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Abstract

This paper deals with the planning of dexterous grasps for multifmgered robot hands operating in
uncertain environments. We first describe a sensor-based approach to the planning of a reach path

prior to grasping. We then develop an on-line, joint space finger path planning algorithm for the enclose

phase of grasping. The algorithm minimizes the impact momentum of the hand. It uses a Preshape

Jacobian matrix to map task-level hand preshape requirements into kinematic constraints. A master

slave scheme avoids inter-finger collisions and reduces the dimensionality of the planning problem.

1 INTRODUCTION

The work described in this paper is motivated by applications that involve dexterous manipulation by

autonomous or teleoperated robots in unstructured, uncertain environments. Examples may include

equipment maintenance and repair operations in space, under the sea, in a nuclear power plant, or in

a chemically contaminated area.

Robot manipulators have traditionally used a gripper (capable of opening and closing motions) attached

to their wrist to achieve a rather modest level of mechanical dexterity. This has been adequate for

simple manufacturing applications in which the environment may be conveniently structured. The need

for a higher level of dexterity, more versatility and more adaptability in end-effectors has become

increasingly apparent as the application of automation has grown into areas where the environment is

unstructured, and tasks have become more complex. Multifingered hands hold a great deal of promise

because of their ability to impart precise localized forces and velocities to objects, and because of their

ability to provide stable grasps. Unfortunately, complications arise, as finger coordination, finger tra-

jectory planning, and task planning are not well defined for multifingered hands.

The motion of a robot hand is subdivided into five phases [7]: (i) the reach phase during which the

hand moves to the vicinity of some object, (ii) the preshape phase defines an approach volume between

the fingers, (iii) the enclose phase until the object reaches the focus of the approach volume, (iv) the

grip phase during which fingers apply forces to the object, (iv) the manipulation phase deals with the

transfer of the available degrees of freedom to the object.
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Our overall objective is to derive intelligent control algorithms for multifmgered robot hands in

unstructured environments. An outline of our overall approach to grasp planning is outlined in this

section. Section two deals with more specific issues related to planning the reach path, while sections

three and four focus on the derivation of a minimum momentum approach to finger path planning
during the enclose motion of a preshaped hand.

Reach phase

Our main emphasis here is on the development of active sensing strategies. We have developed an

evidentialclassifier [12] based on the concept of prototypes for the recognition of graspable objects from

incomplete evidence. Prototypical objects and their possible interpretations are stored in a knowledge

base during the off-line training stage. The output of the classifier is in the form of belief functions,

and must therefore be disambiguated prior to grasping. A disambiguation scheme that minimizes the

entropy [13] of the interpretation is discussed in section two of this paper.

Sensory data are first gathered off-line, and processed by the evidential classifier to determine a set of

candidate reachable objects, or targets [15]. Targets are modeled as attractors in state space. Similarly,

several sets of obstacles are identified, and also represented repellers. Each set of targets and repellers

is assigned a weight corresponding to their entropy. These sets are used for the local (i.e. around the

current position) planning of the reach path. During the execution of the planned motion, additional

sensory data are gathered. This is done by using a Newton iteration method (discussed in section 3)

that guides the hand closer to targets and obstacles with higher entropy. As additional and/or more

refined data are acquired, the classification of targets and obstacles is updated on-line.

Preshape phase

The purpose of this phase is to preshape the hand into a configuration suitable for the anticipated

action. Our work here is focused on a new theory ofprehensibility [10] in which a topological model of

prehension is used in conjunction with a knowledge based system to determine hand preshapes from

a list of object properties and high-level task specifications. Objects are described geometrically (e.g.

cylindrical shape), topologically (e.g. number of vertices, edges, faces), and functionally (e.g. used as a

tool). Tasks are described in terms of geometrical, topological, and functional, and behavioral properties.

Enclose phase

The main focus of this paper is on the enclose phase. In sections 4 and 5, we describe a master-slave

finger path planning algorithm during the enclose phase. Inputs to the algorithm include the hand

preshape, and the desired cartesian position of the master fingertip. The algorithm generates a sequence

of knot points (in joint space) that minimized the impact momentum of the master finger, while pre-

serving the hand preshape constraints during the enclose motion. Our approach is based on a Newton

iteration applied to the master finger. Using a dyadic expansion of the differential momentum of the

master finger, we define a Preshape Jacobian that incorporates global (i.e. hand level) preshape con-
straints into the local (finger level) Newton scheme.

The method is illustrated by computing a Pinch Jacobian and a Hook Jacobian for 2D (planar) motion.
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Grip phase
We have studied the performance of a tentacle-based, massively redundant manipulator [11] as an

alternative to manipulation by an arm/hand combination. The tentacle manipulator is able to grasp by

wrapping its links around an object in the same manner used by octopi. This method of grasping is

advantageous because the tentacle becomes an all-in-one arm and gripping device capable of a variety

of configurations and grasps, while utilizing the mechanics of serial manipulators. We have developed

a quantitative method for the evaluation of grasp manipulability and stability accounts for multiple

object contacts for each tentacle. Methods for applying both precision and power grasps to three

dimensional objects for manipulation using a tentacle manipulator have been derived. These grasps

are advantageous because each can be obtained from the other by merely curling or uncurling links

from around an object, thereby reducing the number and complexity of grasp configurations.

2 SENSOR BASED REACHING

This section deals with object recognition and path planning during the reach phase of a dexterous

grasp.

2.1 Minimum entropy disambiguation

An evidential classifier for object recognition has been described in [12]. We assume that low level

sensory data processing has been completed, and that objects have already been detected in the

segmented scene. The classifier uses shape primitives (e.g. rectangle, square, triangle) and matches

them against an aggregate of prototypical graspable objects that are representative of all the classes

(e.g. Pyramid, L-Shape, Handle, Cylinder) of interest. Because the sensory data as well as the aggregate

of prototypes are generally incomplete, the classifier output is in the form of a belief function over

the object frame of discernment, FO.

It is necessary to disambiguate the output of the classifier, i.e. to map the belief function in FO into a

singleton (single object class), prior to grasping. This is done by using a minimum entropy criterion.

2.1.1 Algorithm

Let the output of the classifier be a belief function with core: Q = { q _..... q, ), and basic probability

assignments: B -- (b (q _) ..... b (q n)).
The class entropy h,(t_,) of the ith object class is:

h_(_)= _q -b(qJ )l°9(b(qj))--_-"l°9p , q' q_JJ

The summation is over all focal elements qj (in FO) containing co,. For a given object, the class

entropies are computed for each class (singleton of FO). The object is then assigned to the class that

yields the lowest entropy.

The belief function reflects two types of distribution among possible classes: (i) a topological dis-

tribution formed by the creation of focal elements corresponding to sets of classes, (ii) a probabilistic

distribution of belief values assigned to the focal elements. Each class contributes to both types of

distributions, and therefore to the generation of entropy. A class contributes to entropy in the

topological distribution if it contributes to the confusion in choice. This occurs when a class is

embedded in a focal element (i.e. set of classes). A class may also contribute to entropy because of

the distribution of belief among focal elements.
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2.1.2 Example

Let the belief function M denote the output of the evidential classifier [12]:

M = [{PYRD,LSHP, HNDL,(PYRD,LSHP)},{.09,.17,.4,.18}]

PYRD denotes the class of pyramid shaped objects, LSHP stands for L-shape objects, and HNDL
represents the class of handle shaped objects.

The class entropy of PYRD is:

h¢( PY RD ) =- b( q t ) log(b( q n))- b( q 4) log(b( q4) )

PYRD', [PYRD"_

PYRD_'°gL_)

= .23+ . 16 = .39

PYRD" . [ PYRD"

PY R-_ + T'SH P''°gL PY R-D; +-_H P' )

The class entropy of LSHP is:

h,( LSHP) =- b(q2)log(b(q2) )- b(q,)log(b(q,))

LSHP N, [LSHP") LSHP' , [ LSHP"
LSHPN'°gL _ PYRD" + LSHP,'°ff_,pyR_;+"_Hp.)

= .27+ .13= .40

The class entropy of HNDL is:

HNDL' (HNDL')h,(HNDL)=-b(qa)log(b(qa)) _log HNDL; =.16+0=.16

The object is classified as a handle since the HNDL class has the lowest entropy.

2.2 Reach path planning

In this section, we assume that a set of targets (Eg. HNDL) and several sets of obstacles (e.g. PYRD

and LSHP) have been recognized. Our goal is to design an on-line path planning algorithm for the

reach phase. This algorithm can adapt to updates in the classification of targets and obstacles as
additional sensory data are gathered.

2.2.1 Target and obstacle representation

Our approach to path planning is based on a local rather than global strategy. To accomplish this

goal, we generate two sets of vector polynomial functions: the target function H A(×) and the obstacle
functions H R'(X) such that

=o, o
where X is the state vector, X .= is the location of the ith attractor (target), and X _' is the location of
the ith repeller (obstacle) in the jth obstacle set.

2.2.2Algorithm

Our approach to path planning is based on the Newton iteration:
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x_., = x_- _[VH'(X_)] -_ H'(X_)

+ 7HPJ(X k)]-lH_j(Xk)
I ypjL

where v _ is the class entropy for the set of attractors, ¥ _' is the class entropy for the jth set of

repellers, and 8 _ , 8 _' are weighting coefficients discussed in [15].

2. 2. 3 Example

Assume 4 HNDL attractors at

XGI= [ ] 2] X z_= [8 l ] X_ = [4 2]

3 PYRD repellers at

X','= [1.5 ;3] X'2'= [2.5 2] X'3'= [3.5 ;3.5]

and 4 LSHP repellers at

XP2, =[11] X'22=[2 4] X'_3 =[4 ;3] X '_4=[52]

Fig. la shows thefield created by the targets and obstacles. Fig. lb shows the trajectories for two sets

of target and obstacle class entropies. Repellers are represented by flned-in squares, and attractors

by filled-in circles. Initial states are indicated by empty circles. Trajectories labeled T 1, T 2, etc. are

generated with V° = 1, Vp' = 1.25, while trajectories labeled S 1, S2, etc. are generated by assigning

lower entropy for the attractors, and higher entropy for the repellers, namely: v _ = .5, ¥P' = Z In

this case, the trajectories pass closer to the obstacles.

3 FINGER PATH PLANNING

In this section, we apply a Newton iteration similar to the one described in section two to path planning

for a single finger during the enclose phase. The results are then extended in section 4 to the grasping

motion of a two-fingered hand, by using a master-slave scheme. Our algorithm is based on a Newton

iteration scheme that generates a sequence of knot points (in joint space) through which the master

finger must pass. This scheme minimizes the impact momentum of the finger, evaluated at the desired

fingertip contact location.

3.1 Finger momentum

When a wrench vector is applied to the ith finger, it causes changes in its momentum vector G t. Let

r, denote the fingertip position vector, v ,denote the fingertip velocity, and A r ,denote a finite fingertip

displacement, all in cartesian coordinates relative to a base (palmar) frame. Similarly, let 0, and 03,

denote the vectors of joint angles and velocities for the master finger, and A 0, denote a finite finger

displacement in joint space.

The momentum of the ith finger is given by :

G,=rn,v,xr,+ rn_v,

where m, v, x r _is the angular momentum of the finger, rn, v, is its linear momentum, and m, is its

mass, assumed to be concentrated at the fingertip.
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3.2 Finger path planning

The differential mapping of A r, into momentum changes A e, is given by:

AG, = Jr,Ar t=JrJtA0,=JoA0 t

where Jr, is the finger Jacobian, i.e. Art = Jt, A0_

Our approach to finger path planning is based on the minimization of its impact momentum. Let 0_

denote the desired fingertip position. To find the roots of the momentum function G_( 0,- 0 7) , we
generate a sequence of knots points by the Newton iteration :

= o, _ j,
0 t

3.3 Dyadic expansion

Since the finger momentum is a vector quantity, the iterative procedure used for its minimization

requires the expansion of the differential momentum tn Its thjadtc form (reference}. I.e.:

AG_= (Ar_-V)G,

1

=._[Vx(G_xAr,)+ V(G_.Ar_)+ Ar,(V.G_)-G,x(VXAr,)- Ar,x(VxG,)]

For the special case of 2D grasping in a plane, the angular momentum does not lie in the plane of

motion. The linear and angular components of the momentum are therefore not additive. Instead, we

use the planar discrepancy between angular and linear momentum (for unit mass), i.e.

G_=(v,Xr,)xv,

The expansion of the dyadic G, yields :

(Ar_- _7)G_ = (Art" _)( v_ x r_) x v_

1
= _( [(v,. Ar,)r ,-(r,. v,)](v, v,)

+ [(v,x r,). Ar,](_x v,)

+ (r,. v,)[v, x (V XArt)+ Art x(Vx v_)]

-(v,- v,)[Ar, x (x7 x r,) + r,x(VxAr_)]

+ V[(v,- v,)(r,-Ar,)- (r,. v,)(v,.Ar,)]

-(v_. Art)(Vdr_-R,v,+2v,)+2(v d. vt)Ar _ }

where

v, and R t are the Jacobian matrices of the functions v _ and r, respectively.

The first line in the dyadic expansion consists of divergence terms. The next three lines consist of curl

terms, while the last two lines only contain terms that are not differential.
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We postulate that hand preshapes can be analyzed in terms of two motion characteristics:

(i) the handflux, and

(ii) the hand curl

Figure 2 shows a schematic representation of a three fingered hand. The hand encloses a volume

bounded by the fingers. The hand flux is the sum of the divergence of its N fingers moving over a

shrinking preshape volume:
N

CV.v)" = (v-v,)
l-I

As the fingers close during grasping, the fingertip moves along a path enclosing a surface that shrinks.

The curl vectors define the directional curling of the finger with respect to its own base, and are given

by:
N

(Vxr)" = IVxr_
t-I

N

(Vxv)" = )_Vxv,

4 MINIMUM MOMENTUM GRASPING

Different types of grasping motion are normally associated with the different preshapes of the hand.

In this section, we derive a Preshape Jacobian matrix for the preshapes of a 2-fingered hand moving in

the plane. Our goal is to map high-level task specifications into joint angles and velocities.

4.1 The Preshape Jacobian

In this section, we modify the Newton scheme described in section 3.2 to include the global (hand

level) preshape constraints embedded in the Preshape Jacobian. The modified iteration,

O_÷' = O_ - J_' G,.(O_-O_,)

also minimizes the momentum of the master finger (i = m), but uses the matrix J ,, which we call the

Preshape Jacobian instead of the matrix J o, The Preshape Jacobian is defined by:

J.AO m = AG.

A O, is the preshape momentum differential. It incorporates global preshape constraint information

into the path of the master finger.

AG ,is obtained from AG _by replacing the flux and curl terms for a single finger by the flux and curl

expressions for the whole hand, i.e. replace

N

(V- v,) by (v- v)" = Z _*_ (V. Vl)

N

(vxv,) by (Vxv)'=E
t°l

N

(Vxr,) by (Vxr)"= _- _,r (Vxr,)
t-I
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where the coefficients:

-1 < a*o,o*°,_ *r <_ 1

depend on the specific hand preshape constraint. Two examples are given below.

4.2 The Pinch Jacobian

In the pinch grasp (fig. 3a), both fingers contribute to grasping. We assume the two fingers are

preshaped symmetrically, and that they remain symmetric during the reach motion. The following set
of constraints is used to model the pinch preshape:

(Vxv)"=0 (Txr)"=0 (7.v)"=7.0_ + V-u2

and leads to the Pinch ]acobian:

AG. = J(O, w)%..,h A0._

4.3 The Hook Jacobian

For the hook grasp (fig. 3b), fingertip 2 is coupled with joint j of finger 1. The constraints are:

r2x=r/, r2y=-rjy V2 =V;. V2y='-Vjy

and lead to:

(Txr) H = 7xr2- 7xrj (VXv)" =XTxv2- 7xvj

The Hook Jacobian is determined from:

AG. = J(0, o_).,., AO,.

(7.v)"= V.v2+ 7.v i

5 DISCUSSION

The minimum momentum grasp planning described in this paper was motivated by applications such

as NASA's EVA Retriever, which is required to grasp loose objects tumbling freely in space. In our

algorithm, one finger is designated as the master, and its path is planned so as to minimize the impact

momentum. A Preshape Jacobian was derived to map task-dependent preshape constraints into

kinematic constraints, and thus provide the necessary coupling with the slave fingers. Planning the paths

of the slave fingers follows directly from these constraints. We are currently conducting computer

simulations for various 2D grasps. The concept of Julia sets [2] is used to graphically study the con-

vergence of the grasping process in various regions of the state space. We are also in the process of

deriving expressions of four (fingertip, lateral pinch, cylindrical, and hook) 3D Preshape Jacobians for
the Stanford/JPL hand.
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