
,_ , • >

NASA Contractor Report 182090

A PACKAGE FOR 3-D UNSTRUCTURED

GRID GENERATION, FINITE-ELEMENT
FLOW SOLUTION AND FLOW FIELD
VISUALIZATION

"......T T E- E iiT

':i' Ab!b FL.{#,_ _[.ELD VISUALTZATIO_,IF L 8_ .:>_ L U T I 0 N

Fin_l _<c:F_or_. (Vigy:_,m Research ._,_sociates]

i@_, _::> CSCL OIA :G3/o2

ii90-2930V

Unc! ,ss

O 30 <?Ci5 i

Paresh Parikh, Shahyar Pirzadeh,
and Rainald LiJhner

VIGYAN, INC.

Hampton, Virginia

Contract NAS1.18670

September 1990

N/ A
National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

TABLE OF CONTENTS

ABSTRACT ... v

ACKNOWLEDGEMENTS .. vi

LIST OF FIGURES .. vii

CHAPTER i. INTRODUCTION .. I

CHAPTER 2. UNSTRUCTURED GRID GENERATION 4

2.1 OUTLINE OF THE TECHNIQUE 5

2.2 DEFINITION OF SURFACES .. 5

2.3 BACKGROUND GRID ... 7

2.4 GENERATION OF THE INITIAL FRONT 8

2.4.1 Planar Surface Segment ... 10

2.4.2 Triangular Isoparametric Parabolic Surface Segment 10

2.4.3 Rectangular Isoparametric Serendipity Surface Segment 11

2.4.4 Triangular Barnhill-Gregory-Nielson Patch 12

2.4.5 Rectangular Bilinear Coon's Patch 12

2.4.6 Stretching and Shearing of 2-D Unit Segments 12

2.5 ADVANCING THE FRONT ... 13

, 2

2.5.1 Heap List for Face-Removal Search 15

2.5.2 Quad/Octrees for Point Search .. 18

2.5.3 Linked List for Adjacent Face/Element Search 20

2.5.4 Filtering Close Points and Faces 22

2.5.5 Ordering the Candidate Points .. 23

: i:/i- ,

2.5.6 Checking the Intersection of Faces 25

2.5.7 Interpolating Information from the Background Grid 28

2.6 GRID POST-PROCESSING ... 30

2.6.1 H-Refinement ... 30

2.6.2 Mesh Smoothing .. 32

CHAPTER 3. VGRID3D PRIMER ... 33

3.1 SETTING-UP AN INPUT FILE ... 33

3.1.1 Title Line .. 34

3.1.2 Domain Definition 34

3.1.3 Special Lines ... 38

3.1.4 Background Grid ... 39

3.1.5 Mirroring and Refinement ... 40

3.2 RUNNING VGRID3D ... 41

3.3 OUTPUT FROM VGRID3D ... 41

CHAPTER 4. POST-PROCESSING .. 44

4.1 DETAILED FEATURES OF VPLOT3D 44

CHAPTER 5. FLOW SOLUTION .. 49

5.1 THE EQUATIONS OF COMPRESSIBLE FLOW 50

5.2 FLOW SOLUTION METHOD ... 50

\.

_i ¸:/

A_ ¸

5.2.1 Flux Corrected Transport (FCT) 51

5.2.2 Algorithmic Implementation .. 52

5.2.3 The Limiting Procedure .. 53

5.2.4 The High-Order Scheme: Consistent-Mass Taylor Galerldn 55

ii

i̧/:!:/i/i
!i:::/i_i_:_,i

:!!__i̧,::I/:

5.2.5 The Low-Order Scheme: Lumped-Mass Taylor

Galerkin Plus Diffusion ... 56

5.2.6 Resulting Antidiffusive Element Contributions 57

5.2.7 Limiting for Systems of Equations 57

5.2.8 Artificial Viscosities ... 58

5.3 SAMPLE RESULTS ... 60

CHAPTER 6. CONCLUSIONS ... 62

REFERENCES ... 63

FIGURES .. 68

APPENDIX .. 93

SAMPLE INPUT FILE FOR VGRID3D .. 94

:i:, __ • _:
lii

...._!_._i__,_ili_ _ _ _i_ii il _ii!_i,_IL_iiiii_i!iI!_. I _I.

_i _ • _ _ i

_ ,flail_)/

A PACKAGE FOR 3-D UNSTRUCTURED GRID GENERATION,

FINITE-ELEMENT FLOW SOLUTION AND

FLOW FIELD VISUALIZATION

"/ i •

_iii_i_ ii__i_'

'i,: i _ :, •

• i i¸•

i

/

ABSTRACT

A set of computer programs for 3-D unstructured grid generation, fluid flow calcu-

lations and flow field visualization has been developed. The grid generation program,

called VGRID3D, generates grids over complex configurations using the advancing

front method. In this method, the point and element generation is accomplished simul-

taneously. VPLOT3D is an interactive, menu-driven pre- and post-processor graph-

ics program for interpolation and display of unstructured grid data. The flow solver,

VFLOW3D is an Euler equation solver based on an explicit, two-step, Taylor-Galerkin

algorithm which uses the Flux Corrected Transport (FCT) concept for a wriggle-free

solution. Using these programs, increasingly complex 3-D configurations of interest

to aerospace community have been gridded, such as the Space Transportation System

comprised of the space-shuttle orbiter, the solid-rocket boosters and the external tank.

Flow solutions have been obtained on various configurations in subsonic, transonic and

supersonic flow regimes.

i;!i/::ii
¸;1%'• _ ¸'

v

_'RECED_NG PAGE BLANK NOT FILMED

ACKNOWLEDGEMENT

The authors would like to express their sincere appreciation to Mr. M. D. Salas,

Fluid Mechanics Division, NASA Langley Research Center for his unending support of

this work. We are also grateful to Mr. Clyde Gumbert, Computational Aerodynamics

Branch, NASA Langley Research Center for sharing his expertise on various matters

related to graphics.

Thanks are also due to the following persons/companies for supplying the initial

surface definitions from which input data to the current grid generator were extracted.

The Boeing Commereial Airplane Company, Seattle for the Boeing 747 configuration,

Dr. R. E. Smith, Computer Applications Branch, NASA Langley Research Center for

a generic fighter configuration, McDonnel Douglas Company for an F-18 fighter config-

uration and Dr. C. P. Li, NASA Johnson Space Center for the Space Transportation

System configuration.

This work was supported by NASA under an SBIR contract entitled "Generation

of Unstructured Grids in Three-Dimensions" (NAS1-18670). Mr. Clyde Gumbert was

the Technical Monitor.

vi

,i _ , _?/

i :_ :_ i!: :

• ii_
i i: _ i_ _

LIST OF FIGURES

FIGURE PAGE

1. Surface Triangulation on a Space Transportation

System Configuration 68

2. Surface Triangulation on a Boeing 747 Configuration With

Details on the Engine 69

3. A Composite Picture Generated Using VPLOT3D 70

4. Surface Pressure Contours on an STS Configuration 71

5. Mapping of a Surface Patch to a Unit Square With Stretching

and Shearing 72

6. Covariant Bases X1 and X2 for a Planar Surface Patch 73

7. Triangular Isoparametric Parabolic Surface 74

8. Rectangular Isoparametric Serendipity Surface 75

9. Triangular Barnhill-Gregory-Nielson Patch 76

10. Rectangular Bilinear Transfinite Coon's Patch 77

11. (a) Insertions of New Items into a Heap List 78

(b) Succesive Deletion of the Smallest Item from a Heap List 79

12. A Quadtree Structure 80

13. A Quadtree Example for an Unstructured Triangular Mesh Around

a Simple Geometry (a) Quadtree (b) Mesh 81

14. A Linked List Structure 82

15. Point 3 in the 'Wrong' Side of the Face to be Removed (Face 1-2) 83

16. Point 4 in the 'Wrong' Side of the Adjacent Face (2-3) to the

Face to be Removed (Face 1-2) 83

17. Apex Angles Corresponding to Points 1, 2, and 3 (2-D) 84

18. Spherical Angles A, B, and C 84

vii

19. An Apex Angle Corresponding to Point 4 (3-D) 84

20. Crossing of Two Faces 85

21. Face-Side Combination 85

22. Distance between Face and Side 85

23. Point P Inside Tetrahedron 1-2-3-4 86

24. Point P (a) Inside and (b) Outside of Triangle 1-2-3

25. H-refinement: (a) Division of a Triangle into Four

........ 86

(b) Division of a Tetrahedron into Eight 87

26. Removal of a Small Element 88

27. Grid Characteristics Parameters 89

28. ONERA M6 Wing, M=0.84, ct=3.06 °, Upper Surface

(a) Triangulation (b) Pressure Contours 90

29. ONERA M6 Wing, M=0.84, o_=3.06 °, Symmetry Plane

(a) Triangulation (b) Pressure Contours 91

30. Comparison of Surface Pressure Coefficients with Experimental Data 92

/ i_' !

viii

k

::k_:!!¸ ;!i!_i!:i

:i _I

1. INTRODUCTION

One of the greatest concerns in computational fluid dynamics is the generation of

suitable grids. Even though considerable effort has been devoted towards development

of robust, user-friendly grid generators, the process of generating 3-D grids around

complex geometries remains a formidable challenge. With the availability of large

supercomputers, it is now possible to calculate flowfields around complex configurations

in a matter of hours. However, the grid generation, using structured grid methods, still

makes up a large portion of a typical computational cycle for a complex configuration.

Over the past few years, an alternative grid generation technique, unstructured

grids, has received a lot of attention. Besides their inherent capability of handling

complex configurations with ease, unstructured grids are apt to efficiently incorporate

adaptive refinement and moving boundaries and offer better control over the grid size

and point clustering. It has become convincingly clear that to handle complex 3-D

configurations of aerospace interest, the use of unstructured grids is a viable, if not the

only, solution.

During the phase I of this study, a technique of generating 3-D unstructured grids

using the advancing front method was explored. In this method, the introduction of

new points and elements is carried out simultaneously. An advantage of this method,

over others that generate grids by connecting an already existing point distribution,

is that it does not require a separate library of modules for generation of points in

advance, thus giving a better control over the grid spacing. Due to their inherent lack of

directionality, unstructured grids and their corresponding flow solutions are diffucult to

visualize. Thus the need for a post-processing program became immediately apparent.

An initial attempt was made to develop such a post-processor program during the phase

I study.

The current (phase II) work was begun with a broad aim of maturing the un-

structured grid technique as much as possible. The grid generator needed to be more

i i' (, I_

,i _

i _ . _,

k

robust and efficient, the graphics post-processor program needed to be expanded and a

preliminary version of an Euler equation solver based on tile unstructured grids was to

be developed. Some pre-processor programs were also needed to extract data suitable

for the grid generator from other widely used data structures.

These requirements, and more, have been accomplished during the phase II study.

As a result, the following three computer programs have been developed.

VGRID3D is a program for the generation of 3-D unstructured grids around

complex configurations using the advancing front method [1]. During the course of

this work, many increasingly complex configurations were gridded using VGRID3D;

the surface grids on two of them, a Space Transportation System (STS) configuration

and a Boeing 747 with flow through engines, are shown in Figures 1 and 2, respectively.

VPLOT3D is a workstation-based, interactive pre- and post-processor graphics

program for unstructured grid data manipulation and display. It has the ability to

display a variety of scalar and vector quantities on user defined planes and surfaces as

well as field quantities such as particle traces [2]. A sample picture generated using

VPLOT3D is shown in Figure 3.

VFLOW3D is an Euler equation solver based on an explicit, two-step Taylor-

Galerkin algorithm using the Flux Corrected Transport methodology [3]. The program

has options for solution adaptive grid refinement and capability of handling moving

grids. Although all the options have not been fully and thoroughly tested, VFLOW3D

has been shown to give reasonable results for steady, transonic cases. As an example,

surface pressure contours oil the STS configurations are shown in Figure 4.

The present report is organized into 6 chapters. In Chapter 2, details of the proce-

dure for generation of grids using the advancing front method are described. Chapter 3

is a user's manual for VGRID3D. In Chapter 4, a description of the capabilities of the

post-processing program, VPLOT3D, is providcd along with some comments on its use.

Chapter 5 describes the flow solution methodology and includes a sample calculation

compared with experimental data. Finally, some concluding remarks are presented in

2

Chapter 6.

In summary, a set of programs for unstructured grid construction, fluid flow cal-

culations and flow field visualization has been develop('.d.

J

2. UNSTRUCTURED GRID GENERATION

A wide variety of algorithms has been devised for the generation of unstructured

grids around complex geometries over the recent years. Among the different techniques

are Watson's algorithm for Voronoi tesselation [4-9], the modified octree method [10],

and advancing front technique [11-13]. In the Voronoi/Delaunay family of grid genera-

tion techniques, grid points are first distributed throughout the computational domain

and then connected to form triangular/tetrahedral grid cells. The criterion for gener-

ation of grids, in this method, is that the circumsphere of any grid element should not

contain any other point in the grid. While the Voronoi algorithm [9] has shown to be

fast and reliable in generating meshes, the incorporation of directional refinement in

this technique appears difficult unless the reconnection of points based on the purely

geometrical Delaunay criterion is substituted by some other criterion that incorporates

directionality into the algorithm.

In the advancing front technique, new points are introduced while the domain

of interest is being filled with triangles/tetrahedra. After obtaining an initial front

consisting of linear (2-D) or triangular (3-D) faces over the surface of the configuration

of interest, elements are generated by successively removing faces from the current

front and adding new points and faces (advancing the front) until the whole region is

filled with grid elements. This method is advocated here because it does not require a

separate library of modules to introduce points throughout the domain in advance, and

it has the flexibifity of regenerating the grid adaptively as well as directional refinement

in a simple manner. The advancing front method and various aspects of the present

grid generator are discussed in detail in the following sections.

4

2.1 OUTLINE OF THE TECHNIQUE

The grid generation process, in the present work, is composed of the following

main steps:

(i) The boundaries of the domain to be gridded are divided into a number of lines (2-

D) or surface patches (3-D). These lines or surface patches define the configuration

of interest as well as the far-field boundaries.

(ii) A background grid is set up to define the local grid characteristics such as grid

point spacings, grid element stretching ratios, and stretching directions.

(iii) The lines or surface patches of step (i) are further subdivided into a number (dic-

tated by the background grid) of straight line segments (2-D) or triangles (3-D) to

form the first front.

(iv) The front is advanced by introducing new points and faces to complete the grid.

(v) The completed grid may optionally be refined by direct splitting of each grid cell

(h-refinement).

(vi) The final grid can be smoothed by removing 'distorted' and 'small' elements and

moving grid points around.

Steps (i) and (ii) are accomplished interactively using graphic codes developed

on Silicon Graphics IRIS 4D series workstations. Steps (iii) - (vi) are automatically

performed by the 3-D grid generator using the input data obtained from steps (i) and

(ii).

2.2 DEFINITION OF SURFACES

As mentioned earlier, the advancing front algorithm requires an initial front (sur-

face mesh) in order to start the triangulation/tetrahedrization of the domain. This, in

i:•.. • ; _:

i% "',j

..i.

• i_ _ _

_.i •i '

turn, means that the surfaces representing the domain to be gridded need to be defined.

Several approaches have been proposed in the literature [14]:

(a) Boolean Operations on Solids - In this approach, the domain to be gridded is

constructed from primitives (box, sphere, cylinder, etc.) The user combines these

primitives through Boolean operations (union, intersection, exclusion, etc.) to

represent the domain to be gridded. The surface is then obtained in a post-

processing operation.

(b) Boolean Operations on Surfaces - Here, only the surface of the domain to be

gridded is defined in terms of independent surface patches . The surface patches

are then combined using Boolean operations to yield the final surface of the domain

to be gridded.

Both approaches have their advantages. The first approach is more compatible

with many current CAD-CAM systems in use, thus allowing transfer of the object

data directly from design to analysis. The second approach requires less manual input,.

Moreover, since the desired surface of the domain is obtained immediately, and not in

a post-processor step, the software involved is less complex. In order to be compatible

with the surface definitions currently in use in the aerospace and automobile indus-

tries, the second approach is adopted here. Surface patches are easily generated from

available panel representations or sets of cross-section shapes which describe the con-

figuration using an interactive graphics code. To minimize the manual effort involved

in defining a surface, a hierarchical data structure is adopted. There are three levels of

data: points, lines and surfaces. Lines are obtained by joining the points, and surfaces

by joining lines. The line types implemented are:

(a) straight line segments defined by two points,

(b) parabolic line segments defined by three points, and

(c) cubic spline segments defined by four or more points.

L

i> i_

The surface types implemented are:

(a) planar surfaces defined by three or more arbitrary line segments, all lying in one

plane,

(b) triangular isoparametric parabolic surfaces [15] defined by three parabolic line

segments,

(c) rectangular isoparametric serendipity surfaces [15] defined by four parabolic line

segments,

(d) triangular Barnhill-Gregory-Nielson patches [16] defined by three arbitrary line

segments, and

(e) bilinear transfinite Coon's patches [16] defined by four arbitrary line segments.

The line and surface types are not, of course, limited to those listed here; other

desirable types such as quintic and exponential splines and bicubic Coon's patches as

well as other C 1 and C 2 continuous surfaces can be implemented as required.

/:

L

¸¸ILL¸ • '

2.3 BACKGROUND GRID

The local characteristics of the grid to be generated are defined by a set of param-

eters distributed throughout the domain. These parameters control the point distri-

bution, element stretching, and the stretching direction of the final grid. The control

parameters are stored at the nodes of a mesh referred to as the background grid. The

background grid is made of a few tetrahedral elements which completely encloses the

domain to be gridded. This mesh is not required to conform to any of the surfaces of

the configuration. It is used as a source of information and for interpolation purpose

only.

There are three methods in use for constructing three-dimensional background

grids:

': il _ i ¸ L,

_ . ,i_ ¸

f

! 'i

., :"

(a) in the first method, a 2-D triangular grid plane (usually aligned with the plane of

symmetry) is duplicated a number of times along a desired axis. The corresponding

nodal points, in pairs of planes, are then connected to form tetrahedra. At the

nodes of this grid, locM grid parameters arc specified. An interactive graphics

code has been developed to facilitate the construction of a 2-D triangular plane

with the desired point distribution. Once the plane of triangles is prepared, it is

duplicated at a specified number of locations along the axis perpendicular to the

original plane, and points are connected automatically. The positions of the grid

points may be modified interactively, and the corresponding grid parameters can

be changed as desired.

(b) For certain configurations such as axisymmetric geometries, a 2-D plane of triangles

is duplicated as it is rotated about the axis of symmetry. Points are then connected

as in the previous method.

(c) In the third method, an arbitrary number of points are distributed interactively

in the 3-D space. This set of points along with the outer faces are used to form

tetrahedra with the advancing front method.

While the third method is probably the most desirable one for its generality and

flexibility, it requires the highest amount of manual input. The first method has been

used extensively in the present work.

2.4 GENERATION OF THE INITIAL FRONT

:; _):ii ':¸ .?,: _,:

,L ¸:, _ _,,,

The generation of the initial front for a three-dimensional configuration is carried

out in two main steps:

(i) the line segments connecting surface patches are divided into straight line segments,

called 'sides';

. i:i:i• i_

(ii) the surface segments are triangulated using the two-dimensional version of the

advancing front method with the 'sides' serving as the initial front.

The size of each 'side' or triangle is determined from the backgroung grid element

into which the side or triangle falls. This is clone by a simple linear interpolation of the

spatial distribution parameters stored at the four nodes of the element.

The division of line segments into 'sides' is performed through the following steps:

(i) given the current location specified by the position vector ¥0, use the background

grid and the tangential vector of the line to determine the vector dxo which ten-

tatively defines the next 'side';

(ii) determine another vector dxl using the background grid and the tangential vector

of the line at the mid-point position T1 = T0 + 0.5 dxo;

(iii) if dxo _ dxl, set dxo =0.5 (dxo +dxl) and go to (ii);

(iv) add the new 'side', reset T0 to the new position, and go to (i).

i i _i :i_/i?

In order to avoid an unusually short 'side' left at the end of a line segment, the

length of the remaining (undivided) portion of the line segment is checked at each

iteration. If the remaining length is within a specified limit, the end point of the line

segment is used to form the last 'side'. Once all the line segments forming surface

patches are divided into 'sides', each surface patch is then triangulated independently

using a 2-D version of the advancing front grid generator. Since this section of the

program operates in a 2-dimensional frame of r_,fercncc, mappings between the 3-D

and 2-D worlds are required. Hence, a 3-D surface patch is first mapped to a 2-D

segment, then triangulated using a 2-D grid generator, and finally mapped back to the

original 3-D shape.

The mappings are such that the shape and size of the 3-D surfaces are approxi-

mately maintained in the 2-D frame and arc performed in two steps as illustrated in

Figure 5:

9

., j

,, .i "_

2.4.1

(i) mapping of 3-D surface patches to unit 2-D triangles or squares (x, y, z ---* _, r/),

(ii) stretching and shearing of unit 2-D triangular or square shapes to approximate the

shape of 3-D surface patches in a 2-D domain (_, r/_ _", 'q").

The mappings for various surface types arc described below.

Planar Surface Segment

With the notation defined in Figure 6, we select two arbitrary vectors g and -b that

lie in the plane. The normal to the plane is given by 'n = a x -b, and a vector normal to

both _ and _ is computed as _ = n x a. Defining the covariant basis vectors _1 and 72

of the plane as

_, : = , _2: ,= , (2.1)
lal Icl

any vector lying in the plane can be written as

• i:? •

¥ = ¥o + {"¥1 + r/'¥2

where the _" and r/' values are given by

_" = _,. (_-_0) , v" = _=. (_- _0)

(2.2)

(2.3)

2.4.2 Triangular Isoparametric Parabolic Surface Segment

The triangular isoparametrie parabolic surface segment is most easily described

in terms of the six points defining it. The situation is shown in Figure 7. Any vector

lying on the surface may be written as

" (;

. , i

'i i.' _ '

6

"x = E Ni'2i ' (2.4)
i=1

where the shape-functions N i are given by [15]:

10

• [, ,

::: ii_ ii:_

: _.IL :¸ :::

2.4.3

N' =(1-_-,/)(1-24-2q)

N2 = 4_(1- _- T/)

N 3 = _(2_ - 1)

N 4 = 4_r/

N 5 = _(2_ - 1)

N 6 = 4,/(I - _ - 'q)

(2.5)

Rectangular Isoparametric Serendipity Surface Segment

This surface segment is again most easily described in terms of the eight points

defining it. The situation is shown in Figure 8. Any vector lying on the surface may

be written as

L,

)/

i

8

¥ : E Ni-_i
i=l

where the shape-functions N i are given by [15]:

N I = (1 -¢)(1 -,/)(1 - 2_ - 2,/)

N 2 -- 4_(1 - _)(I - TI)

N3 = -_(I - ,/)(1 - 2#+ 2'q)

N4 = 4_r/(1 - 7/)

N 5 = -_q(3 - 24 - 2q)

N 6 = 4_(1 - _)

N7 = -q(1 - _)(1 + 2_ -2,/)

Ns .=-4,/(1-_)(1 -'l)

11

(2.6)

:, •t. ¸

/ .

:': 4,

• _ _i!:: !

7 ¸:/i! •

2.4.4 Triangular Barnhill-Gregory-Nielson Patch [16]

This surface segment is described in terms of the three line-functions along its

edges. The situation is shown in Figure 9. Any vector lying on the surface may be

written as

= _72(r/) + r/F2(1 -_) + 71(_) + 73(1 -q) -'q IF, (_) + Y:,(_)]

-_ _i(I - r/) -F 73(1 - q)] - (i - _ - .)F] (0). (2.7)

We observe that not all the sides are treated equally by this formula. The F2-1ine

plays a different role than the other two lines defining the patch. This means that some

care has to be taken when using this surface segment.

2.4.5 Rectangular Bilinear Coon's Patch [16]

This surface segment is described in terms of the four line-functions along its edges.

The situation is shown in Figure 10. Any vector lying on the surface may be written

as

¥ = (1 - r/)Fl(_) + _F2(r/) + r/F3(_) + (I - _)F4(r/)

!•• • • /_ :

2.4.6

-- [(1 -- _)(1 -- r?)F,(0) + _(1 - r/)F2(0) + _/72(1) + (1 - _)r/)Y3(0)] . (2.8)

Stretching and Shearing of 2-D Unit Segments ((,, r/---, {", q")

In order to obtain a reasonable triangulation of curved surfaces, the unit triangle

or square is stretched and sheared in 2-D so as to approximate the 3-D surface segment.

The easiest way to accomplish this for a rectangular surface segment is to use a bilinear

isoparametric mapping between the unit square and the 2-D surface approximation.

This case is shown in Figure 5. However, it is not straightforward to transform back

12

i ,_["

;_i._.;!: ,:,

!i; i ¸: ;

and forth with the bilinear isoparametric mapping. We therefore set the r]" value of

points D and C to be the same. The mapping is then given by:

or

" = xu + .rDrl + (--xu + zc -- :rl))_T/ " , (2.9), i! -- g D77

= t]'--_-I _"-- XDr/ (2.10)
rl YD ' _ = XB nL (--ZB nu xc -- XD)T]"

The distances A-B, A-D and D-C are obtained from the line information given,

and the angle at the origin (point A) is approximated from the 3-D surface segment.

For triangular surface segments, point C is omitted.

2.5 ADVANCING THE FRONT

• :i/{: ' L

Once the initial front (surface mesh) is constructed, the field grid is generated by

introducing new points in the domain. This involves forming tetrahedrM elements by

connecting the new and/or existing front points and redefining the current front. Front

advancement consists of the following steps:

(i) Find the next face (triangle) to be removed from the front. In order to avoid large

elements crossing over regions of small elements, the face forming the next smallest

element is usually seh'cted as the next face to be deh'ted from the list of faces.

(ii) For the face to be removed, determine a 'best point' as the fourth node of the

next tetrahedral element to be formed. This point is positioned in such a way

that its projection onto the plan(; of the face is located either at the mid-point

or at the circumcenter of the face. Its distance from the face is determined using

the information interpolated from the nodes of the background grid element into

which the face fails.

13

(

(iii) Determine whether an existing point on the current fl'ont could be used instead of

the 'best point'. This involves finding all close points to the face to be removed.

(iv) Find all close faces to the face to be removed. This information is needed later for

face-crossing check.

(v) Filter those close points which are either not on the fl'ont or in the 'wrong' side of

the face.

(vi) Filter unneeded close faces.

(vii) Order the remaining close points and the 'best point' in a list according to an ap-

propriate criterion. Points are ordered in this list from the most desirable element

making point at the top to the least appropriate one at tlm bottom of the list. Tile

criteria used for the ordering are discussed in a subsequent section.

(viii) Starting from the top of the list, check whether the new element formed by a point

would cross any existing face. If it does not cross, take that point for forming the

next element; if it does cross, try the next point in the list.

(ix) Once an appropriate point is selected, add the new point (if ,.'my) , face(s), and

element to their respective lists. Also delete from tile list the face(s) which has

(have) been removed from the front due to formation of the new element.

(x) For the new face(s), find the generation parameters from the background grid

element(s) enclosing the face(s). This information is subsequently used for deter-

mining the next face to be removed from the front (step i) and calculating the

corresponding 'best point' position (step ii).

(xi) Repeat steps (i) through (x) until no face in the front is left, i.e., the entire com-

putational domain is gridded.

A considerable portion of the total comtmtational tinm, in any unstructured grid

technique, is associated with various search operations a,s no simple' (i, j, k)-addressing

14

of grid points, faces, and elements exists, like the one in structured grids. These

operations, asmentioned before, involve (a) finding the next face to be removedfrom

the front, (b) finding the closestpoints to a given point in the field, (c) finding the faces

adjacent to a given point, and (d) finding the background grid element which encloses

a givenpoint. Theseoperations could potentially lead to an unsatisfactory efficiency of

O(N 1"5) or even O(N 2) for the algorithm where N is the total number of points, faces,

or elements. The objective here is to design efficient data structures for performing the

search operations which would improve tile overall efficiency of the algorithm. The data

structures and the front advancing steps are described in the following sub-sections.

2.5.1 Heap List for Face-Removal Search

Heap lists are well known binary tree data structures in computer science [17,18].

The ordering of the tree is accomplished by requiring that the key characteristic of

any father (root) be smaller than those of the two sons (branches). In the present

application, the key characteristic is the spacing parameter assigned to each face in the

front. Hence, at any time, the face making the next smallest element is positioned at

the top of the list with the remaining faces arranged in an increasing order of their

spacing parameters through branches and sub-branches. An example of a tree ordered

in this manner is given in Figure ll(a), where a possible tree for the letters of the word

'EXAMPLE' is shown. The letters have been arranged according to their place in the

alphabet, thus the letter A has the smallest key characteristic. We need to devise ways

to efficiently add or delete entries without alt('ring the orderly arrangement. In the

example, letter E first enters the tree followed by X and A. Since A has a lower key

than E, their positions are exchanged. Similarly, the other letters are added to the end

of the tree one by one, and the ordering is re-established, if necessary, by comparing and

replacing father and son pairs, starting from the bottom of the tree moving upwards.

Algorithmically, the addition of a new face to the front and re-arranging the list

are performed as follows. We denote by IPSON and IPFATH the positions (ranks)

15

i.¸¸¸¸

• Y: .

i!:ii.

of the son and the father, respectively, in the heap list LHEAP(I:NHEAP) where

NHEAP is the total number of entries in the list. Accordingly, we denote by IFSON

and IFFATH the identification numbers (face numbers) of the son and the father,

respectively. Hence, IFSON=LHEAP(IPSON) and IFFATH =LIHEAP(IPFATH). For

the two sons of a father with position IPFATH, we have IPSONI=2×IPFATH and

IPSON2=2xIPFATH+I. We also denote by RFACE(I:NFACE) the spacing parameter

associated with a face where NFACE is the total number of faces in the front and is

equal to NHEAP. When adding a new face IFNEW to the front, we

(i) increase NHEAP by one: NHEAP=NHEAP+I;

(ii) place IFNEW at the end of the list: LHEAP(NHEAP)=IFNEW;

(iii) set the position of IFNEW in the heap list to IPSON=NHEAP;

(iv) set the position of the father in the list to IPFATH=IPSON/2 (integer division);

(v) set the face numbers associated with the positions of the father and son to

IFSON=LHEAP(IPSON) and IFFATH=LHEAP(IPFATH), respectively;

(vi) exchange father and son if RFACE(IFSON)<RFACE(IFFATH):

- interchange the faces stored in LI-IEAP:

LHEAP(IPFATI-I) =IFSON, LHEAP(IPSON)=IFFATH;

- set IPSON=IPFATH;

- go back to step (iv) to compare IFNEW with its new father if

IPSON # 1 (top of the list);

(vii) stopl

_: _i , _ _ :

With this procedure, the face with the smallest associated spacing parameter,

LHEAP(1), is always positioned at the top of the list, ready for removal from the front.

When the face at the top is removed from the list, it is replaced with the one at

the bottom of the tree, i.e., LHEAP(NHEAP). The ordering is then re-established by

16

_i__ ,

i"

i _ ., _" •

comparing and replacing father and son pairs, starting from the top moving downward.

In the example shown in Figure ll(b), h, ttcr A at the top is remow:d, and E from

tile bottom of the tree takes its place. Letter E has also the lowest level among tile

remaining letters, thus is out next. Then L is moved to the top; however, since it has

a higher level than one of its sons (E), they exchange their positions, and so forth.

Finally, all letters are removed with the desired ordering.

Algorithmically, removing a face from tile front is achieved by re-establishing the

list as follows:

(i) take out the face at the top of the list: IFOUT=LHEAP(1);

(ii) place the face stored at the end of the heap list (IFEND) at the top and decrease

NHEAP by one:

LHEAP(1) =LHEAP(NHEAP)=IFEND, NHEAP=NHEAP-1;

(iii) set the position of this face in the heap list to IPFATH=I;

(iv) set the positions of the two sons IPSON1 and IPSON2 in the list to

IPSONI=2xIPFATH and IPSON2=IPSONI+I;

(v) set the faces associated with the positions of father and sons to:

IFSONI=LHEAP(IPSON1),

IFSON2=LHEAP(IPSON2), and

IFFATH=LHEAP(IPFATH);

(vi) determine which son (if any) needs to bc exchanged:

if RFACE(IFSON1) > RFACE(IFSON2) > RFACE(IFFATH),

set IPEXCH=0;

if RFACE(IFSON2) > RFACE(IFSON1) > RFACE(IFFATH),

set IPEXCH=0;

if RFACE(IFSON1) > RFACE(IFFATH) > RFACE(IFSON2),

set IPEXCH=IPSON2;

17

H

• j

if RFACE(IFSON2) > RFACE(IFFATH) > RFACE(IFSON1),

set IPEXCH=IPSON1;

if RFACE(IFFATH) > RFACE(IFSON1) > RFACE(IFSON2),

set IPEXCH=IPSON2;

if RFACE(IFFATH) > RFACE(IFSON2) > RFACE(IFSON1),

set IPEXCH=IPSON1;

(vii) exchange father and son if IPEXCH :fi 0:

- interchange the faces stored in LHEAP:

LHEAP(IPFATH)----IFSON1 and LHEAP(IPSON1)=IFFATH if

IPEXCH--IPSON1, or

LHEAP(IPFATH)=IFSON2 and LHEAP(IPSON2)=IFFATH if

IPEXCH--IPSON2;

- set IPFATH--IPEXCH;

- go back to step (iv) to compare IFEND with its new sons if

2 × IPFATH+I < NHEAP;

(viii) stop.

With this procedure, the face with the smallest associated spacing parameter,

LHEAP(1), would again be positioned at the top of the list. It can be shown

that both the insertion and deletion of a face into and from the heap list will take

O[log2(gHEAP)] operations on the average.

2.5.2 Quad/Octrees for Point Search

An important and costly aspect of the unstructured grid generation is locating

points which are _bitrarily scattered in the computational domain. To improve the

efficiency, we use quadtrees and octrees as effective data structures for this search op-

eration. Octrees and quadtrecs are extensively used to accelerate the search for nearest

neighbors in graphics algorithms [14], battle managen_cnt [19], particle simulations [20],

18

_ i_ ,

z

}' .

t

and grid generation [10]. Samet [21] has given an extensive survey on the subject. In

Reference [10], the main role of octrees is to define the objects to be gridded. In this

work, quadtrees and octrees are used for two- and three-dimensional grid generations,

respectively, to provide an O(logN)-efficient search algorithm for arbitrary point dis-

tribution.

The idea is to divide the dommn into regions: square quadrants for t;wo-dimensional

and cubic octants for three-dimensional domains. Each quadrant contains a maximum

of four points, whereas there can be at most eight points in each octant. If a fifth

point falls into a quad, the quad is divided into four subregions. The old points are

relocated into their respective new quads based on their coordinates, and the new point

is introduced to one of the new quads according to its position. If it happens that all five

points fall again into the same quad, the subdivision process continues until an unfilled

quad if found to house the new point. Similarly, an octant breaks into eight suboctants

once a ninth point is introduced to it. The points are then relocated according to their

coordinates as in the 2-D case. The process is illustrated in Figure 12 where a newly

introduced point E falls into the quad IQ. As IQ already contains the four points A,

B, C, and D, the quad is subdivided into four: NQUAD+I, NQUAD+2, NQUAD+3,

and NQUAD+4. Points A, B, C, and D are relocated to their respective new quads,

and point E is added to NQUAD+2.

The information required for each quad is stored in two arrays LQUAD(I:7,

NQUAD) and RQUAD(I:4,NQUAD), where NQUAD is the total mm_ber of qm_(ls.

For a typical quad IQ, we have the following information.

LQUADq 7 ,IQ)= 0 •

>0:

<0:

the quad IQ is empty

number of points in IQ

IQ is full and already divided

LQUAD(6 ,IQ) the parent quad from which IQ resulted

19

LQUAD(5 ,IQ) : the position in the parent quad from which IQ resulted

LQUAD(I:4,IQ) : the point numbers in IQ for LQUAD(7,IQ)>0

: the quadsinto which IQ wassubdivided for LQUAD(7,IQ)<0

RQUAD(I:4,IQ) : mininmm and maximum valuesof x and y coordinates

for the quad IQ.

Figure 12 also shows the entries in the LQUAD array, as well as the associated

tree-structure. A quadtree obtained for the point distribution of an unstructured grid

around a simple two-dimensionalconfiguration is shownin Figure 13. The data struc-

ture describedfor two-dimensionaldomainscaneasilybeextendedto 3-D caseswith the

information stored in two arrays: LOCTA(hll,NOCTA) and ROCTA (I:8,NOCTA)

where NOCTA is the total number of octants.

', i!iii i

Once a quadtree (octree) is constructed for an arbitrary point distribution, 'close

points' in the neighborhood of a specified point, such as the mid-point of a face, are

found as follows. First, a search region (a square for 2-D, a cube for 3-D) around the

point in question is defined. Then, going down the levels of the quadtree (octree),

we disregard, at the highest possible level, those quads (octants) which completely lie

outside the search area and collect into a list all points in the remaining quads (octants).

Tile points whidl fall insid(; the search area are then select(_d from this list based on

their coordinates. With a quadtree, it takes O(log,lN) operations to find all points

inside a search region, whereas with an octree, the number of operations is O(logsN).

2.5.3 Linked List for Adiacent Face/Element Search

In the process of advancing the front, the quality or 'correctness' of the grid is

checked before a new element is introduced. The criterion for this test is that the new

2O

'/•L / ¸ /

?i . !:i!:

element must not cross any existing face of the front. Hence, the prior knowledge of

existing faces in the vicinity of the face to be removed from the front is essential. This is

accomplished by finding the adjacent faces to the already known close points. The data

structure used for this operation is called 'linked list'. Linked lists are often used to

relate data of different nature and different number of linked items. For unstructured

grids, one can efficiently relate points to faces or elements using linked lists as the

number of faces and elements connected to a point vary from point to point. A point-

element link information is required for the background grid element search.

The information for constructing a linked list structure is stored in two arrays:

LPOIN(I:NPOIN) and LFAPO(I:NENTR,NFAPO) where NPOIN is the total number

of points, NFAPO is the maximum number of storage locations for storing adjacent

faces or elements, and NENTR is a specified maximum number of entries (number of

faces or elements) in each storage location. Then for each point IPOIN, we have

LPOIN(IPOIN) : the location IFAPO in the array LFAPO where

the storage of the faces (elements) surrounding

point IPOIN starts;

LFAPO(NENTR,IFAPO) > 0 : the number of faces (elements) surrounding

IPOIN stored in location IFAPO:

= 0 : the storage location IFAPO is empty;

_ ,i ¸. ,

< 0 : the location IFAPO is full and storage of more

faces (elements) around IPOIN are continued in

location JFAPO=ILFAPO(NENTR,IFAPO)I of

the array LFAPO;

LFAPO(I:NENTR-I,IFAPO) = 0 • a zero (empty) entry in the storage location

21

:-ii . _ ,,. • ,, ,,

%

A

/

IFAPO;

> 0 : a face (el(_ment) number surrounding IPOIN.

In a two-dimensional grid, each point on the front is surrounded by two faces (line

segments), thus NENTR is specified as 3. For 3-D cases, the number of faces (triangles)

around a point on the front varies from point to point, and a value of 6 or 7 may be

specified for NENTR. For element search, NENTR is typically 10.

An example of a linked list structure and tile addition of a new face to the list

are shown in Figure 14 where a NENTR of 3 has been specified. There are two faces

F1 and F2, in this example, connected to the point IPOIN initially. The IPOIN _h

value of the LPOIN array refers to the IFAPO th location of the LFAPO array where

the information is stored. The third entry of this storage location indicates that there

are two faces surrounding IPOIN, and the first and second entries give the faces F1

and F2, respectively. Suppose another face, F3, is subsequently connected to IPOIN.

Then, the third entry of the storage location IFAPO becomes negative [-(NFAPO+I)],

indicating that besides F1 and F2, there exists an additional face adjacent to IPOIN

which is stored at location NFAPO+I.

2.5.4 Filtering Close Points and Faces

i;ii!i

Among the close points found, there are three groups of points which are not

suitable for forming elements and need to be filtered out of the list before further

considerations. These are:

(a) points which are not on the front. These are referred to as 'inactive' points. A

single array, LACTP(I:NPOIN), determines whether a point is active or inactive.

If LACTP(IPOIN) is equal to one, the point IPOIN is active; if it is zero, IPOIN

is inactive and must be taken out.

22

, %':,i

.i̧ , : il

(b) Points in the 'wrong' side of the face to be removed from the front which would

make elements with zero or negative volumes. The position vectors (Y) of these

points, with respect to a node of the face to be removed, make zero or negative

scalar products with the face outward unit normal (Y_,), Figure 15, i.e.,

v .v,, _< O. (2.11)

(c) Points which are in the 'wrong' side of the faces adjacent to the face to be removed

from the front, Figure 16. These points would form elements which cross the

adjacent faces. The non-positive scalar product argument, Eqn. (2.11), applies to

the adjacent faces for filtering this group of points .

After filtering the points, we also take out those faces which are in the 'wrong' side

of the adjacent faces to eliminate unnecessary face-crossing checks.

2.5.5 Ordering the Candidate Points

The process of decision making as to which point, if any, from the rcmMning close

points be selected to form the next element has an important effect on the generation

and the quality of the final grid. A poor judgement of putting a new point instead of

selecting an existing well-positioned close point, for example, could result in a locally

condensed and distorted element grouping. This may even cause a failure, later on,

when an attempt is made to put new elements on an entangled front formed by such

a grouping. While seemingly simple to the eye judgement, the process of intelligently

choosing the right point has proven to be non-trivial to program, especially in three-

dimensions. Such a choice should ideally guarantee the decency of not only the element

being currently formed but the future neighboring cl¢_ments as well.

In the present work, we attempt to order the remaining close points as well as the

new 'best point' in a list from the most to the least desirable element-forming point.

Then, starting from the top of the list, we check points for face-crossing and pick the

23

• :i _ ',

first one encountered which passes the test. Now it remains to define a criterion which

can be used to measure the degree of appropriateness of the points for comparison

purpose and preparing the list. In proposing such a criterion, we should, at least, take

into consideration the distance and skewness of a point in relation to the face to be

removed as a measure of distortion for the element being formed. In a two-dimensional

case, the angle between the two sides of an element (triangle) at the point in question

(apex angle) is an appropriate criterion. As tile distance between a point and a face

becomes larger, or its position becomes more skewed with respect to the face, the

corresponding apex angle gets smaller, Figure 17. Thus, we order points in the list

from the largest to the smallest apex angle. This criterion has proven to work well for

all two-dimensional triangular grids generated so far.

In a three-dimensionM case, there are surfaces instead of lines for sides of an

element. While only three angles affect tile shat)e of a triangular element, the number

of influencing angles are one order of magnitude higher in a tetrahedron as there are

angles between adjacent edges, sides, and edges and sides. Hence, it becomes more

complicated to come up with a single measure which can represent the overall shape of

the element. Many different criteria have been examined. Some of these are: spherical

excess, minimum spherical angle, sum of the angles between edges of the tetrahedron

at the apex, minimum of the edge angles, minimum of the edge-side angles at the

apex, etc. The first criterion has been extensively used; however, it does not seem

to consistently give satisfactory results. While tim rest of the crif,,ria listed here are

experimental, and some lack the required genera,lity, the last one i:- 1)ronfising and has

shown good performance for the preliminary test cases.

: v :i •_?'

van Phai [11] suggests that a point making the greatest spherical excess is the most

favorable point for forming a tetrahedron. A spherical excess is defined as

6=A+B+C-rr

24

(2.12)

/,

where A, B, and C are the three angles of the sphericM triangle ABC formed by

penetration of tetrahedron 1-2-3-4 into a sphere having its center at point 4 and a

radius of unit length (see Figure 18). Thus, points are ordered in the list from the

largest to the smallest spherical excess. While thcoreticMly plausible, this criterion

was found inadequate to guarantee the best ordering of points all the time. Another

criterion which has shown satisfactory results is referred to as the 'minimum apex

angle'. We define an apex angle at the point in question as the angle between an edge

of the tetrahedron and its normal projection onto the plane of the opposite face (see

Figure 19), i.e.,

where

= -1 (2.13)
¢x 2 cos LI 4alI ,,,IJ

_'n _ _43 X "_42.

Since there are three apex angles, we select the smallest (most restrictive) one as

our criterion, i.e.,

¢cr=min[¢l, ¢2, ¢3]. (2.14)

Points are then ordered in the list from the largest ¢cr to the smallest one. Although

this criterion has shown promising results, more test cases are required to validate its

accuracy. At present, the spherical excess criterion is being used in the grid generator.

2.5.6 Checking the Intersection of Faces

The most important ingredient of the advancing front generator is a reliable and

fast algorithm for checking whether two faces intersect each other. We have found that

even slight changes in this portion of the generator greatly influence the final mesh. As

with so many other problems in computational geometry, checking whether two faces

intersect each other seems trivial for the eye, but is complicated to code. The problem

25

is shown in Figure 20. We base our checking algorithm on the following observation:

two triangular faces do not intersect if no side of either face intersects the other face.

The idea then is to build all possible side-face combinations between any two faces and

check them in turn. If no intersection is found, then the faces do not cross. With the

notation defined in Figure 21, the intersection point is found as

3_

¥f + a1-_1 + a2_2 = "xs + a g3 , (2.15)

where we have used the gi vectors as a covaxiant basis. Using the contravariant basis

gi defined by

, (2.16)

where 6_. denotes the Kronecker-delta, we obtain the o_i as

o_1= (¥_ _ ¥/)..ql ,

r_2=(¥s-¥I).: 2 , (2.17)

a3 = (¥/_ ._). g_,_

Since we are only interested in a triangular surface for the gl, g2 - plane, we define

another quantity similar to the third shape function for a linear triangle as given in

Section 2.5.7, i.e.,

a4 = 1 - al _ a2 (2.18)

Then, in order for a side not to cross a face, at least one of the c_'s has to satisfy

i !i__::_

t :>max(-r_i,_ i-1) ,i 1,4 , (2.19)

where t is a predefined tolerance. By projecting the gi onto their respective unit

contravariant vectors, we can obtain the actual distance between a face and a side.

The criterion given by Eqn.(2.19) would then be replaced by (see Figure 22):

26

i ,_ " •

L •

i

1

d> __ilmax(-ai,o_i-1) ,i-- 1,4 (2.20)

Tl_e first form (Eqn.(2.19)) produces ac,cel)t_ble grids. If the face and the side have

points in common, then the a's will all be either 1 or 0. If eqns. (2.19) and (2.20) are

not satisfied, we need to make special provision for such cases. For each two faces, six

side-face combinations are possible. Considering that on average about 40 close faces

need to be checked, this way of checking the crossing of faces is very CPU-intensive.

When it was first implemented, this portion of the grid generation code took more

than 80% of the CPU time required. In order to reduce the work load, a three-layered

approach was subsequently adopted:

(a) Min/Max search- The idea here is to disregard all time-face combinations where

the distance between faces exceeds some prescribed minimum distance. This can be

accomplished by che&ing the maximum and minimum value for the coordinates

of each face. Faces can not possibly cross each other if at least, for one of the

dimensions i = 1, 2, 3, they satisfy one of the following inequalities

i i ° "

maXfacel (XA, XB,X_) < mZnface2 (X_4,X_B,XiC) -d , (2.21a)

'T

• i i i)mZ_facel (SA,XB,XiC) > Fl2a3:Sacc2 (XiA,SB (2.21b)

where A, B, and C denote the corner points of each face, and d is a tolerance based on

tile local spacing parameter.

(b) Local element coordinates- The purpose of checking for face-crossings is to de-

termine whether the newly formed tetrahedron breaks already given faces. The

idea is to extend the previous Min/Max criterion with shape functions of the new

tetrahedron. If all the points of a given face have shape-function values N i that

lie outside the interval [-t, 1 + t], where t is a tolerance, then the tetrahedron

cannot possibly cross the face.

27

(i _i:_I:

ii i_;?. _

(c) In -- depth analysis of side - face combinations- All the remaining faces, after

the filtering processes of steps (a) _md (b), are thoroughly analyzed using the

side-face combinations as explained above.

Each of these three filters requires about an order of magnitude more CPU-time

than the preceding one. When implemented in this way, the face-crossing check requires

only 25% of the total grid generation time. When operating on a vector machine,

we perform loops, in vector modes, over all the possible combinations, building the

i,g, o__, etc. Although the vector lengths are rather short, the chaining that results

from the lengthy mathematical operations yields acceptable megaflop rates.

2.5.7 Interpolating Information from the Background Grid

After a suitable point is selected to form the next element, the heap, quad/octree,

and linked lists are re-established by adding the new point, face(s), and element and

removing the face(s) no longer on the new front. It should be noted that, each time,

one or more new faces can be generated, depending on the local front configuration and

depending on whether a new or an existing point is selected. Similarly, one or more

faces may be removed from the front. For the new face or faces, local grid generation

characteristics such as spacing parameters are then determined. This information is

obtMned by a linear interpolation of the data stored at the four nodes of the background

grid element which encloses the face.

:: L .
j

Interpolating information from one unstructured grid onto another has been an

outstanding problem for quite some time. The process involves two steps: (a) finding

the background grid element which surrounds the center of the face in question, and

(b) interpolation from the nodes of the element. Two methods have been used, in this

work, to find the enclosing background grid element. In the first method, we

(i) construct a quad/octree for the background grid nodes;

(ii) construct a node-element linked list for the background grid;

28

_. i:i!:̧ -

i::!iI

(iii) find the closest nodes in the background grid to the center-point of the face in

question using the quad/octree data, structure;

(iv) find the background grid elements which share the nodes found in step (iii) using

the linked list structure;

(v) find, from the list of elements, the element into which the point to be interpolated

falls;

(vi) enlarge the region of close elements by one layer of elements using the linked list

if no enclosing element is found; and try again.

With this method, the overall procedure requires O(NlogN) operations. A disad-

vantage of this nlethod is that for badly deformed background grid elements, the closest

points found in the background grid may not belong to the element into which the point

to be interpolated falls. As a result, many elements may have to be tested by enlarging

the region of close elements. In the second method, the search for the background

grid element is considerably simplified by simply remembering the element which has

enclosed the parent face on the front from which the present face has emanated. Thus,

we

(i) store in an array, LBEFA(IFACE), the background grid element into which the

mid-point of the face IFACE falls;

(ii) use LBEFA(IFACE), as the first try, for the face(s) originated from the removed

parent face IFACE;

(iii) try the neighboring elements if LBEFA(IFACE) does not enclose the face in ques-

tion.

!'

The number of operations is significantly reduced by eliminating the need for

finding the closest nodes in the background grid and the linked elements. A linked list

is only needed to find the neighboring elements in step (iii) if LBEFA(IFACE) fails to

surround the face.

29

To checkif a point is insideatriangular or tetrahedral element,weuselocal element

coordinates or shape functions. Considering a point P in relation to a triangular

element 1-2-3, as shown in Figure 23, shape functions N 1 , N 2, and N 3 are defined as

g I _ AI

A

N2 = A_._£
A

N3= 1- N 1- N 2

(2.22)

where A1 is the area of triangle P-2-3, A2 is the area of triangle P-3-1, and A is the

total area of the element. Point P is outside the clement if

max (N 1, N 2, N 3) > 1,

min (N 1, N 2, N 3) < O.

or

(2.23)

Once the element surrounding the mid-point P of tile face is found, information

R at P is interpolated using the shape fimctions, i.e.,

Re = Nil?i (2.24)
i=1

where Ri is the information at node i of the element. For a tetrahedral element, there

are four shape functions which are similarly defined in terms of volumes instead of

areas, Figure 24.

2.6 GRID POST-PROCESSING

After a grid is generated, further operations may optionally be performed to refine

and/or smooth the grid. These operations are briefly discussed below.

2.6.1 H-Refinement

The grid is refined by dividing each original element into a number of smaller ele-

ments. This uniform refinement is referred to as 'h-refinement'. In a two-dimensional

3O

: i'i!_

!ii_ii,:_i¸ :::;

i/7%':::

: i <i

• 5

grid made of triangular elements, the mid-points of the sides in each element are con-

nected to divide the original triangle into four smaller elements as shown in Figure

25(a). Using the formula

N_ = 2Np - Nb- 2 (2.25)

for a two-dimensional triangular grid and the fact that the number of boundary points

in the refined grid is twice as large as that in the coarse grid, one can determine the

total number of grid points after h-refinement in terms of the coarse grid information

as

(2.26)

/

. i ¸

where N_, Np, and Nb are the number of elements, total number of points, and number

of boundary points, respectively.

In a three-dimensional grid, each tetrahedron is divided into eight smaller tetra-

hedra by connecting the mid-points of the six edges as shown in Figure 25.b. The

element faces are again divided into four triangles, similar to that in the 2-D case, by

this partitioning. The total number of points in tile fine grid becomes approximately

eight times as large as that of the coarse grid, and the boundary points increase by a

factor of four after each refinement.

Since one of the objectives of mesh refinement is to enrich the surface representation

of bodies with curved boundaries, the positions of the newly inserted mid-points on the

boundaries must be corrected to conform with the surface of the original configuration.

This is automatically done by taking the line and surface definitions, described before,

into consideration.

31

• ,, :, ;?

_ii__!ii_

• ,• v /

/

v

2.6.2 Mesh Smoothing

The generated grid, either before or "after the refinement, can optionally be

smoothed by three main operations: moving grid points around, removing 'small' ele-

ments, and removing 'distorted' elements. Tile mesh is smoothed by moving points in

a spring system analogy. The main problem encountered here is that some distorted

elements, already in the grid, may further degenerate and create negative volumes.

This may also happen after a refinement when the boundary point, s, belonging to a

distorted element, are corrected on a convex surface. Negative elements are considered

here as 'small' and are removed from the grid as explained below.

The removal of 'small' elements is of particular importance for transient problems

where the allowable time-step depends directly on the element size. An element is

considered as 'small' if the volume and a characteristic length ratio of the element are

smaller than some specified tolerances. For each of the elements considered as 'small',

the smallest side is identified, and the nodes belonging to this side are collapsed into one

point. The elements sharing the removed side are then taken out, and the remaining

points and elements are renumbered. This is shown in Figure 26 for a two- dimensional

case. The same concept is applied to three-dimensional problems.

An element is considered as 'distorted' if the ratio of the lengths of its largest and

smallest side exceeds a certain tolerance. A 'distorted' element is removed similarly to

that explained above. While all of the post-processing operations function properly for

two-dimensional grids, the processes may still create or leave some 'small', 'distorted',

or 'negative' elements in three-dimensional meshes. Better ways of smoothing 3-D grids

need to be explored.

:,J :

32

_ r>•': i ¸ '

•_ i ¸

:,/,/i _¸,

i_i i_ii iil

3. VGRID3D PRIMER

VGRID3D is a program for generation of 3-D unstructured tetrMledral grids given

the domain definition. Grids are generated starting from tile domain boundaries marching

towards the interior of the computational domain using tile so cMled advancing front

technique. In this technique, the grid points are introduced while the domain of interest

is flled with tetrahedra. The configuration of interest is first defined in terms of surface

patches. Then, these patches are triangulated one at a time. This forms the initial front.

Next, elements (tetrahedra) are generated in the 3-D field by successively removing faces

(triangles) from the current front and adding new or selecting existing points (advancing

the front) until the whole region is filled with tetrahedra.

Details of the theory behind the advancing front grid generator, data structures used

for efficient generation of grids and other algorithmic details are given in Chapter 2. This

primer mainly focuses on the preparation of the input file for the grid generator, running

the VGRID3D and some explmmtion of the output obtained.

3.1 SETTING-UP AN INPUT FILE

VGRID3D requires an input file that defines the domain to be gridded (in the form of

surface patches) and the desired spatial distribution of grid points (the background grid).

The configuration of interest is defined using a hierar('hi(-al (b_ta structure mad(; of points,

lines and surface patches. Lines are obtained by joining points, and surface patches by

joining lines. The free format is used to input numbers. The input file consists of the

following sections.

33

i ¸ , (_ '_

• 7 _

ij

?

3.1.1 Title Line

VGRID3D expects a line of text at the beginning of the input file. This line can be up

to 80 characters long and is included as a user convenience to identify the configuration to

be gridded. A text line is also inserted at tile beginning of each new section of the input

data.

3.1.2 Domain Definition

This section defines the domain to be gridded. After a text line, the number of

dimensions (NDIMN), the total number of points (NPOIN), lines (NLINE) and surface

patches (NSURF), defining tile computational geometry including the outer boundaries,

are specified. Points, lines, and surface patches are described as follows.

Points Description:

Tile points defining the computational domain are identified by their numbers and

X/Y/Z coordinates. VGRID3D expects a right-handed coordinate system for the domain

definition, usually with +X streamwise downstream,+Y along the starboard side and +Z

vertical upwards. However, any right-handed system can be used. It should be noted that

a point can only be defined once, i.e., no two points can have the same coordinates, even

if a point is common to two or more lines. However, before beginning the grid generation

process, VGRID3D checks for the user-overlooked mistakes and alerts the user if any

duplicate points are found.

:_ !i): i

Line Description :

The lines connecting the points are defined next. For each line, the line number, the

type of the line and the points belonging to this line are specified. The first integer is the

line number while the second integer defines the line type (NTYLI). Currently, VGRID3D

,_ccepts tile following three line types:

a.) a stra.ight line defined by two points :a NTYLI = 1,

34

: _ii:!i_

b) a parabola defined by three points =_ NTYLI = 2, and

c) a cubic spline definedby four or more points =_NTYLI = 3.

For eachline, this information is followed by alist of points that behmgto this line segment.

The convention used is that a line is consideredpositive going from the first point in the

list to the last.

Surface Description:

The configuration of interest is described using surfi_ce patches, which in turn are

made up of two or more lines defined above. For each surface patch, the surface number,

its type (NTYSU), the number of lines in this pard1, the lines belonging to this surface,

the boundary condition to be imposed on all tile points generated on this surface and the

parameters for the generation of a boundary layer grid are specified.

ILl: ¸" :

The first integer is the surface number. Since VGRID3D triangulates each surface

independently, the surface numbers may be given in any order desired. The second integer

defines the surface type. Currently the surface types implemented, as described in Chapter

2, are :

a) a planar surface with two or more lines, "all lying in tile same plane

=v NTYSU = 1,

b) a triangular isoparametric parabolic surface defined by three parabolic lines

=_ NTYSU = 2,

c) a rectangular isoparametric surface defined by four parabolic lines

NTYSU = 3,

d) a triangular Barnhill-Gregory-Nielson patch defined by three arbitrary lines

=_ NTYSU = 4, and

e) a bilinear transfinite Coon's patch defined by four arbitrary lines

NTYSU =5.

The surface types d) and e) are the most common in use as any combination of the line

types defined above can be used in them.

35

,_'_ i i_
% • 'j, •

• _ , i_

The third integer is the number of lines in the surface patch. Except for the planar

surface (NTYSU =1), this number is fixed as described above. Next, the lines that belong

to this surface are specified. These lines are listed in such a way that when they are

traversed in the order and the direction listed, the region to be triangulated always lies to

the left. In doing so, if a line segment is traversed in a direction opposite to the way it

was originally defined, a negative sign is placed in front of tile line number in this list.

VGRID3D assigns boundary conditions to all the points generated on a surface patch.

For each surface, this information is specified by three integer numbers after the list of line

numbers for this patch. Currently, the numbering system used is specific to VFLOW3D

family of flow solvers. If a user is not using these codes, a (3 0 0) may be specified

for all the surface patches. Otherwise, the three integers denote the boundary condition

type (NTYBC), the 'characteristic inflow set number' and the body number to which the

current surface belongs (NBODY). The boundary conditions (NTYBC) accepted by the

VFLOW3D family of flow codes are:

-1: AU = 0, no change in flow variables (supersonic inflow);

0: AV = 0, no change in velocities (stagnation line, no-slip for Navier-Stokes);

1: boundary condition types 2 and 3 combined;

2: tangential velocity along the surface;

3: velocity normal to the plane = 0;

4: variables chosen according to a 1-D characteristic analysis performed at the boundary

in question. This analysis determines how many characteristics are coming in and

going out. The final AU values of the variables depend on this analysis and the values

given in the 'characteristic inflow set';

5: adiabatic wall boundary condition, used only for Navier-Stokes calculations;

6: 'free' boundary condition, variable computed by flow code (supersonic outflow).

The second of the three integers, specifying the boundary conditions, is non-zero

only for NTYBC = 4 and denotes a set of information from which the characteristics

36

•/

are determined at the surface in question. Several such sets can be present in a single

run. These sets consist of density, the three components of w_locities and pressure. For

example, an aircraft configuration with simulated flow through engines may have a set

corresponding to the engine inlet plane a.nd another for the engine exhaust. In addition, if"

the entire configuration is to be analyzed for a subsonic or transonic flow regime, a separate

set may also be specified for the farfield outflow characteristic boundary condition. These

sets are numbered sequentially, starting with 1, and are given as the second integer in

tile list. For non-chm'acteristic boundary conditions, this number is specified as 0. It is

noted that the grid generator needs only the set number, actual values of the variables are

required only for the flow solution process (see Chapter 5).

The third integer is used to identify the body to which the surface in question belongs

and is meaningful only for the cases that allow boundary movement. For such a case, all

surfaces comprising a moving.body (component) are grouped, and the same body number

is assigned to all of them. The default value is 0 (fixed surface).

VGRID3D can, optionally, generate grids in the boundary layer region near solid sur-

faces. Two requirements are imposed on the grids in such a region: 1) the presence of high

shear requires a much smaller grid spacing in a direction normal to the wall compared

to that along the wall, and 2) the points in the direction perpendicular to the surface

need be aligned for some kind of turbulence modeling, Grids satisfying both of these

conditions are difficult, if not impossible, to generate using the current method. For this

reason, VGRID3D uses an approach that generates semi-structured grids in the boundary

layer regions. Accordingly, the surface under consideration is first triangulated, and then

prisms are constructed by duplicating the triangles in a direction normal to the surface in

the computationM domain. Each of these prisms are then subdivided into three tetrahe-

dra, resulting in a semi-structured tetrahedral mesh. The number and location of these

duplicated triangles are based upon some parameters given for the desired normal point

distribution and the boundary layer thickness.

37

• ? :.

-?

• ,.,7 _

_ ;./_ _ ,

The parameters for generating boundary layer grids are specified by two integers and

a real number for each surface. These are given following the three integer parameters for

the boundary condition. The first of the boundary layer parameters is an integer, NPTBL,

specifying the nunlber of points desired in the boundary layer, while the second integer,

NTYBL, determines the kind of point distribution across tile boundary layer. Currently,

there are three options available for point distribution:

a) Geometric => NTYBL = 1 (most commonly used),

b) Power law =_ NTYBL = 2, and

c) Exponential =_ NTYBL = 3.

The last of the boundary layer parameters is a real number specifying the desired

increment factor between points across the boundary layer. If a surface is not a wetted

surface (no boundary layer grid desired), then the three boundary layer parameters are

specified as (0, 0, 0). It is noted here that the method described above for the generation of

the boundary layer grids may not be the most satisfactory technique, and better methods,

in terms of robustness and grid quality, may need to be explored.

3.1.3 Special Lines

This sub-section gives a list of lines along which special boundary conditions need to

be specified. These boundary conditions are different from those of the surfaces to which

the special lines belong. For example, a line in the plane of symmetry where flow tangency

boundary condition need to be imposed or a line at the trailing edge of a wing with a 'free'

boundary condition is handled differently. Accordingly, NLITA represents the number of

lines with tangential boundary condition which is followed by a list of line numbers in

LLITA. In a similar fashion, NLIFR and LLIFR are the total number of lines and the line

numbers, respectively, for which a 'free' boundary condition is specified. If there are no

special lines, both NLITA and NLIFR are given as 0. Obviously, for such a case, NLITA

and NLIFR are not to be given.

38

3.1.4 Background Grid

This section defines the background grid which is used for determining the spatial

distribution of the 3-D grid points. After a text line, indicating the beginning of the

section, the total mlmber of tetrahedra and the number of points in the background grid

are specified as NELEB and NPOIB, respe_'tiw:ly. This is followed by the connectivity array

(the interdependency matrix) INTMAB made of NELEB number of lines, each consisting

of five integer numbers: the background grid element number and the four node numbers

associated with this element. The convention used is that the fourth node is on the

same side as the normal vector to the base triangle formed by the first three nodes. The

normal vector is found using the right-hand rule. Before beginning the grid generation

process, VGRID3D checks the background grid tetrah('dra for any inconsistency resulting

in negative volumes and corrects the connectivity by exchanging the second and the third

nodes, thereby changing the direction of the normal.

Next, the coordinates of the points in the background gtid are given. This is given

by an integer specifying the point number and its X/Y/Z Coordinates. It should be noted

that the coordinate system used for the background grid must be consistent with that for

the domain definition.

The next sub-section specifies the parameters which control the spatial grid point

distribution (UNKNB) at each node of the background grid. For any location in space,

VGRID3D identifies the background grid element in which this location falls and linearly

interpolates the required values from the four nodes of this element. These cont _, ,1 parame-

ters are given as two stretching ratios $1 and 5:2 associated with two orthogonal directions

al and a2, respectively, and the spacing parameter _. The generated element will then

have typical dimensions _$1 in the direction parallel to al, _S_ in the direction parallel

to a2 and _ perpendicular to both al and g2 (Figure 27). The two orthogonal directions,

i71 and a2, are given by their direction cosines with respect to the X/Y/Z coordinate di-

rections. For each background grid element, the clement nuntbcr is followed by thirteen

39

i '_i• ¸

real numbers. The first nine real numbers are the direction cosines for the two orthogonal

directions, al and a2, and a vector normal to them (g3). The tenth number is the spacing

parameter(_), denoting the element size desired, followed by the stretching ratios $1 and

$2 mad the boundary layer thickness. For no stretching case, the vectors al, a2 and a3 are

aligned with the X/Y/Z coordinate directions, respectively, resulting in UNKNB(1 thru 9)

to be (1.0,0.0,0.0),(0.0,1.0,0.0) and (0.0,0.0,1.0). Similarly, stretching ratios are specified as

(1.0,1.0) for no stretching. If no boundary layer is desired, the last value for each UNKNB

is to be given as 0.0.

3.1.5 Mirroring and Refinement:

If the configuration to be gridded has a plane of symmetry, then only half of the

configuration needs to be gridded and the final 3-D grid can be mirrored. Mirroring across

a plane is accomplished by specifying a position vector (¥0) to a point in the plane, and

the direction cosines of a vector normal to the plane at this point (¥n). For example,

mirroring of a 3-D grid across the X-Y plane is accomplished by specifying NMIRR to be

1, indicating that a mirroring is desired, ¥0 to be (0.,0.,0.) and ¥,, as (0.,0.,1.). An NMIRR

of zero means no mirroring.

The last section in the input file contains information regarding h-refinement. After

tile 3-D grid is generated, a finer grid may be obtained by dividing each tetrahedron into

eight smaller ones, as explained in Chapter 2. The number of times the h-refinement is to

be done is specified by NHREF. For no h-refinement, NHREF is set to 0.

._ i"_

It is, sometimes, easier to generate a coarse grid first and then do one or more h-

refinements in order to get the final fine grid. The next parameter specified, on the same

line as NHREF, is a factor (FACT_>I.0) by which all the grid spacing parameters (_) are

multiplied before the grid generation process begins, thus generating a coarse grid. A value

of 2.0 for FACT produces a grid which is eight times coarser than that generated with a

FACT of 1.0.

4O

.ii ¸ (•

i% i,:, ¸ •

:_i_Ii.

, ,L

This concludes the input file preparation for the grid generator. A sample input file

for generation of a 3-D grid around an ONERA M6 wing is given in the Appendix.

3.2 RUNNING VGRID3D

VGRID3D is written in FORTRAN 77 and, as such, will run on any computer with an

appropriate compiler. The complete FORTRAN source code is divided into five modules

(--.f files) according to their functionality. These modules are:

vgrid3d.f=_ contains the main driver routine for the declaration of all dimensioned arrays

and the routines for the input/output,

gen3dsubs.f ::# contains some general purpose routines for tile generation of surface as

well as field grids and routines for mirroring, interpolation, transformation, etc.

boulay3subs.f =_ contains routines for the generation of boundary layer grids,

splitsubs.f =_ contains routines for the grid post-processing. This includes h-refinement

and smoothing and routines for the removal of small and distorted elements,

apmath.f =,, contains routines for general purpose mathematical functions.

For running the program, the input data is to be provided in a file named 'fort.50'.

The run-time messages are written to the standard output file for the machine being used.

The final 3-D grid is written to a file named 'fort.8' which is created during the run.

3.3 OUTPUT FROM VGRID3D

?

The output file (fort.8) contains the 3-D tetrahedral mesh for the configuration of

interest. The first line contains an integer number showing the number of title-lines,

followed by that many text lines (up to 80 characters long) describing the configuration.

The title of the run is followed by several integer numbers as explained below:

NDIMN is the number of dimensions;

NTYPE is the equation set the flow solver will solve." This parameter is specific to

41

.i_!L_ _

•5

i (.,

VFLOW3D family of codes and may be ignored by others. Currently,

VFLOW3D fmnily is capable of solving thr_c sets of equations:

NTYPE = 1, transport equation;

NTYPE = 2, Burger's equation; and

NTYPE = 3, Euler equations;

NELEM is the total number of elements (tetrahedra) generated;

NPOIN is the total number of points; and

NBOUN is the total number of boundary points for the configuration.

In the list of points (see below), the NBOUN boundary points are given first followed

by the field points.

The next section describes the connectivity matrix (INTMAT) that lists nodal points

belonging to each element (tetrahedron). For each element, the element number and its

four nodes are given followed by twelve zeros. This array of zeros would be replaced,

during the adaptive refinement process, with information such as father-son element pairs,

the number and type of refinement/derefinement, etc.

The coordinates of all points are listed next after a text line. For each point, the point

number and its X/Y/Z coordinates are given. As noted earlier, VGRID3D puts NBOUN

boundary points at the top of the list.

The final section contains information regarding boundm:y conditions to be applied

by tile flow solver. The information in this section is specific to the VFLOW3D family of

codes and may be redundant for others. The 1)oundary condition information is given by

six integers [BCONI (1 thru 6)] and three real numbers [BCONR(1 thru 3)]. The integers

are:

BCONI(1) = the boundary point number,

BCONI(2) = boundary condition type (NTYBC) assigned to this point,

42

_: • i ¸:¸iI ,

.... i!

BCONI(3) = a number which is non-zero only for characteristic boundary condition

(NTYBC = 4). If BCONI(2)=4, then this number refers to the 'characteristic inflow

set number', as specified in section 3.1.

BCONI(4) = boundary condition specifying movement (degrees of freedom) of the bound-

ary point during adaptive refinement and h-refinement processes.

= 0 ::* 'fixed' point (e.g. end points of a line),

= 1 =_ free to move along a line, and

= 2 =_ free to move on a surface.

BCONI(5) = line/surface patch number to which the point belongs. A boundary point is

free to move only along the line/surface from which it originated.

= 0 _ if BCONI(4) = 0,

= line number _ if BCONI(4) = 1, and

= surface number =_ if BCONI(4) = 2.

BCONI(6) = body number to which this point belongs.

, i ii

The next three real numbers, for each point, correspond to tile negative of the com-

ponents of a unit normal vector at the boundary point. VGRID3D calculates the normal

to a point facing away from the computational domain, hence the negative values. For

points belonging to the lines which are common to two or more surfaces (e.g., wing-fuselage

junction and the leading edge point on the tip of a wing), the normal is calculated as an

average of values for all the surfaces to which the point belongs.

VGRID3D specifies an additional set of three real numbers for each boundary point.

These numbers represent the X/Y/Z coordinates for the boundary point. These values are

specified here just for an instant visual 'check' as to the location of a particular point and

is included as a user convenience.

43

4. POST-PROCESSING

A rapid and interactive graphics progra.mto nm,nipul_,teand plot comtmtational

results for unstructured grids is an essentialtool for efficiently analyzing the enormous

data generatedby today's supercomputers. For unstructured grids, this is even more

important sincethe lack of directionality makesviewing the 3-D data impossible with-

out a graphicsprogram. During this study sucha program, calledVPLOTaD hasbeen

developed. VPLOT3D is a post-processinggraphicsprogram for vizualization of fluid

dynamic data on unstructured tetrahedral meshes. It is interactive, menu-driven and

user-friendly and has beenwritten for the Silicon Graphics, Inc. IRIS 4D serieswork-

stations. Pop-up menusare used to guide the user through the display options with a

click of a button.

VPLOT3D has the ability to display primitive flow variables: density, the velocity

componentsand energy as well as derived quantities like Mach number, temperature,

absolute velocity and entropy. These quantities can be displayed on the boundary

surfaces,userdefined arbitrarily oriented planesand iso-surfaces.

4.1 DETAILED FEATURES OF VPLOT3D:

VPLOT3D has a variety of options for displaying field or surface data. A detailed

list of these options is given here. Mathematical formulation for some of these options

may be found in [22].

Global Options:

Boundary condition check:

This option allows the user to plot boundary points colored according to the bound-

ary condition type, thus enabling a visual check of the boundary conditions before

and during the flow solution process. At present, the boundary condition types

used are for VFLOW3D family of finite-element flow codes, however any user

specified boundary conditions can be implemented easily. The currently avail-

able boundary conditions type include characteristic, solid wall, free, symmetry

44

and fixed boundary conditions. Details about the boundary conditions specific to

VFLOW3D canbe found in Chapter 3.

• Surfacesin 3-D space:Vizualization of data on

- entire boundary surfaceor part of it

- an arbitrary userdefinedplane

- an iso-surface;a surfacewith a constant value of certain quantity

• 3-D field

• Grid element quality check

Local Options for Surfaces:

• Filter the domain to be visualized

- within or out of a numerically or graphically specified spatial box

according to boundary conditions

• Surface discretization

- wireframe with and without hidden line removal and depth cueing

simple and Gouraud shaded pixel plot

• Contours of scalar quantities

- contours with and without hidden line removal with user specified range and

increment

- Gouraud shaded pixel plot with and without backface removal

- opaque object or three levels of transparency to choose fi'om

• Velocity vector plots

- control of the size of vector length and arrow-hcad

- colored according to a local quantity or single color

• Oilflow plots

- graphical and numerical control of release locations

- color and line type option

Local Options for 3-D Fields:

45

i<i,__/
i _i_,_ i_

• Filter spatial domain

numerical and graphical input of a box with options for displaying the mesh

within or out of the box

, Field discretization

wireframe with and without hidden line removal

wireframe with and without depth cueing

• Velocity vector plots

control of the size of vector length and arrow-head

colored according to a local quantity or single color

• Particle path plots

- graphical and numerical control of release locations

- color and line type options

- particle paths from all points within a box

- horizontal or verticle rake

- plot of the particle paths in either forward or reverse direction

- lines or ribbons option to show particle paths

Grid Element Quality Che@:

• find and plot 'small' elements.

• find and plot 'distorted' elements based on sides or normal ratio criteria (see Chap-

ter 2 for definition of 'small' and 'distorted' elements)

• plot of user specified elements

Object Display Options:

• Movement of objects on the screen

- mouse controlled translations, rotations and zooming

• Queueing of object display

- number and order of objects to be displayed

- return to displaying of object from anywhere in the program

46

I¸ r • :

i I ,

., i ¸

, r.

::i L

i _iili_

• Screendump

- in raster metafile format

- in Post Script raster image format

- options for selecting plot size: IRIS 3030, IRIS 4D or user defined

• Delete objects

• Mirroring

- mirror across a user defined plane or across a coordinate axis

SpeciM Features

The program utilizes full graphics capabilities of tile IRIS architecture in efficiently

interpolating and displaying the data in a variety of forms. Some special features of

the VPLOT3D are described below.

1. Handling of Obiects: All the commands needed to perform a plotting operation

are stored in 'Display List Objects'. This form of storage is very useful if the user

desires to quickly display several objects at the same time. Since the program

has a capability of plotting multiple data files, this option can also be used for a

side-by-side comparison of data.

2. Transparency: For the older workstation models with no alpha-planes, a simple

masking technique is implemented to get the effect of transparency. A stipple

pattern is selected which permits a drawing action to affect only a selected set of

pixels so that the image 'behind' shows through.

3. Z-Buffering: Z-buffering is a simple technique of hidden line and surface removal

on a pixel-by-pixel basis. The screen transformed z-location of each pixel is com-

pared with the currently displayed z-location to determined if the pixel need to be

overdrawn.

4. Backface Culling: This is a technique to display only the vicwable side of an object

drawn on the screen.

47

(:

5. X-Y Plot Capability: The program has the capability to plot the cross-sections of

objects cut by a specified plane and/or variation of a plotted quantity along this

cross-section. The user specifies a line by defining two points and values of the

pixel colors along this line arc then looked up in a colormap and plotted against

the distance from the first point.

VPLOT3D-Some Special Features

VPLOT3D:

* is written using a dynamic memory allocation feature which automatically assigns

memory for arrays as needed.

* reads input in either free-formatted or IRIS binary

* has the option of reading multiple data files for case of comparison

* produces a log file containing all the commands of the current session so that the

user may interrupt a session and restart later without typing all the commands

again.

48

_iL .J' ,J

::i!;:

5. FLOW SOLUTION

In this chapter, a technique for the solution of three-dimensional, compressible fluid

flow governed by Euler equations is described. The technique is based on a two-step,

explicit, second order, Taylor-Galerkin finite clement method (FEM). In order to handle

moving bodies, the Eulcr equations are cast into an ArMtrary Lagrangian-Eulerian

(ALE) frame of reference. The resulting procedure is implemented in a computer

code called VFLOW3D. A variety of flow cases solved using this method have shown

satisfactory results.

Solution methods based upon high resolution schemes [23-28] give sharper defi-

nition of flow discontinuities and are supposedly more robust. For multidimensional

flows, these methods are generally implemented by using operator splitting and apply-

ing one-dimensional concepts in each coordinate direction separately. A finite element

practitioner, however, finds difficulty in operating in this manner as the use of un-

structured grids with no inherent directionality makes the approach complicated. A

high resolution method which can be used directly on unstructured grids is Zalesak's

[29] multidimensional generalization of the 1-D flux-corrected transport (FCT) ideas of

Boris and Book [30-32]. This method employs a high-order scheme togettmr with a low-

order scheme and attempts to combine these in such a way that the high-order solution

is used in smooth regions of the flow whereas the low-order solution is favored near

discontinuities. The low-order scheme should be selected such that it produces mono-

tonic results for the problem to be solved. Erlebachcr [33] and Parrott and Christie

[34] showed how FCT ideas could be interpreted in the finite element context for a

single governing equation and implemented the ideas on triangular meshes. In the

present work, the technique has been extended to deal with the solution of a system

of equations and the incorporation of the consistent mass which yields high temporal

accuracy.

49

• i_i ¸_2

J

5.1 THE EQUATIONS OF COMPRESSIBLE FLOW

The governing equations of inviscid compressible flow can be written in the con-

servation form

ou oF2
0-7+ ox-U= s

where the summation convention has been employed and

(5.1)

U _ fl_i , _P_ _-- flui(tLj - wj) -}- P_ij , S - O,Tj PUi "

pe p(uj - wj)e -Jr- ujp pc

(5.2)

Here, p, p, and e denote the density, pressure, and specific total energy of the fluid,

respectively, and ui and wi are the components of the fluid and grid velocities in tile

direction zi of a Cartesian coordinate system. The equation set is completed by the

addition of the equation of state

1

P = (7 - 1)pie - -_ujuj] (5.3)

which is valid for a perfect gas, where 7 is the ratio of the specific heats. In tile case of

no grid movement (wi=0), the usual conservation-law form of th(; Eul_:r equations are

recovered.

/

5.2 FLOW SOLUTION METHOD

As stated earlier, high resolution, monotonicity preserving schemes must be devel-

oped in order to be able to simulate the strong nonlinear discontinuities present in the

flows under consideration. Although the pertinent literature abound:s with high reso-

lution schemes [23-28], only Zalesak's generalization of the 1-D FCT _,hemes of Boris

50 •

and Book can be considered a truly multidimensional high resolution scheme. The

use of unstructured grids requires such truly multidimensional schemes, as the lack of

lines or planes in the mesh makes the use of operator splitting difficult. In the present

method, the multidimensional FCT concept is extended to the finite element methods

for solving systems of partial differential equations with high temporal accuracy.

5.2.1 Flux-Corrected Transport (FCT)

For flows described by Eqn.(5.1), discontinuities in the vm-iables may arise (e.g.

shocks or contact discontinuities). Any numerical scheme of order higher than one will

produce overshoots or ripples at such discontinuities (the so-called 'Godunov theorem'

[35]). Very often, particularly for mildly nonlinear systems, these overshoots can be

tolerated. However, for high-speed compressible flows, overshoots will eventually lead

to numerical instability, and therefore must be suppressed.

The idea behind FCT is to combine a high-order scheme with a low-order scheme

in such a way that, in regions where the variables under consideration vary smoothly,

(so that a Taylor expansion makes sense) tile high-order scheme is employed, whereas,

in those regions where the variables vary abruptly, the schemes are combined in a

conservative manner in an attempt to ensure a monotonic solution.

The temporal discretization of Eqn.(5.1) yields

U n+_ = U n + AU, (5.4)

where AU is the increment of the unknowns obtained for a given scheme at time t = t '_ .

The objective is to obtain a AU of as high a.n order as l_ossible without introducing

overshoots. To this end, Eqn.(5.4) is re-written as

or

Un+_ = U n + AU I + (AU h - AUt), (5.5)

51

i

U n-_l --_ Y ! -_ (AU h - AUI). (5.6)

Here AU h and AU z denote the increments obtained by some high- and low-order

scheme, respectively, whereas U l is the monotone, ripple-free solution at time t = t n+l

of the low-order scheme. The idea behind FCT is to limit the second term on the

right-hand side of Eqn.(5.6) in such a way that no new over/undershoots are created,

i.e.,

U"+ 1 = U t + lim(AU h -- AUI). (5.7)

It is at this point that a further constraint, given by tile conservation law (5.1)

itself must be taken into account, i.e., strict conservation on the discrete level should be

maintained. The simplest way to guarantee this for node-centered schemes (which are

only considered here) is by constructing schemes for which the sum of the contributions

of each individual element (cell) to its surrounding nodes vanishes ('all that comes in

goes out'). This means that the limiting process [Eqn.(5.7)] will have to be carried out

in the elements (cells).

i¸¸ .

5.2.2 Algorithmic Implementation

Following Zalesak's exposition [29], but replacing the term 'flux' by 'element con-

tribution to a node', we can now define FCT in a quantitative way through the following

six algorithmic steps.

(i) Compute LEC: the 'low-order element contribution' from some low-order scheme

guaranteed to give monotonic results for the problem at hand;

(ii) compute HEC: the 'high-order element contribution', given by some high-order

scheme;

52

, !•-i¸% ';

! •_ .ii ¸:L¸¸

i,. :-iii."i_
i;_ _: i'

(iii) define AEC: the 'antidiffusive element contributions' :

AEC = HEC - LEC;

(iv) compute the updated low-order solution :

Vt = V'_ + E LEC = U '_ + AUt; (5.8)
el

(v) limit or 'correct' the AEC so that U n+l, as computed in step (vi) below, is free of

extrema not also found in U l or U n :

AEC c = CeI * AEC, O < Ccl < l; (5.9)

(vi) apply the limited AEC :

Un+l = Ut + E AECC" (5.10)
el

5.2.3 The Limiting Procedure

Obviously, • the whole approach depends critically on tile important step (v) above.

The following qua_ltities are defined to describe the limiting procedure.

(a) P_: the sum of all positive (negative) antidiffusivc element contributions to node I

{max}P? = E rain (O, AECd)
el

L ,i

(b) Q_: the maximum (minimum)increment (decrement) that node I is allowed to

achieve in step (vi) above

Q_ : Ufi"': - U'

where U["'" (defined below) represents the maximum (mininmn 0 wduc the unknown

U at node I is allowed to achieve in step 6 above.

53

i __5

<, ,_.

>i__;:, •

i _ :;_iI

i:

(c) R+:

R+ = _ rain(l, Q+/P+)

I 0

if P+ >0, P- <0

if P+ =0.

Now for each element,

Cel = rain(element nodes) _ R+ if AEC > O,
[R- if AEC < O.

m_x

Finally, U_ _" is obtained in three steps "

(i) maximum (minimum) nodal U of U" and U z :

"{maxl.'UI _ rain (I, Ui n) ,

(ii) maximum (minimum) nodal value of element :

(5.11)

,i ¸

rain A, U B , "", U_,)

where A, B, ..., C represent the nodes of element el.

(iii) maximum (minimum) U of all elements surrounding node I"

, i•¸' :;ii

,:, (,/,,

,L,/ ¸

J L

U_ _: :_maX}(u:,u_,...,U*)I ruin

where 1, 2, ..., rn represent the elements surrounding node I.

This completes the description of the limiting procedure. Up to this point a com-

pletely general description has been given, so t hat Eqns. (5.6)- (5.13) may be applied to

any FEM-FCT scheme. In what follows, we restrict the exposition to tile finite element

schemes employed in the present work, describing the high and low-order schemes used.

54

.i...

7'¸,¸'i

• L

5.2.4 The High-Order Scheme: Consistent-Mass Taylor Galerkin

As the high-order scheme, a two-step form [36-38] of the one-step Taylor-GMerkin

schemes described in References [39] and [40] is employed. These schemes belong to the

Lax-Wendroff class, and could be substituted by any other high-order scheme which

appears more convenient, including implicit schemes. Given the system of equations

(5.1), the solution is advanced from t" to t "+1 = t n + At as follows.

a) First step:

b) Second step:

= u"+ Z- sin - Oxj n] (5.12)

]Ox.i . (5.13)

The spatial discretization of (5.12) and (5.13) is performed via the classic Galerkin

weighted residual method [36-38], using linear elements, i.e., 3-noded triangles in 2-D

and 4-noded tetrahedra in 3-D. For (5.13), the following system of equations is obtained.

Me • AU n R n (5.14)

) (// ",

where Me denotes the consistent mass matrix, AU the vector of nodal increments and

R the vector of added element contributions to tile nodes. As Mc possesses an excellent

condition number, Eqn.(5.14) is never solved directly, but iteratively, requiring typically

three passes [40]. We recast the converged solution of Eqn.(5.14) into the following form,

which will be of use later on.

ML • ,'XU h = R + (A,IL - Me). Auh; (5.15)

here ML denotes the diagonal, lumped m_s-matrix (see [40]).

55

C

, 2 :i Z ;'

5.2.5 The Low-Order Scheme: Lumped-Mass Taylor Galerkin Plus Diffusion

The requirement placed on tilelow-order scheme in rely FC,T-uwthod is mono-

tonicity.The low-ordcr scheme must not produce any artificial,or numerical, 'ripples'

or 'wiggles'.It is clearthat the better the low-order scheme, the easierthe resulting

task of limiting will be. Therefore an obvious candidate for the low-order scheme is

Godunov's method [35]. However, this scheme would be relatively expensive, and its

extension to unstructured grids remains unclear.

In the context of FEM-FCT [41,42], the 'mass-diffusion' is added to the lumped-

mass Taylor-Galerkin scheme. This simplest and least expensive form of diffusion is

obtained by subtracting the lumped mass-matrix from the consistent mass-matrix for

linear elements, i.e.,

DIFF = c_ . (Me - ML) " U n.

The element matrix thus obtained for 2-D triangles is of the form

(5.16)

Cd " (Mc - ML)e, = --
Cd • Vold

12
2 -1 -1 }

-1 2 -1 .

-1 -1 2

(5.17)

It should be noticed that this diffusion cannot be simply added to the high-order

scheme in order to obtain monotonic results, as a multipoint-coupling of the right-hand

side occurs due to the consistent m_ss-matrix elnl)h)yc(l in the high-()r(le, r s('heanc,. The

imposition of monotonicity can nevertheless be achieved by using a lumped mass-matrix

instead. As the terms originating from the discretization of the fluxes F i in Eqn.(5.1)

are the same as in Eqn.(5.13), the low-order scheme is given by

ML •/NU t = .R -t- DIFF. (5.18)

56

•: :!'i:' ':

• ?'). ",i

ii/{:i?:

'_:'i i!_::_ :

i ; ¸ •• i "

_i _ . , '_

5.2.6 Resulting Antidiffusive Element Contributions

Subtracting Eqn.(5.18) from Eqn.(5.15) yields

ML • (AU h - AU t) = R + (ML -- Me)" AU h - R - DIFF,

or using Eqn.(5.16),

(5.19)

' AU h - AU l = ML 1. (ML -- Me). (Cd" U n + Auh). (5.20)

Note that all terms arising from the discretization of the fluxes F i in Eqns. (5.1),

(5.13), and (5.18) have now disappeared. This is of particular importance for cases

where the antidiffusive element contributions must be recomputed (small core memory

machines) or real gas effects are taken into account (table look-up times are consider-

able).

5.2.7 Limiting for Systems of Equations

Results available in the literature [30-32 and 41,42] have shown that high quality

results can be obtained for a single PDE with FCT. However, when trying to extend

the limiting process to systems of PDEs, no immediately obvious or natural limiting

procedure becomes apparent. Obviously, for 1-D problems, one could advect each

simple wave system separately and then assemble the solution at the new time step.

However, such a splitting is not possible for multidimensional problems as the acoustic

waves are circular. Codes using FEM-FCT for production runs [43,44] have so far

limited each equation separately, invoking operator-splitting arguments. This approach

does not always give very good results, as may be seen from Sod's comparison of schemes

for the Riemann problem [45], and has been a point of continuing criticism by those

who prefer to use the more costly Riemann-solver-based, essentially one-dimensional

TVD schemes [23-28]. It would, therefore, apt_ear _tttra(:tivc to intro(tucc a 'system

character' for the limiter by combining the limiters for all equations of the system.

57

i:(' _: ;i:!_

:_,••,k,•! : ,_:_i•

_:r • _. •

,' } ",_'.';. , : : _' , ,

H

Many variations are possible and can be implemented, giving different performance for

different problems. The following is a list of some of the possibilities with comments

on those for which empirical experiences are availabh'.

(a) Independent treatment of each equation as in operator-split FCT - this is the least

diffusive method, which tends to produce an excessive amount of ripples in the

non-conserved quantities (and ultimately in the conserved quantities also).

(b) Use of the same limiter (Cd) for all equations - this produces much better results,

seemingly because the phase errors for all equations are 'synchronized'. This was

also observed by Harten and Zwaas [46] and Zhmakin and Fursenko [47] for a class

of schemes very similar to FCT.

(c) Use of a certain variable as 'indicator variable' (e.g. density, pressure, entropy).

(d) Use of the minimum of the limiters obtained for the density and the energy

C_t = min[Cel(density), C_z(energy)] - this produces acceptable results, although

some undershoots for very strong shocks are present.

(e) Use of the minimum of the limiters obtained for the density and the pressure

C¢t = min[C_t(density), Cet(pressure)]- this also produces acceptable results, par-

ticularly for steady-state problems.

5.2.8 Artificial Viscosities

While the FEM-FCT algorithm avoids most of the overshoots encountered at dis-

continuities for linear schemes, some residual noise is still left in the solution. Therefore,

additional smoothing is implemented in the flow solver. Several smoothing artificial

viscosities have been examined. Some of these are:

Lapidus [48]:

2 0 l)D = clh (5.21)

58

•j

,i _

• i

:i:I i: :
/ •):•

/_!iji'5 i_I

, '=

where

l- Vlvl
IVlvll" (5.22)

Here v denotes the velocity vector of the fluid, h is a characteristic element length,

and cl is a constant. The advantages of this artificial viscosity are: invariance against

coordinate rotation, and economy due to uni-directionality. On the other hand, by

itself, it is under-diffusive for steady-state problems. We employ it mainly as post-

smoother in transient simulations to avoid terracing of expansion waves.

Jameson [49]:

In this case, the diffusion operator is of the form:

O 0D = cjCou h2f(p)-_x. (5.23)

No direct influence of the time step At is present in this operator. The time step is only

indirectly present through the Courant-number Cou. The pressure switch is chosen as

1020
f(p) = p l-'_zh _xpl. (5.24)

The summation of partial derivatives is approximated by the difference of consis-

tent and lumped mass-matrices:

]

f Oh2 0--_xp da = (1_¢fc - ML)p. (5.25)

This avoids the difficulties of clloosing the appropriate h 2, and makes the oper-

ator invariant against coordinate rotation. At the same time, it reduces CPU-costs

considerably. This form of artificial viscosity appears as the most appropriate for the

transonic regime. The results shown here were obtained by using this form of artificial

viscosity.

59

ii i i_i,_

/ii _

Morgan et al. [50]:

The diffusion operator is the same as before, t{owever, the pressure switch is

chosen as:

f(p)_ I°h2_ pl
ihOp I (5.26)

This switch is again approximated by

I(ML -- Mc)pl

f(P) = Y_ct I(ML -- Mc)pI" (5.27)

Our experience shows that this form of artificial viscosity is too diffusive for the

transonic regime. On the other hand, we use it regularly for supersonic problems. While

the diffusion operator is employed with the conserved variables for the continuity and

momentum equations, for the energy equation the total enthalpy is employed.

5!¸¸¸¸

5.3 SAMPLE RESULTS

In this section sample results on an ONERA M6 wing are shown to establish the

accuracy of the flow solver. This geometry has been extensively used in the past to

validate newly developed codes. The ONERA M6 wing has symmetrical airfoil sections

and a leading edge sweep of 30 °.

The 3-D tetrahedral grid was generated using VGRID3D. The computational do-

main is bounded by a rectangular box with boundaries at -6.5 _< X < 11.0, 0.0 _< Y <

2.5 and -6.5 _< Z _< 6.5. The co-ordinate system, for tile grid generation purpose, has

its origin at the root leading-edge of the wing with +X streamwise downstream, +Y

in the spanwise starboard direction and +Z upwards. The generated grid has 208,908

tetrahedral elements and 39,222 points. Of these, 8496 points represent the boundary

surfaces (wing as well as the outer computational boundaries" while the rest are the

field points.

60

i ¸¸ /

:i::i::i:,_i_
,ii: _

The computations were performed using VFLOW3D at transonic condition:

Moo=0.84 and a=3.06 °. The results presented here are after 5000 iterations when

residues were down by five orders of magnitude. The local time-stepping option was

used to accelerate the convergence to steady-state and .lanwson type artificial viscosity,

described in the previous section, was used. The flow solver required about 15.9 million

words of memory on CRAY-2 with about 86 microseconds/point/iteration.

Figure 28(a) shows the surface triangulation on the upper surface of the wing.

The flexibility of clustering grid points at desired locations is evident as small elements

are placed near the leading edge where a sharp peak in pressure is expected. Figure

28(b) shows pressure contours on the upper surface of the wing. The contour interval

is A(p/poo)=0.2. As expected, the A-shock structure can be seen. Figure 29 shows

(a) the grid and (b) the pressure contours in the plane of symmetry. Once again the

variation in the element size is evident.

In Figure 30, the pressure coefficient CI, , is compared with the experimental re-

sults from Ref. [51] at three spanwise stations of 44, 65 and 90%. For all the three

stations, the solution misses the suction peak which may be due to the grid resolution

in the leading edge area not being enough. Also the fact tha.t inviscid Euler solution

is compared with experimental results, which were obtained at a Reynolds number of

11.7 million, accounts for some differences. However, the overall solution is reasonable.

:ii i i
! _ • ii /

> i.

61

k

i

6. CONCLUSIONS

Due to their premise to easily generate 3-D grids over complex configurations,

unstructured grids have received a wide attention in recent years. As a result of NASA's

interest in the application of this new technology to solw_ fluid dynamic problems, a

program was begun about three years ago (in the form of an SBIR phase I study

to ViGYAN), to explore the feasibility of generating complex, 3-D grids. Once this

feasibility was established beyond doubt, the second phase of SBIR was begun, this

time with a challenge to develop programs not only for the grid generation but also for

the flow solution and the post-processing applications.

Over the last two years, a complete set of programs has been developed that at

the least show that CFD analysis can be performed over complex configurations using

the unstructured grid approach. As in any exploratory study, there are certain areas

that need further research. These areas are outlined below.

The grid generator needs to be made robust and some work is needed that provides

an estimate of grid quality and ways of implementing them into the grid generator. By

far the largest amount of time is required in setting up an appropriate background grid.

This part of the program needs to be automated further. The flow solver needs to be

validated for a variety of flow conditions. This may need 'tuning' the artificial viscosity

routines. The next step then would be to add viscous terms to the flow solver and im-

plementation of solution adaptive and moving grids. Of the three programs developed,

the post-processing program is in the most advanced stage and is capable of displaying

scalar and vector quantities on planes, surfaces or in the 3-D field. Implements like

volume rendering and ability to calculate and plot stream-lines will enhance its utility

even further.

In summary, the development of the progrmns under this contract has not only

established unstructured grid methodology as an alternative to structured grids in CFD

analysis but also given a timely impetus towards further research.

62

[1] ¸

[2]

[3]

[4]

[5]

[G]

[7]

[8]

[9]

[10]

REFERENCES

L6hner, R. and Parikh,P., "Generation of Three-Dimensional Unstructured Grids

By the Advancing Front Method," Internat. J. Numer. Methods Fluids, 8, 1135-

1149 (1988).

Gumbert, C., L6hner, R., Parikh P. and Pirzadeh S., "A Package for Unstructured

Grid Generation and Finite Element Flow Solvers," AIAA-89-2175 (1989).

Parikh, P., L6hner, R., Gumbert C. and Pirzadeh S., "Numerical Solutions on a

PATHFINDER and other Configurations Using Unstructured Grids and a Finite

Element Solver," AIAA-89-0362 (1989).

Watson, D.F., "Computing the N-Dimensional Dclaunay Tessclation with Appli-

cation to Voronoi Polytopes," The Comput. J., 24, 2, 167-172 (1981).

Bowyer, A., "Computing Dirichlet Tesselations," Computer Journal 24, 2,162-167

(1981).

Sloan, S.W. and Houlsby, G.T., "An Implementation of Watson's Algorithm for

Computing 2-Dimensional Delaunay Triangulations," Adv. Eng. Software, 6, 4,

192-197 (1984).

Tanemura, M., Ogawa, T. and Ogita, N., "A New Algorithm for Three- Dimen-

sional Voronoi Tesselation," J.Comput.Phys., 51, 191-207 (1983).

Jameson, A., Baker, T.J. and Weatherhill, N.P., "Calculation of Inviscid Tr_'msonic

Flow over a Complete Aircraft," AIAA-86-0103 (1986).

Baker, T.J., "Three-Dimensional Mesh Generation by Triangulation of Arbitrary

Point Sets," AIAA-87-1124-CP (1987).

Ycrry, M.A. and Shepard, M.S., "Automatic Three-Dimensional Mesh Generation

by the Modified-Octree Technique," Internat.J.Numer.Methods.Engrg., 20, 1965-

1990 (1984).

63

:/

• h'/ :

)i

p

i/

! •

[11] van Phai, N., "Automatic Mesh generation with Tetrahedron Elements," Inter-

nat.,l.Numcr.Methods.Engrg., 18, 237-289 (1982).

[12] Lo, S.H., "A New Mesh Generation Scheme for Arbitra.ry Planar Domains," In-

ternat.J.Numer.Methods.Engrg., 21, 1403-1426 (1985).

[13] Peraire, J., Vahdati, M., Morgan, K. and Zienkiewicz, O.C., " Adaptive Remeshing

for Compressible Flow Computations," J.Comput.Phys., 72, 449-466 (1987).

[14] Woodwark, J., Computing Shape, Butterworths (1986).

[15] Zienkiewicz, O.C. and Morgan, I(., Finite Elements and Approximation, J. Wiley

& Sons (1983).

[16] Barnhill, R.E., "Representation and Approximation of Surfaces," pp. 69-120 in

Mathematical Software III (J.R. Rice, ed.), Academic Press (1977).

[17] Knuth, D.N., The Art of Computer Progrmnming, Vol.3, Addison-Wesley (1973).

[18] Sedgewick, R., Algorithms, Addison-Wesley (1983).

[19] Broder, A.J., "An Algorithm for Incremental Nearest Neighbor Search in k-

Dimensional Space," Rep. MP-86W00026, The MITRE Corp. (1986).

[20] Greengard, L. and Rokhlin, V., "A Fast Algorithm for Particle Simulations,"

J.Comput. Phys., 73, 325-348 (1987).

[21] Samet, H., "The Quadtree and Related Hierarchical Data Structures," Comput.

Surveys, 16, 2, 187-285 (1984).

[22] L5hner, R., Parikh, P. and Gumbert, C., "Some Algorithmic Problems of Plotting

Codes for Unstructured Grids," AIAA-89-1981 (1981).

[23] Woodward, P. and Colella, P., "The Numerical Simulation of Two-Dirnensional

Fluid Flow with Strong Shocks," J.Comput.Phys., 54, 115-173 (1984).

64

•)

• • /2• '

!i' _ __Ii!

il _ _

J

i• • • i•:

iI_: : i _ '

/ :• /

[24] van Leer, B., "Towards the Ultimate Conservative Scheme. II. Monotonicity and

Conservation Combined in a Second Order Scheme," J.Comput.Phys., 14, 361-370

(1974).

[25] Roe, P.L., "Approxim_.te Riema.nn Solvers, Parameter Vectors and Difference

Schemes," J.Comput.Phys., 43, 357-372 (1981).

[26] Osher, S. and Solomon, F., "Upwind Difference Schemes for Hyperbolic Systems

of Conservation Laws," Math.Comp., 38, 339-374 (1982).

[27] Harten, A., "High Resolution Schemes for Hyperbolic Conservation Laws,"

J.Comput.Phys., 49, 357-393 (1983).

[28] Sweby. P.K., "High Resolution Schemes Using Flux Limiters for Hyperbolic Con-

servation Laws," SIAM J.Numer.Ana1., 21,995-1011 (1984).

[29] Zalesak, S.T., "Fully Multidinlensional Flux-Corrected Transport Algorithm for

Fluids," J.Comput.Phys., 31,335-362 (1979).

[30] Boris, J.B. and Book, D.L., "Flux-Corrected Trmlsport. I. SHASTA, a Transport

Algorithm that Works," J.Comput.Phys., 11, 38 (1973).

[31] Book, D.L., Boris, J.P and Hain, K., "Flux-Corrected Transport. II. Generaliza-

tions of the Method," J.Comput.Phys., 18, 248 (1975).

[32] Boris, J.P. and Book, D.L., "Flux-Corrected Transport. III. Minimal-Error FCT

Algorithms," J. Comput.Phys., 20, 397-431 (1976).

[33] Erlebacher, G., Solution Adaptive Triangular Meshes with Application to the Sim-

ulation of Plasma Equilibrium, Ph.D. Thesis, Columbia University , (1984).

[34] Parrott, A.K. and Christie, M.A., "FCT Applied to the 2-D Finite Element Solution

of Tracer Transport by Single Phase Flow in a Porous Medium," Proceedings of

on NumericM Methods in Fluid Dynamics, Reading, Academicthe ICFD-Conf.

Press (1986).

65

/.

H

/:, , :

', ? I¸ :

[35] Godunov, S.K., Mat. Sb., 47, 271-306 (1959).

[36] LShner, R., Morgan, K. and Zienkiewicz, O.C., "An Adaptive Finite Element

Procedure for High Speed Flows," Comput.Method._.AI)pl.Mech.Engrg. , 51,441-

465(1985).

[37] LShner, R., Morgan, K., Peraire, J. and Zienkiewicz, O.C., "Finite Element Meth-

ods for High Speed Flows," AIAA-85-1531-CP (19851).

[38] LShner, R., Morgan, K., Peraire, J., Zienkiewicz, O.C. and Kong, L., "Finite

Element Methods for Compressible Flow," pp. 28-53 in Numerical Methods for

Fluid Dynamics (K.W. Morton and M.J. Baines, eds.), Oxford University Press,

(1986).

[39] Donea, J., "A Taylor Galerkin Method for Convective Transport Problems," In-

ternat.J.Numer.Methods.Engrg., 20, 101-119 (1984).

[40] LShner, R., Morgan, K. and Zienkiewicz, O.C., "The Solution of Nonlin-

ear Systems of Hyperbolic Equations by the Finite Element Method," Inter-

nat.J.Numer.Methods.F1uids 4, 1043-1063 (1984).

:/

[41] LShner, R., Morgan, K., Vahdati, K, Boris, J.P. and Book, D.L., "FEM-FCT: Com-

bining Unstructured Grids with High Resolution," Comm. Appl. Namer. Methods.

4, 717-730 (1988).

[42] Morgan, K., LShner, R., Jones, J.R., Peraire, J. and Vahdati, M., "Finite Element

FCT for the Euler and Navier-Stokes Equations," Proc. 6t,h Int. Syrup. Finite

Element Methods in Flow Problems, INRIA (1986).

[43] Fry, M.A. and Book, D.L., "Adaptation of Flux-Corrected Transport Codes for

Modelling Dusty Flows," Proc. 14th Int. Syrup. on Shock Tubes and Waves

(R.D. Archer and B.E. Milton, eds.), New South Wales University Press (1983).

[44] Fyfe, D.E., Gardner, J.H., Picone, M. and Fry, M.A., "Fast Three-Dimensional

66

> . "L

:i_i

Flux-Corrected Transport Code for Highly Resolved Compressible Flow CMcula-

tions," Springer Lecture Notes in Physics, 218, 230-234, Springer Verlag (1985).

[45] Sod, G., J. Comput.Phys., 27, 1-31 (1978).

[46] Hartcn, A. and Zwas, G., "Self-Adjusting Hybrid Schemes for Shock Computa-

tions," J.Comput.Phys., 6, 568-583 (1972).

[47] ZhmMdn, A.I. and Fursenko, A.A., "A Class of Monotonic Shock-Capturing Dif-

ference Schemes," NRL Memo. Rep., 4567, (1981).

[48] L6hner, R., Morgan, K. and Peraire, J., "A Simple Extension to Multidimen-

sional Problems of the Artificial Viscosity due to Lapidus," Comm. Appl. Numer.

Methods., 1, 141-147 (1985).

[49] Jameson, A. and Baker, T.J., "Improvements to the Aircraft Euler Method,"

AIAA-87-0452 (1987).

[50] Morgan, K. and Peraire, J., "Finite Element Methods for Compressible Flows,"

yon Karman Institute for Fluid Dynamics, Lecture Series 1987-04 (1987).

[51] Schmitt, V. and Charpin, F., "Pressure Distributions on the ONERA M6-Wing at

Transonic Mach Numbers," AGARD Advisory Report 138 (1979).

67

..:.

Figure 1. Surface Triangulation on a Space Transportation

System Configuration

68

__i_̧;__,_,_:_i_/:!i_i_i___ili_i_i_!i_i___•

Figure 2. Surface Triangulation on a Boeing 747 configuration With

Details on the Engine

(I_;,LOqdA _u!sfl Pa_eaouoD aanlz!d o_!sodtuo D V "_ °an:_!d

\
t',--

: _ i+ ii _ • .

+
+.

+ + _- -_ i : i" ° !_ .: + _ + / _ +

i :¸ ,

Ii, _ ,

:/ii:_

Mach = 1.0, AOA = -3.0 Deg.

SPACE TRANSPORTATION SYSTEM

Pressure Contours

Figure 4. Surface Pressure Contours on an STS Configuration

71

tx_

D

A_C

X

3-D

0

D

A
I
v

1

C

B
Y

2-D [0,1] x [0,1]

M

,q

D C

A B _"

2-D _ ",,q"

Figure 5. Mapping of a Surface Patch to a Unit Square With Stretching

and Shearing

tla+ed aavjan S aeueld _ aoj +_ ptte t_ sas_ +ttl_laEAO O "9 oan_3!_I

×

/
/

/
/

J q

Z

t'--

\
\
\

i/i/iii!ili!iii iiii!iiiiii!iii̧i̧!

!/i q if!iii_: ii_if!!i_i!iili!

"-4

p_

Jy

X

,q

P_

o P_ 1 _;

Figure 7. Triangular Isoparametric Parabolic Surface

_3_jan S ,(i!d!pu_j_S 3!a_ui_a_dos I a_ln_u_138_I "$ oan_Ij

L _ o

d

d

L
d

d

Ix

×

d

Z
t_

i _ • _ _ _) _ •

. : '_ . " • • .i_I_:I_I
" _ .

i ¸ !::- ! •

i ¸ . :: ! : ii k :',

i i ¸iii !i _¸¸¸:!_¸¸__...... • :ii"_ i _i ,_i _ • •

-q

Z

F 3

x

y

0 --* 1
F1

Figure 9. Triangular Barnhill-Gregory-Nielson Patch

q_l_d s,uooo _!uustte-kL a_u!I!_[_lUgU_l_alt 'OIa_n_!e I

L 4--- 0

Lt

×

t_

-. . . . • • . • - .

ff ¸)i/1%/¸

t k

)t

_•i _

®®@®®®®

1. 2.

®

%%

_o ooo 6oql

:) /

,, /

t Figure 11 (a). Insertions of New Items into a Heap List

?8

/v: fly:L °

3, °o°o 61

7, @®®@@®

• _ ,•: i•

Figure 11 (b). Succesive Deletion of tile Smallest Item from a Heap List

79

/i:',':i̧!,i̧ _'ii

: :. L, '

LQUAO

1

2

1(3

f'4OUAO-!

NOUAO

_UAO_i

_UAO+2

_UAO+3

_UAO+4

IO:

IO

°°°I
B C rl

A

Q ° E

Aeco

I I

_UAD+3

O0
8C

A

(3

NOUAO + 4

.I

0 r'l OlO POINTS (A.B.C.D)

rl

o NEW POINT (E)

° E

/t

P,K3UAD + 1

NOUAO + 4

NOUAO + 3

hIOUAD * 2

r,IOUAO _-i --

\
NOUAO • 2

/

IIol..I II/
I

NQUAD + I

I NOUAO + 2

•1r--- NOUAO.3

II r N°U'°+.
tltltlt I I =
1'1'1_1. 1 .l-il

.i_l_l_l_l_l,1
I I I I I I I

I

I

I

I

I

0 _ A I IQIi

o _ El 12 toolt
0 _ "lC 13 mol_

o --o. Oj 4 _(t

I I I

,I
!

,0

NOUAO - 1

k'OUAO

NOUAD + 1

t_OUAO + 2

NOUAO + 3

NOUAD + 4

MouAo - 1

MOUAO

Figure 12. A Quadtree Structure

8O

PUn°aV tlS°IAI auln_U_!-kI, poan_na_SUfl u_ aoj oldtu_x_i ooa_,p_n 0 V "gI oan_!eI

(q)

d_.J

""N

I/

Ct'9

oan_:_na_s _s!q poilU!' / V "l_T oan_.t_I

t÷_ tO_ 000

(L+O,o'Y:JN)- _ _! I..-J

OcN=l,I

m

o_=1t
m

m

NlOdl

I.

¢,q
oo

:OdV_ :NlOd'l

NlOdl

_!i̧ ___ii _ _ __,

1

3

Figure 15. Point 3 in the 'Wrong' Side of the Face to be Removed (Face 1-2)

A
w

3

i :

, r

Figure 16. Point 4 in the 'Wrong' Side of the Adjacent Face (2-3) to the

Face to be Removed (Face 1-2)

83

2

3

v v

Figure 17. Apex Angles Corresponding to points 1, 2, and 3 (2-D)

3

Figure 18. Spherical Angles A, B, and C

4

1

Figure 19. An Apex Angle Corresponding to Point 4 (3-D)

84

:•IL:

=1018

LO
O0

u°Deulqtu°;D aPlS-aa_I "I_; _an_t._I soau_I Om_L jo _lUlSSOaC) "0_ _an_I_l

=lois
Z

L5

3Dr.4

3 3

N I,/va,N s>O N _ <0

(a) (b)

Figure 23. Point P (a) Inside and (b) Outside of Triangle 1-2-3

t,

• i•. Figure 24. Point P Inside Tetrahedron 1-2-3-4

86

_ _i _ _

v_

_4

LO

_o

°°

_ L4_ aO C1_ l_

87

v-¢

o

e_ml

c) o

eg_

_ °
_ "_

elm

oo
0o

1 2

!

,6

4

to remove ,lemnet VII,

collapse side 3 - 5 into point 5,

(_)

1 2

4

7

remove elements

III and VII,

(b)

=_

1 2

I

3

6

and renumber point5

and _/emcnt8

(o)

Figure 26. Removal of a Small Element

i¸

i',_)I _i/

iii _ ,,:

/

- , ._ i _

z

_I•• •/'i

Figure 27. Grid Characteristics Parameters

89•
..7

, i;i:_S:

(a)

r.

(b)

Figure 28. ONERA M6-Wing_ M--0.84_ _--3.06°_ Upper Surface

(a) Triangulation (b) Pressure Contours

90

/

II

Q
II

Z
o

bO
op.q

0

0
0

0

_0

oN

V

_Db

_ _'___i,,__ i_; _ _k_i___i!!_II_I!I,,_I!i̧!̧I_¸¸Ii̧̧

Y :

/

O_

OJS

0.4

02

On

,O.2

-O.4

.0.6

-0.8

-1.0

• 44 %

I I I I I I I I I I

-0.10 O.O0 0.10 0.20 0.30 0.40 0.50 0.80 0.70 0.60 0310

X/C-0.44
1.2

1.0

0,$

0.6

0.4

O2

O.O

,O-2

.0.4

.0.6

.0.S

+1,0

_* • • ° 65%

m

I t I I I I I I 1 I I

-0.10 0.00 0.10 0.20 0.30 0.40 O,SO 0.60 0.70 0.90 O.gO 1.00

X/C-,0,65

H_

r

/"

IJO

OJ

0.6

OA

02

O_O

-0.2

-0.4

-0.6

.0.8

.1 .o I I I I I I I I I I I

-o.Io o.oo o.1o o_o o.+o o.,m o.so oJo o.7o o.m om +.oo

X/C-0.9o

92

Figure 30. Comparison of Surface

Pressure Coefficients with

Experimental Data

/

:_i _ • • , :

, _i ¸¸ ,

ii ,:7, •

ii(_ _i_,

7•

APPENDIX

A sample input file for the grid generator is giv('n h('r(' f()r an ONERA h46 wing.

Tile wing configuration comprises of 36 surface patches made. ()f 69 lines and 675 points.

For brevity only partial listing of the file is shown.

The initial section specifying the title etc., is followed by the coordinates of the

points. Next, information regarding lines is given. Lines 1,2,and 3 are cubic splines

while the last three lines shown, are straight lines. The information regarding the sur-

faces follows next. It may be noticed that boundary layer grid is specified on surface

number 1 with 15 points within the boundary layer, dist, ributed in a geometric pro-

gression (NTYBL = 1) and the distance between two consecutive points is specified

to be increasing at a ratio of 1.2. Please also notice that on surfaces 32,33,34 and 36,

characteristic boundary condition is specified with 'characteristic inflow set' numberd

as 1. As mentioned in Chapter 3, the actual vMues of the variables to be used for "char-

acteristic inflow analysis" need only be specified during execution of the flow solver.

Surface number 35 is the inflow plane for the computational domain, hence a boundary

condition of (-1,0,0) is specified corresponding to no change in unknowns. The two

lines, 50 and 57, are the lines forming the wing upper and the lower surface in the

plane of symmetry. So these lines are specified to have tangential boundary condition.

Similarly, the six lines listed under LLITA are the lines forming the trailing edge of the

wing and hence, are specified to have !free' boundary condition.

The background grid information is self explanatory, except that on points 1 and

2 of the background grid, a boundary layer thickness of 0.1 is specified. The desired

mirroring of the 3-D grid is specified by NMIRR = 1, while the values of XOVEC and

XNVEC provide for a mirroring across a X-Y plane located at the origin. The run is

specified to generate a coarse grid, FACT = 2.0, and do one h-refinement,

93

SAMPLE INPUT FILE FOR VGRID3D

i' ii_; _

i/•

ONERA M6 WING
NDIMN NPOIN NLINE NSURF

3 675 69 36

COORDINATES OF THE POINTS
1 0.57499999E+00 0 00000000E+00 0.10000000E+01

2 0.57520121E+00 0 00000000E+00 0.10003500E+01
3 0.57663625E+00 0 00000000E+00 0.10021501E+01

4 0.57911402E+00 0 00000000E+00 0.10043200E+01
5 0.58245730E+00 0 00000000E+00 0.10064300E+01

6 0.58663100E+00 0 00000000E+00 0.10082800E+01

667 0.67369998E+00 -0 47999999E-03 0.00000000E+00

668 0.11000000E+02 0

669 -0.65000000E+01 0
670 -0.65000000E+01 -0
671 0.11000000E+02 -0

672 0.11000000E+02 0
673 -0.65000000E+01 0

674 -0.65000000E+01-0

675 0.11000000E+02 -0
LINES: NUMBER NTYLI

1 3
2 3
3 3

65000000E+01 0.00000000E+00

65000000E+01 0.00000000E+00
65000000E+01 0.00000000E+00
65000000E+01 0.00000000E+00

65000000E+01 0.25000000E+01
65000000E+01 0.25000000E+01

65000000E+01 0.25000000E+01

65000000E+01 0.25000000E+01
#POINTS LIST

6 1 2 3 4 5 6
7 6 7 8 9 10 11 12
6 12 13 14 15 16 1

67 1 2

68 1 2
69 I 2

SURFACES: NUMBER NTYSU #LINES
1 4 3

2 4 3
3 5 4

673 669

674 670
675 671

LIST
3 1 2

4 5 -I
8 -2 6

B. COND.
0 0 0

3 0 0
3 0 0

B.LAYER
15 1 1.2

0 0 0.
0 1 0.

• .i¸¸ L

32 1 4
33 1 4
34 1 4

35 1 4
36 1 4

NLITA

2

LLITA
50 57

NLIFR
7

LLITA

49 46 43 40 37 34 25
BACKGROUND GRID DATA

NELEB NPOINB

612 154
INTMAB

1 1

2 1

3 2

62 67 -58 -66

-62 -67 -64 -63
64 69 -60 -68
63 68 -59 -67

65 66 -61 -69

3
2

5

94

4 1

4 1
4 1

-I 0

4 1

23

23

24

0 0 O.

0 0 O.
0 0 O.
0 0 O.

0 0 O.

i

608 152 153 131

609 144 153 131

610 153 154 132

611 143 154 132

612 147 132 154

COORDINATES OF THE BACKGROUND GRID NODES

1 0.00000E+00 0.00000E+00 0.00000E+00
2 0.50127E-01 0.00000E+00 0.00000E+00

3 0.24132E-01 -0.30325E-01 0.00000E+00

144

143

143

141

141

152 0 .II000E+02 0. 65000E+01 0.25000E+01

153 0. 67758E+00 0. 65000E+01 0.25000E+01

154 -0.65000E+01 0.65000E+01 0.25000E+01

UNKNOWNS AT THE NODES - UNKNB

i 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4.000E-03 1.0 1.0 0.i

2 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 4.000E-03 1.0 1.0 0.I

3 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 8.000E-03 1.0 1.0 0.

4 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 8.000E-03 1.0 i.0 0.

5 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 1.000E-02 1.0 1.0 0.

15{ 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 2.500E+00 1.0 1.0 0.

152 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 2.600E+00 1.0 1.0 0.

153 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 2.500E+00 1.0 !.0 0.

154 1.0 0.0 0.0 0.0 1.0 0.0 0.0 0.0 1.0 2.600E+00 1.0 1.0 0.

MIRROR -_I_

1
x0_c
0. 0. 0.
XNVEC

0. 0. I.
NH_F FACT

I 2.00

• k ,

•!

i_i

95

i__'ilii

ii_ :/ii

y>?!il•_ii'

i i_I_-

• i_ /i i_

iI,__i
+ , •

N/tSA
Nalcr_11 +<_mo_aulC S
._,aCe +",Or'_qn_t a_ 0 +I

1. Reoor_ No.

NASA CR- 182090

4. Title and SuOtztle

Report Documentation Page

2. Government Accession No. 3. Recapient's Catalog No.

5. Report Date

A Package for 3-D Unstructured Grld Generation

Finite-Element Flow Solution and Flow Field

Visualization

7. Autllorts)

Paresh Parikh, Shahyar Pirzadeh and Rainald Lohner

9. Performing Organization Name anO Address

ViGY_N, Inc.

30 Research Drive

Hampton, VA 23666-1325

12. Soonsoting Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

, Hampton_ VA 23665-5225

15. Suppmmenta_ Notes

September 1990

6. Performing Organization Ccae

8. Performing Organization Report NO.

10. WO_ Unit NO.

324-02-00

11. Contract or Grant No.

NASI-18670

13. Ty_ of Re_ and Period Cover_

Contractor Report
14. Sponsoring Agenc Y Code

t
r

Langley Technical Monitor: Clyde Gumbert

Final Report - SBIR Phase II'

16. Abstract

A set of computer programs for 3-D unstructured grid generation, fluid flow

calculations and flow field visualization has _ been developed. The grid

generation program, called VGRID3D, generates grids over complex configurations

using the advancing front method. In this method, the point and element

generation is accomplished simultaneously, VPLOT3D is an interactive_ menu-

driven pre- and post-processor graphics program for interpolation and display of

unstructured grid data. The flow solver, VFLOW3D, is an Euler equation solver

based on an explicit, two-step, Taylor-Galerkin algorithm which uses the Flux

Corrected Transport (FCT) concept for a wriggle-free solution. Using these

programs, increasingly complex 3-D configurations of interest to aerospace

community have been gridded including a complete Space Transportation System

comprising of the space-shuttle orbltor, the solld-rocket boosters, and the

external tank. Flow solutions have been obtained on various configurations in

subsonic, transonic, and supersonic flow regimes.

17. Key Words ($ugg_t_ by Aumor(s))

Unstructured Grids

Finite Element Solver

Computer Graphics

19. Securiw Cla_f. (of thm report]

Unclassified

18. Oistribu_n Statement

Unclassified - Unlimited

Subject Category 02

20. S_uri_ Classlf. (of this page)

Unclassified

21. No. of pages

104

22.Price

A06

NASA FORM 1626 OCT 86

