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INTRODUCTION

Telerobotics studies remote control of distant robots by a human operator
using supervisory or direct control. Even if the robotic manipulator has vision
or other senses, problems arise involving control, communications, and delay
[18]. The communication delays that may be expected with telerobots working in
space stations while being controlled from an Earth laboratory have led to a
number of experiments attempting to circumvent the problem (Fig. 1). This delay
in communication is a main motivating factor in moving from well-understood
instantaneous hands-on manual control to less well-understood supervisory
control [5,7)1; the ultimate step would be the realization of a fully autonomous
robot.
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Fig. 1. Overview sketch of model control of robot working
environment and of image processing
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METHODS

Hardware Setup: Two a-robots (Armatron robots), modified to interface with
an AT-386 computer [13,20] via parallel I/0 ports, are controlled by computer in
an autonomous mode. Manual control capability is preserved for teaching and for
the supervisory mode, since hands-on control is vital in developing and

evaluating different control algorithms. Both a-robots operate within a one-
cubic-meter working environment. One of the robots (painted dark blue) is
fitted with ONSNEs features (Fig. 2, left panel). Three cameras were used; one,

an inexpensive C-mounted TV camera (Panasonic, model WV-1410); the others,
commercially available 8mm camcorders (Sanyo, model VM-10). They provided two
orthogonal side and top views, and an oblique view (Fig. 2, left panel). The
computer selected among the camera views by means of a four-channel video multi-
plexer, whose output was connected to a simple frame grabber (Epix-Silicon
Video, Chicago). The frame grabber resided in the AT bus and was directly
controlled by the computer to digitize video images into 320 x 240 arrays of 8-
bit pixels.

goftware: Besides the main program performing administrative work, three
major pieces of software were developed to control the mobile a-robot in
obtaining a given target with visual feedback. These consisted of the ICM, 3DM,
and utility programs. The ICM program included many different low-level image
processing algorithms such as edge enhancement, feature extraction, automatic
thresholding, filtering, moments computation. The 3DM program supported a
complete, scaled-down model of the a-robot and its RWE. It also provided 2D
projections of different camera views, and contained an algorithm for simple
path planning. The utility software was highly optimized, and consisted of all
the primitive functions for the frame grabber, EGA graphic display and plotter.
All software was written in "C".

RESULTS: THE 3D MODEL

At the local earth station, the human operator views a display of the 3D
model and uses the control panel in a supervisory mode to oversee the control
algorithms (Fig. 1). At the remote space station, the control parameters drive
the robots in the robot working environment (RWE) . These control parameters also
drive the cameras and the image processing algorithms. Besides a local feedback
process, the main feedback is from the remote image processing to the Earth
station 3D model.

A remote RWE is modeled using graphics workstation (Iris) with 3D graphic
transformation support hardware (Fig. 3). At the RWE, three a-robots perform
tasks; the m-robot (Mitsubishi manipulator) holds a camera and actively
searches for optimum views. This experimental set-up provides us with a global
view of the telerobotics control situation wherein several robots cooperate in a
joint task, or each robot has an individual task assigned (Fig. 3). The 3D model
is constructed from information about the robotic manipulators, the work pieces,
and the camera positions [17]. The 3D model guides  the image processor in
extracting information derived from regions-of-interest (ROI) which contain on-
the-scene visual enhancements (OSCNE) (Fig. 2, 1left); note the model with on-
the-screen visual enhancements (OSCRN) [10,11) for use by the human operator
(Fig. 2, right).

214



‘

Fig. 2

Perspective views and orthogonal projections of a-robot
(left) and model (right) showing on-the-scene visual enhancements
(OSCNE). 3D model guides

image processor to extract information
only in regions-of-interest.
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Fig. 3. Perspective view of vectorgraphic model of three a-robots and one m-robot.

E r ion criteria_and R ions: An important step in using
top-down image processing to control robots is to specify the most useful
information to be gained from the robot and its environment, and to determine
the physical location of these features. These selections strongly influence
not only the cheice of information processing strategies, but also the image
processing schemes employed.

Supposing that links of a robot are known or fixed, the kinematic recovery
of the 3D robot model simply requires the joint location information. Any two
consecutive joints of a robot provide complete information about the link length
and orientation. In situations where the robot joint is not visible to the
system, 1link orientation becomes important. In complex, multiple-robot
environments, the image processing computer faces the far more challenging
problems of occlusions, light reflections, shadows, noises, etc. Although the
model uses a priori knowledge that plays an active role in resolving many of
these problems, image processing tasks can be further simplified by introducing
ONSNEs to both robots and the RWE (Fig. 4). These ONSNEs boost video signal to
noise ratios within ROIs, and also may provide redundant information depending
on their sizes and shapes.

Assignment of ROIs locations: Each orthogonal projection view of the robot
and its RWE has two sets of ROIs, the primary and secondary sets (Fig. 4). For
the side view, the primary set (Fig. 4, upper) of ROIs is responsible for
information about robot joints, while the secondary set of ROIs determines the
robot orientations (Fig. 4, lower). Under static conditions, sizes of ROIs
depend on those of ONSNEs. Since processing time is directly proportional to
ROIs areas, ROIs should be small to minimize processing time, yet large enough
to cover individual ONSNEs within ROIs. For automatic thresholding, optimum-size
ROIs areas would be twice that of ONSNEs.
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Fig. 4 Orthogonal views of actual robot reaching a target.
While centroids of OSNCEs, resided within ROIs, provide feedback
information for model to guide robot to target.
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RESULTS : 2D IMAGE PROCESSING

Ima r in rating within ROIs: As mentioned earlier, selected
features determined both the locations of ROIs and the image processing schemes
within them [13,19]. For instance, detecting angles of a robot link includes two
steps: edge enhancement and line detection. The edge enhancement operation
accentuates edges and acts like a two-dimensional high pass filter. Edge
detection has been an active area of research for many years, and this continues
today. Several algorithms for edge detecticn, such as Sobel, Kirsch, Roberts,
and the Laplacian [6,8,14,16), are available and already implemented in VLSI
devices [15]. These are simple operators in the form of 3 x 3 matrices. Another
edge detecticon algorithm also worth mentioning is the Laplacian of the Gaussian
[12]. This algorithm detects local edges effectively, and has been proven to be
an optimum operator in dealing with true edges and noisy images [3].
Unfortunately, this operator requires a much larger kernel and, therefore, is
computationally expensive. Since Sobel operators operate in pairs (the x and y
directions independently), noise tends to be suppressed in one direction, while
edges are accentuated in the other direction [15]. Due to their insensitivity
to noises, simplicity in implementation, and efficiency in operation, the Sobel
operators were incorrorated into our scheme for low-level image processing in
detecting edges.

Enhanced edges, resulting after Sobel operation, contain much higher
intensity levels than the average. Therefore, appropriate threshold levels can
be easily found, either by manual selection aided by histogram displays, or
automatically by a thresholding algorithm. Threshold operations transform a
gray level image into a binary image with two levels of intensity. Only
enhanced edges above the threshold level remain after thresholding and are then
ready for line detection. Orientation of a line can be retrieved by a number of
algorithms such as matched filters, cross-correlation, or the Hough transform.
Among these techniques, the Hough transform combined with top-down information
from the model renders line information quite reliably and efficiently.

Centroid momen r ing _for the primary s of ROIS: Visual information
residing in the primary set of ROIs provides sufficient feedback information for
model adjustment and correction. 1Image processing carried out for this set of
ROIs takes precedence over many other tasks, including control of the robots
(Fig. 3, right panel; Fig. 4). Because of the strategic importance of this
critical joint information, the ONSNEs were introduced (Fig. 3). The ONSNEs
yield higher contrast in the video images, and thus more reliable visual
information can be obtained under various luminance conditions.

Centroid and other invariant moments: The ONSNEs also have had a strong

influence on the selection of the low-level image processing < 3 scheme used
--— the invariant moments, a method in which centroids are derived. This
technique had been previously applied to pattern recognition for printed

characters [1,9], to chromosome analysis [2,4]}, and biological instrumentation
[20]. The first three order moments yield information about size, centroid
location, and major axis orientation for a bounded object; they are simple in
implementation and inexpensive in computation. Additional higher order moments
are also available for shape description, features that cannot be acquired from
other low-level imaging schemes. Furthermore, the centroid parameters provide
excellent information for local feedback (see Fig. 1), a special requirement for
our image processing scheme.

218



Moments are widely utilized in classical mechanics; moments of a
distribution function are also commonly used in statistical theory. For a given
bounded, two-dimensional function f(x,y), the set of moments is defined as

M3 =S x'y) £(x,y) dx dy, (1)
i, 3 =0, 1, 2, .

In the infinte set [Mi,j] moments, as i and j take all non-negative values,
uniquely determining the function f(x,y): and conversely, f£f(x,y) uniquely
determines the set [Mi,j]. [i+3] is the order of the moment.

For binary images in which intensity of the object bounded by f(x,y) is one
and zero elsewhere, the zeroth order moment MO0

Moo = SS f(x,y) dx dy (2)
is the area of the object. Coordinates of the centroid are found to be,

xc = MlO/MOO (3)
ye = Mgy /Mg
where M10 and MOl are the first moments for x and y respectively. Moments

computed after translation of the origin to the center of gravity, are called
central moments,

mij = (x-xc)i (y—yc)j f(x,y) dx dy (4)

For digitial image processing, equations (1) and (4) above, become

UNEDISIESTRIERY (5)
x Y
Myy = § Z:J (X—xc)i (Y'YC)J £(x,y) (6)
The second order central moments are [6]
myp = My - Yo My (7.a)
myg = My - ¥ M10 (7.0)
mgp, = Mgy - Yo MO1 (7.¢)

The object orientation or principal axis of rotation about this axis causes the
second-order central moments to vanish [8,9]

theta = (t:an_1 (2m11/(m20-m02)) / 2 (8)

All the area-normalized central moments relative to this principle axis are
invariant under magnification, location, and rotation of the object [6,9].

RESULTS: AUTONOMOUS CONTROL

Control robot sequence: There are a number of different paths via which
the robot can reach the target. However, for the purpose of this study, we

derived a simple but effective algorithm to enable the 3D model to control the
robot and to direct the image processing computer. The scheme worked
satisfactorily regardless of initial positions and orientations of both robot
and target. The process to reach a target consisted of two phases, the
orientation phase and acquiring phase. To reach a designated target, the robot
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Fig. 5. Model approaching target: In the autonomous mode, upon
receiving command to reach target, robot first performs
orientation and then position relative to the target. Top: robot
rotates to safe zone location. Middle: Then moves forward to this
point. Bottom: Rotates to align with target.
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first rotated (Fig. 5, upper view) until its new direction intersected with
target direction at the safe zone location (Fig. 5; Fig. 3, right panel ---
large plus signs superimposed on target approach line). Next the robot moved
forward until it reached this location (Fig. 5, middle view). It then performed
a second rotation so that its direction aligned with the target direction (Fig.
5, lower view). Thus the robot completed the first orientation phase in
approaching the target. Since accuracy was not crucial in this phase, visual
update was more relaxed and faster control speed could be obtained. Once the
direction of the robot was in alignment with its target, the second phase began.
The image processing computer immediately switched to a fast operating mode,
closing the feedback loop. The 3D knowledge model carefully cruised the robot
and guided the robot gripper to finally acquire the target (Fig. 2,4,5).

DISCUSSION

Since all tasks have been performed by the AT-386, our programs have grown
close to the limit of the MS-DOS capability. Compromises have had to be made
among competitive issues such as performance, memory utilization and
implementation of new schemes. To alleviate this problem, the 3D knowledge-
based model will be ported over to the SUN-386 workstation acting as the local
control station (Fig. 1). It will oversee the image processing tasks and the
control of the robots that will remain with the AT 386 computer in the remote
station. The Iris graphics workstation will provide the display to the human
operator at the earth laboratory.

Future research will include systematic benchmnark studies for the various
image processing schemes as they fail while becoming subject to extreme
conditions. Controllable cameras and wider working environments for the robots
will also be utilized.

In conclusion, the top-down approach [20] with 3D model control plays a
crucial role in resolving many conflicting image processing problems that are
inherent in the bottom-up approach of most current machine vision processes.
The 3D model control approach is also capable of providing the necessary visual
feedback information for both the control algorithms and for the human operator.
Finally, it provides an extreme reduction in communication, the mostly needed
feature in telerobotics applications.
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