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SUMMARY

This report documents a research program for the development of improved suspension

techniques for ground vibration testing of large, flexible space structures. The

suspension system must support the weight of the structure and simultaneously allow

simulation of unconstrained rigid-body movement as in the space environment.

Exploratory analytical and experimental studies were conducted for suspension systems

designed to provide minimum vertical, horizontal, and rotational degrees of freedom.

The effects of active feedback control added to the passive system were also

investigated.

An experimental suspension apparatus was designed, fabricated and tested. This test

apparatus included a zero spring rate mechanism (ZSRM) designed to support a range

of weights from 50 to 300 Ibs and provide vertical suspension mode frequencies less

than 0.1 Hertz (Hz).

The lateral suspension consisted of a pendulum suspended from a moving cart (linear

bearing) which served to increase the effective length of the pendulum. The torsion

suspension concept involved dual pendulum cables attached from above to a pivoting

support (bicycle wheel). A simple test structure having variable weight and stiffness

characteristics was used to simulate the vibration characteristics of a large space

structure.

The suspension hardware for the individual degrees of freedom was analyzed and tested

separately and then combined to achieve a 3 Degree-of-Freedom (DOF) suspension

system. Results from the exploratory studies should provide useful guidelines for the
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development of future suspension systems for ground vibration testing of large space

structures.

This research program was conducted under NASA Langley Research Center Contract

NAS1-18798 funded by the Controls-Stuctures Interaction Guest Investigator Program.



1.0 INTRODUCTION

The proposed use of large space structures has created unique and challenging

requirements. The extremely large size and light weight of the structures coupled with

the near zero gravity, vacuum environment of space causes difficulty with the control and

movement of such structures. To understand and document these difficulties a

significant number of ground-based tests on sample or model large space structures will

be required. Ground Vibration Tests (GV'F's) are necessary to characterize a structure's

behavior under dynamic conditions such as slewing a large space antenna or performing

a docking maneuver with a space station. Ground Vibration Tests provide the engineer

with data specifying the structure's natural modes, frequencies, damping, and mode

shapes. These data are critical in determining methods of moving and controlling large,

lightweight space structures.

One of the major difficulties with ground vibration testing of large space structures is

suspending the structure to allow freedom of motion similar to that found in space. It is,

of course, impossible to match the near zero gravity environment of space in ground-

based facilities, therefore, suspension systems must support the structure and must do

so in a manner that does not overly constrain its motion. The structural members

themselves are not designed to take significant loads such as the weight loading which

occurs in a ground test environment. Therefore, the suspension system must, while

allowing freedom of motion, adequately distribute the weight loading throughout the frail

structural members. Freedom of motion requires that the suspension system allow the

structure rigid-body movement, that is, minimal coupling with the flexible or vibrational

modes of the structure. This freedom is required to adequately simulate movement of

the structure in space.



The extremely large size and relative frailty of the structures themselves, or even scaled

models of the structures, create unique problems associated with suspension systems.

These large structures typically have extremely low natural frequencies. The fundamental

frequencies will often be below 0.5 Hz. The addition of a suspension system creates

non-zero rigid body modes of the large space structure. The frequency of the rigid

body modes is dependent on the suspension stiffness. To adequately uncouple the

rigid body modes of the structure from the fundamental flexible modes, the rigid body

modes should have frequencies substantially lower than the first fundamental mode.

Attempts are often made to suspend structures with long cables, pendulum fashion, from

a high ceiling. However, at the extremely low frequencies involved, the required cable

lengths become prohibitively long.

Pendulum cable supports limit structural testing to one plane of motion at a time. This

support technique ignores the coupling of structural modes in more than one plane and

does not address the distortion of torsion modes of beam-like structures nor the

distortion of bending modes in the vertical plane. Improved suspension systems using

both active and passive technologies have been proposed for support of large space

structures. It is felt that initial improvements using simple passive techniques should be

examined as a starting point and supplementedwith active systems as necessary. As

such, this report will document studies, both passive and active, which provide improved

suspension in three degrees-of-freedom. Techniques will be described which "effectively"

lengthen fixed pendulum cables and which offer soft suspension in both the vertical and

torsional degrees of freedom.
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2.0 TEST APPARATUS

An illustration of the apparatus used to provide a soft vertical suspension is shown in

Figure 1. The main springs bear the weight of the large space structure (represented

by laboratory weights in the figure), but the dynamic stiffness of the system is decreased

by the addition of the side spring forces. The system tested was designed to support

a range of payloads from 50 to 300 Ibs and to provide a minimum suspended frequency

of less than 0.1 Hz. The suspension system is designed to allow a vertical travel of _+

3 inches. A complete description of the mechanism and its performance is included in

Section 3.0 of this report.

The coupled lateral/torsion suspension system is shown conceptually in Figure 2. The

soft lateral suspension is provided by a linear bearing which serves to effectively

lengthen the support cables. The torsion suspension is shown as a simple wheel

concept. In the laboratory tests a good quality bicycle wheel was used for the torsion

suspension because it best met the overall requirements of minimum weight, high load

capacity, minimum bearing friction, and low cost. The choice of a bicycle wheel is not

surprising since the basic design of such wheels has been optimized over many years.

For more heavy duty (high payload) requirements a simple three-bar linkage may be

substituted. Complete descriptions of the lateral and torsion suspension devices are

included in Sections 4.0 and 5.0, respectively.

While originally analyzed and tested independently, the vertical suspension and the

lateral/torsion suspension were coupled as a three degree-of-freedom (DOF) suspension

in later tests. The lateral and torsion suspension are heavily coupled and have been

analyzed and tested together. Coupling the vertical suspension to the lateral/torsion was

3



not significant in that they are basically uncoupled. However, the addition of the vertical

suspension did complicate the active control system as described in Section 7.0.

In order to test the suspension systems, a simple test structure was fabricated which

simulated the characteristics of a large space structure. Also shown in Figure 2, the

simulated structure is a rigid frame loaded with laboratory weights and restrained

elastically by three long rods. The structure is designed to have three basic low

frequency modes of interest, horizontal (lateral) and vertical translation and rotation

(torsion) in the plane normal to the rods. The lateral and vertical mode natural

frequencies are between 0.2 and 0.3 Hz, and the torsion mode frequency is designed

to be between 1.0 and 2.0 Hz. The structural weight can be varied from 20 to 200 Ibs.

This range of payload and low natural frequencies provide an excellent test bed and

allow a rigorous evaluation of the suspension devices.

3.0 VERTICAL SUSPENSION SYSTEM

3.1 Description

The primary objective of a vertical suspension system is to provide a near zero vertical

stiffness and yet be strong and stiff enough to support a heavy load with a limited

amount of initial deflection. The Dynamic Engineering Incorporated (DEI) vertical

suspension system is based on the concept of a Zero Spring Rate Mechanism (ZSRM)

which has been discussed by others including Kienholz et al in Reference 1. This type

of system can be designed to have very low vertical stiffness characteristics and at the

same time support large loads with moderate initial deflections. The components of the

ZSRM configuration incorporated into the DEI vertical suspension system are shown in

Figure 3a. The weight of the structure is supported by the main vertical spring, which
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has a spring constant Km. in order to limit the initial deflection of the spring under load,

a relatively stiff spring is used. The ZSRM configuration consists of four linkages, two

vertical and two horizontal. The horizontal members are joined together at one end and

are connected to the vertical members on the opposite ends. The vertical members are

supported at the upper end by a fixed support through a hinge joint. All the

connections between the members are also hinge joints. A horizontal spring, with

stiffness K s stretches between the outward ends of the horizontal members, applying a

compressive force to them.

When the system is in equilibrium, the horizontal members are exactly horizontal and the

vertical members are perpendicular to them. The structural weight is balanced by the

restoring force of the main spring, and the compressive force has no component in the

vertical direction. As the system is deflected away from the neutral point, the

compressive load in the horizontal members develops a vertical component. This vertical

force acts in a direction opposite to the restoring force of the main spring, effectively

reducing the stiffness of the main spring. With the proper combination of springs and

compressive load, the system will exhibit near zero stiffness and will require very little

force to deflect it from the neutral point. The structural weight will behave as if it is

floating.

3.2 Analytical Development

The vertical suspension system was analyzed to determine the best configuration by

examining the effect of each of the design parameters on the behavior of the system.

By summing the vertical forces acting at the center point (see Figure 3b), the restoring

force, F R, can be determined from the following equation:
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FR + W-Fkm +2Fcsin(o ) =0 (I)

where: W is the structural weight

Fkm is the restoring force of the main spring

F c is the compressive force in the horizontal members

a is the rotation angle of the horizontal member

The compressive force in the horizontal members, Fc, is a function of the side spring

force, F s.

Fs
F c = (2)

(cos(a)-sin(a)tan(O))

F s = Pc-2K s r (1 -cos(a )) (3)

where: Pc is the pretension in the side spring and

r is the length of each horizontal member

e is the rotation angle of the vertical member

Ks is the stiffness of the side (horizontal) springs

The main spring force Fkm is:

Fkm =KmZ*KmZ o

where: Z is the vertical deflection of the main spring

Z 0 is the initial deflection of the main spring

K m is the main spring stiffness

(4)

For static balance W=Km*Zo, and therefore the restoring force of the system is :
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2Fssin(a)
F R = K m Z - (5)

cos(a) - sin(a) tan({) )

For small values of Z, angle e is very small and the equation for F R can be reduced to

the following:

F R = KmZ - 2F s tan(a) (6)

The system is designed so that FR is zero when Z=0. The effective vertical stiffness of

the system, Keff is aFR/aZ, which for small values of a is:

2P c
Keff= Km - _ (7)

r

The effective stiffness of the system is therefore a function of the main spring stiffness,

the pretension in the side springs and the length, r, of the horizontal members. The

system will exhibit linear behavior with this constant stiffness for small values of Z. As

Z increases, the nonlinearity of the system also increases. The behavior of the ZSRM

as compared to a linear spring with the same stiffness at small deflections is illustrated

in the force vs. displacement plot in Figure 4. The ZSRM exhibits linear behavior within

a +1 inch range of Z, beyond which the nonlinearity of the system is evident. The

difference between the linear and nonlinear responses of the system is also plotted as

a function of Z in Figure 4. This nonlinear offset can be defined as a third order curve

which could be used as a gain function for active feedback. The system stiffness could

be linearized by applying the required feedback compensation as a function of vertical

displacement, Z.
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The nonlinearity of the system is a function of several parameters, including Km, Ks, r

and L, where L is the length of the vertical members. In general, for a given structural

weight, decreasing the stiffness of the springs (while maintaining the correct Km/K s ratio)

will reduce the nonlinearity of the system. However, a reduction in Km is limited by

strength requirements and limits on the static deflection of the spring. The stiffness of

the system is not symmetric with respect to the Z direction, due to the motion of the

vertical member. As L increases, e decreases to the point where there is no motion of

the vertical members within the vertical travel limit of the system. If e is zero the stiffness

will be symmetric with respect to the Z direction. Physical limitations on the length of the

vertical members must be considered, however, when designing the system.

The equation for Keff indicates that the stiffness will decrease as the preload in the side

springs increases. For a fixed structural weight, this decrease in stiffness corresponds

to a decrease in frequency. The effect of the preload on frequency is illustrated in

Figure 5. Without any preload, the system frequency is solely a function of the main

spring stiffness and the weight. If the preload is increased the frequency will decrease.

The limiting load is called the buckling load, Pcrit' which gives the system a zero

stiffness and will cause the system to buckle.

3.3 Experimental Test Set-up

The ZSRM concept was incorporated into a vertical suspension system which was

fabricated and tested at the DEI facility. A drawing of the 3 DOF suspension test

apparatus which combines the vertical, lateral, and torsion suspensions is shown in

Figure 6. The outer dimensions of the system were sized to allow for testing in the DEI

facility. The rigid members are made of 1 inch square aluminum tubing. Steel flexures

made out of 0.020 inch blue spring steel are used as hinge joints. They are held

8



between aluminum blocks which fit into the ends of the tubing. These low damping

flexures provide rotational freedom without adding significant friction to the system. The

side springs are connected to bar fixtures which can be positioned at any location along

the vertical members. By changing the vertical position of the side springs, the

compressive loading in the lower horizontal members can be adjusted without adjusting

the preload in the side springs. In this configuration, the initial compressive loading in

the horizontal members is less than the spring preload, determined as follows:

K s d oa (8)
Fc° - L

where: L is the vertical distance between the upper and lower joints

a is the distance from the upper joint to the side spring location

d o is the prestretch of the side spring

Both the main and side springs are connected to eye bolts which can be adjusted to set

the correct prestretch or preload in the springs. A force gauge is used to monitor the

static preload in the side springs. A strain gauge was mounted on the bottom right

flexure and calibrated to the vertical travel at the center point. The vertical frequencies

of the system were verified by examining the frequency spectrum of the response from

a Kaman non-contact probe placed underneath the structural weight as it is displaced

from equilibrium.

A very soft vertical spring, stretched between one of the lower horizontal members and

a motor gear belt is used to fine tune the stiffness of the main spring.

the soft spring is adjusted to center the system at its equilibrium point.

is used to drive the motor in either direction.

The tension in

A simple switch
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This experimental vertical suspension was designed to support a maximum load of 300

Ibs. The range of vertical travel is +3 inches. Protective stops have been installed on

the system to prevent any further travel which could damage the flexures. Two different

spring combinations were tested on this system, the first with a load capacity of 150 Ibs

and the second with a load capacity of 50 Ibs. Complete instructions for the assembly,

installation and tuning of the vertical system are included in Appendix A.

This type of vertical suspension system can be customized to a large range of weight

Ioadings by installing the appropriate combination of main and side springs. The weight

range for a particular spring combination is dependent on the adjustment features

available for large changes in initial deflection of the main spring. The vertical stroke is

limited primarily by flexure deflection limits. The stroke can be increased by lengthening

the horizontal members, which will increase the ratio between the vertical travel and the

deflection of the flexures.

3.4 Performance Characteristics/Test Results

In order to support a load of 145 Ibs and constrain the initial deflection within the

physical limits of the system, a combination of springs giving a main spring stiffness of

7.65 Ibs/in was chosen. The side spring stiffness selected was 3.6 Ibs/in. The selection

of spring combinations was based on stiffness requirements, deflection limits within the

physical system and availability through stock spring sources. The reduction in stiffness

and frequency which can be achieved with the ZSRM system is illustrated in Figure 7.

The force vs. displacement curves for both the main spring alone and the ZSRM are

plotted. When the 145 Ib is supported solely by the main spring, with a stiffness of 7.65

Ibs/in, the system frequency is 0.78 Hz. By implementing the ZSRM concept with the

proper compressive load setting, the effective stiffness is reduced to .148 Ibs/in, which

10



corresponds to a frequency of 0.1 Hz. As mentioned previously, the stiffness of the

ZSRM becomes nonlinear as Z increases. This nonlinearity can be observed in the force

vs. displacement curve for magnitudes of Z greater than one inch.

For a constant supported weight, the frequency of the vertical system can be adjusted

to any value less than the frequency of the main spring by applying the correct

compressive loading to the lower horizontal members. For a given mass, M, and a

desired frequency, _, the required effective stiffness of the system, Keff, is _2*M. The

equation for Keff, derived in the analysis section, can be used to solve for the preload

in the side springs as follows:

pc = (K m _Keff ) rL (9)
2a

The force gauge is used to set the correct preload determined from this equation. The

spring deflection is changed by adjusting the location of the eye bolts or the spring

attachment bar. Fine tuning adjustments may be necessary to match the desired

frequency.

Initial attempts at matching frequencies indicated that the vertical stiffness of the system

was higher than expected due to the stiffness of the flexures. In calculating the proper

preload, K m must include the main spring and flexure stiffnesses.

The desired frequency chosen for the experimental test apparatus was 0.1 Hz. The

frequency of the system was verified using a Kaman non-contact probe, placed

underneath the supported weight. The system was displaced from its neutral point

about two inches and allowed to oscillate freely. The frequency spectrum from the

11



probe response was used to determine the frequency. A free response time history and

corresponding frequency spectrum for the vertical system supporting a 145 Ib load are

presented in Figure 8a. The frequency of the vertical mode is 0.105 Hz. The vertical

system was tested with various weight Ioadings to verify that the desired frequencies

could be achieved for a range of weights. The minimum weight tested on the 145 Ib

spring system was 80 Ibs. The 0.1 Hz frequency of this configuration was verified by

the frequency spectrum of the free response, shown in Figure 8b. A second set of

springs was installed for a maximum load of 50 Ibs. The frequency spectrum from the

free response of this configuration with a 42 Ib load is shown in Figure 8c.

Force deflection tests were performed on the various configurations to determine the

restoring force of the system in the +3 inch vertical range. Weight was added to the

system in small increments and deflection measurements were taken for each

incremental weight. The force vs. deflection curve obtained from these measurements

along with the analytical curve are presented in Figure 9a for the 145 Ib case. The

experimental curve demonstrates slightly more nonlinearity for values of Z beyond two

inches, but the differences are relatively small. The force vs. displacement curve shown

in Figure 9b for the vertical system with an 80 Ib load demonstrates similar behavior.

As mentioned previously, the vertical location of the side spring mounting brackets can

be adjusted to provide a means of changing the compressive load in the lower

horizontal members without changing the preload in the side springs. The sensitivity of

this adjustment with respect to compressive loading and frequency is illustrated in Figure

10. The frequency can be reduced from .185 Hz to .068 Hz by lowering the position of

the springs 1.75 inches which corresponds to a 2 Ib change in compressive loading.

This high degree of sensitivity not only allows the system to be tuned for very low

12



frequencies (near zero), but also makes the system more sensitive to changes in

temperature and air disturbances.

Damping measurements were obtained from the free decay response of the system to

an initial deflection. The percent critical damping, _, was calculated using the logarithmic

decrement method. Damping was examined for a range of system frequency settings

corresponding to various levels of compressive loading. The damping measurements

taken from the experimental data are presented in Figure 11. As expected, Z;increases

as frequency decreases. Since there are no moving parts in the system, the source of

the damping must be structural damping in the flexures. At such low frequencies, air

damping could also be a contributing factor.

4.0 LATERAL SUSPENSION

The suspension of large space structures from long pendulum cables provides a

convenient means for allowing the test article to move laterally as a rigid body. To

minimize dynamic coupling of the pendulum and elastic modes of the suspended

structure, excessively long pendulum cables may be required. For the test article

suspended as a simple pendulum with cables fixed at the upper ends, the lowest

suspension mode frequency is

p = Vl-g/ L , rad/sec (10)

where: g is the gravitational constant and

L the support cable length
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The techniques described below provide a means for increasing the effective length of

pendulum cables. Some of these ideas were originally introduced in Reference 2.

4.1 Moving Cart Analogy

The moving-cart analogy depicted in Figure 12 provides a useful means of studying the

application of extended pendulum techniques such as the inverted pendulum, tensioned-

cable suspension and other techniques for reducing the natural frequency of a simple

pendulum. The primary goal of all of these methods is to reduce the system's

fundamental frequency. This frequency is dependent upon the stiffness of a spring

between the cart and ground. If the spring is infinitely stiff, the suspension system

frequency is g_, the simple pendulum frequency. As the spring stiffness, Kx,

approaches zero, the suspension frequency, (_p, likewise approaches zero.

The tensioned cable may also be replaced with a fixed rail or beam on which a pulley

rides. This system has the advantage that large tensions and long lengths are not

required to lower the restoring force. The restoring spring Kx is controlled by the shape

of the rail, specifically, the depth, d, of the rail. The value of Kx shown in Figure 12 is

for a circular arc shape and yields a linear spring for small motions on the rail. This

system offers very low values of K.x, in fact, the rail can be flat (d = 0), allowing the

restoring force to approach zero.

The system also has a higher-frequency cart mode. For K,

mode frequency, oc, to the simple pendulum frequency is

= 0 the ratio of the cart-

14



w
(11)

where W and w are the weights of the suspended structure and the cart respectively.

It is interesting to note that in all cases, the effective spring stiffness Kx, and conse-

quently the suspension system frequency, is strongly dependent on the suspended

weight. This feature differs from the simple pendulum whose frequency is independent

of pendulum weight.

4.2 Damping Effects

In the preceding discussion of lateral suspension systems, the effects of damping or

friction forces were neglected. The effect of such forces acting on the moving cart is

considered next. For ease of analysis, it is assumed throughout that the damping

mechanism can be modeled as an equivalent linear viscous damper. To investigate

damping effects, the lateral suspension model shown in Figure 13 is analyzed. The

definition of parameters and the specific example cases to be considered are also given

in Figure 13. Note that the suspended mass is connected to the ground by a spring

of stiffness k. Thus, _-_M represents the undamped lateral mode frequency of the

"test article" in a zero-gravity (O-g) environment. The equations of motion for the model

shown in Figure 13 are as follows:
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Mn Mn
M,_ 1 + c,,,_ 1+ '-=xl_ ""_, xz = F c

L L
(12)

The term Fc is a feedback-control force acting on the cart which will be discussed later

in consideration of active control of suspension system modes.

Figure 14 shows the loci of lateral-mode eigenvalues of the above equations of motion

as the damping coefficient, c,,, is varied from 0 to 10 Ib/ips. This display of eigenvalues

is not the usual plot of imaginary part versus real part, but rather a more physically

meaningful plot of damped frequency (in Hz) versus damping ratio (relative to critical

damping). Significant features of this plot are the frequencies of the lateral mode as the

cart damping coefficient approaches limiting maximum and minimum values. For c v =

0 Ib/ips the frequency is that of the unsuspended (zero-g) test article (0.27 Hz); for large

damping (c v > 10 Ib/ips) the system frequency approaches 0.426 Hz, the frequency for

simple-pendulum suspension at one g.

Because of the sensitivity of the lateral-mode suspension frequency to damping in the

moving cart mechanism, efforts were made to quantify the damping and breakout friction

of the linear bearing system, which becomes the "moving cart" used in the experimental

laboratory suspension system (see Figure 6).

First, the equivalent viscous damping of the linear bearing on a circular-rod track was

determined experimentally by the method illustrated in Figure 15. Weights were

suspended from a cable of length L attached to the bearing. The weights were

restrained laterally by attachment of horizontal cables at the weight's center of gravity.
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The linear bearing was displaced from its equilibrium position on the track and then

released. The equivalent viscous damping coefficient, c v, was determined experimentally

from the logarithmic decrement of the resultant lateral transient motion of the bearing on

its track by means of the approximate equation

C v

(13)

where: T

W =

L =

N½=

period of oscillation

suspended weight

pendulum length

number of oscillations for vibration amplitude to reach one-

half of the initial displacement.

Figure 15 indicates that the derived damping value of c v = 0.04 Ib/ips is essentially

independent of load over the weight range tested (50 Ib to 200 Ib).

The breakout force required to overcome friction of the linear bearing was experimentally

determined by measuring the lateral deflection of the pendulum weight at the instant of

breakout. In Figure 16, the friction coefficient, i.e., the breakout force relative to the

applied normal load in percent, is plotted versus load. Here it is seen that the friction

coefficient falls off with increasing load. For the maximum test load of 190 Ibs the

measured friction coefficient F/W = 0.2 percent; for the minimum test load of 2.0 Ib, F/W

= 0.4 percent.
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5.0 TORSION SUSPENSION

In previous sections of the paper, various means of achieving low-frequency suspension

modes in the vertical and lateral directions have been considered. To alleviate coupling

between the suspension system and the structure's torsion modes, there is equal need

for consideration of low-frequency suspension to allow undistorted torsional vibration

modes.

5.1 Description of Concept

Figure 17 shows the proposed low-frequency torsional suspension system. This system

uses a dual cable approach and a rotating support pivot to lower the frequency of the

suspension system's torsion or rotation mode. The body is suspended by two cables

of equal length L from a pivoting support structure. The cables are configured as a

parallelogram such that at rest, the center of gravity of the body hangs directly below

the pivot axis.

The system has two uncoupled natural pendulum modes.

mode whose frequency is described by:

One is the "simple" pendulum

o s = g_, rad/sec (14)

where: g is the gravitational constant

L is the pendulum cable length
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The second mode is the torsion or "compound pendulum" mode involving rotation of the

body about its own center of gravity. The frequency of the compound pendulum mode

can be determined by noting that the cable length L has no effect on this uncoupled

mode. Thus, letting L -- 0 in the figure, the rotational frequency of the suspended body

can be found by considering the body as being suspended from a rotation axis located

a distance, h, above the center of gravity. Note in the figure that h = h 1 - h 2. The

resulting equation for the frequency of the compound pendulum is:

_C = I (g/L) (h/L)
(h/L) z + (K/L) z

(15)

where x is the radius of gyration of the suspended body about its center of gravity. As

h/L is reduced, the ratio of the compound to simple pendulum frequency tends to zero

as shown in Figure 17.

5.2 Test Results

Figure 18 shows the results of tests of the torsion mode suspension for several values

of the offset parameter h. In the tests, h is varied by moving the lower attachment point

of the cables relative to the center-of-gravity of the 100 Ib supported mass. Three

curves are plotted in the figure corresponding to different values of h. For each curve

there are two peaks shown. The lower frequency peaks represent the pendulum mode

and remain constant in frequency as h is varied. The higher frequency peaks represent

the torsion mode for the three values of h. It is apparent from the plot that the

frequency of the torsion mode decreases considerably as h decreases. The parameter

h is seen to be quite effective in reducing the system torsion frequency while having

virtually no effect on the pendulum mode frequency. However, the increasing width of
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the pendulum mode peaks for decreasing values of h indicates an increase in damping

of this mode.

5.3 Application to Evolutionary Model

The Evolutionary Model is a structure currently being tested at the NASA Langley

Research Center. It is intended to serve as a test-bed structure for evaluating control-

structure interaction phenomena. A preliminary analytical model of the Evolutionary

Model was used to evaluate how the torsion suspension concept introduced here might

be incorporated in the test structure.

A NASTRAN model of the Phase-0 Evolutionary Model was analyzed both as a free-free

structure and with two support stations. The NASTRAN model was modified to include

an analytical representation of the two suspension devices. Figure 19 shows the model

suspended at two stations with a torsion suspension wheel at the top of each set of

support cables. The cable attachment points on the structure were chosen to be as

near to the first bending mode node points as possible, but the large dish antenna

prohibits one cable support from attaching exactly at the node point.

The model was analyzed using a differential stiffness solution. The parameter h was not

varied extensively in the analysis, but it was adjusted as necessary to provide a stable

configuration. The Evolutionary Model is unique in that a large offset mass causes the

center-of-gravity (c.g.) of the model to lie above the cable attachment points at the top

of the truss. This characteristic requires the torsion wheel or linkage to be configured

as shown in the detail view in Figure 19. The pivot point in this application lies above

the cable attachment points thus creating a positive h value and stabilizing the entire

truss/suspension system.
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Figure 20 shows the 1st torsion mode of the supported structure. Motion of the cables

and the suspension linkage are also apparent. A summary of the analytically derived

modes is contained in the table below:

COMPARISON OF MODAL FREQUENCIES

PHASE ZERO EVOLUTIONARY MODEL

Mode Description

Rigid Yaw - Pendulum

Rigid Y - Pendulum

Rigid X - Pendulum

Rigid Roll

1st Vertical Bending

1st Lateral Bending

Cable Modes (8)

Cable Stretch (Rigid Plunge)

1 __t Torsion

Frequency (Hz)

Free-Free Suspended

0.092

0.099

0.102

0.581

1.85 1.84

1.86 1.86

2.20- 2.39

3.07

3.183.14

The table indicates the effect of the added suspension devices. In particular, the rigid

body modes now have non-zero frequencies, and the cable supports add 8 additional

modes between 2.2 and 2.4 Hz. Higher order cable modes occur at integer multiples

of these frequencies. The important results indicated in the table are that the

frequencies for the vertical and lateral bending and, more importantly here, the 1st

torsion mode are not changed significantly from the flee-free analysis. The lack of

distortion of the bending modes can be attributed to the placement of the suspension

supports near the node points for each bending mode. The lack of distortion of the

torsion mode must be attributed to the use of the torsion suspension devices.
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6.0 PASSIVE LATERAL/TORSION ANALYTICAL MODEL

This section of the paper concerns the development of the analytical model for a passive

suspension system with combined lateral and torsional degrees of freedom. In later

sections, active feedback control will be added to the passive system for the purpose

of improving the simulation of a zero-g test environment.

6.1 Equations of Motion

The equations of motion (EOM) for the combined lateral/torsion suspension system,

which is depicted in Figure 21, are derived from Lagrange's equations. Characters

under bars are matrices, and a prime (') denotes matrix transposition. The EOMs in

matrix form for three DOFs are:

M o Ela + Ca <fla * K'a__a = [fc 0 0]'

n

where qa = [Xc #_ e] I

(16)

Ma

(rn + row) m_ -mh

mO mr7 -m_

-mh -m_ (I T + mh 2)

c v 0 O]

00
0 0

kx

kx_ (kx_ + mg_)

-kx(h + b) -kxO(h + b) [k 8

-kx(h + b)

-kxO(h + b)

+ mgh + kx(h + b) 2]
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The definitions of the notations in Eq. 16 are:

g = 386.4 in/s 2, acceleration due to gravity

mg = 99.48 Ib, weight of the test structure

m, = 2/g Ib-sZ/in, mass of the wheel (3-bar linkage) and cart

/ = 1,777/g Ib-s2-in, c.g. moment of inertia of the test structure

I, = 338/g Ib-sZ-in, moment of inertia of the wheel (3-bar linkage) about its c.g.

IT= I + I,

= 88.625 in, cable length

b = 3.00 in, distance above the spring elastic center of the test structure's c.g.

kx = 0.756 Ibs/in, horizontal-translation spring constant

k e = 194.5 Ib-in/rad, rotational spring constant

c v = viscous damping constant representing friction of the linear bearing

h = h 1 - h 2 (see Fig. 21), a variable parameter

fc = feedback-control force

x c = cart translation DOF

= rotation angle of the cables

e = rotation angle of the test structure

Note that the values listed match those of the experimental test apparatus described in

section 2.0. A viscous damping matrix with one non-zero damping constant c,, has been

added to approximate the friction of the linear bearing. Estimation of c,, based on

measured response of the system is described in Section 4.4.

In later considerations of closed-loop control of horizontal motion, translations of the

wheel-cart and the test structure are the measured quantities used as input to the

control system. It is appropriate, therefore, to replace the rotations in Eq. 16 with

translations, and two reasonable quantities to use are x o, translation of the test structure
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c.g., and Xe, translation of the elastic center of the external spring system, as illustrated

on Figure 21. Hence, we define a new set of DOFs, qb = [Xc Xo Xe] I The

transformation between the two sets of DOFs is

qa = T qb (17)

w

T=

1 0 0

1 h+b h

_b _b

1 1

b b

Hence, we transform the original mass, damping and stiffness matrices with the matrix

product Mbb = _ M T , etc. Then the EOMs in the second set of DOFs are

MbClb + C bclb + Kb qb = [fc 0 0] / (18)

Mb

m w

0

0

0 0

IT I T

Cm+

IT I T

b 2 b 2
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Kb

mg mg h + b

Q Q b

_ + (j + m_

b b bb

b b z _ b b

mg h

Q b

b b

kX+ b2+ 0 b +

Setting g = 0 in Eq. 18 gives a set of three EOMs in which translation x c of the wheel

and cart is completely decoupled from the other two translation DOFs. Hence, we have

the following equation in DOFs qb2 = [Xo Xe ]/ governing the motion of the test

structure:

M_. Clb2 + K_ q_2 = 0
(19)

M_

(m ÷ IT)
b 2

IT

b 2

IT

b 2

K=

k s ke
a

b z b z

If we were to turn off gravity and cut the cables connecting the wheel and the test

structure, then the EOM for the test structure by itself would be the same as Eq. 19,

excep__ that the total inertia I T = I + I,, in Eq. 19 would simply be I. With the type of

horizontal-motion control to be applied, we cannot change the effect of wheel moment
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of inertia I W. Hence, the modes of Eq. 19 should be considered the target modes for the

controlled system, even though I. is not present in the O-g EOMs of the test structure

by itself. (It is interesting to note that, in principle, I. could be canceled if it were

possible to implement a rotational acceleration feedback control on the wheel.)

With x c restrained to be zero by friction of the linear bearing, Eq. 16 for the motion of

the remainder of the system in DOFs, qa2 = [¢) 0]_ , becomes:

M.z lfla2 + K-_J2_a2 = 0 (20)

Ma2 =

_ I(kx_ +mgO)= -kxO(h + b) lK"2 [-kxO(h + b) [k 8 + mgh + kx(h + b) z]

For convenience of analysis Eq. 18 is written in-state-space form,

x = Ax + Bcf c x = (21)

in which x is the state vector, and the system and control-feedback matrices are,

respectively,
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A=
-Mb Cb -Mb KbI _ = M-'bb-'

[1 0 0 0 0 0] I

For the response calculations of this section, there is neither feedback control nor

external excitation, so fc = 0. In the state-space formulation, we have also an output

equation,

y = Cx + Df c (22)

In order to calculate and plot the quantities Xc(t) and Xo(t ), we specify,

I:oo 0c;ooo :l
6.2 Undamped Vibration Modes

Calculation of the open-loop, undamped vibration modes for the three cases discussed

in the previous section is done with the use of the PC-Matlab software. Appendix B

contains the PC-Matlab files and tabulated results of all of the calculations presented

herein.

6.2.1 Cart Fixed (2-DOF Model)

The calculated variation of natural frequencies of the lateral and torsional suspension as

a function of h is shown in Figure 22. Also included in the figure are some experimen-

tally determined frequencies. Several points are worth noting in this figure. The first and

most important point is that the calculated torsion-mode frequency closely matches the

suspended system the zero-g torsion mode frequency 0.967 Hz, (see Appendix B.2)
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when h = 0. The rightward shift of the experimental points from the predicted curve is

believed to be due to uncertainties in measurement of the effective cable attachment

points in determining h. Because of cable stiffness effects, the cable end attachment

points may not behave as perfect hinges as was assumed. Also note that the lateral

mode frequency for this case with cart fixed is the simple pendulum frequency, 0.426 Hz,

versus 0.265 Hz for zero-g (see Appendix B.2) and is insensitive to changes in h within

the h range of practical interest.

6.2.2 Cart Free (3-DOF Model)

This is a useful theoretical case, even though it is not physically realizable due to the

substantial friction in the linear bearing. The calculated results for this case are given

in Appendix B.3, and the natural frequencies are plotted in Figure 23. Comparison of

the results in Figure 23 with those in the previous figure shows that by freeing the cart

the lowest two modes of the undamped 3-DOF model for h = 0 are nearly identical to

the modes of the 0-g, 2-DOF test structure. Hence, if the linear bearing were frictionless,

then the passive cable-suspension system described by the model with h -- 0 would do

an excellent job of simulating the 0-g case. It appears, then, that the primary function

of the active horizontal-motion control system is to compensate for the friction in the

linear bearing by forcing the wheel-cart to move as if the bearing were frictionless. In

order to design such a control system, we must know at least the order of magnitude

of the friction (as represented by the parameter c,,), and this issue is addressed in the

next section.

6.3 Damped Vibration Modes

The experimental result suggests that the linear bearing's friction has a complex nature,

probably much more like Coulomb friction than viscous damping. However, use of the

linear analysis capabilities of PC-Matlab requires that the damping model be linear, so

28



the objective of the exercise described here was to infer a linear viscous damping

constant c v that influences the dynamic response in a fashion similar to the actual

bearing friction.

The resonant driving and release is simulated by a simple initial-condition, with zero

external excitation: the initial velocity has the shape of the undamped 3-DOF translation

mode, and the initial displacement is zero. The subsequent time-history of response is

calculated and plotted for a specified value of c v.

In the time-history graphs to be discussed next, Xc(t) is plotted with solid lines, and Xo(t)

is plotted with dot-dash lines. The first case is for c v = 0 Ib/ips, and it is a check on the

functioning of the PC-Matlab solution (veloresp.m in Appendix B.4); the results are

plotted on Figure 24a. The response is free, undamped vibration in the translation mode

at 0.265 Hz of the 3-DOF model, in perfect agreement with the h = 0 modal results of

Appendix B.2. This result tends to validate that veloresp.m is functioning correctly.

The other cases are for cv = 0.1, 1.0, 10 and 100 Ib/ips, and the results are plotted on

Figures 24b, 24c, 24d, and 24e, respectively. For c, = 0.1 Ib/ips, the damping appears

to be proportional and modal in the 0.265 Hz mode of the 3-DOF model. For c_ = 1.0

Ib/ips, the damping appears to be nonproportional, which indeed it is, and the character

of the response is quite different from that of the 0.265 Hz mode. For c,, = 10 Ib/ips,

motion x c of the cart is very small, and motion x o of the test structure is only lightly

damped at a frequency almost indistinguishable from 0.426 Hz, the h = 0 translation

mode frequency of the 2-DOF model with fixed cart. Finally, for c,, = 100 Ib/ips, x c is

almost completely suppressed, and x o is in free vibration at 0.426 Hz with almost

imperceptible damping.
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7.0 ACTIVE CONTROL OF LATERAL_rORSION SUSPENSION

7.1 General Design Considerations

Design of the control system is based on comparison of the two lower modes of the

undamped, l-g, h = 0, 3-DOF model (Figure 23) with the modes of the 0-g 2-DOF

model, the ideal case (Appendix B.2), and with the modes of the fixed-cart, l-g, h = 0,

2-DOF model (Figure 22). For convenience, those results are repeated below:

2-DQF, 0-g
- modebase

(mode 1) (mode 2)
modal =

(xo) 1.0000 0.0796

(xe)0.9634 1.0000

2-DOF. fixed-cart, 1-g

- Dh=0.0;mode2dof

(mode 1) (mode 2)
modal =

(9) 0.8062 -0.0034
(e) 1.0000 1.0000

_eqs =

0.2677 0.9666

freqs =

0.4263 0.9668

3-DOF, 1-g

- Dh =0.0;mode3dof

(mode 3) (mode 1)
modal =

(mode

(xc) 1.0000 1.0000 0.0937

(xo)-0.0204 0.9872 0.0777

(Xe)-0.0205 0.9511 1.0000

freqs =

2.3675 0.2650 0.9666

30



Mode 2 is essentially the same in all three cases, which shows that setting h = 0 in the

1-g cases is an effective passive method for preserving the 0-g rotation mode. Active

control is required, therefore, only to preserve the 0-g translation mode, mode 1, in the

environment of 1-g and the sticky linear bearing.

Observe in 3-DOF mode 1, the translation mode, that xc _ x o, which means that the cart

remains almost directly above the test structure's c.g. This suggests that the control

system for the actual damped laboratory article should, for motion in the translation

mode, maintain the cart directly above the test structure's c.g. Cart position xc can be

sensed with a potentiometer. Likewise, position of the test structure can be sensed with

a noncontacting Kaman transducer, but xo is not the test structure translation that should

be sensed. The nodal point of 3-DOF mode 2, the rotation mode, is not right at the c.g.,

but rather a short distance above it. Therefore, sensing of xo could cause the control

system to modify the rotation mode, which would probably be counterproductive.

It is appropriate, therefore, to sense the translation of the test structure at the nodal point

of the 3-DOF rotation mode, which is a distance d above the spring elastic center. The

translation of the nodal point is denoted xd and is given in terms of the defined DOFs

by
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x d = x e + dO  X°Xel= xe + = x o
b + Xell

The ratio d/b is found from the shape of 3-DOF mode 2 to be

(1 -Xo/Xe)l = (1 -0.0777) 1 = 1.0843.

(23)

It has been established that the control system should maintain x c = x d in order to

preserve the O-g translation mode with minimal effect on the rotation mode. Accordingly,

we define the error quantity

E = Xd - Xc = C_x

where, from Eqs. 21 and 23, the output matrix is

(24)

C--_ : 000-1 ;
(25)

We consider in subsequent sections methods for effecting control by making control

force fc a linear function of E, and/or its time integral, and/or its time derivative. These

types of control are commonly called proportional (P), integral (I), and derivative (D)

control, and combinations thereof are referred to as PD, PID, etc. control.
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7.2 Proportional Control

For proportional control, we define the feedback constant Cp

fc(t) = Cp _.(t)

Combining Eqs. 21,24-26 then gives

and set

(26)

x = (A + CpB cC,)x = AcX (27)

The matrices A, B c and _ can be calculated by specifying h (= 0 in the

following), c,, and d/b (= 1.0843 in Appendix Bo5) and running the PC-Matlab m-file (see

Appendix B.5). The effect of varying the proportional feedback constant Cp on the lateral

mode eigenvalues is shown in Figure 25. For this case the damping constant c v = 1.0

was assumed. Note the similarities between this figure and Figure 14, the open-loop

case where the damping constant cv was varied. The root loci are essentially the same

in both figures, demonstrating that active control of the cart's lateral position relative to

that of the suspended body effectively compensates for the adverse effects of cart

damping with regard to simulating 0-g test conditions.
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For all of the cases discussed to this point, the 0-g vibration modes of the test structure

involve structural deformation and therefore have positive natural frequencies. There is

interest also in the case for which the structure is not restrained by springs and therefore

has at least one zero-frequency rigid-body mode in 0-g. For this case, then, we let

stiffness constants k, and k e be zero. To avoid the complication of repeated zero

eigenvalues, we consider h > 0. In particular, we evaluate the case with numerical

values h = 1.75, mg = 100 Ib, m,g = 5.65 Ib, _ = 62.125", with all other values the

same as before. Changing these values in PC-Matlab and running the modified m-file

(under the name k0mde3df.m) gives the following for the undamped, 1-g modes:

$-DOF, l-g, Unrestrained

,, Dh = 1.75;k0mde3df

(xc)

(xj

(mode 3) (mode 1) (mode 2)
modal =

1.0000 1.0000 -0.7273

-0.0565 1.0000 0.0411

-0.0372 1.0000 1.0000

freqs =

1.7255 0.0000 0.8952

The translation mode now is a zero-frequency rigid-body mode, and the rotation mode

has 0.8952 Hz natural frequency.

The modes above are for zero friction in the linear bearing. When c v increases slightly

above zero, then the rigid-body translation mode remains at zero frequency but has an

exponential damping time constant. It is not appropriate, therefore, to plot the locus of
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roots in the frequency vs. zeta form used for Figures 14 and 25. Accordingly, the

appropriate m-files have been modified to calculate and plot loci of roots in the more

traditional form of imaginary part vs. real part (see Appendix B.6).

The open-loop results for c,, varying 0-0.4 Ib/ips are shown in Figure 26. There are three

ranges of c,, in which the roots are qualitatively different: 0 to about 0.29, about 0.29 to

about 0.36, and above about 0.36 Ib/ips. In the middle range, the only oscillatory roots

are those of the rotation mode.

The results of Figure 25 establish that proportional control tends to achieve the desired

effect if the translation mode has positive natural frequency. The question now is

whether or not proportional control performs as desired also for the zero-frequency

modei i.e., does proportional control move the roots of the rigid-body translation mode

of Figure 26 toward the origin, decreasing the damping in that mode and making it

appear more like the true undamped, 0-g mode? To answer this question, the closed-

loop case is also modelled in Appendix B.6. The results are presented in Figures 27a

thru 27c. In each figure, c,, is assigned a value and proportional feedback constant Cp

is varied 0-2 Ibs/in in increments of 0.1 Ibs/in. In each case, proportional control forces

the translation mode's roots toward the origin, which is the desired effect.

7.3 Proportional-Integral-Derivative Control

For general PID control, we define feedback constants Cp, C i and C d, and then express

the control force as
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tc = cp + Ci[otC(o)do+ C v(t) (28)

The derivative term in Eq. 28 requires some explanation. It is not possible or even

desirable in practice to implement an exact derivative operation, so a standard alternative

procedure is to introduce a new variable v(t) and to approximate the derivative with a

single-pole high-pass filter,

_'d _ + v = _(t) (29)

For small values of time constant Td, we have v = de/dt for low-frequency c(t) signals

and v = e/-rd for high-frequency signals. Hence, choosing "ra appropriately results in a

good approximate differentiation of low-frequency signals of interest without the

undesirable differentiation of high-frequency noise. (A band-pass filter with appropriate

parameters would be an equally accurate differentiator and a more effective noise

attenuator, but it would increase the order of Eq. 29 and, hence, the number of states

in the controller.) For example, setting "rd = 0.025 sec gives an approximate differentia-

tor that is accurate to less than 9 o of phase error and 1% of magnitude error for signals

of 1 Hz or lower.

It is necessary now to write Eqs. 28 and 29 in a state-space form. To do so, we define

the controller state variables,

Error signal c(t) is the input to the controller. Then the definition of z 1 and the integral

of Eq. 29, with the definition of z 2, constitute the controller state equations,
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(31)

Equation 29, the controller output equation, becomes

= ÷
(32)

Cd
Dz = Cp +

T d

Finally, we combine Eqs. 21, 24, 31 and 32 to obtain the state equation of the entire

closed-loop system, which consists of both the laboratory structure and the dynamic PID

controller:

I(x-+O,B C,)
B,C, Azz

(33)

The roots of Eq. 33 are evaluated by three PC-Matlab m-files (see Appendix B.7). These

files generated results which allow a quick assessment of the effects of derivative and

integral feedback on the basic proportional-control system. The results are shown on

Figure 28. The root loci on Figure 28 suggest that derivative and integral feedback are

not very helpful and that simple proportional feedback is the most effective. This,

however, is a cursory evaluation, and a more detailed analysis would be required to

determine with certainty the relative merits of proportional, integral, and derivative

feedbacks in this control problem.
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7.4 Experimental Results

To evaluate the analytical results described in the previous sections, the lateral

suspension system was supplemented with an active feedback control system. As

pictured in Figure 6, the "moving cart" was attached to a drive belt and driven by a small

DC motor. The absolute position of the cart was read by a potentiometer directly driven

by the belt/motor.

In Section 7.1 the error signal, c, was derived as the difference of the cart absolute

position and the test structure's absolute position measured at the nodal point of its 3-

DOF rotation mode. To implement this error as a feedback control signal, the test

structure described in Section 2.0 was instrumented with a Kaman non-contact

displacement probe at a point near the node of the rotation mode. The use of the non-

contact probe allowed sensitive displacement measurements to be made without adding

friction to the system. However, the non-contact probe provides linear output over a

maximum range of two inches. This limit did not prohibit the evaluation of the active

control technique, but, in order to achieve even the two inch range, the largest diameter

(also two inches) non-contact probe was required. This large diameter did not allow

displacement measurement at precisely the rotation mode nodal point. Instead, the

displacement over a much larger area was sensed and averaged thus introducing effects

of the rotation mode.

The active control system was implemented with a digital controller made by Spectrum

Signal Processing. This IBM-PC compatible controller card utilizes a Texas Instruments

(TI), TMS320C25 Digital Signal Processing (DSP) microprocessor to allow high

throughput rates and extremely fast data processing rates. This card is supplemented

by an additional input/output (I/O) card to provide four simultaneous sampling input
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channels. Each channel provides 12 bit analog-to-digital (A/D) conversion at sample

rates up to 58 kHz. The I/O card also provides two output channels. It is apparent that

the high sample rates and indeed even the digital controller are not required to

implement such a simple control algorithm, but the system can be expanded to provide

multiple control loops for several suspension devices. As such, a high speed, high data

throughput system was purchased for evaluation. Once setup, the digital controller also

allows very easy implementation of new control laws or the inclusion of derivative or

integral feedback as described earlier.

The proportional control scheme as described in Section 7.2 was implemented in the

controller. The assembly language listing of the control algorithm is shown in Appendix

C. The two previously calibrated, absolute position measurements were read by the A/D

inputs of the I/O card. The difference of the two signals was taken to obtain the error,

(. The error was multiplied by a gain and output by the I/O card. The lateral

suspension motor was driven by the output signal after being amplified and conditioned

by a servo amplifier.

Results of this simple evaluation were disappointing. Rather than providing a smoothly

operating suspension system which follows the motion of the test structure, the motor

was driven into a relativelyhigh frequency, limit-cycle oscillation. This result was clearly

not predicted by the earlier analyses. The oscillations were not difficult to account for

after a simple examination of the system. The oscillations were occurring at a frequency

of approximately 2 Hz, clearly above the lateral frequency of the test structure, but

closely matching the cart mode frequency. The cart mode response was greatly

enhanced by the additional mass and dynamics of the vertical suspension system which

also has structural system modes at approximately 2 Hz. This enhanced response and
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the vertical suspension dynamics were being sensed by the potentiometer and fed back

into the error signal, thus driving the system unstable.

A consideration was given to try to filter the feedback signals. However, to achieve the

large rolloff in frequency desired to eliminate the spurious mode response, a sharp (80

dB/oct) filter is necessary. Such filters were available but were also found to have phase

shifts at 0.3 Hz as large as 60 degrees. Such large phase shifts in the controller

bandwidth are not acceptable and the technique had to be abandoned.

It was felt that simplifying the hardware of the complete test apparatus would provide a

better evaluation of the method. Unfortunately, it was not possible to include this

alternative approach within the current effort. Thus, the experimental results for the

active system remain inconclusive.

8.0 CONCLUDING REMARKS

Exploratory studies have been conducted for very low frequency suspension systems

for dynamic testing of large, flexible space structures. An experimental 3 DOF

suspension apparatus supporting a simulated large space structure has been analytically

modelled, fabricated and tested. The characteristics of the passive lateral suspension

system augmented with active feedback control was also studied.

Conclusions drawn from the results of these analytical and experimental studies include:

• The ZSRM provided minimum vertical mode suspension frequencies below 0.1

Hz and allowed a maximum travel of +/- 3 inches.
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, The torsion suspension concept introduced in this report is effective in simulating

unconstrained conditions for the first torsion mode of beam-like structures.

,
For the lateral suspension system, damping and friction forces in the moving cart

mechanism (a linear bearing) severely limited the ability of the system to simulate

zero-gravity conditions.

. Analytical studies indicated that active proportional feedback control of the

moving cart would eliminate the adverse effects of damping identified during

tests of the lateral suspension system. Attempts to experimentally demonstrate

active augmentation of the 3 DOF suspension test apparatus were not

successful, however, due to dynamic instabilities resulting from coupling of the

higher frequency spurious modes of the overall system.

o The digital control card used in the active control implementation was found to

have extensive capability and would be suitable for control of several control

loops for multiple suspension devices. However, the interface to the controller

requires programming in TI assembly language thus entailing extensive time for

familiarization. Furthermore the DSP chip on the controller card is limited to

fixed-point arithmetic which further complicates the programming. For future

applications, newer, floating-point arithmetic DSP chips are now available (at

much higher cost) and offer alternative operating system environments to ease

some of the interfacing difficulties.
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APPENDIX A

SUSPENSION SYSTEM ASSEMBLY PROCEDURE

By Edward Y. Brandt

Included in this Appendix are instructions for the assembly and installation of the

experimental suspension system. The procedures should be followed carefully to avoid

damage to the system and for safety reasons. Proper assembly of the system requires

the presence of two persons. The necessary tools include open ended wrenches (3/8,

7/16, 1/2 inch) and a set of allen wrenches. A drawing of the complete assembly is

shown in Figure 6. This drawing identifies the components which are discussed in the

assembly procedures.

I. ASSEMBLY

A°
The lateral system, including the linear bearing assembly, motor, potentiometer,

gears and drive belt should be installed first. The aluminum bar on which the

linear bearing assembly rests must be supported at either end at a height of at

least 13 feet from the floor. It is important that the bar is level.

go
With the lateral system in place, the vertical system can be assembled and

mounted to the lateral system by the following procedures:

,
Attach the upper and side plates of the vertical system mounting box to the

linear bearing block, then connect the lower mounting plate and the horizontal

support member.
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.

Insert the upper flexure assemblies into the ends of the horizontal support

member and bolt in place.

NOTE: There are four holes in two of the flexure blocks for flexure length

adjustment. For the current configuration the bolt must go through the third hole

from the inboard end to make the vertical members parallel.

.

Slip the vertical members onto the flexure blocks and bolt into place.

,

Insert the threaded rod through the horizontal support member and lower

mounting plate. Secure in place with two nuts, one above and one below.

.

Slide the main spring attachment plate onto the threaded rod and secure with

a nut.

NOTE: The location of the plate along the threaded rod will vary greatly

depending on the amount of weight being supported and the size of the main

springs being used.

.

Attach the eyebolts to the plate and hang main springs.

NOTE: If more extension of the main springs is required, remove the threaded

rod and attach the eyebolts directly to the lower mounting plate. By doing so

the length of the main springs will increase with a Y(_ss of adjustment travel.

°

With the weight box supported, hang the lower subassembly on the main springs

from the eye bolts. This lower subassembly includes the center linkage

members, the center and side flexures, the torsion suspension assembly, the

cables and the weight box.
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.
Remove the support and add weights to the box until the desired weight is

attained.

.
With the desired weight in the weight box, adjust the main spring position on the

threaded rod so that the lower horizontal members can be attached to the

bottom of the vertical members. If more adjustment is needed, adjust the

eyebolts evenly.

10. Slide the side spring mounting brackets up the vertical member and secure them

about three inches up the tube.

11. Connect the vertical members to the lower horizontal members with the lower

flexure assemblies. The vertical motion stops are also installed at this time as

they share a common bolt.

12. Adjust the main spring tension until the lower horizontal members are level.

13. Allow the side spring mounting brackets to rest on the backplates. Attach

eyebolts to the bracket opposite the force gage with the eyebolts in their most

extended position.

14. Attach the eyebolts to the side spring attachment bar in their most extended

position and connect side springs.

15. Grasp the bar firmly while supporting the structure and stretch the springs until

the center hole engages on the force gage stud. A second person should
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secure the vertical members and secure the spring attachment bar on the stud

with a nut.

16.
Increase the extension/pretension of the side springs by adjusting the side eye

bolts and the nut securing the spring attachment bar. The side spring

pretension can be set to the proper level using the force gauge. Minor

adjustments will be required on the main spring tension during this process in

order to center the system.

II. PROCEDURES FOR CHANGING THE SYSTEM WEIGHT

A,

Never attempt to remove or add weight to the box without securing the box

firmly in a fixed position. The vertical motion stops are not designed to withstand

the force of the main springs. If the weight is removed without the proper

precautions, the three lower flexures will be damaged and will need to be

replaced.

g.

An alternative to securing the weight box in a fixed position is to disassemble the

lower portion of the system using this procedure:

1. Loosen side spring tension at all four eyebolts.

.

Remove the side spring attachment bar from the force gage stud.

second person remove the nut and help support the structure.

Have a

3. Remove one of the eyebolts from the bar to allow springs to hang.
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4. Remove flexure blocks and vertical motion stops.

5. Reload box to desired weight.

6. Adjust the position of the main springs to set the correct vertical position of lower

horizontal members.

7. Re-assemble in reverse order.
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APPENDIX B.1

2-DOF Model of Full System in 1-g with Cart Fixed

A PC-Matlab m-file called hz2dof.m calculates and plots the natural frequencies of Eq.

20 versus the parameter h (denoted Dh in all m-files). The m-file is:

%hz2dof.m mod 1 2/2/90 To calc and plot nat freqs of 2-dof dei model.

%First calc mass & stiffness matrices (ref. Gold's derivation & my

%10/27/89 re-derivation), then calc the nat freqs in Hz.

%Required input is Low, Inc, Hii for Dh=Low:lnc:Hii.

%Output is a plot of the two nat freqs versus Dh, which is hl-h2.

M g = 99.48;g = 386.4; M = Mg/g; Mw = 2/g ;Iw = 338/g;I = 1777/g;

Kx= .756;Kt = 194.5;b = 3;L=88.625;

j=0;
for Dh = Low: Inc: Hii

j=j+l;

Dhb=Dh+b;mas2=[M*L ^ 2 -M*L*Dh;-M*L*Dh lw+l+M*Dh ^ 2];

stf2= [Kx*L ^ 2+ Mg*L -Kx*L*Dhb;-Kx*L*Dhb Kt+ Mg*Dh + Kx*Dhb ^ 2];

Hz= (eig(stf2,mas2). ^ .5)/(2"pi);

H(j) = Dh;Freqs(j,1:2) = [Hz(1 ) Hz(2)];
end

plot(H,Freqs(:,l),H,Freqs(:,2),'--'),grid,ylabel('FREQUENCY in Hz'),

xlabeI('DELTA-H in inches'),

title('NATURAL FREQUENCIES OF DEI 2-DOF MODEL')

The user runs hz2dof.m in PC-Matlab by first defining Low, Inc, and Hii, which are the

low value, increment, and high value, respectively, of h, and then typing the m-file name,

hz2dof. M-file hz2dof.m generates a plot, Figure 22, of the two undamped natural

frequencies (in Hz) versus h.

The mode shapes for this case are also of interest, so a separate m-file, mode2dof.m,

was written to calculate them:

%mode2dof.m 2/2/90 Calc modes of 2-dof cable- and spring-supported
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%dei model, given a Dh = hl - h2.
%First calc mass & stiffness matrices (ref. Gold's derivation & my
%10/27/89 re-derivation), then calc the mode shapes & nat freqs in Hz.
%Required input is a value of Dh.
%Output is modal matrix and freqs in Hz.
Mg= 99.48;g =386.4;M= Mg/g;Mw= 2/g ;Iw= 338/g ;I= 1777/g;
Kx=.756;Kt= 194.5;b=3;L=88.625;
Dhb= Dh+b;mas2--- [M*L ^ 2 -M*L*Dh;-M*L*Dh Iw+l+ M*Dh ^ 2];
stf2= [Kx*L ^ 2+ Mg*L -Kx*L*Dhb;-Kx*L*Dhb Kt+ Mg*Dh+ Kx*Dhb ^ 2];
[modal,vals] = eig(stf2,mas2);modal
freqs= diag (sqrtm(vals)/(2*pi))'

This m-file calculates and prints the undamped mode shapes and natural frequencies

of Eq. 20. The input is h, and the output consists of the modal matrix and the frequen-

cies in Hz. The following is a listing of some results calculated by mode2dof.m:

,, Dh=-1.6;mode2dof

modal =

-0.0635 0.0415

1.0000 1.0000

freqs =

0.5330 0.3302

)) Dh=-1.4;mode2dof

modal =

0.0830 -0.0432

1.0000 1.0000

freqs =
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0.3764 0.5834

,, Dh=0.0;mode2dof

modal =

0.8062 -0.0034

1.0000 1.0000

freqs =

0.4263 0.9668

,, Dh=2.0;mode2dof

modal --

1.0000 0.0226

0.0056 1.0000

freqs =

0.4299 1.3686

The first two cases above, h = -1.6" and -1.4", illustrate PC-Matlab's curious mode-order

switching that produces the discontinuous jumps on Figure 22 at about h = -1.5". The

modal vectors are in the DOFs [4 e]'. If the _ component is large relative to the e

component, this means that the mode shape is primarily pendulum translation of the test

structure; if, on the other hand, the e component is much larger than the (_ component,

this means that the mode shape is primarily pendulum rotation of the test structure.

When h = 2'', the lower mode at 0.4299 Hz is almost purely translation, and the higher

mode at 1.3686 Hz is almost purely rotation; moreover, translation and rotation are

similarly decoupled in the two modes for all values of h greater than 2''. However, as

h decreases below 2'', rotation becomes progressively more dominant in both modes.
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At h = 0", translation and rotation are strongly coupled in the lower mode; and at h =

-1.6" and -1.4", both modes are primarily rotational.
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APPENDIX B.2

2-DOF Model of Test Structure in 0-g

This is the ideal case. The objective of the horizontal-motion control system is to

produce modes of the full 3-DOF system which are as close as possible to the

corresponding modes of this 0-g 2-DOF model. The PC-Matlab m-file modebase.m,

which follows, calculates the natural vibration modes of Eq. 19.

%modebase.m mod 2 3/5/90 Calc modes of basic 2-dof spring-supported

%dei model with gravity turned off completely.

%First calc mass & stiffness matrices (ref. my derivation in [xo xe]'

%coordinates), then calc the mode shapes & nat freqs in Hz.
%There is no input.

%Output is modal matrix and freqs in Hz.

Mg = 99.48;g = 386.4; M = Mg/g;I = 1777/g;Iw= 338/g; Kx= .756; Kt = 194.5;b = 3;

lob2= (1+ Iw)/b ^ 2;mas = [M+ lob2 -Iob2;-Iob2 lob2];

Kcm = Kt/b ^ 2;stf= [Kcm -Kcm;-Kcm Kx+ Kcm];

[modal,vals] = eig (stf, mas) ;modal

freqs = diag (sqrtm (vals)/(2*pi))'

No input is required to modebase.m, and the output consists of the modal matrix and

natural frequencies in Hz:

,, modebase

modal =

1.0000 0.0796

0.9634 1.0000

freqs =

0.2677 0.9666
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The modal vectors are in the DOFs [xo Xe]', so the lower mode at 0.2677 Hz is almost

pure translation, and the higher mode at 0.9666 Hz is primarily rotation, with its nodal

point just above the c.g. of the test structure.
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APPENDIX B.3

3-DOF Model of Undamped Full System in 1-g

This is a useful theoretical case, even though it is not physically realizable due to the

substantial friction in the linear bearing. A PC-Matlab m-file called hz3dof.m calculates

and plots the natural frequencies of Eq. 16 (with c v = 0 and fc = 0) versus h. The m-file
is:

%hz3dof.m 2/2/90 To calc and plot nat freqs of 3-dof dei model.

%First calc mass & stiffness matrices (ref. Gold's derivation & my
%10/27/89 re-derivation), then calc the nat freqs in Hz.

%Required input is Low, Inc, Hii for Dh=Low:lnc:Hii.

%Output is a plot of the three nat freqs versus Dh, which is hl-h2.

Mg = 99.48;g = 386.4;M = Mg/g;Mw=2/g;Iw= 338/g;i = 1777/g;

b = 3;L= 88.625; Kx = .756; Kt = 194.5;j = 0;
for Dh = Low:lnc: Hii

Dhb= Dh+b;j=j+ 1;

mass= [Mw+M M*L -M*Dh;M*L M*L ^ 2 -M*L*Dh;-M*Dh -M*L*Dh Iw+l+M*Dh ^ 2];
stif= [Kx Kx*L -Kx*Dhb;Kx*L Kx*L ^ 2+ Mg*L -Kx*L*Dhb;

-Kx*Dhb -Kx*L*Dhb Kt + Mg*Dh + Kx*Dhb ^ 2];
Hz= (eig(stif, mass). ^ .5)/(2"pi);

H(j)=Dh;Freqs(j,l:3)=[Hz(1) Hz(2)Hz(3)];
end

plot(H,Freqs(:,l),H,Freqs(:,2),,..,,H,Freqs(:,3),,_.,),grid,

ylabeI('FREQUENCY in Hz'),xlabeI('DELTA-H in inches'),

title('NATURAL FREQUENCIES OF DEI 3-DOF CABLE-SUPPORTED MODEL')

The user runs hz3dof.m in PC-Matlab by first defining Low, Inc, and Hii, which are the

low value, increment, and high value, respectively, of h, and then typing the m-file name,

hz3dof. M-file hz3dof.m generates a plot, Figure 23, of the three undamped natural

frequencies (in Hz) versus h. The plot of second mode frequency on Figure 23 seems

almost identical to the corresponding plot on Figure 22 for the 2-DOF system with wheel-

cart translation x c suppressed. Figure 23 shows also the frequency of the third mode

at about 2.37 Hz, which is almost independent of h over the range plotted. The mode
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shapes for this case are also of interest, so a separate m-file, mode3dof.m, was written

to calculate them:

%mode3dof.m 2/19/90 Calc modes of 3-dof cable- and spring-supported

%dei model (in [xc xo xe]' dofs), given a Dh = hl - h2.

%First calc mass & stiffness matrices (ref. Gold's derivation & my

%10/27/89 re-derivation) + transformation to [xc xo xe]' dofs.

%Then calc the mode shapes in [xc xo xe]' dofs & nat freqs in Hz.

%Required input is a value of Dh.

%Output is modal matrix and freqs in Hz.

%Mass matrix mass and stiffness matrix stif are generated but not printed.

Mg = 99.48;g = 386.4;M = Mg/g;Mw= 2/g;Iw=338/g;I = 1777/g;

b=3;L=88.625;Kx=.756;Kt= 194.5;Dhb= Dh+b;

mass= [Mw+ M M*L -M*Dh;M*L M*L ^ 2 -M*L*Dh;-M*Dh -M*L*Dh Iw+ I+ M*Dh ^ 2];

stif= [Kx Kx*L -Kx*Dhb;Kx*L Kx*L ^ 2+Mg*L -Kx*L*Dhb;

-Kx*Dhb -Kx*L*Dhb Kt+Mg*Dh+Kx*Dhb ^ 2];

T=[1 0 0;-1/L Dhb/(L*b) -Dh/(L*b);0 1/b -l/b];

mass=T'*mass*T;stif =T'*stif*T;

[modal,vals] = eig (stif,mass); modal

freqs = diag (sqrtm (vals)/(2* pi))'

This m-file calculates and prints the undamped mode shapes and natural frequencies

of Eq. 16 (with c v = 0 and fc = 0). The input is h, and the output consists of the modal

matrix and the frequencies in Hz. The following is a listing of some results calculated

by mode3dof.m:

,, Dh=-0.5;mode3dof

modal =

1.0000 1.0000 0.2866

-0.0204 0.9956 0.0998

-0.0222 0.9462 1.0000

freqs =
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2.3679 0.2632

,, Dh=0.0;mode3dof

modal =

0.8394

1.0000 1.0000 0.0937

-0.0204 0.9872 0.0777

-0.0205 0.9511 1.0000

freqs --

2.3675 0.2650

,, Dh=0.5;mode3dof

modal =

0.9666

1.0000 1.0000 -0.1135

-0.0204 0.9824 0.0662

-0.0187 0.9539 1.0000

freqs =

2.3678 0.2660 1.0788

The modal vectors are in the DOFs [x c x o Xe]'. It is clear from the results above,

therefore, that the third mode at about 2.37 Hz is predominantly translation of the wheel-

cart, with very little motion of the test structure.
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APPENDIX B.4

Damping Constant Representing Linear Bearing Friction

The calculation procedure in PC-Matlab follows. First, specify a h value (all results to

follow are for h = 0") and run the m-file mode3dof.m presented in Appendix B.3; this

generates the mass and stiffness matrices for the model and the mode shape to be

used for the initial condition. Next, specify a value of c v and run the m-file veloresp.m:

%veloresp.m 3/02/90 Calc time response to an initial velocity state

%of 3-dof cable- and spring-supported dei model (in [xc xo xe]' dofs),

%given a Dh = hl - h2, and a cart viscous damping coefficient Cv.

%First, run mode3dof.m (requiring input Dh), which produces mass, stif,

%and modal. Then run this program, supplying input Cv.

stateic = [modal(:,2); zeros(3,1 )];

minv =inv(mass);A= [-minv*diag([Cv 0 0]) -minv*stif;eye(3) zeros(3)];

Bc=[minv*[1 0 0]';zeros(3,1)];C=[0 0 0 1 0 0;0 0 0 0 1 0];D=[0;0];

t =0:.1:20;U = zeros(length(t), 1);

resp = Isim (A, Bc, C, D, U,t, stateic);

plot (t,resp(:, 1),t,resp(:,2),'-.'),grid,xlabel('TIME sec')

ylabeI('DISPLACEMENT inch'),

title('RESP. TO VELOCITY INITIAL CONDITION WITH PENDULUM MODE SHAPE')
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APPENDIX B.5

Proportional Control

%statmats.m rood 1 3/04/90 Calc state matrices of 3-dof cable- and

%spring-supported dei model (in [xc xo xe]' dofs), given a Dh = hl - h2,

%Cv = the viscous damping coefficient of the cart bearing,

%and dob = the ratio d/b. Required inputs are Dh, Cv and dob.

%The matrices calculated are the 3x3 mass, minv, and stif, and

% A = the 6x6 plant state matrix,

% Bc = the 6xl control input matrix,

% Bd = the 6xl disturbance input matrix for excitation fe,

% C = the lx6 output matrix for measuring xe,

% D = [0],

% Ceps = the lx6 output matrix for eps = xd - xc.

Mg = 99.48;g = 386.4; M = Mg/g; Mw = 2/g; Iw= 338/g;I = 1777/g;It = I+ Iw;mi = 1/M;

b = 3; L = 88.625; Kx = .756; Kt = 194.5; Dhb = Dh + b;m3 = IUb ^ 2; Kg = M'g/L; RDh = Dh/b;

RDhb = RDh + 1 ;kl = Kg*RDhb; k2= Kg*RDh;k3= Kt/b ^ 2;k4=-(k3+ k2* (L/b + RDhb));

mass=[Mw 0 0;0 M+m3 -m3;0 -m3 m3];minv=[1/Mw 0 0;0 mi mi;0 mi mi+l/m3];

stir= [Kg -kl k2;-kl k3+Kg*(RDhb ^ 2+RDh*L/b) k4;k2 k4 Kx+k3+k2*(L,/b+RDh)];

A=[-minv*diag([Cv 0 0]) -minv*stif;eye(3) zeros(3)];

Bc= [minv*[1 0 0]';zeros(3,1 )];Bd= [minv*[0 0 1]';zeros(3,1)];

C=[0 0 0 0 0 1];D=[0];Ceps=[0 0 0 -1 dob 1-dob];

The eigenvalues and eigenvectors of _ reflect the character of the closed-loop

system, Eq. 27. The procedure for calculating relevant parts of the eigensolution with

PC-Matlab follows. First, specify values for h, c v and d/b. The eigenvalues and

eigenvectors of A¢ vary with feedback constant Cp. Hence, next specify an array of

Cp values with the statement "Cp=lst value:increment:last value" (supply numerical

values for 1st value, etc.), or with a "logspace" statement if an array equally spaced on

the logarithmic scale is desired. Then run m-file proprloc.m:

%proprloc.m (04 Apr 90): Proportional control of horizontal motion;

%program plots locus of damped freqs vs. zetas of translation mode of

%3-DOF model as proportional feedback constant Cp varies;

%Action req'd to execute:

% First enter values for Dh, Cv and dob;

% next enter 'Cp=lst value:increment:last value;proprloc',
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%where Cp is the array of equally spaced proportional feedback constants,

%which is printed out.

%Output: plot of frequency (Hz) vs. zeta for translation mode.

i= 0;twopi=2*pi;j =sqrt(- 1);statmats;Cp

for cp=Cp;

i=i+l;

al =A+cp*Bc*Ceps;

roots = eig (a 1);sigmas = real (roots);omegas = imag (roots);

zetas =-sigmas./sqrt(sigmas. ^ 2 + omegas. ^ 2);freqs = abs(omegas)/twopi;

comfreqs(:,i)=zetas + j*freqs;
end

zpjf=comfreqs(3,:);frqvszta=zpjf.';plot(frqvszta,'x'),grid,

xlabel('ZETA'),ylabel('FREQ Hz'),title('FREQUENCY vs. DAMPING')

M-file proprloc.m uses statmats.m, and it calculates and plots the locus of complex

eigenvalues of the translation mode of _ as Cp varies.
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APPENDIX B.6

Rigid-Body Modes

For the open-loop case, m-file olcvrloc.m was modified to give k0olcvrl.m:

%k0olcvrl.m 4/23/90 Stiffnesses Kx and Kt

%set to zero, and with Mg=100, Mw=5.65/g, and L=62.125

%Action req'd to execute:

% First enter a value for Dh; next define an array of Cv values,

% as, for example with 'Cv=logspace(0,1)'; finally type 'k0olcvrl'

%Output: root locus plot

Mg= 100.0;g = 386.4; M = Mg/g;Mw= 5.65/g;Iw= 338/g;I = 1777/g;It= I + Iw;mi = l/M;

b=3; L=62.125; Kx= 0;Kt=0;Dhb= Dh + b;m3= ItJb ^ 2;Kg= M'g/L; RDh = DhPo;

RDhb= RDh + 1 ;k 1= Kg*RDhb;k2 = Kg*RDh;k3= Kt/b ^ 2; k4 =-(k3+ k2* (L/b + RDhb));

mass=[Mw 0 0;0 M+m3 -m3;0 -m3 m3];minv--[1/Mw 0 0;0 mi mi;0 mi mi+ 1/m3];

stif=[Kg-kl k2.;-kl k3+Kg*(RDhb^2+RDh*lJb)k4;k2 k4 Kx+k3+k2*(L/b+RDh)];

i=0;twopi=2*pi;j=sqrt(-1 );

for cv=Cv;

i=i+l ;A= [-minv*diag([cv 0 0]) -minv*stif;eye(3) zeros(3)];

roots(:,i) =eig(A);

end

piot(roots','x'),grid,xlabel('REAL PART'),ylabeI('IMAG PART')

title('LOCUS OF ROOTS OF UNSPRUNG 3-DOF MODEL AS Cv VARIES')

For the closed-loop case m-file proprloc.m was modified to give k0prrloc.m:

%k0prrloc.m 4/23/90 Similar to proprloc.m, but calling k0statmt.m so

%that stiffnesses are set to zero and some other parameters are updated

%proprloc.m (04 Apr 90): Proportional control of horizontal motion;

%root locus of 3-DOF model as proportional feedback constant Cp varies;

%Action req'd to execute:

% First enter values for Dh, Cv and dob;

% next enter an array for Cp;'k0prrloc'

%Output: loci of all roots as Cp varies

i = 0;twopi = 2*pi;j = sqrt(- 1); k0statmt

for cp=Cp;

i=i+l;

al =A+cp*Bc*Ceps;roots(:,i)=eig(al);
end

plot(roots','x'),grid,xlabel('REAL PART'),ylabeI('IMAG PART')

title('LOCUS OF ROOTS OF UNSPRUNG 3-DOF MODEL AS Cp VARIES')
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M-file kOstatmt.m referred to in kOprrloc.m is the same as statmatsom, except that the

values for k,,, k e, mg, m,,g and Qwere changed as stated above. Results of kOprrloc.m

are recorded on Figures 27 a-c.
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APPENDIX B.7

PID CONTROL

Given a single value for each of the PID coefficients, pidroots.m listed below calculates

all of the roots:

%pidroots.m 22 Apr 1990

%enter Dh, then run mode3dof.m, then run dobcalc.m to calc dob

%Enter Cv; then run statmats.m to calc A, Bc and Ceps
%Enter taud; prog. calcs Az and Bz

%Specify Cp and Ci and Cd;prog. calls freqzeta to calc roots

itaud = 1/taud;Az= [0 0;0 -itaud] ;Bz = [1 ;itaud] ;A21 = Bz*Ceps;

con = Cd/taud; Cz = [Ci -con] ;Dz = Cp + con;

a= [A+ Dz*Bc*Ceps Bc*Cz;A21 Az] ;freqzeta

Two m-files calculate the loci of translation mode roots of Eq. 33 as controller coefficients

vary. Program pidrlocd.m calculates the locus as C d varies, with Cp and Ci fixed:

%pidrlocd.m 27 Apr 1990 Calculates the freq-zeta locus of the transl.

%mode of the 3-DOF model as derivative coefficient Cd varies.

%enter Dh, then run mode3dof.m, then run dobcalc.m to calc dob

%Enter Cv; then run statmats.m to calc A, Bc and Ceps

%Enter taud; prog. calcs Az and Bz

%Specify Cp and Ci and an array of values for Cd.

itaud = 1/taud;Az= [0 0;0 -itaud] ;Bz= [1 ;itaud] ;A21 = Bz*Ceps;

i=0;j=sqrt(-1 );twopi=2*pi;Cd
for cd=Cd

i= i+ 1;con = cd/taud;Cz = [Ci -con] ;Dz = Cp +con;

a=[A+Dz*Bc*Ceps Bc*Cz;A21 Az];

,roots = eig (a);sigmas = real (roots);omegas = imag (roots);

zetas=-sigmas./sqrt(sigmas. ^ 2 + omegas. ^ 2);freqs=abs(omegas)/twopi;
comfreqs(:,i)=zetas + j*freqs;

end

zpjf=comfreqs(6,:);frqvszta=zpjf.';plot(frqvszta,,x,),grid,

xlabeI('DAMPING FACTOR, ZETA'),ylabeI('DAMPED FREQ Hz'),

title('LOCUS OF FREQ-ZETA OF 3-DOF CL-PID MODEL AS Cd VARIES')

Similarly, pidrloci.m calculates the locus as Ci varies, with Cp and C d fixed:
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%pidrloci.m 27 Apr 1990 Calculates the freq-zeta locus of the transl.

%mode of the 3-DOF model as integral coefficient Ci varies.

%enter Dh, then run mode3dof.m, then run dobcalc.m to calc dob

%Enter Cv; then run statmats.m to calc A, Bc and Ceps

%Enter taud; prog. calcs Az and Bz

%Specify Cp and Cd and an array of values for Ci.

itaud = 1/taud;Az= [0 0;0 -itaud];Bz= [1 ;itaud] ;A21 = Bz*Ceps;

i=0;j=sqrt(-1);twopi=2*pi;Ci
for ci=Ci

i= i + 1 ;con = Cd/taud; Cz = [ci -con]; Dz = Cp + con;

a= [A+ Dz*Bc*Ceps Bc*Cz;A2.1 Az];

roots = eig (a) ;sig m as = real (roots) ;o meg as = imag (roots);

zetas =-sigmas./sqrt(sigmas. ^ 2 + omegas. ^ 2);freqs= abs(omegas)/twopi;

comfreqs(:,i)=zetas + j*freqs;
end

zpjf=comfreqs(6,:);frqvszta=zpjf.';plot(frqvszta,'x'),grid,

xlabeI('DAMPING FACTOR, ZETA'),ylabeI('DAMPED FREQ Hz'),

title('LOCUS OF FREQ-ZETA OF 3-DOF CL-PID MODEL AS Ci VARIES')

To generate the results shown on Figure 28, each of the three m-files was run

separately, and its root locus was saved (with the "save" command in PC-Matlab). Then

all three loci were loaded together (with the "load" command in PC-Matlab) and plotted

on the same graph.
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APPENDIX C

DIGITAL CONTROLLER PROGRAM

The control program implemented in the Spectrum Signal Processing TMS320C25

System Board is listed below. The program is written in TI (Texas Instruments) COFF

assembly language. The program is compiled and linked with the TI COFF Assembler

and Linker programs supplied with the system. To implement the executable program

in the system board it must be downloaded using the Spectrum MON25 monitor

program also supplied with the system.

**********************************'k _******

* Two Channel Sample *

* With output proportional to error *
* TMS320C25 *

********_*********************************

* Author : R. Gold

* Dynamic Engineering, Inc.

* Tel (804) 873-1344

* Date 4/23/90

* 320C25 LINKS

* DEFINE ADDRESS CONSTANTS

VAL0: .equ 01 h

VALI: .equ 02h

AY0: .equ 03h

AY1 : .equ 04h

ERR: .equ 05h

TIMER: .equ 09h

STAT: .equ 08h

CTRL: .equ 08h
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ADC: .equ 0Ah

DAC0: .equ 0Ah

CONB: .equ 0500h

INB: .equ 051 Oh

* DATA CONSTANTS

CH0: .equ 090h

CH1 : .equ 0Dlh

* PROGRAM

.sect "AORG0"

CNFD

LDPK

LARP

LRLK

RPTK

BLKP

LACK

SACL

OUT

LACK

SACL

OUT

LACK

SACL

OUT

CAL IN

LAC

ANDK

BZ

06h

05h

AR5,CONB

06h

TAB0,* +

00h

VAL0

VAL0,CTRL

020h

VAL0

VAL0,CTRL

00h

VAL0

VAL0,CTRL

VAL1 ,STAT
VAL1

020h

CAL

;Set address page

;Move data into

;data memory

;Toggle calibration bit (5)

;Read status reg

;Mask calibration bit

;Loop till calibration complete
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LALK

SACL

OUT

0FCE1 h

VAL0

VAL0,TIMER

;Load 10 kHz sample rate to timer

IN VAL1 ,ADC ;Clear status flags eoc and timeout

LRLK 01 h,INB ;Set table pointers to table

;base addresses

START LRLK

LALK

SACL

OUT

02h,CONB+02h

CH0

VAL0

VAL0,CTRL

;Select channel 0 for conversion

;send out control word

EOC0 IN

LAC

ANDK

BZ

VAL1 ,STAT
VAL1

080h

EOC0

;Read status reg
;Mask eoc bit

;Loop till conversion complete

IN AY0,ADC ;Read channel 0 data

LALK

SACL

OUT

CH1

VAL0

VAL0,CTRL

;Select channel 1 for conversion

;send out control word

EOC1 IN

LAC

ANDK

BZ

VAL1 ,STAT

VAL1

080h

EOC1

;Read status reg
;Mask eoc bit

;Loop till conversion complete

IN AY1 ,ADC ;Read channel 1 data

LARP

LAC

SUB

LARP

SACL

LT

LARP

02h

AY1

*+

01h

02h
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MPY

PAC

ADD

SUB

SACL

LT

MPY

PAC

SACL

OUT

AY0

ERR

ERR
_t

VAL0

VAL0,DAC0

B START

TAB0: .word 090h,0D 1 h,0CB2h,09h, 1C71 h,02h
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