Trees, Bialgebras and Intrinsic Numerical Algorithms

PETER CROUCH
ROBERT GROSSMAN
RICHARD LARSON

Laboratory for Advanced Computing
Technical Report LAC90-R23

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago (M/C 249)
P. O. Box 4348
Chicago, IL 60680

May, 1990
Trees, Bialgebras and Intrinsic Numerical Algorithms

Peter Crouch*, Robert Grossman† and Richard Larson‡

May, 1990

Abstract

This report describes preliminary work about intrinsic numerical integrators evolving on groups. Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let Y_1, \ldots, Y_N denote a basis of g. We give a class of numerical algorithms to approximate solutions to differential equations evolving on G of the form:

$$\dot{z}(t) = F(z(t)), \quad z(0) = p \in G,$$

where

$$F = \sum_{\mu=1}^{N} a^\mu Y_\mu, \quad a^\mu \in C^\infty(G).$$

The algorithm depends upon constants c_i and c_{ij}, for $i = 1, \ldots, k$ and $j < i$. The algorithm has the property that if the algorithm starts on the group, then it remains on the group. It also has the property that if G is the abelian group \mathbb{R}^N, then the algorithm becomes the classical Runge-Kutta algorithm. We use the Cayley algebra generated by labeled, ordered trees to generate the equations that the coefficients c_i and c_{ij} must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.

*This research was supported by the NSF and EPRI.
†This research is supported in part by NASA grant NAG2-513 and NSF Grant DMS-8904740.
‡This research is supported by NSF Grant DMS-8904740.
1 Introduction

Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let Y_1, \ldots, Y_N denote a basis of g. We give a class of numerical algorithms to approximate solutions to differential equations evolving on G of the form:

$$\dot{x}(t) = F(x(t)), \quad x(0) = p \in G,$$

where

$$F = \sum_{\mu=1}^{N} a^{\mu} Y_{\mu}, \quad a^{\mu} \in C^\infty(G).$$

The algorithm depends upon constants c_i and c_{ij}, for $i = 1, \ldots, k$ and $j < i$. The algorithm has the property that if the algorithm starts on the group, then it remains on the group. It also has the property that if G is the abelian group \mathbb{R}^N, then the algorithm becomes the classical Runge-Kutta algorithm. Our analysis requires the Cayley algebra generated by labeled, ordered trees, introduced in [10], [11] and [6]. We use the Cayley algebra of trees to generate the equations that the coefficients c_i and c_{ij} must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.

This is a preliminary report. A final report containing complete proofs, examples, and a further analysis of the algorithms is in preparation.

2 Families of trees

The relation between trees and Taylor's theorem goes back at least as far as Cayley [3] and [4]. Important use of this relation has been made by Butcher in his work on high order Runge-Kutta algorithms [1] and [2]. In this section and the next, we follow the treatment in [10] and [11].

By a tree we mean a rooted finite tree. If $\{F_1, \ldots, F_M\}$ is a set of symbols, we will say a tree is labeled with $\{F_1, \ldots, F_M\}$ if every node of the tree other than the root has an element of $\{F_1, \ldots, F_M\}$ assigned to it. We denote the set of all trees labeled with $\{F_1, \ldots, F_M\}$ by $\mathcal{LT}(F_1, \ldots, F_M)$. Let $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ denote the vector space over k with basis $\mathcal{LT}(F_1, \ldots, F_M)$. We show that this vector space is a graded connected algebra.

We define the multiplication in $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ as follows. Since the set of labeled trees form a basis for $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$, it is sufficient to describe the product of two labeled trees. Suppose t_1 and t_2 are two labeled trees. Let s_1, \ldots, s_r be the children of the root of t_1. If t_2 has $n + 1$
nodes (counting the root), there are \((n + 1)^r\) ways to attach the \(r\) subtrees of \(t_1\) which have \(s_1, \ldots, s_r\) as roots to the labeled tree \(t_2\) by making each \(s_i\) the child of some node of \(t_2\), keeping the original labels. The product \(t_1 t_2\) is defined to be the sum of these \((n + 1)^r\) labeled trees. It can be shown that this product is associative, and that the tree consisting only of the root is a multiplicative identity; see [5].

We can define a grading on \(k\{\mathcal{LT}(F_1, \ldots, F_M)\}\) by letting \(k\{\mathcal{LT}_n(F_1, \ldots, F_M)\}\) be the subspace of \(k\{\mathcal{LT}(F_1, \ldots, F_M)\}\) spanned by the trees with \(n + 1\) nodes. The following theorem is proved in [9].

Theorem 2.1 \(k\{\mathcal{LT}(F_1, \ldots, F_M)\}\) is a graded connected algebra.

If \(\{F_1, \ldots, F_M\}\) is a set of symbols, then the free associative algebra \(k\langle F_1, \ldots, F_M \rangle\) is a graded connected algebra, and there is an algebra homomorphism

\[
\phi : k\langle F_1, \ldots, F_M \rangle \to k\{\mathcal{LT}(F_1, \ldots, F_M)\}.
\]

The map \(\phi\) sends \(F_i\) to the labeled tree with two nodes: the root, and a child of the root labeled with \(F_i\); it is then extended to all of \(k\langle F_1, \ldots, F_M \rangle\) by using the fact that it is an algebra homomorphism.

We say that a rooted finite tree is **ordered** in case there is a partial ordering on the nodes such that the children of each node are non-decreasing with respect to the ordering. We say such a tree is labeled with \(\{F_1, \ldots, F_M\}\) in case every element, except the root, has an element of \(\{F_1, \ldots, F_M\}\) assigned to it. Let \(k\{\mathcal{LOT}(F_1, \ldots, F_M)\}\) denote the vector space over \(k\) whose basis consists of labeled ordered trees. It turns out that \(k\{\mathcal{LOT}(F_1, \ldots, F_M)\}\) is also a graded connected algebra using the same multiplication defined above. See [9] for a proof of the following theorem.

We say that a rooted finite tree is heap-ordered in case there is a total ordering on all nodes in the tree such that each node precedes all of its children in the ordering. We define \(k\{\mathcal{LHOT}(F_1, \ldots, F_M)\}\) as above to be the vector space over \(k\) whose basis consists of heap-ordered trees labeled with \(\{F_1, \ldots, F_M\}\). In [9] we show that \(k\{\mathcal{LHOT}(F_1, \ldots, F_M)\}\) is also a graded connected algebra [9] and satisfies:

Theorem 2.2 The map

\[
\phi : k\langle F_1, \ldots, F_M \rangle \to k\{\mathcal{LHOT}(F_1, \ldots, F_M)\}
\]

is injective.
Fix N derivations Y_1, \ldots, Y_N of R and consider M other derivations of R of the form

$$F_i = \sum_{\mu=1}^{N} a_i^{\mu} Y_{\mu}, \quad a_i^{\mu} \in R, \quad i = 1, \ldots, M. \quad (1)$$

Let $\text{End}(R)$ denote the endomorphisms of the ring R. Using the data (1), we now define a map

$$\psi : k\{\mathcal{LT}(F_1, \ldots, F_M)\} \rightarrow \text{End}(R)$$

in the following steps.

Step 1. Given a labeled tree $t \in \mathcal{LT}_m(F_1, \ldots, F_M)$, assign the root the number 0 and assign the remaining nodes the numbers 1, \ldots, m. From now on we identify the node with the number assigned to it. Let $j \in \text{nodes} \ t$, and suppose that l_1, \ldots, l' are the children of j and that j is labeled with F_{η_j}. Fix μ_1, \ldots, μ' with

$$1 \leq \mu_1, \ldots, \mu' \leq N$$

and define

$$R(j; \mu_1, \ldots, \mu') = Y_{\mu_1} \cdots Y_{\mu'} a_{\eta_j}^{\mu}$$

if j is not the root

$$= Y_{\mu_1} \cdots Y_{\mu'}$$

if j is the root.

We abbreviate this to $R(j)$. Observe that $R(j) \in R$ for $j > 0$.

Step 2. Define

$$\psi(t) = \sum_{\mu_1, \ldots, \mu' = 1}^{N} R(m) \cdots R(1) R(0).$$

Step 3. Extend ψ to all $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ by k-linearity.

Remark 2.1 In exactly the same way, we define a map

$$\psi : k\{\mathcal{LT}(F_1, \ldots, F_M)\} \rightarrow \text{End}(R),$$

by ignoring the ordering of the nodes.
Remark 2.2 Let \(H \) denote one of the algebras of labeled trees above, possibly with additional structure such as an ordering or heap ordering. It is easy to check that the \(\psi \) map makes \(R \) into a left \(H \)-module.

Let \(\chi \) denote the map

\[
k<F_1, \ldots, F_M> \to \text{End}(R)
\]
defined by using the substitution (1) and simplifying to obtain an endomorphism of \(R \).

Lemma 2.1
(i) The map \(\psi \) is an algebra homomorphism
(ii) and \(\chi = \psi \circ \phi \).

Proof: The proof of (i) is a straightforward verification and is contained in [8]. Since \(\chi \) and \(\psi \circ \phi \) agree on the generating set \(E_1, \ldots, E_M \), part (ii) follows from part (i).

In the later sections, we will also require two other products defined on families of trees. Given \(t_1, t_2 \in \mathcal{LT}(F_1, \ldots, F_M) \), define the meld product \(t_2 \odot t_1 \) to be the labeled tree obtained by identifying the roots of the two trees. The meld product is then extended to all of \(k\{\mathcal{LT}(F_1, \ldots, F_M)\} \) by linearity. Given a derivation \(F \in \text{Der}(R) \), let \(t_2 \) be the tree \(\phi(F) \) and let \(t_1 \in \mathcal{LT}(F_1, \ldots, F_M) \). Recall \(t_2 \) is a tree consisting of a root and a node labeled \(F \). We define the composition product \(t_2 \circ t_1 \) to be the tree formed by attaching the subtrees whose roots are the children of the root of \(t_1 \) to the node labeled \(F \) of the tree \(t_2 \).

3 Trees and Taylor Series

Fix a Lie group \(G \) of dimension \(N \), with Lie algebra \(g \), and let \(R \) denote a ring of infinitely differentiable functions on \(G \). We let \(\exp : g \to G \) denote the exponential map.

Fix a basis of the Lie algebra \(g \) consisting of left invariant vector fields \(Y_1, \ldots, Y_N \). We will need a map

\[
\sharp : R^N \to R \otimes g, \quad (a_1, \ldots, a_N) \mapsto \sum_{\mu=1}^{N} a_\mu Y_\mu
\]

and its inverse, which we denote \(b \). We usually write these maps as superscripts, as in \((a_1, \ldots, a_N)^\sharp\).
We are interested in derivations F of the form

$$F = \sum_{\mu=1}^{N} a^\mu Y_\mu, \quad a^\mu \in R, \quad \mu = 1, \ldots, N$$

and the corresponding differential equation

$$\dot{x}(t) = F(x(t)), \quad x(0) = p \in G. \quad (2)$$

Let $\exp(tF)(x)$ denote the resulting of flowing for time t along the trajectory of (2) through the initial point $p \in G$. We require two lemmas concerned with Taylor series expansion of a solution of (2). These lemmas will use the maps ϕ and ψ defined in the previous section.

If α is a tree, define the exponential and Meld-exponential of a tree by the formal power series

$$\exp(t\alpha) = 1 + t\alpha + \frac{t^2}{2!} \alpha^2 + \frac{t^3}{3!} \alpha^3 + \cdots$$

$$\text{Mexp}(t\alpha) = 1 + t\alpha + \frac{t^2}{2!} \alpha \circ \alpha + \frac{t^3}{3!} \alpha \circ \alpha \circ \alpha + \cdots.$$

Lemma 3.1 Assume $f \in R$ and $F \in \text{Der}(R)$. Then

1. $$(F^k f)(x) = \frac{d^k}{dt^k} f(\exp(tF)x) \big|_{t=0}.$$

2. If f is analytic near x, then for sufficiently small t,

$$f(\exp(tF)x) = \sum_{k=0}^{\infty} f(x; F^k) \frac{t^k}{k!},$$

where $f(x; F^k)$ is defined to be $(F^k f)(x)$.

3. If f is analytic near x, then for sufficiently small t,

$$f(\exp(tF)x) = \psi(\exp(t\phi(F))) f|x,$$

where $\alpha = \phi(F)$.

Proof. Assertions (1) and (2) can be found in [12]. Since ϕ is an algebra homomorphism, $\phi(F^k) = \alpha^k$. Assertion (3) then follows immediately from Assertion (2).
Lemma 3.2 Assume \(f \in R \) and \(F \in \text{Der}(R) \) is left-invariant. Let \(\alpha = \phi(F) \). Then

1. \[
f(\exp(tF)x) = f(x) + tDf(x) \cdot F(x) + \frac{t^2}{2!}D^2f(x)(F(x), F(x)) + \ldots.
\]

2. \[
f(\exp(tF)x) = \psi(M\exp(t\alpha)) \cdot f|_x.
\]

3. If \(G \in \text{Der}(R) \),
\[
\{(b(G)(\exp(tF)x)) = \psi(\beta \circ M\exp(t\alpha)),
\]

where \(\beta = \phi(G) \).

PROOF. Assertion (1) is simply Taylor's theorem. Assertion (2) follows from Assertion (1) and the definition of the \(\psi \) map, since left-invariant vector fields have "constant coefficients" with respect to the basis \(Y_\mu \). Assertion (3) follows from Assertion (2) and the definition of the \(\psi, \text{flat and sharp maps} \).

4 The algorithm

We are interested in numerical algorithms of the Runge-Kutta type to approximate solutions of
\[
\dot{x}(t) = F(x(t)), \quad x(0) = p \in G,
\]
where \(F \in \text{Der}(R) \). The algorithm depends upon constants \(c_i \) and \(c_{ij} \), for \(i = 1, \ldots, k \) and \(j < i \). For fixed constants, define the following elements of the Lie algebra \(g \)

\[
\tilde{F}_1 = \sum_{\mu=1}^{N} a^\mu(v_0)Y_\mu \in g
\]

\[
\tilde{F}_2 = \sum_{\mu=1}^{N} a^\mu(\exp(hc_{21}\tilde{F}_1) \cdot v_0)Y_\mu \in g
\]

\[
\tilde{F}_3 = \sum_{\mu=1}^{N} a^\mu(\exp(hc_{32}\tilde{F}_2) \cdot \exp(hc_{31}\tilde{F}_1) \cdot v_0)Y_\mu \in g
\]

\[
\vdots
\]
These arise by "freezing the coefficients" of F at various points along the flow of F.

Algorithm 1. Version 1. Let $x_0 = p$ and put

$$x_{n+1} = \exp h c_k \bar{F}_k \ldots \exp h c_1 \bar{F}_1 x_n,$$

for $n \geq 0$.

Version 2. Let $x_0 = p$ and put

$$x_{n+1} = \exp (h c_k \bar{F}_k + \ldots + \exp h c_1 \bar{F}_1) x_n,$$

for $n \geq 0$.

5 Necessary conditions

We prepare with two lemmas.

Lemma 5.1 Let $f \in R$ and

$$X_i = \phi(\bar{F}_i) \in k\{LT(F_1, \ldots, F_M)\}[[h]].$$

Then

$$\bar{F}_1(f) = \bar{\psi}(\phi(\bar{F}))(f)$$
$$\bar{F}_2(f) = \bar{\psi}(\phi(\bar{F}) \circ M \exp(hc_{21}X_1))(f)$$
$$\bar{F}_3(f) = \bar{\psi}(\phi(\bar{F}) \circ M \exp(hc_{31}X_1 \odot M \exp(hc_{32}X_2))(f)$$

Here $\bar{\psi}$ is essentially the ψ map followed by "freezing the coefficients" at ν_0. More precisely,

$$\bar{\psi} : k\{LT(F_1, \ldots, F_M)\} \rightarrow \text{End}(R).$$

We do this in several steps.

Step 1. Given a labeled tree $t \in LT_m(\bar{F}_1, \ldots, \bar{F}_M)$, assign the root the number 0 and assign the remaining nodes the numbers 1, \ldots, m. From now on we identify the node with the number assigned to it. Let $j \in$ nodes t, and suppose that l, \ldots, l' are the children of j and that j is labeled with F_{γ_j}. Fix μ_1, \ldots, μ_r with

$$1 \leq \mu_1, \ldots, \mu_r \leq N$$
and define

\[R(j; \mu_1, \ldots, \mu_\nu) = Y_{\mu_1} \cdots Y_{\mu_\nu} a_{h_j}^\nu (\nu_0) \]

if \(j \) is not the root

\[= Y_{\mu_1} \cdots Y_{\mu_\nu} \]

if \(j \) is the root.

We abbreviate this to \(R(j) \).

Step 2. Define

\[
\tilde{\psi}(t) = \sum_{\mu_1, \ldots, \mu_m=1}^N R(m) \cdots R(1) R(0).
\]

Step 3. Extend \(\psi \) to all \(k\{\mathcal{L}(F_1, \ldots, F_M)\} \) by \(k\)-linearity.

It is useful to have an intrinsic characterization of the elements \(X_i \in k\{\mathcal{L}(F_1, \ldots, F_M)\}[\{h\}] \). Order the labels \(F_1, \ldots, F_M \) according to their subscripts: \(F_1 < \cdots < F_M \). Let \(k\{\mathcal{LOHOT}(F_1, \ldots, F_M)\} \) denote those elements of \(k\{\mathcal{L}(F_1, \ldots, F_M)\} \) satisfying

1. The nodes are heap ordered with respect to the labels \(F_1, \ldots, F_M \); in other words, the label of a child of a node is (strictly) smaller than the label of the node itself.
2. The children of a node are ordered with respect to the labels \(F_1, \ldots, F_M \); in other words, the labels of the children of a node are non-decreasing.

Using ordered, heap ordered trees it is easy to keep track of the constants \(c_i \) and \(c_{ij} \) that arise in Taylor series computations. To do this we define a map analogous to the \(\psi \) map.

Define \(\rho : k\{\mathcal{LOHOT}(F_1, \ldots, F_M)\} \to \text{End}(\mathcal{R}) \)

as follows

Step 1. Given a labeled tree \(t \in \mathcal{LOHOT}(F_1, \ldots, F_M) \), with \(m + 1 \) nodes, assign the root the number 0 and assign the remaining nodes the numbers 1, \ldots, \(m \). From now on we identify the node with the number assigned to it. Fix a node \(j \) of \(t \) and let \(l, \ldots, l' \) denote its children. Let \(F_{h_j} \) denote the
label of node \(j \). Let \(p_i \) denote the number of children of \(j \) labeled with the label \(F_i \), for \(i = 1, \ldots, M \). Let \(|p| \) denote \(p_1 + \ldots + p_M \). Fix \(\mu_1, \ldots, \mu_r \) with
\[
1 \leq \mu_1, \ldots, \mu_r \leq N
\]
and define
\[
R(j; \mu_1, \ldots, \mu_r) = \frac{h^{p_j} c_{j1} \ldots c_{j\mu_j}}{p_1! \ldots p_M!} Y_{\mu_1} \ldots Y_{\mu_r} a_{\mu_j \nu}^{\mu_j}(\nu_0) \\
= Y_{\mu_1} \ldots Y_{\mu_r}
\]
if \(j \) is not the root.
\[
\text{if } j \text{ is the root.}
\]
We abbreviate this to \(R(j) \).

Step 2. Define
\[
\rho(t) = \sum_{\mu_1, \ldots, \mu_m = 1} R(m) \ldots R(1) R(0).
\]

Step 3. Extend \(\rho \) to all \(k \{ \mathcal{LOT}(F_1, \ldots, F_M) \} \) by \(k \)-linearity.

Lemma 5.2 Let \(X_i = \phi(F_i) \) and \(f \in R \). Then
\[
X_i(f) = \sum \rho(t)(f),
\]
where the sum is over all trees \(t \in \mathcal{LOT}(F_1, \ldots, F_M) \) satisfying (i) \(t \) consists of \(i + 1 \) or fewer nodes; (ii) the root of the tree has a single child labeled \(F_i \).

It is now straightforward to derive the following necessary condition for a \(k \)th order Runge-Kutta algorithm on a group.

Theorem 5.1 A necessary condition for a Runge-Kutta method of order \(k \) on a group is that for each rooted, ordered tree \(t \) consisting of \(k + 1 \) or fewer nodes
\[
\sum \rho(t) = \frac{1}{(#(\text{nodes } (t)) - 1)!}.
\]
where the sum is over all \(t \in \mathcal{LOT}(F_1, \ldots, F_M) \) having the same topology as \(t \).
References

