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Abstract

In thispaper,we presenta method to builda denseand reliable3D descriptionof a scene

from threedigitalimagesby means ofpassivestereovision.Our method usesfiguralcontinuity

to improvethe resultsofa previouslydevelopedalgorithm[AL87].In particular,itcopesmuch

betterwithcurvedobjects.Itproducesresultswhich arcorganizedas three-dimensionalchainsof

segments.

1 Introduction

We want to build a three dimensional description of a scene observed from several viewpoints. We

need a description which is dense enough to allow an analysis of the scene and, in particular, makes

it possible to identify some of the objects present.
We start with the results of a fast and accurate algorithm of trinocular stereovision [AL87]. We

improve on this result by using figural continuity and local support. We also compute thredimensional

results which are a good representation of the outline of the objects which are visible.

Our method has the following attractive features : flexibility (an automatic calibration technique

is used to calculate precisely the intrinsic parameters and the position and the orientation of the

cameras), density (in our experiments more than 50% of the image segments are matched), accuracy

(less than 2% of the matches found are false), organized (the reconstructed 3D segments are structured

as 3D-chains which represent a part of the outline of an object).

2 Edge Detection

The features of the image which are used by the stereovision algorithm are line segments. The basic

idea of stereovision is to use some features which can be detected reliably in the image and match

them between images taken from several viewpoints. Therefore we search, in the image, for some

characteristic points : the edge points. They are usually defined as zero crossings of the laplacian

[Gri84] or local maxima of gradient. Such points are generally the images of classes of significant

physical attributes of the scene : surface discontinuities, shadows, markings on objects. These points

can be computed efficiently and accurately and organized in edge chains [Der87],[Gir87]. An edge

chain is a list of pixels corresponding to edge points. They do not have any triple point. From them,

we build up a lists of line segments by using a polygonal approximation algorithm [Ber86]. These line

segments are the features which are used by the stereo algorithms developed at INRIA [AL87].



Usinglinesegmentsto representimagecontourshasthegreatadvantageto reducetheamountof
data to beprocessedandyieldsfast matchingalgorithmsandverygoodresultsfor scenecontaining
mostlypolyhedralobjects.Whencurvedobjectsarepresent,two problemsoccurwhicharecaused
by the unstabilityof the polygonalapproximation.

Indeed,stereoalgorithmscanworkonly if the features used can be extracted from the images in

a stable fashion : a real physical element, as a part of an object, must have similar attributes when

viewpoint varies slightly. This is generally true for the edge points. Unfortunately the polygonal

approximation algorithm is not always stable. This is especially true if the observed contour is

curved. The matching of line segment is more difficult in this case.

When a match can be made, we want to reconstruct the 3D line segment which projects on the

matched segments : we must select in each of them the parts which are common in terms of the

epipolar strip. This part may be only a small component of the initial segment. In this case, we

are unable to reconstruct a large part of the contour. As a further consequence the reconstructed

3D segments are not generally connected. This is an important problem, for later analysis of the 3D

scene. To solve these two problems, we exploit the connectivity information which is present in the

polygonal approximations of the edge chains. This is equivalent to the use of figural continuity.

3 Propagation using figural continuity

As a start, we use the matches found by an accurate and fast stereo algorithm [AL87]. This algorithm

uses heavily the epipolar constraints and some compatibility constraints for the length and orienta-

tion of the matched segments. We propagate these matches by using figural continuity, i. e. the
information provided by the edge chains.

This propagation can be easily achieved if we consider only segments in two images. We are not
therefore obliged to restrict ourselves to the areas which are seen by the three cameras. However

for reconstruction, we use once again the three images : since this decreases the uncertainty of the
reconstructed segments.

To achieve this propagation, we apply rules and decide to match some segments or a part of a
segment by scanning the chain to which their belongs.

Let us introduce some notations : C i,_ is the i-th chain in the plane image of camera a. A chain

is characterized by its number n of segments. We enumerate these segments from 1 to n. Segment
p of chain C i,_ is denoted _,_Cp . A match, between two segments is noted [C_,a,Cja,b]. For each chain,
we say that the first segment is the head and the n-th segment is the tail.

As all epipolar lines intersect at the epipole, we can define a direction of propagation on the chain.

For each segment on the chain, we call A its endpoint which is toward the head and B its endpoint

which is toward the tail. The match Lvp[('_i'a,_qC'j'b]j,defines an interval [Aa,Ba] on segment Cp,_ and an

interval lAb, Bb] on segment C_ ,b. These intervals are computed using the epipolar constraint. Two

solutions are possible A_ matches A b or A a matches B b. In the first case, the directions of propagation
for the match [Cp,_,C j,b] are the same for the chains C _,_ and C j,b. In the second case, the directions

of propagation are inverted : if we walk on chain C i,_ from the head to the tail, then we walk on
chain C j,b from the tail to the head.

We can now define the following rules used in the propagation :

,, Rule 1 (figure 1)

Rule 1 deals with the case where we have two pairs of matched segments.

If the following conditions are true. Segment Cp ,a matches segment C j,b. Segment C_;a matches

segment _q,Y"J'b.For each integer r between p and #, segment C_,_ has not yet found any match
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Figure 1: Propagation rul, 1

in image b. For each integer s between q and q', segment C j'b has not yet found any match in

image a.

Then, for each integer r between p and p_, segment C¢ ''_ matches one of the segments C_ 'b of

image b with s between q and qt.

• Rule 2 (figure 2)

Tail

I

, Head

Tail

b

Figure 2: Propagation rule 2
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This rules deals with the case where two segments match and all the segments from them to

the end of the chain have not yet found any match.

If the following conditions are true. Segment C_ ,a matches segment Cq3,b. For each integer r such

that r > p, segment C_ ,a has not yet found any match in image b. The match [Cp,a, C3q,b] defines

a direction of propagation on the chain C j,b. Two cases are possible but the), are analogous.

With respect to the match [C_,a, cJ,b], and the direction choose on the chain C i,a, we consider

that the segments following the segment Cj,b are the segments C j,b with s > q and the condition

is : for each integer s, with s > q, the segment C j,b has not yet found any match in image a.

Then, for each integer r such that r > p, segment C_ ,a matches one of the segments C j,b with
s>q.

This rule allows us to match the small segments, which sometimes are near the endpoints of
chains.

• Rule 3 (figure 3)
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Figure 3: Propagation rule 3

This rule deals with the case where the matching chain of a chain has been cut in two chains in

the opposite image by the segmentation process.

If the following conditions are true. Segment C_ ,_ matches segment C_ ,b. Segment C'y matches

segment C_ 'b. To simplify, we suppose that p < p_ and that the epipolar constraint implies

that the segment following the match [C_,_,C j,b] are the segments C_ ,b with s > q, and the

segment before the match [@¢, Cj''hq, j are the segments C j',b with s < q_. All the possible cases

are analogous. For each integer r between p and p_, segment C_,_ has not yet found any match

in image b. For each integer s such that s > q, segment CJ_,b has not yet found any match in

image a. For each integer s such that s < q', segment C j',b has not yet found any match in

image a.
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Then for each integer r, between p and pt, segment C¢ '_ matches one of the segments CJ8'b with

s > q or one of the segments C j''b with s < q_.

With this rule, we have a way to correct some errors in the chaining process.

These rules define how line segments can be broken up irtto subsegments which are matched in

the other image. We recursively compute them.

We begin with the match [C_'a,C j'b] used to activate the rule. We compute the first interval which
follows this match on the chain C _'_. We calculate the epipolar strip of this part in the image b and

take the intersection with the chain C j'b. This part is not generally a complete segment. Therefore we

must divide the segment in several parts which do not overlap. We implement the unicity constraint

of the image of a 3D feature . We have thus created a new match which we use to continue this

process.
This technique has the disadvantage of sometimes creatbLg small partitionings on the segments.

It therefore gives us some problems when we reconstruct the 3D segment.

These rules are applied to all pairs of cameras x, y. Some contradictory situations are possible with

the third camera. This is uncommon because the epipolar constraint gives a very precise information.

The contradictions are then solved during the reconstruction process.

A further unusual case is provided by the closed chains. We solve it by giving them an infinite

length : the segment (n + 1) is the segment 1 if the chain has n segment. The rules, that we have

defined, can then be applied without difficulty.

This propagation is computed very rapidly and the rules give very few false matches because edge

chains are nearly always similar created in the different images and the matches used to begin the

propagation are very accurate.

4 Matching using neighbourhood

Unfortunately, with the previous technique, we cannot defilie matches for the chains for which no

match was initially found.

Therefore, we have developed a technique to describe the local environment of a segment. We

first find the segments which are nearest to the segment C_'_ We organize them into several classes.

They are close to parallel to segment C_ '_. They form a T-shape with segment Cp '_. They have an

endpoint near to one of Cp '_.

For a segment Cp '_, which has not yet found any match, w_"consider especially the segments which

already match one segment in image b. Let us imagine that for example, segment C_','_ is a neighbour

of segment i,_ i',a j',bCp , and that segment Cp, matches segment Cq, .
We define the set of segments of image b, which are candidates to be matched with the segment

C_ ,_, as all the segments C j'b which intersect the epipolax strip of the segment Cp '_ of image b.

Among these, we look for all the segments Cd: 'b which are neighbours of segment Cj'b and have the

same position with respect to Cj'b as segment Cp, with respect to Segment Cp '_.

When we explore all the segments which are neighbours of the segment C_ '_, we find, where

possible, one or several segments, which are likely matches for segment C_ '_. We test if we have

found enough neighours of segment C_ '_ and we test if the different candidates are compatible : the

intersection of their epipolar strip with segment C_ '_ do not ¢,verlap. If these tests are false, we reject

the match.

This matching technique requires a lot of computation to find the neighbours of a given segment.

To decrease the search area, we organize the data. The image is divided in buckets and for each of
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thesebuckets,wecreatethelist of all thesegmentswhichintersectit. Whenwesearchfor neighbours,
weneedonly to explorethe listsof the bucketsnearthesegmentcurrentlybeingprocessed.

5 3D Reconstruction

3D reconstruction is one of the most important problems for stereovision algorithms. Our aim is to

create spatial segment chains which are connected like the edge chains in the images.

Let us suppose that we match a set of m points Mi in m images. These points are the endpoints

of part of the segments defined using the epipolar constraint. The coordinates of Mi in the image

are : (ui, vi), for i = 1,... ,m. The coordinate X = [x,y,z] t of the spatial point M, whose images in
the cameras are the points )Vii are found by solving the equations :

qx - + q4- u,l 4 : oli2X vili3X-_l_4 vili34 : 0

for i = 1,... ,m, ([FT86]). We have therefore a system of 2m linear equations in the three

unknowns x,y,z which, in the exact case, has a unique solution. We can solve it in the real case by

Kalman filtering which allows us to take into account both the noise on the images coordinates (ui, vi)

and the result of calibration ([AF87]). We assume that the noise is gaussian. This noise appears with

the digitization process, the edge detection and the polygonal approximation. The Kalman filtering
yields a best estimation of X and its covariance matrix A.

Let us consider two spatial points M and P. We have computed them using Kalman filtering. We

need to decide if they correspond to the same physical points. We call their covariance matrices AM
and Ap.

We assume that M and P are two independent gaussian points. Therefore the covariance matrix

of the ganssian vector MP, is the sum AM + Ap. If M and P are two instances of the same ganssian

point MP, then the expected value of MP is 0 and the quantity

d2(M,P) = MpT(AM + Ap)-IMP

has a X2 distribution with 3 degrees of freedom (supposing that all points are gaussian). This quantity

is the Mahalanobis distance. If d2(M,P) is less than some threshold s, the points M and P have a

probability p (computed from X 2 tables) of being two instances of the same physical point and we

can fuse them. It is easy to build the fused point N by Kalman filtering. The uncertainty about the
point N is less than that of M and P.

Notice that the Mahalanobis distance can be computed easily even though we must invert a 3 x 3

matrix. In fact the covariance matrix is symmetric and it is so possible to explicitly compute the
expression of d2(M, P).

Thus we have a powerful tool for deciding to fuse the endpoints of a reconstructed segment. This
allows us to build connected chains.

Indeed, let us consider a chain C i,a of image a. We reconstruct successively all the segments for

this chain, if they are matched. If we find a match [C¢,_, CJq,b], we also try to find the match with

the third image c. It is the match [C_ ,_, C_ ,_] and [C]_,b, C_,C]. These last two matches do not always

exist because they can be the image of a 3D segment which is not seen by the three cameras. We
i,a

compute the endpoints of the 3D segment as described previously. For two segments C¢,_ and C_+I,
which follow each other on the chain C i,_, we can decide using the Mahalanobis distance, to fuse the

endpoints which are neighbours.

This allows us to build connected spatial segment chains which represent parts of an object.

These chains can also be used for surface fitting algorithms or for object recognition and localization

([ss87]).
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SegmentNumber

SegmentLength

Initial Matches
Initial Matcheslength

All Matches found

All Matches found length

doll

Cam 1 736

Cam 2 836

Cam 3 552

Cam 1 9600

Cam 2 9315

Cam 3 6822

Number _7.7%

Cam 1 42.6%

Cam 2 41.1%

Cam 3 45.7%

Number 63.3%

Cam 1 68.1%

Cam 2 66.3%

Cam 3 58.8%

satellite

241

217

287

6746

5278

7033

27%

31.1%

39.0%

29.2%

75%

48.4%

61.86%

45.72%

6 Experimental Results

Our algorithm is implemented in C.
We have tested it on a variety of images. Here we show the doll image (figure 5) and the satellite

image (figure 7). For each scene, we show the polygonal approximations of the edge chains in the

three images and the matches found, by projecting them back, on planes.

In the result of our algorithm, we notice a considerable improvement as for example on the head

of the doll and the digits 5 in figure 5.
For each figure we give the number of segments for each image, the length, in pixels , of the

segments in each image, the number of initial matches (it is a rate for the number of segments in the

image of the first camera), the length of the parts of segments which are reconstructed in each image

when using only the initial matches (it is a rate for the length, in pixels , of the segments in each

image), the number of all matches found, (it is a rate for the number of segments in the image of

the first camera), the length of the parts of segments which are reconstructed for each cameras when

using all the matches. (it is a rate for the length, in pixels , of the segments in each image).
First we can note that the number of segments which are matched is considerably increased by

our algorithm. In fact all the small segments are not matched by the algorithm used to find the first
match because it is to difficult to find an accurate match for them among the three camera. With

our algorithm it is now possible to take into account the local information and so we can match them

using the information provided by the match of a longer segment of the same edge chain.
Since we subdivide the segments, the most characteristic information for the comparaison between

the two algorithm is the length of the parts of segments which are reconstructed.
We also show the 3D reconstructions. We project them to a plane, which is not the same as those

of the camera image plane.
For the propagation phase, the computation is approximately 30 seconds on a SUN-3 Workstation.

The matching technique using an analysis of neigbourhood takes between 2 and 3 minutes. The spatial

reconstruction of the segments also takes several minutes and depends on the number of matches

found.

We can now present a very simple example of the use of th_'_spatial chain for finding some structure

in the 3D data. The key idea is to scan a spatial chain and to apply a least square on the segments.
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Forexamplewesearchaplanebyapplyingleastsquarealgorithmforeachendpointof the segments

of the chain. It calculates the best plane. After we look for the point which is the more longer from

this plane and we can do a threeshold on this distance to decide that some chains are in a plane. For

example, in the case of figure 5, all the points in the grid, which formed in the background of the

scene, we determine this plane. All these points are less than 3 mm away from this plane.

7 Conclusion

We have described a stereovision algorithm which is a mixture of binocular and trinocular stereo.

The main points of our approach are the following :

• It gives three dimensional maps which are much denser than in the trinocular stereo case by
exploiting figural and neighbouring continuity.

• The maps are represented with connected segment chains.

• The uncertainty of the data has been reduced.
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Figure 4: Scene with a doll : polygonal approximation
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Figure 5: Reconstruction for the scene with a doll :Two projections planes are presented.
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Figure 6: Satellite : Spot Polygonal Approximation
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Figure 7: Reconstruction : satellite spot


