
_j

...)

i-- ,_j

_,: +....J
i j :.t'l ,J

o-1: "-,.-'

C b

U

L. <:

-[

_2X

_4 f:

:2

3 -5

L_

r"

O
C
D

_7

0

r_7

A NEW MOMENTUM MANAGEMENT
CONTROLLERFOR THE

SPACE $TATION

B. Wie

K.W, Byun
V,W. Warren

University of Texas At Austin

January 1988

Cooperative Agreement NCC 9-16
Research Activity No. MS.1

NASA Johnson Space Center

Mission Support Directorate
Mission Planning and Analysis Division

© ©

Research Institute for Computing and Information Systems

University of Houston - Clear Lake

- T.E.C.H.N.I.C'A'L R.E.P.O.R.T



The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for

Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and
information sciences. As part of this endeavor, UH-Clear Lake proposed a

partnership with JSC to jointly define and manage an integrated program of research

in advanced data processing technology needed for JSC's main missions, including
administrative, engineering and science responsibilities. JSC agreed and entered into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under

Cooperative Agreement NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on

computing and information systems among researchers, sponsors and users from

UH-Clear Lake, NASA/JSC, and other research organizations. Within UH-Clear

Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human

Sciences and Humanities, and Natural and Applied Sciences.

Other research organizations are involved via the "gateway" concept. UH-Clear
Lake establishes relationships with other universities and research organizations,

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and

research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and

administrative support to coordinate the research, and integrates technical results
into the cooperative goals of UH-Clear Lake and NASA/JSC.
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Abstract

A new approach to CMG (control moment gyro) momentum management and

attitude control of the space station is developed. The control algorithm utilizes

both the gravity-gradient and gyroscopic torques to seek torque equilibrium attitude

in the presence of secular and cyclic disturbances. We show that depending upon

mission requirements, either pitch attitude or pitch-axis CMG momentum can be

held constant. We also show that yaw attitude and roll-axis CMG momentum can

be held constant while roll attitude and yaw-axis CMG momentum cannot be held

constant. As a result, the overall attitude and CMG momentum oscillations caused

by cyclic aerodynamic disturbances are minimized. A state feedback controller with

minimal computer storage requirement for gain scheduling is also developed. The

overall closed-loop system is stable for 4-30% inertia matrix variations and has more

than 4-10 dB and 45 ° stability margins in each loop.
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Introduction

The space stationshown inFig. I willemploy CMGs (controlmoment gyros) as a

primary actuating device during normal flightmode operation. Since the C,XIGs are

momentum exchange devices,external control torques must be used to desaturate

the CMGs, that is,bring the momentum back to nominal value. Some methods for

unloading CMG momentum include the use of magnetic torques, reaction jets,and

gravity-gradienttorque. For the space station,the gravity-gradienttorque approach

ispreferredsince itrequiresno consumables or additional hardware. For thisreason,

various schemes using gravity-gradient torque have been developed [I-9].

Two approaches to momentum management using gravity-gradient torque are

possible.The firstof these isa "discrete"or "periodic" momentum controlapproach

[1-5]which isbasicallya feedforward open-loop controlscheme. This scheme utilizes

appropriate samples of CMG momentum, with the sampling frequency of the same

order as the orbital frequency. This approach, as well as the "predictive" approach

[7],can handle expected momentum changes; however, itrequires accurate inertia

matrix properties and environmental models to generate the proper attitude steering

command. In the "discrete"or "periodic" approach, the attitude controller,with a

much higher control bandwidth, isdesigned independently.

The second approach to CMG momentum management is a "continuous" ap-

proach [6-9] which integrates the momentum management and attitude control

design. In this continuous, closed-loop control of both the CMG momentum and

station attitude,the design objectiveisto establisha proper tradeoffbetween station

pointing and CMG momentum management, while satisfyingthe specificmission

requirements.

Expanding on this "continuous" approach, we present a new scheme to the space

station momentum management and attitude control. The proposed controllerpro-

vides a proper disturbance accommodation. As a result,the cyclic peak of the

station attitude and CMG momentum oscillationcaused by aerodynamic torque is

minimized. In this paper, CMGs are considered as an ideal torquer, however, the

CMG gimbal dynamics as wellas the CMG steering law [10,11] should be included

in the further development of an efficientcontrol law for the overallsystem. Struc-

tural flexibilityof the space station considered in [12,13] isneglected because of the

2



low bandwidth nature of the integrated momentum/attitude controller. We assume

that a strapdown inertial reference system provides relatively noise-free estimates of

all states and that the body-axis components of CMG momentum can be measured.

Practical multivariable controller synthesis is accomplished employing various tech-

niques such as the classical control approaches [12-17], linear-quadratic-regulator

(LQR) synthesis technique [18, 19], asymptotic disturbance rejection [19, 20], de-

centralized (partial state feedback) control [21], and robust eigensystem assignment

techniques [22-24]. A brief summary of a pole placement algorithm for partial state

feedback controller is given in Appendix.

Mathematical Models for Controller Synthesis

The space station in circular orbit is expected to maintain LVLH (local vertical

and local horizontal) orientation during normal mode operation. The nonlinear

equations of motion in terms of components along the body-fixed control axes can

be written as:

Space Station Dynamics:

(I)

where

A
cl = - sin 05 cos 03

A
c2 = cos 01 sin 02 sin Oa + sin Ol cos 02

A
cz = - sin 01 sin 02 sin 03 + cos Ol cos 02

Attitude Kinematics (2-3-1 body-axis sequence):

02
03

1 [ cos 03, - cos O_sin 03,

"" _ [ O, COSO1,COS 03 O, sin Ol COS 03,

sin 01 sin 03

- sin Ot

cos O_cos 03

3

w2 +

_3
[0]n (2)

0



CMG Momentum:

h_ + "_3 0 -"_1 h2 = u2 (3)
/_3 -_2 "_1 0 h3 u3

where (1, 2, 3) are the roll, pitch, and yaw control axes whose origin is fixed at the

mass center, with the roll axis in the flight direction, the pitch axis perpendicular to

the orbit plane, and the yaw axis toward the Earth; "(01, 02, 03) are the roll, pitch,

yaw Euler angles of the control (body) axes with respect to LVLH axes which rotate

with the orbital angular velocity, n; ("_1, "_2, "_3) are the body-axis components of the

absolute angular velocity of the station; (Ill, I22, /33) are the moments of inertia; I,_

(i # j) are the products of inertia; (hi, h2, h3) are the body-axis components of the

CMG momentum; (ul, us, u3) are the body-axis components of the control torque

caused by CMG momentum change; (wl, w2, w3) are the body-axis components of

the external disturbance torque; and n is the orbital rate of 0.0011 tad/see.

For small attitude deviations from LVLH orientation, the linearized equations

of motion can be written as:

Space Station Dynamics:

I 1,,2 I  12 2, ]In I22 I23 _ = n -I3z O, Il2 _2
)'31 "/'32 f33 _b3 f22--f11, --22"12, --f13 w3

+ 3n2 /12, /33 --/ll, 0 02 q- rz2 3/13 q- --u2 Jr- w2 (4)

--/'13, -- I_3, 0 03 -I12 -u3 + w3

Attitude Kinematics:

CMG Momentum:

03+ nO1= w3

(Sa)

(Sb)

(5c)

hi _ nh3 = u 1

h2 "-- 122

h3 + nhz = u3

4

(6a)

(6b)

(6c)



Eliminating (wl,w2,w3) from Eqs. 4 and 5, the linearized equations of motion can

also be written as:

I _1 O, 2132, grit I22 -F 1-33 _1

z,,,,,,,,1 r
o_ o o_I3, I32 /33 ] L -I,, + I2= - I33, -2I

IIe, 31, + {(7)
L -41,3, -3123, I,,-I22 J L e3 J L 1,2 L -u3 w3 ]

Note that the products of inertia cause three-axis coupling as well as a bias

torque in each axis. Early flight comCigurations during station assembly may have

significant misalignment of the control axes with the principal axes. In such cases,

the above linear, 3-axis coupled equations of motion will be very useful for linear

control design. It is by now evident that it is very straightforward to derive Eq. 7;

however, this does not appear to have been done in the literature to the authors'

knowledge.

Fortunately, most practical situations of interest with small products of iner-

tia permit further simplication in such a way that pitch motion is uncoupled from

roll/yaw motion. Otherwise, Eq. 7 should be used for 3-axis coupled stability anal-

ysis and control design. For the case where the control axes are nearly aligned with

the principal axes (/1 _ Ill, I2 _ I22, and/3 =_ I3z), Eqs. 4 become

I_d_, + n(I2 - I3)w3 + 3n2(Is -- 13)0, = -u, + w,

Is&2 + 3n2(lt - I3)02 = -u2 + w:

I3&3 - n(Is - I, )w, = -u3 + w3

(8)

Finally, the linear equations for 0,,02, and 03 become

I_0, + 4n_(Is -- I3)8, - n(I1 -- Is + I3)/_3 = -u, + w,

IsOs + 3nS(Il -- I3)0s = --us + w2

I383 + n=(Is - I,)03 + n(I, - Is + I3)0, = -u3 + w3

(9a)

(9b)

(0c)

These are the important equations used for the study of passive or active gravity-

gradient stabilization of Earth-pointing satellites (e.g., see [18, 16]). Since pitch

motion is uncoupled from roll/yaw motion, pitch control is often treated separately

from coupled roll/yaw control.



However, certain configurations of the space station (e.g., the assembly flight

#3 of Table 1) may need a large pitch TEA because of the small gravity-gradient

torque available in the pitch axis. In such cases, Eqs. 1 and 2 with small roll/yaw

attitude errors and small products of inertia become [25.26]:

IlO, + (l ÷ 3cos202)n2(l 2 -- 13)0, -- n(l, -- [2 +/3)03

+ 3(I2 - I3)n_(sin02 cos 02)03 = -u, + w,

I_02 + 3n2(I, - I3)sin O_ cos 02 = -u2 + w2

h03 + (1 + 3sin _ O_)n2(h - I,)03 + n(I, - h + h)O,

+ 3(5 - I,)n2(sinO2cos02)o, = -u3 +

(10)

It is evident that roll/yaw motion is now affected by pitch motion. If pitch attitude

is held constant with respect to the pitch TEA, the roll/yaw equations can be

considered as time invariant. Thus, these equations will also be useful for roU/yaw

controller design for the space station with large pitch TEA.

Inertia matrices of the Phase I space station as well as the assembly flight #3

are listed in Table 1. In this paper we are concerned primarily with the phase 1

configuration. The uncontrolled space station with such inertial properties is in

an unstable equilibrium when 01 = 0 (i = 1, 2, 3). Also included are expected

aerodynamic disturbances which are modeled as bias plus cyclic terms in the body-

fixed control axes:

w(t) = Bias + A. sin(hi + ¢.) + A2,_ sin(2nt + ¢2.) (11)

The cyclic component at orbital rate is due to the diurnal bulge effect, while the

cyclic torque at twice the orbital rate is caused by the rotating solar panels. The

magnitudes and phases of aerodynamic torque in each axis are assumed unknown

for control design.

Pitch-Axis Controller Synthesis

Equation 9b, which is linearized and uncoupled from the roll/yaw equations, is

used as the basis for pitch control analysis and design. A block diagram of the pitch-

axis momentum/attitude control loop is shown in Fig. 2. Two control schemes are



presentedhere: one without the indicated cyclic-disturbance rejection filter. C2(s),

and one including the filter.

Pitch Control without Cyclic-Disturbance Rejection

Pitch-axis controller consists of a single control input, u2 and four states, 0:, _2,

h2, f h:. The pitch control logic is then given by

u2 = K2p02 + I(2D02 + I(2Hh2 + K2,f h2 (12)

where the pitch-axis CI_'fGmomentum and its integral are included to prevent

momentum build-up.

Various methods for the selectionof the four gains can be employed. For ex-

ample, one can place the closed-loop eigenvalues at any desired location, using the

pole placement technique. The practical problem with this approach is that it is

not always clear where to place the eigenvalues for satisfactory performance and

robustness.

Pitch controller synthesis by iterative successive loop closures is possible, but

quite tedious. The pitch controller can also be synthesized using an "equivalent"

compensator. This approach provides physical insight into the proper tradeoff be-

tween the attitude control and the momentum management. Combining Eqs. 6b

and 12 to eliminate h_ gives an equivalent compensator

s2(KsP + sKso)

us = s2 _ Kst-ts - Kst 02 (13)

Hence, the integrated momentum/attitude controller can be interpreted as a second-

order compensator with four parameters. The momentum controller consists of

double zero at the origin and complex poles. The attitude controller consists of one

zero on the real axis, which is a conventional proportional-derivative controller. An

unstable compensator is needed to stabilize the unstable system. It can be easily

shown that h2(s)/ws(s) of the closed-loop system has a zero at s = 0. Thus, hs(t)

has a zero steady-state value for a constant disturbance.

LQR synthesis of the pitch control for feeding back all four states to us can be

done quickly using a computer code. The LQR technique makes use of a quadratic

performance index to synthesize state-feedback gains that minimize this index. It

is especially useful for multivariable systems; all loops are closed simultaneously

7



instead of successivelyas in classical frequency-domain methods. However. the

problem with this approach is that the proper selection of the weighting matrices

is not obvious. It is not always possible to predict the effects of given weighting
matrices on the closed-loopbehavior.

Hence,a practical approachto the pitch-axis controller design (and the roll/yaw

controller designof the next section) would be to find the control gains and closed-

loop poles that result from a wide range of weightifig matrices, and simulate the

corresponding closed-loopsystem. The gain matrix that produces the closed-loop
responsessatisfying the various requirementsbecomesthe final selection.

The uncontrolled phase1spacestation hasunstablepitch modewith polesat s =

+1.5n and momentum mode with double pole at s = 0 (one from integral feedback).

After iterative use of an LQR synthesis code available in the PC-MATLAB and

CTRL-C software, we select the pitch-axis control gains as listed in Table 2. The

corresponding closed-loop eigenvalues are:

-1.6n, - 1.0n, (-1.5 :k 1.5j)n

The response of the closed-loop system to the pitch disturbance listed in Table

1, with initial conditions of 02(0) = 1 deg and 02(0) = 0.001 deg/sec, are shown

in Fig. 3. The transient responses are satisfactory, while the cyclic aerodynamic

torque causes the periodic responses of both pitch attitude and pitch-axis CMG

momentum. The h2 is bounded with zero mean value, while the 02 is oscillating

with respect to 7.5 ° pitch TEA. The CMG momentum peak and torque demand

are both well below the allowable limits of about 20,000 ft-lb-sec and 150 ft-lb,

respectively.

Pitch Control with Cyclic-Disturbance Rejection

Depending on the circumstances, either pitch attitude or CMG momentum os-

cillation, caused by the aerodynamic disturbance torque, may be undesirable. In

such cases, a cyclic-disturbance rejection filter can be employed as illustrated in

Fig. 2.

The proposed cyclic-disturbance rejection filter, C2(s), is represented as

N2(s)
= + + (14)



The filter poles will appear in the numerator of the closed-loop transfer function

02(s)/w2(s) or h2(s)/w2(s), depending on mode selection. This results in a distur-

bance rejection at frequencies of n and 2n for either 0_ or h2. The filter numerator.

N2(s), should be properly designed to stabilize the overall control system.

For example, the disturbance rejection filter for 0_ can be represented as

(15a)

(15b)

where initial conditions for a2, /32, &_, and/)2 can be arbitrarily selected (usually.

zero initial conditions). These filter equations are integrated in the on-board com-

puter.

We now repeat the pitch control synthesis of the previous section, augmenting

the pitch-axis equation with the above filter equations. The pitch control logic, with

additional disturbance rejection filter states, can then be expressed as

us = I(2p02 + K_o02 + K2Hh2 + f + + K2aa2+ K2,/3 + I(.2z_2 (16)

The eight gains of Eq. 16 can be determined using either the pole placement or LQR

technique. We use the LQR synthesis technique, and the selected control gains and

the corresponding closed-loop eigenvalues are listed in Tables 3 and 4, respectively.

Since the disturbance rejection filter is used for pitch attitude, it can be shown

that 02(s)/w2(s) has zeros at s = :t:nj and s = :t=2nj; hence, an asymptotic dis-

turbance rejection of a cyclic disturbance of frequencies n and 2n is achieved for

the pitch attitude. Transfer function h2(s)/w2(s) also has zeros near s = :knj and

=t=2nj. This results in minimizing the cyclic peak of the CMG momentum. The

closed-loop response of this controller is shown in Fig. 4. The CMG momentum is

bounded with zero mean value, while the pitch attitude is now held constant at 7.5 °

pitch TEA after two orbits. These responses should be compared to those in Fig. 3

where no disturbance rejection filter was used. It can be seen that the cyclic peak

of the CMG momentum is also reduced. In other words, the use of disturbance

rejection filtering results in minimizing the overall oscillations of attitude and CMG

momentum.

It is also possible to provide cyclic-disturbance rejection for the pitch-axis CMG

momentum. In this case, we replace 02 of Eqs. 15 by h2 and then find proper gains of



Eq. 16. The closed-loop response for this case is shown in Fig. 5; hence, depending

on the specific mission requirements, either pitch attitude or C._IG momentum can

be held constant employing the pitch controller illustrated in Fig. 2.

Roll/Yaw Controller Synthesis

A design procedure similar to that of the pitch-axis design is followed for the

roll/yaw controller. Two cases are considered: the first without cyclic-disturbance

rejection filters, the second with filters.

Roll/Yaw Control without Cyclic-Disturbance Rejection

The first case of roll/yaw controller design consists of two inputs, ul and u3,

and eight states, including two integral states for the CMG momentum. The eight

states are:

Roll-axis: 81 wl hi / hi

Yaw-axis: 03 w3 h3 / h3

Note that we use wl and w3, instead of 01 and 03, as state variables. The uncon-

trolled phase 1 space station with inertial property of Table 1 is unstable in roll/yaw

and has the open-loop poles of (4-1.05 =k0.Tj)n, 4-nj, O, O. The double pole at s = 0

are due to the integral feedback of hi and h3. Similar to the pitch-axis design,

the roll/yaw full-state feedback controller can be designed, iteratively, using the

LQR or pole placement techniques. The multi-input characteristics of the roll/yaw

axes, however, provide for the calculation of various gain matrices which yield the

same closed-loop eigenvalues. Although the gain matrix can be completely speci-

fied by assigning not only the closed-loop eigenvalues but also an allowable set of

closed-loop eigenvectors, there are many open issues in the eigensystem assignment

approach [22-24]. In our study, we simply use the conventional LQR technique to

find a closed-loop system satisfying various requirements.

After iterative use of an LQR synthesis code, we select a 2x8 gain matrix with

the corresponding closed-loop eigenvalues of (-1.05 4- 0.68j)n, (-1.04 4- 0.72j)n,

(-1.42 4- 1.38j)n, and (71.42 4- 1.38j)n. This choice of closed-loop eigenvalues is

not claimed to be the best.

10



_,Ve now discuss some motivation for developing a decentralized, partial state

feedback controller for the space station. The configurations of the space station

will be changing as payloads/modules are attached or removed. This drives the need

for a control system design that is either insensitive to the configuration changes

or able to adapt autonomously. At present, conventional design methods, including

gain scheduling or mode switching, appear adequate for most of the space station

flight configurations. Some drawbacks of non-adaptive controllers are that the de-

sign is often time-consuming, and the controller parameters (e.g., the 16 gains of

the above roll/yaw controller) must be determined for many operating conditions.

Furthermore, they must be stored in the on-board computer.

In order to minimize the computer storage requirement for gain scheduling,

a roll/yaw control logic with reduced number of gains is considered here. One

possibility might be to use an LQR synthesis code to find a full-state feedback gain

matrix and then omit some of the less important gains. However, this approach does

not always guarantee good performance and stability. Hence, we have developed an

iterative pole placement algorithm which is an extension of the Bass-Gura formula

for single-input systems. A brief summary of the algorithm for multi-input systems

is given in Appendix.

A decentralized, partial state feedback control logic proposed for the space sta-

tion is simply:

= Kip01 + K1DWl + K1Hhl + Kll _fUl hi (lWa)

= K3P03 + I(3DW3 + I(3Hh3 + I(3! /U3 h3 (17b)

Notice a particular feedback structure where each control input uses states which

are more closely related to that control input. We select the eight gains by choosing

the closed-loop eigenvalues to be the optimal, full-state regulator eigenvalues de-

termined previously. The eight gains obtained using the pole placement algorithm

described in Appendix are listed in Table 2. A simulation of the closed-loop system

with roll/yaw disturbances of Table 1 shows that the transient responses are satis-

factory and that the steady-state responses are cyclic and remain within specified

limits. The decentralized controller with eight gains compares quite favorably with

the full-state feedback controller with sixteen gains.

11



Roll/Yaw Control with Cyclic-Disturbance Rejection

For the minimization of the steady-state oscillation of roll/yaw attitude and

CMG momentum, cyclic-disturbance rejection filtering for a muhix'ariable system

is investigated.

To clarify some multivariable control issues related to transmission zeros [20], let

us consider the open-loop transfer function matrix from control inputs to roll/yaw

attitude and CMG momentum. Combining Eqs. 6a, 6c, 9a, and 9c. we can find the

transfer function matrix as:

[Ol(S)] 1 [-[I3s2+(I2-Ii)n2](s_+n2),
--[[is 2 + 4(12-/3)n2](s _ + n2) ] '

(lS)

h3(s) = _2+ .'------_-n, s u_(_) (19)

,,.hereA = Z,X_(_+ _,_)[_'+(1 + 3k,+ k,k,),-,_._+ 4k,_,.'], k, = (& - Z.)/r,, k3=
(s_- sl)/&.

It is apparent that ±nj are transmission zeros of Eq. 18. We also notice from

Eq. 19 that resonance of CMG momentum can happen for sinusoidal control inputs

of frequency n. In other words, a cyclic-disturbance at orbital rate cannot be

rejected for both roll and yaw attitude. However, in this case, where we use the

CMG momentum dynamics represented as Eqs. 6, it is not evident why a cyclic-

disturbance at orbital rate can be rejected for the yaw atttiude and not for the

roll attitude. In order to prove such inherent characteristics of roll/yaw dynamics,

the following CMG momentum dynamics with a proper modification of Eqs. 9 are

investigated:

hi = ui (20a)

/_3= u3 (2Oh)

For this case, the following transfer function matrix can be obtained:

[Ol(s)] 1 [ -Ias2(s2+n2), (iI_i,)ns(s_+n2)]O_(s) =_ ,_s(ir__r_)[s_+(On)_], _,_[Z_,_+(xq+3Z__3Z_)n_] •

12



[,,,(5) ]u3(s)

1h3(s) s O, 1 _L3(s)

s2 [ I3s2 + (I2- Im)n_, (If - I2 + I_)n._

+_[ -(11-12+13)ns, Ii._2 + 4(I_ - I3)n_ w3(s ) (21)

(22)

where _ = IlI3._2[s 4 + (1 + 3kl + ktk'3)n2s 2 + 4k, k3n4],k.l - (I2 - I3)/I,.],'3 =

(I2- r,)//3.

It can be shown that ±nj are transmission zeros of the transfcr function matrix

from (Ul,U3) to (81,83). The zero at s = +hi appears in both the _t(_)/_t1(._)

and 81(a)/u3(s) transfer functions, but not in yaw attitude channels. Therefore, a

cyclic-disturbance rejection at the orbital rate is not possible for roll attitude, while

it is possible for yaw attitude. Furthermore, it can be shown that :]:nj are not

transmission zeros of the transfer function matrix from (ul, u3) to (hi, 83). Based

on these inherent properties of the roll/yaw dynamics, a cyclic-disturbance rejection

for the roll-axis CMG momentum and yaw attitude is considered.

The roll/yaw cyclic-disturbance rejection filters proposed for the space station

are:

51 + ( n )2al = hi

/3, + (2n)2fl, = ht

53 + ( n )2_3 = 83

(23a)

(23b)

(23c)

(23d)

Using a LQR synthesis code, we can determine a 2x 16 gain matrix for the roll/yaw

equations augmented by the above filter equations. However, we consider here a

decentralized, partial state feedback controller in order to minimize the computer

storage requirement for gain scheduling.

A decentralized control logic with cyclic-disturbance accommodation is given

by:

F

= K1pOl + KIDWl + Ktnhl + Ktl ]Ul hi

+ Kt,_al + Kl_dl + Klafll + Kt3_

= K3P83 + ICaDw3 + KaHh3 + K3t /II 3 h3

+ I(_,a3 + K_d3 + K3aB3 + I_3a_3

(24a)

(24b)

13



Proper closed-loop eigenvalues are first selected from LQR design iterations, and the

sixteen gains of Eqs. 24 are then determined by using the pole placement algorithm

derived in Appendix. These gains and closed-loop eigenvalues are listed in Tables 3

and 4, respectively. It is emphasized that the decentralized control is not necessary

if a state feedback controller with 32 gains can be easily implemented without any

on-board computer storage problem for many different operating conditions. The

decentralized controller is proposed here as an additional capability of our control

system for the space station.

Bode plots of the closed-loop transfer functions are shown in Fig. 6. Both

hx(s)/wl(s) and 03(s)/w3(s) have zeros at s = +nj and 4-2nj; hence, an asymptotic

disturbance rejection for the roll-axis CMG momentum and yaw attitude is achieved

for cyclic disturbances of frequencies n and 2n. It can be shown that -t-nj are

blocking zeros of the closed-loop transfer function matrix from (wl, w3) to (hl, 83).

Also 01(s)/wl(s) and h3(s)/wa(s) have zeros near s = +nj and 4-2n j, which results

in minimizing the cyclic peak of the roll attitude and yaw-axis CMG momentum.

The responses to the roll/yaw disturbances listed in Table 1, with initial conditions

of 0t(0) = 83(0) = 1 deg and w_(0) = w3(0) = 0.001 deg/sec, are shown in Figl 7.

The roll-axis CMG momentum approaches the zero steady-state value, while roll

attitude oscillates at orbital rate. The yaw attitude approches a constant steady-

state value, while the yaw-axis CMG momentum oscillates at orbital rate. As a

result, the overall attitude and CMG momentum oscillations are minimized. In fact,

the responses of the decentralized controller with 16 gains compare quite favorab.ly

with those of a full-state feedback controller with 32 gains.

From simulations, it was verified that the overall closed-loop system, with the

feedback gains of Table 3, is stable for 4-30% inertia matrix variations, and that it

has more than 4-10 dB and 45 ° stability margins for each loop.

Conclusions

We have presented a new approach to the space station momentum manage-

ment and attitude control. The proposed control algorithm provides a proper

cyclic-disturbance accommodation. We have shown that either pitch attitude or

pitch-axis CMG momentum, depending on the specific mission requirements, can
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be held constant, l,Ve havealso found someinherent physical property of the cou-

pled roll/yaw dynamics in terms of a transmissionzeroof a multivariable system. A

decentralized, partial state feedbackcontroller which requiresminimum computer

storage requirement for gain schedulingwasalso developed.

Appendix: Pole Placement Algorithm for Partial State Feedback

A pole placement algorithm for the decentralized, partial state feedback control

design is presented here. This iterative algorithm for a multi-input system is an

extension of the Bass-Gura formula for a single-input system.

Consider a linear, time-invariant system with a single input described by:

where x is the n-dimensional state vector, u is the scalar input, A is an n x n matrix,

b is an n x 1 column vector, and k is a 1 x n row vector.

The Bass-Gura formula for determining the feedback gain, k, of a controllable

system is then given by

a¢ - ao = kCT

where

A(s) = characteristic polynomial = s n + al,_ '_-1 + ... + an_is + a n

a,, = [ato, a2o, " " , ano] for the open-loop system

ac = [alc, a2,,..., anti for the closed-loop system

C = controllability matrix = [b, Ab,..., A"-lb]

T = upper-Toeplitz matrix whose first row is [1, al,.. -, a,,-1]

Modification can be made to the Bass-Gura formula for a multi-input system

described by:

_¢= Ax+Bu
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U _ -gx

where x is the n-dimensional state vector, u is the m-dimensional input vector. A

is an nxn matrix, B is an nxm matrix, and K is a mxn gain matrix.

Let b, be the i-th column of B; that is, B = [bl, b_,..., b_]. Also let ki be the

i-th row of K. Defining A (j) be the closed-loop system matrix at j-th iteration, the

algorithm can now be described as

r_

= AOIx + _ bidul i+1)
i

u!j).= -, +

where du (j+l)-i is used in the (j + 1)-th iteration to improve the convergence to the

desired eigenvalues. The incremental feedback gain is related to dul i) as

d(i) (1)_
u i = _ dk i

+ dklj)

Small changes in the feedback gains are related to the small changes in the charac-

teristic polynomial coefficients as

da(J) = ['-'-1['4t'(i)_0)"1+"" + dk_)C_ )] T 0)

where

C(J) [bi, A(i)bi, , (A(_))'*-lbi] (i = 1,... m)

T 0) = upper-Toeplitz matrix with the first-row, [1, a_j), ... aO'_)l]

The above iterative algorithm can be considered as a general form for the pole

placement for multi-input systems. For the full-state feedback problem, the choice

of the gains are not unique. There are some methods for the unique selection of

the gains, such as eigensystem assignment approaches (e.g, see [22-24]). In this

paper, we consider the case where the number of total feedback gains are specified

by the number of the states. Then a pseudo-controllability matrix is formed from

the selected rows of C (j) matrices by replacing the unselected gain components with
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zeros. This approach is only valid when the system is controllable by the selected

gam components.
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Table 1. Spacestation parameters

Parameters Assembly Phase1
Flight#3

Inertia (slug-ft2)
•rll 23.22E6 50.28E6

122 1.30E6 I0.80E6

/33 23.23E6 58.57E6

I12 -0.023E6 -_

I13 0.477E6 J__
I23 -0.011E6 0.16E6

Aerodynamic torque (ft-lb) for Phase 1

w, 1 + sin(nt) + 0.5 sin(2nt)

w2 4 + 2 sin(nt) + 0.5 sin(2nt)

w3 1 + sin(nt) + 0.5 sin(2nt)

,,.#

,5,

t,

Table 2. Controller gains without cyclic-disturbance

rejection filter for the Phase I space station

Gain Pitch Roll Yaw

Kp (ft-lb/rad)

Ko (ft-lb/rad/sec)

gn (ft-lb/ft-lb-sec)

Ift (ft-lb/ft-lb-sec _)

2.443E+2 1.113E+3 1.173E+3

1.465E+5 5.161E+5 1.283E+6

7.523E-3 5.935E-3 1.540E-2

3.546E-6 1.105E-5 1.990E-6
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Table 3. Controller gains with cyclic-disturbance rejection
filter for the PhaseI spacestation

Gain Pitch Roll Yaw

Kp (ft-lb/rad)

/(o (ft-lb/rad/sec)

/(H (ft-lb/ft-lb-sec)

Kr (ft-lb/ft-lb-sec 2)

I(_, (ft-lb/rad)

Ka (ft-lb/rad/sec)

K a (ft-lb/rad)

I/" a (ft-lb/rad/sec)

3.425E+2 7.026E+2 9.254E+2

1.972E+5 4.382E+5 4.166E+5

1.089E-2 4.779E-3 1.817E-4

3.953E-6 -8.170E-7 -1.469E-6

1.006E-4 4.383E-10" -3.375E-4

5.659E-2 7.904E-7" 6.606E-3 _.

1.434E-5 -3.309E-9" -4.503E-4

7.608E-2 -4.940E-7" 2.412E-1

" in units of ft-lb/ft-lb-sec 3, ft-lb/ft-lb-sec 2, ft-lb/ft-lb-sec 3,

and ft-lb/ft-lb-sec 2, respectively.

Table 4. Closed-loop eigenvalues for the Phase I in units of orbital rate,

n = 0.0011 rad/sec

Pitch

Roll/Yaw

Momentum/Attitude

'__-1.5
/ "-_

-1.0,-1.5 4- 1.5j

-0.23, -0.68 -0.66 4- 1.51j

-1.02 4- 0.29j -1.50 4- 0.84j

Disturbance Filter

-0.3 4- 1.0j -0.3 4- 2.0j
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Figure Captions

Figuer l

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

The Phase I space Station

The pitch-axis momentum/attitude control system

Pitch-axis response without disturbance rejection filtering

Pitch-axis response with disturbance rejection filtering
for the pitch attitude

Pitch-axis response with disturbance rejection filtering
for the pitch-axis CMG momentum

Closed-loop frequency response for the roll/yaw axes with
disturbance rejection filtering for the yaw attitude and
roll-axis CMG momentum

Roll and yaw responses
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