
N90-29 82

Model i ng, Design . and Control
F1 exi bl e Mani pul ator Arms :

Status and Trends

of

Wayne J. Book

The George W. Woodruff School

of Mechanical Engineering

Georgia Institute of Technology

Atlanta, GA 30332

ABSTRACT

The desire for higher performance manipulators has lead to dynamic behavior in

which the flexibility is an essential aspect. This paper first examines the

mathematical representations commonly used in modeling flexible arms and arms

with flexible drives. Then design considerations directly arising from the
flexible nature of the arm are discussed. Finally, controls of joints for

general and tip motion are discussed.

1. MODELING FLEXIBLE ARMS

Models are used for simulation, analysis, and synthesis. In robotics, models

may be used directly in the control algorithm with the computed torque
technique. We will first look at the representation of the flexible behavior.

Then, the incorporation of this flexible behavior into an overall arm model will

be considered.

Modeling the Flexible Behavior

Examination of the energy storage characteristics of a component is helpful in

assessing the modeling requirements of a system. Rigid arms store kinetic

energy by virtue of their moving inertia and store potential energy by virtue of

their position in the gravitational field. The flexible arm also stores

potential energy by virtue of the deflection of its links, joints, or drives.
Joints have concentrated compliance which is well modeled as a pure spring

storing only potential energy. Drive components such as shafts or belts may

appear distributed but store little kinetic energy due to their low inertia, and

a lumped parameter spring model succeeds well for them also. Links are subject
to torsion, bending, and compression. Torsion of a link stores potential energy

but little kinetic energy due to low mass moment of inertia about the

longitudinal axis of the beam and is thus well represented as a massless spring.

Compression stores little potential energy due to the high compressional

stiffness and dynamics along this axis is well described by a rigid mass. Links

subject to bending store potential energy by virtue of their deflection as well

as kinetic energy by virtue of their deflection rates and a good model must
include this distributed nature. Partial differential equations result from an

analysis of this type of problem, with time and one independent spatial variable

usually adequate to represent the dynamic solution of the generally slender



links. The dynamics of the link itself may be represented by the Bernoulli-
Euler beam equation-
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which ignores shearing of the beam and the mass moment of inertia of a

differential element along the length. The Timoshenko beam equation includes
these two effects and should be used if the beam is short relative to its

diameter. Such "stubby" links are likely to be essentially rigid anyway. The
Bernoulli-Euler beam may have a varying cross section, but analytical solutions

are not available except for the simplest variations. Thus the partial

differential equation is useful to accurately model only very simple real links,
or to study the general nature of the problem. This is not a great limitation
since most time domain analysis is performed on a finite dimensional

approximation of the distributed parameter system anyway.

Other assumptions are usually made when the partial differential equation is

employed. While body forces may be included on the right side of (1), these
forces due to translation and rotation of the link are quite complex and are

only represented in simple cases not representative of telerobotics, such as a

constant spinning satellite with an antenna. As discussea below, PDE's with

simple boundary conditions are also used to obtain a set of basis functions.
These spatially discretized equations may include body forces in at least an
approximate way.

If we treat time as a continuous variable, an ordinary differential equation can
be obtained by representing the beam shape as an infinite sum over a set of

basis functions, each multiplied by its own time varying amplitude. Suitable

approximations result from discarding all but a finite number of these functions

as in (2). For arms with only rotational joints this procedure is quite
natural.

m

y(x,t) = z a(t) ¢(t) (2)
i=1

Prismatic joints on flexible links are another problem. As a flexible link

moves in and out of a fixed prismatic joint its length effectively changes.
Physically viewed, the energy stored in the link deflection must be transferred

to another part of the beam. This is easily illustrated by a vibrating hack saw

blade retracted over the edge of a table. The peak strain in the blade during
the vibration must increase to store the same energy in a shorter blade and the

frequency of the blade increases due to its higher natural frequency. Real

manipulators will have real joints which are not ideally constrained, and must

be examined for the degree to which they are able to constrain the translation,
rotation and curvature of the link. These joints will dissipate vibrational

energy as well, in fact this may be their most desirable feature. Research on

modeling prismatic jointed flexible manipulators is limited.[1] Variation of

the mode shapes is one approach to the problem, but it will not be discussed in
detail in the remainder of the paper.
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In spite of the long standing use of a truncated series of shapes to represent
the kinematics of a flexible beam,no unimpeachable rule has evolved on the
selection of these shapes to obtain the needed combination of model simplicity
and accuracy. Popular choices are

1. Simple polynomials

2. Eigenfunction solutions to simple eigenvalue problems

3. Eigenvector solutions to finite element problems

4. Modal test results on the actual components.

Qualitatively speaking, the best results seemto comefrom shapes which allow
the natural shape of the link whenin the total system to be accurately
described. Thus an "augmentedbody" which has the mass and/or inertia of the
other links represented as a rigid appendageon the end of a given flexible link
can be used to get the shape functions for that given link. This has given rise
to endless tinkering with the link boundary conditions in an attempt to find the
"perfect approximation." Someof these are described by Craig[2]. For
manipulator arms this incorporates a wide range of effects varying with

i. Payload

2. Contact with the environment

3. Joint position

4. Accelerations due to joint motion

5. Feedbackcontrol law and gains.

With so much uncertainty we must accept either a) models of high order, b)

models of low accuracy, or c) models not appropriate for the full range of

operation. In particular, decisions made on the basis of these models should

recognize their approximate and specialized nature.

The choice of mode shapes modifies the "rigid" motion variables. Different

choices have different advantages. A clamped boundary condition leads to a

physically measureable joint variable and simpler coefficients of the joint
torques.[3] Pinned-pinned boundary conditions lead to ease in specifying the

location of the joint tip and have been used to advantage in computed torque

control since the tip position is specified by one variable per link.[4] Others

nave used free-free boundary conditions and described the link c.g. with "rigid"

motion variables.[5]

Large Motion Equations

Implicit in the above description of the arm flexible components is the

assumption of small excursions from a nominal position. This assumption could
be violated in several ways. Nonlinear material behavior would result from

strains beyond the elastic limit, for example. Even with linear elastic

material behavior, one end of a sufficiently long beam can rotate through

multiple revolutions with respect to the other end in violation of the small
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motion assumptions of the derivation. A straight beamof length L projects a
distance L onto an axis x. Whenone end of the beamis deflected from that axis
and the other end is kept tangent to the x axis, the projected distance is no
longer L, but must be less. The length of the beamremains constant at L,
assuming no axial extension. The shorter projection on x is ignored as a
standard procedure, but has been shownby Ryan and Kane[6] to lead to obvious
errors under reasonable conditions of rotation. Likewise, centrifugal
stiffening, often ignored, creates terms that affect the system dynamics. While
the conditions of rotation of their example is unlikely for space robots, the
point at which these phenomenabecomeimportant is not clearly knownand a point
for future research.

Given the distributed behavior of a flexible link and the lumpedbehavior of
joints and drives, overall equations of motion can be derived by several
methods. A finite dimensional model will be assumedhere. Lagrange's equations
and several variations thereon are readily applied. Kane has formulated
equations in a manner of somedistinction.[?] Newton's laws are less popular
because of the distributed nature of the flexible links. Only the first,
Lagrange's equations, are discussed at all here. Lagrange's equation for
flexible links differ from rigid links because the flexible degrees of freedom
appear principally as a sumrather than as a product due to the parallel
contribution of each of the assumedshape functions. This is easily illustrated
with the homogeneous4x4 matrix formulation of the forward kinematics. For a
rigid arm, the end point coordinate transformation is:

T = AIA2A3A4A5A 6 (3)

where Ai is the transformation representing the joint and link.
flexible arm the end point coordinate is

For the

T = A'IEIA'2E2A'3E3A'4E4A'5EsA'6E 6 (4)

mi

Ei = Hi _ 6 ij M ij
j=l

where Hi transforms along the length of the undeformed i-th beam and Mij adds
the effect of mode j. A' i transforms for the joint only.

where the Ei's incorporate the summation of the assumed "mode" shape

transformations Ei,j and Li incorporates the undeformed transformation of the
link length. When an integration over the length of the flexible beam is used

to incorporate all the kinetic and potential energy contributions, the assumed

shapes are integrated to yield, for example, "modal masses", "modal

stiffnesses", and "modal input matrix elements". These become coefficients in

the final dynamic equations and are one way the choice of shape influences the
final result. The choice of shape also will affect the calculation of outputs

from the model, such as end point position or strain in the links. If a finite

element or experimentally generated shape is used, equivalent integrals are

approximated from the nodal points in the model.
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The coefficients described above involve cross products of the various shape
functions. The choice of orthogonal shape functions eliminates a number of
terms from the final equations of motion, since for orthogonal functions

$ _ i(x) _ j(x) dx = O, i_j (5)
0

The orthogona|ity condition is automatically obeyed by the eigenfunctions of

components. If boundary conditions are chosen to represent, for example, the

mass of an augmented body the orthogonality condition will incorporate terms
outside the integral. The true net value of this simplification is not clear.

Operations such as inversion of the inertia matrix and multiplication by the
inverse eliminate the zero coefficients. In simulation the coefficients may be

recalculated relatively infrequently. Some researchers support the use of

polynomials because they are able to represent more general conditions on the
flexible link. Even though a polynomial is not orthogonal it is simple to

compute. Incorporating the orthogonality condition correctly complicates the
derivation procedure with the hope of ultimately reducing the complexity of the

final equations. Since the equations are so complex already for practical

cases, either symbolically generated equations or general multi body codes are

the only practica] way to generate reliable equations. A final judgment on the

use of orthogonal shapes should be made in the context of that implementation.

Lagrange's equations applied by brute force to the appropriate energy functions

will generate a complex dynamic model. Simplification can be achieved by

simplification of the resulting complex equations can be pursued as described by

Book[3]. Remarkable success has recently been achieved by prior simplification,

using the specific form of the equations and the relation between the
coefficients ultimately sought for the equations of motion.[8][9] Kinetic

energy, for example, can be written as the integral over the link, but also as a

quadratic product with the rate variables with the mass matrix.

KE = xT M xT/2 (6)

The nonlinear dynamic terms can be related to the changes of the mass matrix.
Various relations like this have been used to represent rigid arm dynamics[lO]

and their analogies are now being found for flexible arms.

Non-serial arms

Very few of the thousands of manipulators constructed in the world qualify

exactly as serial link manipulators. Only a pure direct drive arm can meet the

qualification since all speed reductions involve parallel structural and drive

elements. Incorporating parallel flexible links is difficult but

manageable.[11] Differential equations can be formulated for each parallel path

along the structure up to a point where they must connect. Algebraic constraint

equations prescribing the meeting of the parallel paths must accompany the

differential equations and their constraint forces. Several numerical

techniques are then available to jointly solve these two types of equations and

eliminate the extra degrees of freedom from the differential equations. Among

the numerical procedures relevant are Singular Value Decomposition (SVD), QR

decomposition, LU partitioning and Gaussian elimination.[11] SVD is attractive

for flexible manipulators because the reduced variables resulting are tangent to
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the constraint surface, and errors in satisfying the constraint equation have
less effect on the overall dynamic simulation.

Symbolic Derivation an___ddMult______i-BodyCodes

Hand derivation of dynamic equations for multi-link flexible arms is not

recommended for producing the final equations of motion. It does give a student

of the subject a healthy appreciation for the complexity of the problem and

perhaps ideas for simplifying the result. Two alternatives are symbolic
derivation and the use of general purpose multi-body codes.

General purpose symbolic manipulation programs include MACSYMA, SMP, REDUCE, and

MAPLE. These were originally developed for main frame and mini computers but
similar programs are now available on work stations and even personal computers.

Special purpose symbolic codes are available for rigid arms (SDExact and SDFast)

and are under development for similar flexible systems[12]. The general purpose

symbolic codes allow one to approach research on more complex configurations

with confidence. They cannot be viewed as an automatic means to turn theory

into simulation code. Problems of practical complexity can swamp even large

memories with "intermediate expression swell," especially when an expression is

expanded in preparation to simplification. Pathological cases continue to be

found on these systems which give incorrect results without even warning the
user. They are extremely complex programs in general, and some have evolved

over many years leading to both good and bad characteristics. While not a

panacea, they are an invaluable, almost essential to one who would develop
equations of motion for a flexible arm.

Guidance on the use of general purpose manipulation programs for rigid[13] and
flexible manipulators using Lagrange's equations[14] is available in the

literature. The special nature of Kinematic chains leading to symmetry and zero
terms can be exploited well with symbolic manipulation as shown in recent
research.[8,9] for both serial and non serial arms.

Mu]ti-body simulation codes are capable of handling unconstrained and in some

cases constrained flexible chains. Well known codes include DISCOS, CONTOPS,
DADS, ADAMS and others.[15] These codes insert the specifics of the model in

numerical form early in the equation generation process. The disadvantage is

more computational burden at each simulation time step. The advantage is a very

general formulation suitable for components connected in a tree topology by

various joints. They generally accept assumed shape data directly from finite
element analysis modal results. Simplified linear models can be generated for

more intensive design tradeoff studies on control, for example. In our research

with flexible arms we have begun to look to these codes for independent

verification of the accuracy of symbolically generated models.

Model order reduction

Discretization of the partial differential equations reduces the order of the

flexible arm model from infinity to n. The value of n and the flexible degrees
of freedom to be included can be determined from modal cost analysis
techniques[16] that are most relevant to structures without feedback controls or

to structures with the feedback controls already included. Tsujisawa[17] has
applied this analysis to planar motion of a large arm with parallel actuated

second link and found that one or two modes per flexible link were adequate for
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his case. Large space structures may require dozens or hundreds of modes. The
difference is the relatively clean, simple nature of the structure that

Tsujisawa examined and that arms in general exhibit. Modal cost analysis does
not insure that some higher mode will not cause instability i.e. that the

effects of observation spill over will be small. This is especially

problematical when the passive damping of the structure is small. Alberts[18]
has shown the pronounced effects on stability of enhancing the passive damping

through surface treatments. No general guarantee that a model includes the

right degrees of freedom exists. A high order "truth model" for ultimate
verification is perhaps the only insurance short of experiments.

Frequency Domain Analysis

It should be mentioned that if PDE descriptions of flexible elements are

accurate and large motion behavior is not of interest, A very attractive

alternative is frequency domain analysis. Models can be composed of elements
which are flexible or rigid, serial or parallel, with up to six axes of freedom.

Serial connection of components is much more readily incorporated using the

transfer matrix approach. With the transfer matrix approach facilitates
creation of the model from a library of elements as described in Book.[19] The

principal price paid is a restriction to linear behaviors. While the powerful

time domain synthesis techniques are not directly applicable to the frequency

domain model, iterative techniques for pole placement were used by Book and

Majette which converted between frequency domain and simple time domain models.

Readily available are frequency response, natural frequency, true moOe shapes,

and, via the inverse FFT time response. The models have been applied to the

Space Shuttle Manipulator Arm and a complex payload with general spatial motion.
Numerical accuracy limited the approach as Majette used it, even with a 60 bit

word length. More robust numerical techniques have been useO in analysis of

spinning spacecraft.[20] This approach is perhaps under utilized in the

dynamics and control community. The powerful finite element techniques have
dominated and seem more relevant to "messy problems" with many appendages and

parallel connections.

2. DESIGN OF FLEXIBLE ARMS

This section is about the design of arms which behave well even though they are

flexible. Designing arms to be flexible is not of practical interest.

Material properties principally affect strength, stiffness and damping. High

strength materials allow lighter cross sections, consequently more flexibility.
For many high performance materials, strength and stiffness increase together.
While stiffness determines the need for flexible arm control algorithms, damping

determines the ease in implementing such a control algorithm. Composite

materials typically have more damping than homogeneous metals. Cost and ease of

working with metals is a strong incentive for alternative means of damping

enhancement.

The constrained layer damping treatment is a very effective means of enhancing

damping for flexural vibrations.[18] One can achieve an increase in damping by
a factor of 10. The treatment consists of a thin visco-elastic layer placed on

the beam's surface and covered by a very stiff constraining layer. Bending of

the beam results in shearing of the visco-elastic material and consequent

dissipation of energy. This dissipation can be maximized for a given wavelength
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Figure I: Robotic Arm Large and Flexible (RALF). Note multiple connections

between parallel linkages.

of vibration by sectioning the constraining layer. The dissipation can be large
for a wide range of wavelengths and their attendant frequencies, however.

Torsional vibrations are not so readily coupled to the constrained layer

treatment. A spiral wrap of a strip of constraining material has been examined
by Dickerson[21] and was effective for this purpose. Vibrations with torsional

compliance of a link depends on other links or the payload for inertia. These

links would be at an angle to the link in torsion and hence undergo some
flexure. This flexure could be effectively damped as mentioned before.

An active alternative to passive damping is active damping using piezo electric
films or ceramics.[22] By closing the loop with local measurements of the

strain, much the same effect of passive damping is obtained. One advantage of

the active approach is the elimination of temperature sensitivity which is quite
pronounced in the visco-elastic materials. Another advantage is a small amount
of static deflection that can be obtained to control the shape of structures if

that is important. The disadvantage is the complexity of an additional control
loop and a high excitation voltage of several hundred volts.

Designs to minimize the flexibility of an arm are also important. Parallel link

mechanisms are more rigid than a serial link mechanisms of equivalent weight

such as the Stuart's platform. Unfortunately, the range of travel is typically

smaller too. A parallel actuation link can have the dual benefits of placing
motor mass near the base and providing a larger cross section area moment of
inertia when the two parallel links are bent. Multiple connections between the

parallel links such as shown in Fig. 0.1 work to further stiffen the pair by
allowing both to support the load in bending. The added attraction of this

arrangement is that the buckling load for the actuation link is increased.

Design should be interpreted broadly to include completely new concepts of arm

operation. Additional degrees of freedom, e.g. a small arm, on the end of a
long flexible arm are one way to change the nature of tradeoffs that must be

made in arm design. The tradeoff between arm rigidity and low inertia can be

couched in terms of gross and fine motion speeds. The extra degrees of freedom

can be used to have light weight for gross motion of a large arm and high

bandwidth rigid motion of a small arm it carries. These extra degrees of
freedom can also be used to generate inertial forces that act to reduce

vibration much as a dynamic vibration absorber would. They can also be used to

18



compensatefor the relatively slow vibrations of a large arm, keeping the end
point stationary. These three strategies are discussed in a companionpaper,
and will not be dealt with in detail here.

3. CONTROL FOR JOINTS OF FLEXIBLE ARMS

This section will discuss the limits for performance with rigid arm controls and

the use of advanced control algorithms of various types. The control of only

the existing joints will be discussed, not the addition of additional actuators

specifically for controlling vibrations, such as proof masses, reaction wheels,
or "smart materials." Such a control problem for robots is typically broken

down into path planning, trajectory planning, and trajectory following. Little

if any work on path planning specifically for flexible arm robots has been

presented. The concentration will therefore be on the other two phases. For
flexible robots control might also have the objective of vibration damping.

Trajectory Plannin 9

Trajectory planning for the joint and the ena point of a flexible arm are not

equivalent problems as they are for the rigid arm. Three perspectives on the

problem can be identified:

1. Generate an "optimal" trajectory

2. Control the arm's tip to follow a specified trajectory

3. Control the joints account for rigid link motion plus static deflection

and suppress arm vibrations with feedback control.

Sangveraphunsiri[23] numerically determined the minimum time trajectory for a

single link arm but recommended a near optimum based on rigid behavior and a
feedback control near the final position due to the sensitivity of the true

optimum to parameter variations. Meckl and Seering[24] solved a similar
linearized problem in modal coordinates which yielded a simpler solution format

applicable to the complete class of linear problems. Book and Cetinkunt[25]

looked at trajectory optimization for rigid arms and extended it in an

approximate way to flexible arms.

Singer and Seering[26] examined shaping techniques for trajectories in terms of
their vibrational consequences. Work by Oosting and Dickerson[27] sought to

choose tip trajectories to make the joint torques realizable without preview. A

type of inverse dynamics model was used. Bayo[28] used a more elaborate model

to obtain joint torque histories to track a Gaussian tip trajectory. Bayo's
model was based on finite element and his original solution involved frequency

domain techniques with substantial computational burden. He is extending his
results to the two link case. These inverse dynamics approaches must

simultaneously incorporate inverse kinematics, since the flexible degrees of
freedom cannot be decoupled from the joint degrees of freedom. Asada also

studied the inverse dynamics/kinematics problem and found that it was possible

to produce a well behaved tip motion that resulted in unstable joint motion.[4]

This was not observed by Bayo or Dickerson and may involve the choice of

trajectories to be followed.
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Several authors have planned the trajectory based on a static correction to the

tip position based on rigid arm motion. Since this is not a dynamic correction

it is easily implemented. Joint position adjustments assume instantaneous wind

up of the arm "spring" predicted by acceleration forces. The method is shown to

be very successful. It would seem that a good choice of trajectory to track is
critical to the success of this method.

It should also be mentioned that if the tip position is not crucial except near

the end of a motion, it is quite reasonable for the flexible arm to track joint

motions based on rigid kinematics and use a final feedback control to produce

acceptable vibration characteristics. When a flexible manipulator is used as a

teleoperator, trajectories are at the disposal of the human operator, and can be

at most minimally filtered to condition the reference signal.

Trajectory Trackin 9

As an arm is made lighter (more flexible) a point will be reached when it can no

longer be considered rigid. Alternatively, if the arm servo bandwidth, us is
increased sufficiently, interaction of the dominant poles with the lowest

ignored poles (in the rigid model) will eventually occur. For simple beams
connected by rotary joints this lowest pole will be the first structural

frequency with joints clamped, _c. The proximity of the closed loop bandwidth

to _c gives one a valuable measure of the difficulty in achieving that bandwidth
with simple rigid arm controllers. For example _s < _c/2 has been proposed as a

_ractical limit for simple P.D. joint control.[29]

Imperfections in the system's behavior result in poor performance even for much
stiffer systems. Coulomb friction in the joints, for example, will result in

the link not back driving the actuator for small vibrations. These oscillations

cannot be damped by the actuator motion, i.e. energy cannot be removed from the

vibration. With greater frictional break away torque, larger amplitude
vibrations will be allowed to exist with only structural damping slowly reducing

their amplitude. With link strain included in the joint control, even low

amplitude structural vibrations can be damped. For arms with speed reducers

this is especially valuable, since some high ratio reducers are not back

driveable under any circumstances. The strain feedback can be viewed either as

a damping enhancement or as a inner torque control loop.

In order to account for a limited number of additional states in a flexible arm,

a higher order model can be used in the control synthesis. Linear regulators or

tracking controls optimized based on a quadratic performance index with a

guaranteed margin of stability have been employed for end point[30] and strain

measurements[31] for one link arms and also for multi link arms[32][8

Measurements involving link flexure can introduce non-minimal phase behavior.

This is most apparent with tip position measurements of a one link arm. The tip

initially moves in the opposite direction of the applied torque. The linear
transfer function of such a system has zeros in the right half plane. The poles

of an output feedback controller will move toward these zeros as gains increase,

leading to instabilities. Viewed from a state space perspective, some

optimization techniques for linear systems effectively cancel unwanted zeros

with poles, leading to instability when the cancellation is inexact. Other
measurements are less vulnerable to non minimum phase difficulties. Strain

gages at the base of a one link arm with motor inertia has no non minimum phase

zeros, and yet can be used to observe all system states.[33] The price paid is

2O



the lack of direct knowledge about end point position in the uncertain work

environment. For higher modes it is desirable to make more measurements instead

of having a high order observer, with the attendant computational requirements.
These additional sensors can introduce the non minimum phase zeros and

instability. Multi link arms introduce an even greater need for additional
measurements. Understanding more thoroughly the role of non minimum phase

dynamics in both the linear and nonlinear cases is a very challenging and

potentially useful research area. How can one combine strain and tip position
sensors to achieve a robust and accurate controller?

The system linearity assumed in standard LQR control design is highly

questionable in the robotic applications. Rigid arm control has been able to
circumvent this through various means, including computed torque techniques,

linearizing controllers, nonlinear controls (e.g. variable structure control),

and adaptivecontrols. When the number of degrees of freedom exceeds the number
of actuators, as for flexible arms, this approach must be modified.

Adaptive control has also been applied to the rigid case. Application of rigid
arm mode] reference adaptive control to a flexible arm can overcome the adverse

nonlinear forces at high velocities, but cannot overcome the bandwidth

limitations imposed by vibrational structural modes.[34] For a flexible MRAC to

be designed using the stability methods applied to rigid arms, the "model

matching" condition must be satisfied. The rigid arm development uses the equal
numbers of actuators and degrees of freedom. The near linearity of the one link

flexible case has allowed Siciliano, et.al.[35] to accomplish model matching to

a reference model which, instead of decoupIing the rigid degrees of freedom, is

a linearized model of the flexible arm. This also provides values of the

flexible states for tracking during the motion. Others have proposed indirect

adaptive control approaches such as the estimation of the payload mass.[36]

An explicit means of incorporating model uncertainty and simplifying assumptions

is provided by the bounded uncertainty approach. Robustness can be enhanced by

adding to the linear control adaptation ana a saturation term similar to
variable structure controls. This technique has been used to derive a

decentralized controller for a two joint flexible arm with very good success

relative to both a rigid controller and to a pure linear flexible feedback

controller.[8]

The complexity of the nonlinear, flexible problem has lead researchers to seek

various ways to simplify the problem. Rigid-nonlinear approximations are usual.
Flexible-linear approaches are also common. When limited to small motions and

inconsequential nonlinear velocity forces this is straight forward. Since the
elastic deflections are usually rather small, linearization along a specified

motion path is also effective. It is not accurate to assume the gross motions

only force the flexible motions, since the damping of the vibrations is
increased by their influence on the moving joint. One well developed approach

for separating rigid and flexible motions is by exploiting their time scale

separation with Singular Perturbation Analysis. This has been studied for arms

with compliant drives[37] and with flexible links[38]. If flexible frequencies

are to retain the broad separation from the "rigid body" frequencies needed for

the singular perturbation theory to hold, high performance light weight arms

will be automatically excluded. An alternative to including all flexible

degrees of freedom in the fast system is to place the lowest mode in the slow

system with the rigid body modes. This enables the dominant dynamics to remain



in the slow system. It appears feasible for light arms with significant
payloads. For example, as the payload of a beamgets bigger and heavier, its
first bending frequency approaches zero. The second bending frequency
approaches the first clamped-clampedbending frequency. On a percentage basis,
the separation of the two modesincreases as the payload increases.

Practical advantage seemsto be gained whenthe decoupling of rigid and flexible
motion combinesa ]inearizing feedback control for the rigid motion and a linear
control on the flexible subsystem linearized about the rigid motion. A static
deflection correction to the specified joint motion can also be incorporated to
place the tip closer to its specified trajectory.[39]

4. CONCLUSIONS

The consideration of flexibility in manipulator arms is in a rapid state of

progress relative to a few years ago, but much remains to be done. Many new

approaches in modeling, design and control are being explored. It is important

that experimentation accompany the theoretical and simulation results to keep
realism in the research. Even single link experiments are much better than no

experiments. It is important to move into realistic 2 and 3 joint experiments

where flexibility is representative of real applications or at least scaled to

those applications. It is possible that earlier work on rigid arms will find
more application when the role of flexibility is more fully understood.
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