Trees, Bialgebras and Intrinsic Numerical Algorithms

PETER CROUCH
ROBERT GROSSMAN
RICHARD LARSON

Laboratory for Advanced Computing
Technical Report LAC90-R23

Department of Mathematics, Statistics, and Computer Science
University of Illinois at Chicago (M/C 249)
P. O. Box 4348
Chicago, IL 60680

May, 1990
Trees, Bialgebras and Intrinsic Numerical Algorithms

Peter Crouch*, Robert Grossman† and Richard Larson‡

May, 1990

Abstract

This report describes preliminary work about intrinsic numerical integrators evolving on groups. Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let Y_1, \ldots, Y_N denote a basis of g. We give a class of numerical algorithms to approximate solutions to differential equations evolving on G of the form:

$$\frac{d}{dt}z(t) = F(z(t)), \quad z(0) = p \in G,$$

where

$$F = \sum_{\mu=1}^{N} a^{\mu} Y_\mu, \quad a^{\mu} \in C^\infty(G).$$

The algorithm depends upon constants c_i and c_{ij}, for $i = 1, \ldots, k$ and $j < i$. The algorithm has the property that if the algorithm starts on the group, then it remains on the group. It also has the property that if G is the abelian group \mathbb{R}^N, then the algorithm becomes the classical Runge-Kutta algorithm. We use the Cayley algebra generated by labeled, ordered trees to generate the equations that the coefficients c_i and c_{ij} must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.

*This research was supported by the NSF and EPRI.
†This research is supported in part by NASA grant NAG2-513 and NSF Grant DMS-8904740.
‡This research is supported by NSF Grant DMS-8904740.
1 Introduction

Fix a finite dimensional Lie group G, let g denote its Lie algebra, and let Y_1, \ldots, Y_N denote a basis of g. We give a class of numerical algorithms to approximate solutions to differential equations evolving on G of the form:

$$\dot{x}(t) = F(x(t)), \quad x(0) = p \in G,$$

where

$$F = \sum_{\mu=1}^{N} a^\mu Y_\mu, \quad a^\mu \in C^\infty(G).$$

The algorithm depends upon constants c_i and c_{ij}, for $i = 1, \ldots, k$ and $j < i$. The algorithm has the property that if the algorithm starts on the group, then it remains on the group. It also has the property that if G is the abelian group \mathbb{R}^N, then the algorithm becomes the classical Runge-Kutta algorithm. Our analysis requires the Cayley algebra generated by labeled, ordered trees, introduced in [10], [11] and [6]. We use the Cayley algebra of trees to generate the equations that the coefficients c_i and c_{ij} must satisfy in order for the algorithm to yield an rth order numerical integrator and to analyze the resulting algorithms.

This is a preliminary report. A final report containing complete proofs, examples, and a further analysis of the algorithms is in preparation.

2 Families of trees

The relation between trees and Taylor's theorem goes back as least as far as Cayley [3] and [4]. Important use of this relation has been made by Butcher in his work on high order Runge-Kutta algorithms [1] and [2]. In this section and the next, we follow the treatment in [10] and [11].

By a tree we mean a rooted finite tree. If $\{F_1, \ldots, F_M\}$ is a set of symbols, we will say a tree is labeled with $\{F_1, \ldots, F_M\}$ if every node of the tree other than the root has an element of $\{F_1, \ldots, F_M\}$ assigned to it. We denote the set of all trees labeled with $\{F_1, \ldots, F_M\}$ by $T(F_1, \ldots, F_M)$. Let $k\{LT(F_1, \ldots, F_M)\}$ denote the vector space over k with basis $LT(F_1, \ldots, F_M)$. We show that this vector space is a graded connected algebra.

We define the multiplication in $k\{LT(F_1, \ldots, F_M)\}$ as follows. Since the set of labeled trees form a basis for $k\{LT(F_1, \ldots, F_M)\}$, it is sufficient to describe the product of two labeled trees. Suppose t_1 and t_2 are two labeled trees. Let s_1, \ldots, s_r be the children of the root of t_1. If t_2 has $n + 1$
nodes (counting the root), there are \((n+1)^r\) ways to attach the \(r\) subtrees of \(t_1\) which have \(s_1, \ldots, s_r\) as roots to the labeled tree \(t_2\) by making each \(s_i\) the child of some node of \(t_2\), keeping the original labels. The product \(t_1t_2\) is defined to be the sum of these \((n+1)^r\) labeled trees. It can be shown that this product is associative, and that the tree consisting only of the root is a multiplicative identity; see [5].

We can define a grading on \(k\{\mathcal{L}(F_1, \ldots, F_M)\}\) by letting \(k\{\mathcal{L}_n(F_1, \ldots, F_M)\}\) be the subspace of \(k\{\mathcal{L}(F_1, \ldots, F_M)\}\) spanned by the trees with \(n+1\) nodes. The following theorem is proved in [9].

Theorem 2.1 \(k\{\mathcal{L}(F_1, \ldots, F_M)\}\) is a graded connected algebra.

If \(\{F_1, \ldots, F_M\}\) is a set of symbols, then the free associative algebra \(k\langle F_1, \ldots, F_M \rangle\) is a graded connected algebra, and there is an algebra homomorphism

\[
\phi : k\langle F_1, \ldots, F_M \rangle \to k\{\mathcal{L}(F_1, \ldots, F_M)\}.
\]

The map \(\phi\) sends \(F_i\) to the labeled tree with two nodes: the root, and a child of the root labeled with \(F_i\); it is then extended to all of \(k\langle F_1, \ldots, F_M \rangle\) by using the fact that it is an algebra homomorphism.

We say that a rooted finite tree is *ordered* in case there is a partial ordering on the nodes such that the children of each node are non-decreasing with respect to the ordering. We say such a tree is labeled with \(\{F_1, \ldots, F_M\}\) in case every element, except the root, has an element of \(\{F_1, \ldots, F_M\}\) assigned to it. Let \(k\{\mathcal{LOT}(F_1, \ldots, F_M)\}\) denote the vector space over \(k\) whose basis consists of labeled ordered trees. It turns out that \(k\{\mathcal{LOT}(F_1, \ldots, F_M)\}\) is also a graded connected algebra using the same multiplication defined above. See [9] for a proof of the following theorem.

We say that a rooted finite tree is heap-ordered in case there is a total ordering on all nodes in the tree such that each node precedes all of its children in the ordering. We define \(k\{\mathcal{LOT}(F_1, \ldots, F_M)\}\) as above to be the vector space over \(k\) whose basis consists of heap-ordered trees labeled with \(\{F_1, \ldots, F_M\}\). In [9] we show that \(k\{\mathcal{LOT}(F_1, \ldots, F_M)\}\) is also a graded connected algebra [9] and satisfies:

Theorem 2.2 The map

\[
\phi : k\langle F_1, \ldots, F_M \rangle \to k\{\mathcal{LOT}(F_1, \ldots, F_M)\}
\]

is injective.
Fix N derivations Y_1, \ldots, Y_N of R and consider M other derivations of R of the form

$$F_i = \sum_{\mu=1}^N a_i^{\mu} Y_\mu, \quad a_i^{\mu} \in R, \quad i = 1, \ldots, M.$$ \hfill (1)

Let $\text{End}(R)$ denote the endomorphisms of the ring R. Using the data (1), we now define a map

$$\psi : k\{\mathcal{LT}(F_1, \ldots, F_M)\} \to \text{End}(R)$$

in the following steps.

Step 1. Given a labeled tree $t \in \mathcal{LT}_m(F_1, \ldots, F_M)$, assign the root the number 0 and assign the remaining nodes the numbers 1, \ldots, m. From now on we identify the node with the number assigned to it. Let $j \in \text{nodes } t$, and suppose that l, \ldots, l' are the children of j and that j is labeled with F_η. Fix μ_1, \ldots, μ_t with

$$1 \leq \mu_1, \ldots, \mu_t \leq N$$

and define

$$R(j; \mu_1, \ldots, \mu_t) = Y_{\mu_1} \cdots Y_{\mu_t} a_{\eta_j}^{\mu}$$

if j is not the root

$$= Y_{\mu_1} \cdots Y_{\mu_t}$$

if j is the root.

We abbreviate this to $R(j)$. Observe that $R(j) \in R$ for $j > 0$.

Step 2. Define

$$\psi(t) = \sum_{\mu_1, \ldots, \mu_m=1}^N R(m) \cdots R(1)R(0).$$

Step 3. Extend ψ to all $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ by k-linearity.

Remark 2.1 In exactly the same way, we define a map

$$\psi : k\{\mathcal{LT}(F_1, \ldots, F_M)\} \to \text{End}(R),$$

by ignoring the ordering of the nodes.
Remark 2.2 Let H denote one of the algebras of labeled trees above, possibly with additional structure such as an ordering or heap ordering. It is easy to check that the ψ map makes R into a left H-module.

Let χ denote the map

$$k\langle F_1, \ldots, F_M \rangle \rightarrow \text{End}(R)$$

defined by using the substitution (1) and simplifying to obtain an endomorphism of R.

Lemma 2.1

(i) The map ψ is an algebra homomorphism

(ii) and $\chi = \psi \circ \phi$.

Proof: The proof of (i) is a straightforward verification and is contained in [8]. Since χ and $\psi \circ \phi$ agree on the generating set E_1, \ldots, E_M, part (ii) follows from part (i).

In the later sections, we will also require two other products defined on families of trees. Given $t_1, t_2 \in \mathcal{LT}(F_1, \ldots, F_M)$, define the meld product $t_2 \odot t_1$ to be the labeled tree obtained by identifying the roots of the two trees. The meld product is then extended to all of $k\{\mathcal{LT}(F_1, \ldots, F_M)\}$ by linearity. Given a derivation $F \in \text{Der}(R)$, let t_2 be the tree $\phi(F)$ and let $t_1 \in \mathcal{LT}(F_1, \ldots, F_M)$. Recall t_2 is a tree consisting of a root and a node labeled F. We define the composition product $t_2 \circ t_1$ to be the tree formed by attaching the subtrees whose roots are the children of the root of t_1 to the node labeled F of the tree t_2.

3 Trees and Taylor Series

Fix a Lie group G of dimension N, with Lie algebra g, and let R denote a ring of infinitely differentiable functions on G. We let $\exp : g \rightarrow G$ denote the exponential map.

Fix a basis of the Lie algebra g consisting of left invariant vector fields Y_1, \ldots, Y_N. We will need a map

$$\mathbb{g} : R^N \rightarrow R \otimes g, \quad (a_1, \ldots, a_N) \mapsto \sum_{\mu=1}^{N} a_{\mu} Y_{\mu}$$

and its inverse, which we denote b. We usually write these maps as superscripts, as in $(a_1, \ldots, a_N)^{\mathbb{g}}$.

6
We are interested in derivations F of the form

$$ F = \sum_{\mu=1}^{N} a^\mu Y_\mu, \quad a^\mu \in R, \quad \mu = 1, \ldots, N $$

and the corresponding differential equation

$$ \dot{z}(t) = F(z(t)), \quad z(0) = p \in G. \tag{2} $$

Let $\exp(tF)(z)$ denote the resulting of flowing for time t along the trajectory of (2) through the initial point $p \in G$. We require two lemmas concerned with Taylor series expansion of a solution of (2). These lemmas will use the maps ϕ and ψ defined in the previous section.

If α is a tree, define the exponential and Meld-exponential of a tree by the formal power series

$$ \exp(t \alpha) = 1 + t \alpha + \frac{t^2}{2!} \alpha^2 + \frac{t^3}{3!} \alpha^3 + \cdots $$

$$ \text{Mexp}(t \alpha) = 1 + t \alpha + \frac{t^2}{2!} \alpha \odot \alpha + \frac{t^3}{3!} \alpha \odot \alpha \odot \alpha + \cdots. $$

Lemma 3.1 Assume $f \in R$ and $F \in \text{Der}(R)$. Then

1. $$(F^k f)(x) = \frac{d^k}{dt^k} f(\exp(tF)x) \bigg|_{t=0}. $$

2. If f is analytic near x, then for sufficiently small t,

$$ f(\exp(tF)x) = \sum_{k=0}^{\infty} f(x; F^k) \frac{t^k}{k!}, $$

where $f(x; F^k)$ is defined to be $(F^k f)(x)$.

3. If f is analytic near x, then for sufficiently small t,

$$ f(\exp(tF)x) = \psi(\exp(t\phi(F)))f \bigg|_{x}, $$

where $\alpha = \phi(F)$.

Proof. Assertions (1) and (2) can be found in [12]. Since ϕ is an algebra homomorphism, $\phi(F^k) = \alpha^k$. Assertion (3) then follows immediately from Assertion (2).

\hfill \blacksquare
Lemma 3.2 Assume $f \in R$ and $F \in \text{Der}(R)$ is left-invariant. Let $\alpha = \phi(F)$. Then

1. $$f(\exp(tF)x) = f(x) + tDf(x) \cdot F(x) + \frac{t^2}{2!} D^2 f(x)(F(x), F(x)) + \cdots.$$

2. $$f(\exp(tF)x) = \psi(M\exp(t\alpha)) \cdot f|_x.$$

3. If $G \in \text{Der}(R)$,

$$f((\beta(G)(\exp(tF)x)) = \psi(\beta \circ M\exp(t\alpha)),$$

where $\beta = \phi(G)$.

Proof. Assertion (1) is simply Taylor's theorem. Assertion (2) follows from Assertion (1) and the definition of the ψ map, since left-invariant vector fields have "constant coefficients" with respect to the basis Y_{μ}. Assertion (3) follows from Assertion (2) and the definition of the ψ, flat and sharp maps.

4 The algorithm

We are interested in numerical algorithms of the Runge-Kutta type to approximate solutions of

$$\dot{x}(t) = F(x(t)), \quad x(0) = p \in G,$$

where $F \in \text{Der}(R)$. The algorithm depends upon constants c_i and c_{ij}, for $i = 1, \ldots, k$ and $j < i$. For fixed constants, define the following elements of the Lie algebra g

$$\bar{F}_1 = \sum_{\mu=1}^{N} a^\mu(\nu_0) Y_\mu \in g$$

$$\bar{F}_2 = \sum_{\mu=1}^{N} a^\mu(\exp(hc_{21}\bar{F}_1) \cdot \nu_0) Y_\mu \in g$$

$$\bar{F}_3 = \sum_{\mu=1}^{N} a^\mu(\exp(hc_{32}\bar{F}_2) \cdot \exp(hc_{31}\bar{F}_1) \cdot \nu_0) Y_\mu \in g$$

$$\vdots$$

8
These arise by "freezing the coefficients" of F at various points along the flow of F.

Algorithm 1. Version 1. Let $x_0 = p$ and put

$$x_{n+1} = \exp h_c \tilde{F}_k \ldots \exp h_c \tilde{F}_1 x_n,$$

for $n \geq 0$.

Version 2. Let $x_0 = p$ and put

$$x_{n+1} = \exp (h_c \tilde{F}_k + \ldots + \exp h_c \tilde{F}_1) x_n,$$

for $n \geq 0$.

5 Necessary conditions

We prepare with two lemmas.

Lemma 5.1 Let $f \in \mathcal{R}$ and

$$X_i = \phi(\tilde{F}_i) \in k\{LT(F_1, \ldots, F_M)\}[[h]].$$

Then

$$\tilde{F}_1(f) = \hat{\psi}(\phi(\tilde{F}))(f),$$

$$\tilde{F}_2(f) = \hat{\psi}(\phi(\tilde{F}) \circ \text{Mexp}(h_c x_1))(f),$$

$$\tilde{F}_3(f) = \hat{\psi}(\phi(\tilde{F}) \circ \text{Mexp}(h_c x_1) \circ \text{Mexp}(h_c x_2))(f),$$

$$\vdots$$

Here $\hat{\psi}$ is essentially the ψ map followed by "freezing the coefficients" at ν_0. More precisely,

$$\hat{\psi} : k\{LT(\tilde{F}_1, \ldots, \tilde{F}_M)\} \rightarrow \text{End}(R).$$

We do this in several steps.

Step 1. Given a labeled tree $t \in LT_m(\tilde{F}_1, \ldots, \tilde{F}_M)$, assign the root the number 0 and assign the remaining nodes the numbers 1, ..., m. From now on we identify the node with the number assigned to it. Let $j \in \text{nodes } t$, and suppose that l, \ldots, l' are the children of j and that j is labeled with F_{γ_j}. Fix μ_1, \ldots, μ_ν with

$$1 \leq \mu_i, \ldots, \mu_\nu \leq N$$
and define

\[R(j; \mu_1, \ldots, \mu^r) = \begin{cases} Y_{\mu_1} \cdots Y_{\mu^r} \alpha_{\mu_j}^h(\nu_0) & \text{if } j \text{ is not the root} \\ Y_{\mu_1} \cdots Y_{\mu^r} & \text{if } j \text{ is the root} \end{cases} \]

We abbreviate this to \(R(j) \).

Step 2. Define

\[\bar{\psi}(t) = \sum_{\mu_1, \ldots, \mu_m=1}^N R(m) \cdots R(1)R(0). \]

Step 3. Extend \(\psi \) to all \(k\{LT(F_1, \ldots, F_M)\} \) by \(k \)-linearity.

It is useful to have an intrinsic characterization of the elements \(X_i \in k\{LT(F_1, \ldots, F_M)\}[[h]] \). Order the labels \(F_1, \ldots, F_M \) according to their subscripts: \(F_1 < \cdots < F_M \). Let \(k\{\operatorname{LOHOT}(F_1, \ldots, F_M)\} \) denote those elements of \(k\{LT(F_1, \ldots, F_M)\} \) satisfying

1. The nodes are heap ordered with respect to the labels \(F_1, \ldots, F_M \); in other words, the label of a child of a node is (strictly) smaller than the label of the node itself.

2. The children of a node are ordered with respect to the labels \(F_1, \ldots, F_M \); in other words, the labels of the children of a node are nondecreasing.

Using ordered, heap ordered trees it is easy to keep track of the constants \(c_i \) and \(c_{ij} \) that arise in Taylor series computations. To do this we define a map analogous to the \(\psi \) map.

Define

\[\rho : k\{\operatorname{LOHOT}(F_1, \ldots, F_M)\} \to \operatorname{End}(R) \]

as follows

Step 1. Given a labeled tree \(t \in \operatorname{LOHOT}(F_1, \ldots, F_M) \), with \(m + 1 \) nodes, assign the root the number 0 and assign the remaining nodes the numbers 1, \ldots, \(m \). From now on we identify the node with the number assigned to it. Fix a node \(j \) of \(t \) and let \(l, \ldots, l' \) denote its children. Let \(F_{\eta_j} \) denote the
label of node j. Let p_i denote the number of children of j labeled with the label F_i, for $i = 1, \ldots, M$. Let $|p|$ denote $p_1 + \cdots + p_M$. Fix μ_1, \ldots, μ_ν with

$$1 \leq \mu_1, \ldots, \mu_\nu \leq N$$

and define

$$R(j; \mu_1, \ldots, \mu_\nu) = \frac{h^{p_1} c_{j_{1}} \cdots c_{j_{\nu}}}{p_1! \cdots p_M!} Y_{\mu_1} \cdots Y_{\mu_\nu} a_{\mu_1}^{\nu}(\nu_0)$$

if j is not the root

$$= Y_{\mu_1} \cdots Y_{\mu_\nu}$$

if j is the root.

We abbreviate this to $R(j)$.

Step 2. Define

$$\rho(t) = \sum_{\mu_1, \ldots, \mu_m = 1}^{N} R(m) \cdots R(1) R(0).$$

Step 3. Extend ρ to all $k \{\text{LOHOT}(F_1, \ldots, F_M)\}$ by k-linearity.

Lemma 5.2 Let $X_i = \phi(F_i)$ and $f \in R$. Then

$$X_i(f) = \sum \rho(t)(f),$$

where the sum is over all trees $t \in \text{LOHOT}(F_1, \ldots, F_M)$ satisfying (i) t consists of $i + 1$ or fewer nodes; (ii) the root of the tree has a single child labeled F_i.

It is now straightforward to derive the following necessary condition for a kth order Runge-Kutta algorithm on a group.

Theorem 5.1 A necessary condition for a Runge-Kutta method of order k on a group is that for each rooted, ordered tree t consisting of $k + 1$ or fewer nodes

$$\sum \rho(t) = \frac{1}{(\#(\text{nodes}(t)) - 1)!},$$

where the sum is over all $t \in \text{LOHOT}(F_1, \ldots, F_M)$ having the same topology as t.

11
References

