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Abstract - There is a growing need for humans to perform complex remote operations, and to extend the

intelligence and experience of experts to distant applications. We assert that a blending of human intelligence,
modern information technology, remote control and intelligent autonomous systems is required, and have coined

the term "tele-autonomous technology," or "tele-automation" for short, for methods for producing intelligent

action at a distance. Tele-automation goes beyond autonomous control in that it blends in human intelligence

and action as appropriate. It goes beyond tele-operation in that it incorporates as much autonomy as is

possible/reasonable. We discuss in detail a new approach for solving one of the fundamental problems facing

tele-autonomous systems: the need to overcome time delays due to telemetry and signal propagation. Wc

introduce new concepts, called time and position clutches, that allo_ the time and position frames, respectively,

between the local user control and the remote device being controlled, to be desynchronized. The design and

implementation of these mechanisms are described in detail. We demonstrate that these mechanisms lead to

substantial telemanipulation performance improvements, including the novel result of improvements even in

the absence of time delays. The new controls also yield a simple protocol for handoffs of control of manipulation

tasks between local operators and remote systems.

1 Introduction

There is a growing need for humans to be able to perform complex, large scale, remore opera-

tions, and extend the intelligence and experience of experts to distant applications. This need is,

perhaps, most dramatic in the area of space exploration. The National Commission on Space report

Pioneering the Space Frontier [NAS86] describes in a vivid and exciting way the many potential

scientific, commercial and colonization activities that could be accomplished in space over the next

50 years, and the Ride report Leadership and America's Future in Space [RID87] discusses specific

missions that could be adopted to lead the nation into the new space era. These missions will re-

quire vastly more complex and larger scale remote operations than previous missions. There is an

equally strong need for this capability, though not as dramatically obvious, for terrestrial applica-
tions. For example, undersea operations, mining, public safety, nuclear power maintenance, various

defense applications and a wide variety of other hazardous operations would benefit strongly from an

increased capability to perform complex remote operations. In this paper, we explore a new approach

to achieving this type of operation.

1.1 Dimensions of the Problem Space

The terms "robotics", "tele-presence", "artificial intelligence" and "expert systems" appear

throughout Pioneering the Space Frontier [NAS86] and the Ride report [RID87], and are indications

of recognition of the need for complex, large scale remote operations. Yet, none of these technologies,

either alone or in combination, are sufficient to satisfy the ne4,d for remote intelligent action. Robots,
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artificial intelligence and expert systems are essential for building autonomous systems, while tele-

operation and tele-presense are directed toward making the sensory-motor coordination of a remote

robot lie entirely within the brain of a human operator. Pure tele-operation, however, is too awkward

and human intensive to be fully effective. Communication time delays to/from remote operations

further complicate the control. On the other hand, while AI technology is capable of fairly intelli-

gent cognitive activities, it lacks the capability to manage most real-time manipulation tasks. Such

approaches also do not adequately utilize the human intelligence that may be present at the remote
site.

Many opportunities have been overlooked by concentrating on total automation, artificial intelli-

gence, or simple tele-manipulation alone. New, more generalized thinking is required.

We assert that one must return to the fundamental problem space, and examine all possible cross

products of its dimensions to determine new, more effective solutions. The sketch of Figure 1 shows

our view of this basic problem space. An element of intelligent activity is an entity at a specific

location performing a process (perception, cognition, or action), represented as a point in this space.

Intelligent activity is a symphony of these elements connected by processes of communication, much

the same way that language is formed of the elements of grammar and the rules governing their

use. The space is discrete, and a single entity may be represented by more than one point (but all

on a single location plane) if it performs more than one process. These dimensions imply a wide

range of systems that are possible. Many kinds of devices, not just robots and vehicles, are possible.

Manned operations are included. Perception, cognition and action may be divided or shared among

entities. Cooperating entities may be at different locations. Cooperative relations among the entities
may be dynamic. For example, tele-control of a device may be handed off between different humans

in different locations. And, groups of humans and machines at different locations may be able to

dynamically cooperate. For example, in one future scenario, humans at scattered locations - e.g., on

Earth and in the Space Station - may cooperate on a repair satellite task using remote robots, as

sketched in Figure 2.

These dimensions also help place the traditional approaches in perspective. For example, a stan-

dard tele-manipulation system would have two points in the human plane indicating perception and

cognition, and a single point in the manipulator plane indicating remote action. An autonomous

system would be a set of three points in the plane of some device. The traditional approaches are

thus seen as constrained to a set of three points lying in one or two planes perpendicular to the

"form" axis. Tele-robotics relaxes the constraints by allowing both the human and robot plane to

have points of the same process type, indicating a sharing of the process, most commonly cognition.

However, these improvements from tele-robotics are still quite limited in comparison to the full space

of possibilities.

We suggest that to achieve the most useful control configurations, a blending of modern informa-

tion technology, human intelligence, remote control, and intelligent autonomous systems is required.

When we first began work in this area, we coined the term "tele-autonomous technology" [CON87a,

CON87b], or "tele-automation" for short, for the new methods for producing intelligent action at a

distance, in order to emphasize the interactions of humans with remote, intelligent, partly-autonomous

systems. We also envision tele-autonomous activities as typically involving several humans and several

partly autonomous systems in coordinated activities. Thus the new tele-autonomous system technol-

ogy will also blend in the methods of "collaboration technology" or "computer supported cooperative

work" for effective goal-seeking coordination in such multi-agent systems [GRE88].

Tele-automation represents a new way of viewing and developing systems that must perform

intelligent action at a distance. The remote systems will be as intelligent and autonomous as possi-

ble/appropriate, but capable of being guided when necessary by humans. This can greatly reduce the

need for continual human involvement, while complementing the powers of AI autonomous systems.

Machine learning can provide the capability for the autonomous part of the system to gradually take
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over more and more of the operation time the human generates inputs to the system. Collaboration

technology can provide the ability for cooperative interactions.
Of course, the intelligent agents at the remote location need not be autonomous devices, but

might well be intelligent, but non-expert, humans. Many operations, such as infrequent maintenance

operations or actions ensuing from unforeseen events, will be difficult or impossible to automate.
Tele-autonomous technology will allow experts in one location to guide non-experts in another in

much more effective ways than currently possible. The payoff in terms of reduced training costs

(many astronauts trained for months to perform a 45 minute repair on Solar Max [ESS85]) and the

extension of operations that can be performed in space will be tremendous.

1.2 A New General Infrastructure for Remote Operations

The future NASA missions described in the Commission on Space and the Ride reports depend

heavily upon performing extensive, labor intensive intelligent actions in space. Examples are explo-

ration, remote sensing, surveying, prospecting, mining, manufacturing, assembly, payload mainte-

nance and servicing, agriculture, experimentation, and many routine daily operations. Details of new

requirements for such remote systems are found, for example, in NASA's Automation and Robotics

Progress Reports [NAS88]. It would be extremely costly if humans were to directly perform all these

operations. Even if these costs could be borne, there are real constraints on the number of humans

that it will be possible to sustain in space for the next several decades, thus limiting both the amount

of labor and expertise that can be directly resident.

In the past, the research community has proposed "solutions through automation". However, in

recent years it has become clear that automation offers only a partial solution because of its inability

to function robustly when dealing with spontaneous, unexpected events. While artificial intelligence

promises to ease some of these "automation difficulties," we note that the advances of AI have been

primarily in the area of machine cognition. AI does not yet offer comparable advances in the area of

machine perception and action. While current and near future technology offer us "intelligent thinking

machines," they offer us only very limited means for providing "clever perceiving and manipulating

machines."

The whole future of space exploration thus depends upon the creation of some form of infrastruc-

ture for bringing a mixture of human and machine perception, thinking and manipulation skills to

bear on the many tasks to be done, even though those skills may be scattered over large distances

in space and time. While less obvious because the cost of human labor is not so high, the same
infrastructure can have enormous payoff for many of the same applications in a terrestrial setting as

well, particularly those applications involving hazardous or difficult to reach environments. Rather

than foreseeing complete automation solutions to these problems, we instead visualize construction
of an infrastructure that enables humans to collaboratively project and focus their capabilities to

perform distant tasks.
Of course, it will be important to provide the means to evolve toward more fully autonomous

systems where that is feasible. We visualize the provision of new forms of machine learning technology

that can mimic and learn oft repeated skills, thus relieving humans from having to perform tasks that

have become somewhat routine.

But the key point is that a new form of "work infrastructure" is essential to the rapid and efficient

exploration and development of space, and will be highly useful to many terrestrial applications as
well. We believe that tele-autonomous system technology is the basis for that new infrastructure.

2 Overview of Tele-autonomous Operation

Tele-automation represents a new way of viewing and developing systems that must perform intel-

149



ligentactionsat a distance.It goesbeyondautonomouscontrolin that it blendsin humanintelligence
andactionasappropriate.Tele-automationgoesbeyondtele-operationin that it incorporatesasmuch
autonomyasis possible/reasonable.Tele-automationis alsoconcernedwith enablingcollaboration
amongmultiplehumanandautonomoussystems,andwith enablingadaptation,or machinelearning,
by and amongthe autonomoussystems.

Figure3 shows,at a conceptual level, the structure of a single local/remote pair in a basic tele-

autonomous system. The spatial reference frame is taken to be that of the human controller at the left

side of the figure, i.e, the controlled environment is remote. The controlled environment can include

humans and/or any manner of device. The remote intelligent controller receives data from multiple

sensors, and provides multiple outputs, encompassing anything from servo level control signals to a

robot joint, to video signals to a heads-up display worn by a remote human.

The inputs on the local side of the system may be any form of input control by the human, from

simple joystick control, to complex cockpits with many inputs, to discrete commands for the remote

controller to perform complex tasks. The local display represents any kind of feedback to the human
about the remote environment. This will include both simulated information and actual feedback

signals and may be composed of TV images, complex graphics, force reflection on input devices,

or even high speed data analysis. The distance between the local and remote sites can produce

substantial time delays in the signal transmission between them.

Tele-autonomous control of even a single local/remote controller pair provides many operating

modes, including:

1. Direct continuous tele-operator control of a remote device. The remote controller merely follows

its inputs. This is currently the most common form of operation.

2. Shared continuous tele-operator control of a remote device. The remote controller performs

higher than position serving. For example, it might treat received inputs as being relative to

an object to be manipulated and perform appropriate transformations before following them

[VOL88]. Or, it might treat received inputs as a nominal path, and perform some local sensing

and replanning to reach the goals of the nominal plan.

3. Discrete command control by the human operator of the remote device. This implies a higher

level of capability in the remote portion of the controller that can vary from simple setpoint

control of a number of satellite antenna positioning servos, to complex task analysis, planning

and execution. At this level the commands become highly task specific, though the lower level

primitives utilized may be more generic.

4. Supervisory control 3. The remote device operates in a largely autonomous mode and only in-

teracts with the human when it encounters a situation it cannot handle, i.e., management by

exception, or in which the human notices an opportunity to improve performance, i.e, oppor-

tunistic management. It differs from the discrete command mode principally in the frequency

of interaction with the human controller, and the philosophy of being largely autonomous. One

local human operator might supervise a fleet of remote devices.

5. Learning control. The remote controller is given an intelligence that allows it to learn from

human inputs and sensor information, and subsequently deduce correct behavior in similar
situations without human intervention.

6. Guidance of remote non-expert humans by local experts. In this mode a variety of media, visual

displays, graphics, touching, pointing, etc., are used to achieve a collaboration between the local

expert and the remote non-expert.

3We use the term supervisory control to describe a much higher level mode than that usually attributed to the term.

However, our usage fits the intuitive interpretation if the term quite well.
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Groupsof such basic systems, possibly with local controllers in different locations, will make up larger
scale tele-autonomous systems. Many kinds of interactions will be possible, from hand-offs of control

between different local control agents (even if in different physical locations) to shared cooperative

action of the remote devices.

3 Basic Tele-automation Controls

Fully general tele-autonomous systems do not yet exist, and will be the subject of research for a

long time. However, we have recently discovered some fundamental principles that we believe will be

part of the architectural foundation of almost any general tele-autonomous system.
One of the most fundamental problems facing tele-autonomous systems is time delay due to

telemetry and/or signal propagation delays. Even modest time delays have long been known to cause

instabilities in control systems such as robots. And, the time delays present in space applications are

anything but modest.
We review here a sequence of interface control concepts originally presented in [CON87a] that col-

lectively underlie efficient control of manipulation tasks and Mso enable simple protocols for exchange

of such tasks among control agents.

3.1 Coping with Time Delay

Although tele-manipulation has been studied for years (e.g., see [GOE52], [KUG72], [HILT9],

[DRA87], [MOL87]), Noyes and Sheridan [NOY84] were the first to make significant progress on the
tele-manipulation time-delay problem. Noyes and Sheridan suggested that the operator control a
local simulation of the telerobot, with the control signals then sent in parallel to the simulation and

the remote telerobot. The simulation is then displayed superimposed over the return video. In this

way the operator can "see" the effects of the control immediately without having to fully wait for

the return signal from the telerobot. This system concept is sketched in Figure 4. In the system we

built to test the concept, we used a model of the telerobot on the IRIS workstation, making it easy to

simulate time delays and easing solution of the correspondence problem between the simulated and

actual robots.

Figure 5 presents a visualization of telerobotic manipulation using a forward simulation to cope

with the time delay. The wire frame is the forward simulation that directly responds to operator

control, and the solid frame represents the time delayed image of the real telerobot. Much faster

and smoother control is achieved. Task time may be reduced to nearly that of the no-delay case, as

shown in Figure 6. This is a first step towards evolving machine manipulation visualization, since

the visualization could help cope not only with communication delays, but also with computational

delays within a self-contained autonomous agent.

3.2 The Time Clutch

In the work of Noyes and Sheridan described above, the time frames of the simulation and the

robot are separated by the time delay of the telemetry and propagation. However, there is no

intrinsic reason to maintain this synchrony. We thus introduce the concept of a "time clutch" that

can disengage synchrony between operator specification time and telerobot manipulation time during

path specification. Our hypothesis is that operators can generate a path faster than the robot can

follow it. This is particularly true of large space telerobots such as the Remote Manipulator System

(RMS) [NAS81]. Once generated, a path segment can then be followed more quickly by the robot
than would be the case if the robot were time-synchronized to the specification process; with time

synchrony disengaged, the robot can steadily proceed at nearly its maximum rate, subject of course
to error limits and hard constraints.
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Figure 7 shows a path being generated well out in advance of the actual robot by an operator

using forward simulation with time clutch disengaged. The performance of an operator when using

the time clutch while performing the task of touching a series of boxes in our experimental trials
[CON87b] is shown in Figure 8. Remarkably, the performance is better than control without the time

clutch even in the case of no time delay.

This step in the evolution of machine manipulation visualization enables the cognitive agent to

"look and think ahead" of the manipulation under control, with the look-ahead time being elastic, and

not just a fixed internal or external system time delay. The implementation of this new capability

requires only a simple mutation of the forward simulation previously used for coping with a time
delay.

3.3 The Position Clutch

We next introduce the concept of a "position clutch" which enables a disengagement of position

synchrony between simulator and manipulator path. We hypothesize that faster, shorter, cleaner

paths can be generated on difficult tasks using this control. This idea is illustrated in Figure 9, which

shows the use of the position clutch to disengage from path generation during a close approach to a

difficult manipulation (in this case, touching a small object).

Suppose, for example, that the operator had arrived (in the simulation) at point A ahead of time

by using the time clutch. The position clutch can then be disengaged, stopping the output from the

operator control from going to the real telerobot - it will only go to the simulation. When the forward

simulator is in good position, the position clutch will be reengaged, causing a short, smooth path to

be inserted that links to the earlier path. This avoids inclusion of jittery prepositioning movements

in the final path to be followed. Further, the time spent by the operator in achieving the proper

position will not be incurred by the real telerobot since these motions were "clipped" out of the path
sent to the telerobot.

The operator has thus used up some of the time saved through use of the time clutch, with the

result that the overall task time of the telerobot is reduced still further. This level of manipulation

visualization corresponds to quick visualizations and visualized trials of multiple alternatives prior

to commitment to action, and its implementation requires only another simple mutation of the basic
forward simulation capability.

3.4 The Time Brake

To handle contingencies and errors we introduce the concept of a time brake. This control can be

used to deal with situations such as something falling over a previously generated path, as illustrated

by the "X" in Figure 10. In Figure 10 we see the time brake being applied and the forward-simulated

manipulator backing down the path (in a race to get on the other side of the obstacle before the real

system gets there).

This aspect of visualization corresponds to seeing something about to happen that will interrupt

an action previously visualized but not yet underway. If it had gotten underway, or is allowed to get

underway, the system will have to deal with it through local reflex action or crash. But, if visualized

in time, the cognitive agent can withdraw the action using the time brake.

3.5 Task Handoffs and Rendezvous

These basic tele-autonomous system interface controls also provide the basis for a simple, elegant

protocol for hand-offs and rendezvous of tasks between different control agents. Imagine two operators,

one in control of the telerobot and the other about to take over in relief of the first, as sketched in

Figure 11. Each operator would be in control of a simulation of the telerobot, but only the control
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signalsof the first would be sent to the real telerobot. The relief operator would, with position clutch

disengaged, guide his/her simulation as close to the first operator's as possible (or required). The

first operator then disengages their position clutch, leaving the path "hanging". Figure 12 shows this

moment in the interaction.

The second operator then engages their position clutch, rendezvousing with the path and taking

control of future path generation. When the actual manipulator passes over this path segment, it will

do so smoothly and will not notice that a change of control agent has occurred in mid-maneuver. We

can again find interesting biological analogies to this visualization situation. For example, consider

the interactions among basketball players as they previsualize fast-paced multiplayer interactions.

We believe that this simple protocol can be built upon to mechanize quite a wide range of ma-

nipulation interactions between autonomous agents.

4 Future Directions

Tele-antonomous technology presents new challenges in human computer interaction. We have

proposed a set of interface controls that are conceptually simple and easy to mechanize. The con-

trols are generic ones that may be applicable in many different specialized situations. They are

also cognitively and manipulatively accessible to the uninitiated by analogy. But many other new

human interface aspects haven't been pinned down at all. How is the operator to visualize where

they are, who has control of what, and who they give control to next as they enter or leave some

subtask within a complex task lattice? What measures can we provide concerning operator perfor-

mance, and what feedback can we provide? And what about the analysis and design of cognitive

and manipulation tasks themselves? Research can perhaps provide better measures of joint human-

machine cognitive-manipulative performance. Analyses similar to those in [CAR83/may then lead us

to design intermixings of human and machine activity that yield substantial improvements in overall

performance.
The work poses some additional new challenges in robotics, such as the eventual need to perceive,

model and forward simulate not only the remote tele-antomaton, but also portions of the remote

environment itself. Forward simulation will work fine when interacting with static objects, but what

about interactions with moving objects? The simulation based methods we have discussed are depen-

dent, in pure form, entirely upon the quality of the robot and environment models available and the

accuracy with which tasks must be performed. In all of our experimental tests to date, the accuracy

required was well below the accuracy of the models, and this was not a problem. However, most

assembly tasks involve contact among the parts and have much higher accuracy requirements. More-

over, independent of accuracy requirements, even small errors when contacts are involved can produce

very high, possibly damaging, forces. Solutions for this important class of problems is essential for

many, if not most, applications. [VOL88] describes these basic problems in greater detail and outlines

a number of possible directions for solution.
Further work is needed on methods for path-error specification and associated methods for the time

optimization of path following, such as in [SUH87]. Additional work is also needed on autonomous
"reflex" actions that the remote robot can perform when encountering uncertainties (particularly

those involving contact) not modeled in the forward simulation. We also see the need for augmented

AI programming environments that interface in such a way with real-time programming environments

as to easily enable rapid estimation of time available for short-term AI planning tasks (enabling us

to select among AI methods as a function of available time).

Exploration of different dimensions of tele-autonomy is also likely to lead to near term advances

of considerable utility. In particular, most of the base technologies exist for developing what we have

called "remote coaching" systems in which a local expert can coach a remote technician in complex

experimental or maintenance tasks. A prototype remote coaching system is described in [WAL88].
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This prototype includes a modest, but extensible, expert system in the remote controller that can help

the technician with most problems and call in the expert when needed. The system allows graphic
or image data objects to be selected from a library and placed on workstation screens for both the

technician and the expert. The expert has a graphic capability for drawing on both screens, as well

as being in voice contact with the technician. Even slow scan video is available. Work is still needed

on the most effective means of on-line interaction, however, such as simulation video and graphics,

and the extension of collaboration technology to the domain of cooperative manipulation tasks.

5 Conclusions

We have pointed out that there is a growing need in many areas of our society to be able to

achieve remote intelligent action at a distance, and that traditional methods of automation and

artificial intelligence are inadequate for such tasks. We have further introduced three dimensions that

characterize the problem space: (i) the type of process being performed (perception, cognition, and/or

action), (ii) the form that is performing the process (human, robot, automatic vehicle, etc.), and (iii)

the location at which the process is being performed. We have coined the term tele-antonomous

systems to describe systems addressing this problem space. Tele-autonomous systems are represented

by a set of points in this space spread across more than one location plane.

One of the most fundamental problems that must be overcome in building such tele-autonomous

systems is time delay resulting from telemetry or signal propagation. Simulation of remote devices

and environments is part of the solution. We have introduced the notions of time and position

de-synchronization (implemented through time and position clutches) to allow the simulation to be

operated faster than real time and to permit an on-line "motion editing" to be achieved. Our early

experiments involving the use of such time and position clutches suggest that dramatic improvements

in performance can be achieved through the use of these clutches, even when there is no time delay.

Moreover, the time and position clutches can be used to accomplish a new interaction protocol for

hand-offs between two agents controlling a remote device. This protocol is based upon a shared
visualization of the intended motion of the device.

While the number of potential applications for tele-autonomous systems is immense, there is yet

a great deal of research to be done. We concluded by identifying just a few of the areas needing

research. Among the more important were the extension of the time and position clutch ideas to

situations involving precision contact among the objects involved, the development of "remote coach-

ing" systems, learning systems, and the development of collaboration technology to support group
manipulation tasks.

We believe that tele-antonomous systems research can yield methods and systems for improved

projection of intelligent action at a distance in time and space. This interdiscipline presents inter-

esting new research opportunities to teams having expertise in robotics and automation, artificial

intelligence, and the psychology of human-computer interaction. We envision many possible applica-

tions for the resulting technology, not only in space and defense systems, but also in design systems,
production systems, and eventually in personal and recreational environments.
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Noyes and Shridan [NOY84]).
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Figure 5: Visualizing manipulation through a

time delay using forward simulation.

Figure 6: Task completion time as a func-

tion of task difficulty and communication de-

lay, showing performance improvement using
forward simulation.
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Figure 7: Rapid manipulation path gen-

eration using forward simulation with time

clutch.

Figure 8: Initial trail results, showing Ts,Tm

as functions of system and task parameters for
three models of control.
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Figure 9: Using the position clutch to cope Figure 10: Using time brake to handle a con-

with a more difficult manipulation, tingency.

Figure 11: Application of manipulation task

handoff through a time delay, using tele-

autonomous system controls.
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Figure 12: Using time and position clutches
to handoff task to another forward simulation

agent.
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