trajectory is transformed into a joint velocity trajectory. The

Jacobian pseudo-inverse is used to find the instantaneous minimum joint velocity. The solution is

O(t) = :'2(t), (15)

where ._'(t) is the vector of tip-space coordinates and jt is the Jacobian pseudo-inverse given by

Jt : jT(jjT)-I. This solution minimizes the 2-norm of the joint velocity vector at each point in
the trajectory. Several modifications to this method have been proposed in the literature [4,5]. They

generally attempt to optimize some other performance criterion or potential function.

One argument for using equation 15 is that it helps avoid singularities because joint velocities tend
to increase near them. However, this method causes the tip to follow the desired trajectory exactly,

therefore if the trajectory passes close to a singularity then the minimum joint velocity solution

can be arbitrarily large. Wampler and Leifer [6] have proposed an interesting modification to this
method which causes the tip to deviate from the desired trajectory when it approaches a singularity.

In this way an upper bound on joint velocities can be maintained.

For the present manipulator, limiting the workspace to the region of complete orbit capability will

avoid all internal singularities. If the manipulator is required to move out of this region then 03 = 0 is
the recommended constraint because it will avoid orbit angle limits. If the tip is always in this region

then either 03 = 0 or equation 15 gives acceptable results for simple pick-and-place operations. When

constraints involving obstacle avoidance, elbow joint position, or tip stiffness arise, the redundancy

can be used to address them.

Path Planning in the Presence of a Tip Payload
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Sincewearedesigninga manipulatorto performpick-and-place operations, path planning with a

tip payload is of concern. Clearly, executing a trajectory with a tip payload will require larger
control torques than tracking the same trajectory without a payload. A nominal trajectory duration

for movements without a payload should be selected such that the peak joint torque conunauded

is a certain fraction of the maximum joint torque. This nominal duration should be varied with

trajectory distance in order to keep the average tip velocity constant. This will ensure theft the
velocity-squared terms and the inertia term of the equations of motion maintain the same relative
magnitude (see equation 3).

When a payload is added, the nominal trajectory must be modified in order to ensure the same peak

joint torque command. Using simple results from the dynamics of accelerating a point mass, we can

assume that the maximum control torque required to execute a trajectory is inversely proportional
to the square of the maneuver time. That is,

1
"re,max O_

T_' (16)

where r¢,,na_ is the maximum control torque and T is the trajectory duration. The first step in
modifying the trajectory is running a simulation to determine the peak joint torque commanded

when moving the payload through the nominal trajectory duration. Equation 16 can then be used

to adjust the maneuver time accordingly. Also, the desired closed-loop pole frequency should be

lowered so that it is no higher than that required for tracking. This will minimize the sensitivity of
the controller to noise and unmodeled dynamics.

The mass matrix used to compute the control gains should include modeling of the payload. If it
does not then the closed-loop poles will have a lower frequency and damping than that desired. As

a result, the disturbance and noise rejection may be degraded. Including modeling of the payload

in the mass matrix will ensure that the desired closed-loop poles are achieved. Since space-based
manipulators will initially be used in highly structured environments, the time of attachment and
mass properties of payloads should be readily available.

Simulation Results

This section presents simulations of tip trajectory following with and without a payload using the

modal control algorithm and two redundancy management schemes. The starting and ending

tip coordinates (in meters) in the z-y-z coordinate system of Figure 1 are (-0.8, 1.0,0.6) and

(0.6, 1.2, -0.8), respectively, giving a trajectory length of about 2 m. Note that the line connecting

these points lies completely within the area of complete orbit capability. The control gains are

updated every 0.25 sec and the payload is assumed to be a point mass of 100 kg located at the tip.

Figure 4 shows the response with no payload using the 0a = 0 constraint. All closed-loop pole
frequencies are set to 2.4 rad/sec, which is the minimum required for a 10 sec slew. In the first

plot the actual and commanded tip motion are shown. Although the actual tip motion lags slightly
behind the desired trajectory, it converges accurately to the desired end position at the end of the

maneuver. Note that the discrete gain updating causes jumps in the commanded joint torques.

Since joint dynamics are not modeled here, the commanded torque is equal to the applied torque. In

actuality, the dynamics of the joint motor will smooth these jumps while not degrading the tracking
accuracy. Modeling joint dynamics is currently being researched [2].

Figure 5 shows the same simulation except that the pseudo-inverse is used to generate the joint

trajectory. Notice how 0a attains a final angle of about 350 in order to decrease the average

velocity of the other three joints. Otherwise, the performance is the same as before. Figure 6
shows the simulation of Figure 4 except that a 100 kg payload has been added. Another simulation

showed that the maximum control torque with this payload and a maneuver time of 10 sec is about

12 Nm. Therefore, using equation 16 and the fact that the previous simulations have maxinmm
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Figure 4: Simulated Maneuver with Oa = 0 Constraint

control torques of 3 Nm, the maneuver time was lengthened by a factor of 2 (= xjq-2-/3) to bring

the maximum control torque back to 3 Nm. In addition, the closed-loop poles were reduced to

1.2 rad/sec to match the increase in maneuver time. The tracking performance is as good ms that

with no payload.
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Conclusions

"['he inverse kinematics solution, a modal position control algorithm, and path planning results for

a 7 degree of freedom manipulator have been presented. After arbitrarily choosing the elbow roll

angle, the redundant degree of freedom, the inverse kinematics has four solutions. Each solution

corresponds to a different orientation of the links in space. It is also shown that a locus of tip

positions exists in which there are kinematic limitations on the orbit angle.

A computationally simple modal position control algorithm has been developed which guarantees

a nearly constant closed-loop dynamic response throughout the workspace. The algorithm consists

of diagonalizing the mass matrix into four modal inertias aud computing feedback gains to conlrol

the modal coordinates. This controller is able to reject the disturbance arising from the unmodeled

w:locit,y-squared terms. If all dosed-loop poles are assigned to the same location, the algoriti_m

can be iml_lemenl,ed with wery little computation. To further reduce the required computation, the

modal gains are at, discrete time intervals. An update frequency of every 5 o of either pi_,ch angle

67



tv.
O

O
¢)

2

0 5 10 15 20

TIME {SEC)

4

2

O'

g 0
[..,

,-1

o -Z
Z
0
o -4

...... :.::;-
T,

i i i

5 I0 15 2O

TIME (SEC)

200 ,

lo0

0

-100

,--a

-200

0

' •

.... __ _4___ __- ¸-.

t i i

5 ]0 lfi 20

Tree ISEC)

Figure 6: Simulated Maneuver with 100 kg Payload

motion significantly reduces computation without degrading performance.

For commanding manipulator movements, a 5th-order spline with zero velocity and acceleration at

the end points provides a smooth tip-space path. The frequencies of the closed-loop poles should

be at least 4/T Hz, where T is the trajectory duration, to maintain adequate tracking. The best

singularity avoidance scheme is keeping the tip trajectory in the region of complete orbit capability.
The orbit angle can then be used to address other constraints such as obstacle avoidance or tip-space
stiffness. A method is presented for modifying the trajectory duration when a payload is added to

maintain a constant joint control torque. The payload should be modeled in the mass matrix to
allow accurate control over the closed-loop bandwidth.
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