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ABSTRACT 

The inviscid instabilty of a longitudinal vortex structure within a steady boundary layer is 

investigated. The instability has wavelength comparable with the boundary layer thickness so 

that a quasi-parallel approach to the instability problem can be justified. The generalization 

of the Rayleigh equation to such a flow is obtained and solved for the case when the vortex 

structure is induced by curvature. Two distinct modes of instability are found; these modes 

correspond with experimental observations on the breakdown process for Gortler vortices. 
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1. Introduction 

Our concern is with the unsteady three-dimensional breakdown oflongitudinal vortices 

in incompressible boundary layers. Though we shall concentrate on the situation where 

the vortices are induced by streamline curvature, our analysis is equally relevant to the 

later stages of boundary layer transition as described recently by Hall and Smith (1990). 

It is well-known that both steady and unsteady boundary layers are susceptible to the 

so-called Gortler vortex instability mechanism; this mechanism is identical to the Taylor 

vortex instability investigated by Taylor (1923). The latter instability is usually associated 

wIth the flow between rotating concentric cylinders but the terminology is equally relevant 

to, for example, the centrifugal instability of pressure gradient flows in channels, Dean 

(1928), or that of a Stokes layer on a torsionally or laterally oscillating cylinder, Seminara 

and Hall (1975), Honji (1982), Hall (1984). The main distinguishing feature of the Gortler 

vortex is that it is a mechanism which is operational in a spatially varying flow. However, 

a formal inviscid spatial instability analysis of Gortler vortices in growing boundary layers, 

Denier, Hall and Seddougui (1990), shows that nonparallel effects are important only when 

viscous effects are taken into account. Moreover, the inviscid stability problem for Gortler 

vortices has an exact solution which clearly points to the importance of viscous effects for 

the most rapidly growing mode at high Gortler numbers. 

We shall now discuss briefly some relevant experimental and theoretical results con

cerning the growth and breakdown of Gortler vortices in curved boundary layers; a more 

detailed account of that work can be found in Hall (1990). Perhaps the first experimen

tal evidence for the existence of the instability mechanism predicted by Gortler (1940) is 
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due to Lieppmann (1943, 1945), but the first detailed experimental investigation of the 

instability was described by Bippes (1972). More lately significant contributions have 

been made by Aihara and Kohama (1981), and Swearingen and Blackwelder (1987). In 

the early stages of the vortices development the disturbance field is steady and takes the 

form of spanwise periodic counter-rotating vortices. Significantly these initial stages ap

pear extremely sensitive to the upstream flow and often the initial periodicity of the flow 

is fixed by some type of forcing mechanism at the wall. However, it is known from the 

work of Hall (1990), Denier, Hall and Seddougui (1990) that both free-stream disturbances 

and wall roughness are both possible causes of the initial vortex growth. After the mitial 

onset of the instability flow visualization and hot wire measurements show that a finite 

amplitude state, evolving in the flow direction, is generated as the boundary layer grows. 

At some stage further downstream this steady state undergoes a secondary instability to 

a three-dimensional time-dependent disturbance. Sometimes this instability leads to an 

unsteady wavy vortex flow of the type which causes the unsteady breakdown of Taylor 

vortices in the circumferential flow between cylinders of almost the same radius. In other 

situations the breakdown leaves the vortex boundaries flat but causes the generation of 

horseshoe vortices typical of the later stages of flat plate boundary layer transition. Thus 

it would appear that there are at least two distinct modes of instability oflongitudinal vor

tex structures. In fact Tollmien-Schlichting waves can also be involved in the breakdown 

process if the wall curvature in the experimental facility is sufficiently small to postpone 

the onset of Gortler vortices to high enough Reynolds numbers where Tollmien-Schlichting 

waves are unstable. 
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A theoretical description of the onset of a wavy vortex structure in Gortler vortex 

flows has been given by Hall and Seddougui (1989). That calculation is appropriate to 

small wavelength vortices where non-parallel effects are not important but nevertheless 

the results found by Hall and Seddougui were consistent with the experimental observa

tions of Peerhossaini and Wesfreid (1988a,b). In particular Hall and Seddougui showed 

that two wavy vortex modes are possible in small wavelength Gortler vortices; in particular 

these modes are localized in the normal direction in thin shear layers above and below the 

region of vortex activity as described by Hall and Lakin (1988). At 0(1) vortex wavelengths 

the linear and nonlinear stages of vortex growth are described by non-parallel effects, Hall 

(1983, 1988), thus the mode identified by Hall and Seddougui is not easily investigated in 

this regime because it leads to a three-dimensional, unsteady Navier Stokes calculation. 

However it would be extremely surprising if the wavy mode instability based on a three

dimensional unsteady Gortler vortex was not in operation at 0(1) vortex wavelengths. In 

this paper we shall concentrate on the question of whether some of the experimentally 

observed breakdown routes of Gortler vortices owe their origin to an inviscid instability 

mechanism. Interestingly enough, in their convincing theoretical description of the onset 

of wavy Taylor vortex flows Davey, DiPrima and Stuart (1968) suggested that the wavy 

vortex mode might well be of inviscid origin. Indeed, recent work by Bassom and Sed

dougui (1990), who investigated more fully the wavy vortex spectrum found by Hall and 

Seddougui, shows that some of the wavy modes are certainly of inviscid character. From 

the theoretical point of view the fact that 0(1) wavelength vortices evolve in a non-parallel 

manner means that the concept of a unique curve or growth rate is not tenable in the 
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Gortler problem, Hall (1983, 1988). It is this property which distinguishes Gortler vortices 

from Tollmien-Schlichting waves which occur at such high Reynolds numbers that they are 

adequately described by a quasi-parallel theory. This is also the main difference between 

Gortler and Taylor vortices; thus in a Taylor vortex experiment the control parameter 

governing the flow is constant in the steady regime, in the Gortler problem the down

stream variable in effect plays the role of the control parameter. In the Taylor problem it 

is well-known that significant changes in flow properties occur when the control parameter 

is slightly increased; in the Gortler problem the experimentalist or theoretician is not able 

to restrict his attention to small increases in this parameter. For that reason it is not 

surprising that careful experiments on Gortler vortices are not as common as those on the 

Taylor mechanism. 

In this paper we shall in the first instance use the nonlinear scheme of Hall (1988) to 

determine the evolution of finite amplitude 0(1) wavelength vortices in a curved boundary 

layer. We shall then investigate the instability of the new three-dimensional state at a 

given downstream position to an inviscid Rayleigh instability. These modes have spanwise 

and streamwise length scales comparable with the boundary later thickness so the stability 

problem formulated is a local one. The formulation of the problem and some particular 

solutions are given in §2. In §3 we describe a scheme used to solve the two-dimensional 

generalization of Rayleighs equation found in §2. Finally in §4 we discuss our results and 

compare with experimental observations. 
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2. Formulation of the problem 

Consider the flow of a viscous fluid of kinematic viscosity v over a wall of variable 

curvature a- 1 K( t). Here a is a typical radius of curvature of the wall whilst .e is a 

lengthscale in the flow direction. If Uo is a typical value of the fluid speed at infinity then 

we define a Reynolds number RB by 

(2.1) 

and throughout this paper we shall consider the limit RB -+ 00 with the Gortler number 

G defined by 

2f .!. 
G= -R~, 

a 
(2.2) 

held fixed. Of course it is possible to allow ! -+ 0, and RB -+ 00 such that G -+ 0 or 
II 

G -+ 00 but we isolate the above limit because it is known that instability occurs first 

for G = 0(1). In the absence of any longitudinal vortex structure in the flow we have 

1 

a two-dimensional steady boundary layer flow Uo(u(X, Y), u(X, Y)R; 'i, 0) obtained by 

solving 
Ux + Uy = 0 

uUx + VUy = -Px + Uyy 

(2.3) 
u = v = 0, Y = 0 

u -+ UB(X), y -+ 00 

.!. 
Here (X,Y) = (x/.e,R~,y/£),p is the streamwise pressure gradient associated with the 

flow, and UB (X) is the dimensionless free-stream speed. Now we suppose that the curvature 
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of the wall induces a Gortler vortex velocity field defined by 

~o = liB (X, Y, Z) = (u, vR; t, 0)(1 + OCR; t)) + (U(X, Y, Z), VeX, Y, Z)R; t, 

W(X, Y, Z)R; t)(1 + O(R; t). 
(2.4) 

-!. 
Here Z is a dimensionless spanwise variable scaled on Rs 3.e and we assume that the 

flow is periodic in the spanwise direction with wavelength>. = 7. If P(X, Y, Z) is the 

dimensionless pressure field associated with (U, V, W) then, from Hall (1988), we see that 

the system of equations to determine the vortex field and induced mean flow is 

Ux + Vy + Wz = ° 
Uyy + Uzz - VUy = uUx + UUx + uUy + Q1, 

(2.5a, b, c) 

Wyy + Wzz - Pz = uWx + uWy + Q3, 

where 
Q1 = UUx + VUy + WUz , 

1 2 
Q2 = UVx + VVy + WVz + "2 GKU , (2.6a, b, c) 

Q3 = UWx + VWy + VWy + WWz . 

The above equations are to be solved subject to 

U = V = W = 0, Y = 0, 
(2.7a, b) 

U --+ 0, V --+ VeX), W --+ 0, Y --+ 00. 

where VeX) is a function of X to be determined. The most notable feature of the above 

system is that Px does not appear in the streamwise momentum equation so that the 

vortex equations are parabolic in X. The nonlinear Gortler vortex equations (2.5) were 

solved by Hall (1988) and the reader is referred to that paper for a discussion of an 

appropriate numerical scheme for their solution. We shall discuss the results of such a 
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nonlinear calculation in the next section. Now let us turn to the possible instability of a 

nonlinear vortex flow to an inviscid travelling wave disturbance. 

It is well known that inviscid disturbances vary in the streamwise direction on the 

.!. 
lengthscale R~ 2 i so that their wavelength is comparable with the boundary layer thickness. 

In addition the timescale for an inviscid disturbance is iUo 1 R; t so that we perturb the 

basic state by writing 

!£ =!£s + ~(u(X, Y,X), v(X, Y, Z), w(W, Y, Z)) exp{iR~O(X, T)}, (2.8) 
Uo 

where T = t~o and ~ is taken to be sufficiently small for linearization to be a valid proce-

.1. 
dure. Finally we take the corresponding pressure perturbation to be ~P(X, Y, Z)pUJ exp{zR~ O(X, T 

where p is the fluid density. If we now write a = Ox zac = -OT then we find that, in the 

limit RB -+ 00, the zeroth order disturbance equations at the local position X are 

wU + Vy + Wz = 0, 

w{O - c}U + VVy = -io:P, 
(2.9) 

ia{U - c}V = -Py , 

w{O - c}W + WVz = -Pz , 

where V = u + U , is the total downstream velocity field associated with the basic state in 

the presence of a longitudinal vortex field. Since viscous effects are negligible away from 

the wall (and any position where V = c) the appropriate boundary conditions for (2.9) are 

v = 0, Y = 0,00. (2.10) 

Since the basic state about which we are performing an inviscid instability analysis is non-

parallel it is not clear whether we should seek temporally or spatially growing modes. Here 
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we shall concentrate on the temporal case and therefore seek eigenvalues of (2.9 - 2.10) 

with a real and c complex. Our primary aim is to find the fastest growing modes so we 

shall not seek eigenvalues appropriate to the neutral case with a and c real. A discussion 

of the critical layer structure of (2.9) when a and c are real can be found in Horseman 

(1990); essentially it is unchanged from that of the simpler situation when '0 is a function 

of Y alone. In general (2.9 - 2.10) must be solved numerically; with this fact in mind it is 

convenient to eliminate U, V, W to give the pressure equation 

{~ ~ _ ~2}p _ 2Uy Py _ 2Uz Pz 
8y2 + 8Z2 .... U - c U _ c = o. (2.11) 

This equation must be solved subject to the conditions 

Py = 0, Y = 0, P ~ 0, Y ~ 00, (2.12) 

and P must, of course, be periodic in Z. For a Gorder vortex flow a may be written as 

co 

'0 = Uo(X, Y) + :E Un (X, Y) cos nkZ, 
1 

so that (2.11) has solutions of the form 

co 

P = E Pn(X,Y)sinnkZ, 
1 

co 

and P = .Po(X,Y) +:E l\(X,Y)cosnkZ. 
1 

(2.13) 

(2.14a, b) 

We refer to the above modes as 'odd' and 'even' respectively and we note that the odd 

mode leads to the 'wavy' vortex boundaries observed experimentally. In contrast the even 

mode corresponds to a time-dependent state in which the vortex boundaries remain flat, 
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we conjecture that this mode leads to horseshoe vortices. As mentioned in the introduc-

tion there is experimental evidence for both of these modes. Furthermore we note that 

subharmonic modes are also possible but, since there is no experimental evidence for the 

importance of these modes, we do not investigate that possibility here. 

The detailed calculations which we made were for the situation when UE = 1 so that 

in the absence of a vortex field all inviscid disturbances are stable. However other basic 

states are of practical relevance and we note that pressure gradient driven boundary layers 

can be inviscidly unstable in the absence of a vortex field. There is in fact one situation 

where some analytical progress can be made with (2.11 - 2.12); we refer to the case when 

the spanwise wavenumber k of the vortex is small. In this situation it is reasonable to 

expect that the inviscid disturbance behaves in a quasi-parallel manner in the spanwise 

direction. In that case we can drop the dependence of P with respect to Z and then P 

satisfies the ordinary differential equation 

2 2Vy 
Pyy - a p - -U P = O. 

-c 
(2.15) 

This is the Rayleigh pressure equation appropriate to a uni-directional flow with V a 

function of Y alone and we can think of the wavespeed c as a function of the slow spanwise 

variable <P = kZ. Intuitively we expect that the disturbance will concentrate itself where it 

8c· 82c· 
is most unstable; thus for a given value of a suppose that c = c·, a; = 0, az; < 0 at a 

point Z = Z·. In fact for U appropriate to a Gortler vortex, see (2.13) above, it is easy to 

show that kZ· = (2n + 1)71" for n = 1,2,3, .... Moreover, these positions correspond to the 
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cell boundaries where upwelling occurs. In order for us to determine the precise structure 

of the inviscid disturbance near Z = Z· it is necessary for us to define 

(2.16) 

and expand P in the form 

P = Po(~, Y) + kP(~, Y) + .... (2.17) 

In the neighbourhood of Z· V expands as 

(2.18) 

where we note that the O( k) term in this expansion is absent because c: has a local 

maximum at Z = Z·. Finally we expand the eigenvalue C in the form 

C = co + kCl + .... (2.19) 

If the above expansions are substituted into (2.11 - 2.12) and terms of order kG, k are , 

equated we obtain 
82po _ a2po _ 2UOy 8Po = 0 
8y2 Uo - co 8Y 

POy = 0, Y = 0, Po = 0, Y -+ 00. 

8
2
Pl _ a2Pl- 2UOy 8Pl = 2UQy ~2[Uiy _ Ui ] Poy _ 82po 

8y2 Uo - co 8Y Uo - co UOy Uo - co 8~2 
2UQy 

+ (U. • )2
C1POY 

0- Co 

(2.20a) 

(2.20b) 

The system (2.20a) is of course the local Rayleigh problem to determine the eigenvalue 

Co = co( a) whilst (2.20b) is an inhomogeneous version of (2.20a) and therefore only has a 

solution if a solvability condition is satisfied. The solution of(2.20a) can be written 

Po = A(~)Po(Y), (2.21) 
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and the solvability condition on (2.20b) yields 

(2.22) 

Here the constants >'0 and >'1 are given by 

21000 u~£y [UU~Y ~ u!'i ] .P6(Y)Qo(Y)dY 
o Co oY 0 Co 

>.1=--------~~--~-------------
fooo .P6(Y)Qo(Y)dY 

(2.23a, b) 

>. 2 fooo (ur~~~)2 .P6Qo(Y)dY 
0= - fooo .P6(Y)Qo(Y)dY , 

where Qo is the function adjoint to the eigensolution .Po(Y).The solutions of the linear 

amplitude equation (2.22) which decay when I~I ~ 00 are 

1 .1. 1 

A = An(Y) = U(-n - Z,>'i2"i"Y),n = 0,1,2. (2.24) 

where U(-n - ~,>.t2tY) is a parabolic cylinder function; the complex correction to the 

wavespeed is then given by 

>'OCl 1 
---I = -n --
2>.f 2 

(2.25) 

Thus we have an infinite sequence of unstable eigenvalues; since Z = Z· is the most 

.!. 
unstable point we know that for any vortex flow >'0 and >'1 are such that >'i / >'0 has 

negative imaginary part so that the n = 0 mode is the most unstable. 

Hence in the small vortex wavenumber limit we see that Rayleigh modes occur at the 

spanwise locations where the flow is most unstable in a quasi-parallel sense. Alternatively, 

the structure described above is relevant for 0(1) vortex wavenumbers when the inviscid 

wavenumber a is large. Furthermore we note that in the situation described above the 
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instability is associated with the inflexional nature of the velocity profile V in the Y 

direction. Now we turn to the question of whether It is possible to determine an asymptotic 

structure associated with the inflexional nature of V in the Z direction. 

It is, of course, clear that the basic downstream velocity component will have inflex

ional points in the Z direction at a given value of Y. However, these profiles will only 

lead to an inviscid instability if the latter mode can respond in a quasi-parallel manner 

to the inflexional profiles in the spanwise direction. In order for this to be the case the 

basic the flow must vary more quickly in the spanwise direction than in the normal one. 

Since the normal variation of the basic state is fixed by the boundary layer thickness the 

only possibility then is to look at the situation when the vortex wavenumber is large. In 

that limit, based on the asymptotic structure of Hall(1982a,b), Hall and Lakin (1988) have 

given an asymptotic description of the vortex driven mean state. Essentially the boundary 

layer is split into three regimes. In the main part of the boundary layer a finite amplitude 

vortex drives a mean flow and V expands as 

v = Vo(X,Y) + k- 1V1(X,Y) coskZ + ... (2.26) 

We stress that 0'0 is driven by the vortex and has no relationship with the mean state 

which would exist in the absence of a vortex. The vortex function 0'1 is found to vanish at 

two positions Y1 and Y2 satisfying 0 < Y1 < Y2 < 00. Below Y1 and above Y2 the boundary 

layer equations apply and there is no vortex flow. In fact the vortex activity is reduced to 

zero in the shear layers of thickness k- i centred on Y1 and Y2. 

Suppose then that we seek a solution of (2.11 - 2.12) appropriate to the velocity field 

(j given by (2.26) in the limit k -+ 00. At a given value ofY the function V has an inflexion 
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point where kZ = (n + ~)1l" for n = 0,1,···. Let us now seek a localized solution of (2.11 -

2.12) centred on some position Y = Y with Yl < Y < Y2. Since the instability, if present, 

must be associated with the O(k-l) term in (2.26) we require tJ - C = 0(k- 1). Thus we 

write 

(2.27a, b) 

a = 6:k + ... 

The local eigenvalue problem at Y then reduces to 

2 -
8 _P _ 6:2p + _ 2~1(Y)s~nZ Pi = 0, Z = kZ, 
8Z2 Ul(Y) cos Z - Cl 

(2.28) 

which has solutions with Cl complex. However, the vertical structure of p corresponds to 

a second order turning point when described by a WKB expansion only if UOy (Y) = o. In 

that situation the inviscid disturbance is trapped in a layer of depth k- t and the vertical 

structure is then expressible in terms of parabolic cylinder functions. However, Hall and 

Lakin found that for Gortler vortex flows Uo is a monotonically increasing function of Y 

in the region of vortex activity so the above type of localized mode cannot occur when a 

flow of the type (2.26) is driven by wall curvature; nevertheless we expect that this type 

of mode is physically relevant in other situations. 

In the absence of a turning point for Uo a WKB description of the vertical structure 

of the inviscid mode for k > > 1 suggests that any localized mode should have its vertical 

structure described by Airy functions, Walton (1978), Soward and Jones (1982). For the 

flow given by (2.26) this suggests that the inviscid modes should be confined in a layer of 

depth k-l. Interestingly enough this means that the inviscid mode has 8y '" 8z and the 
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eigenfunction then satisfies a partial differential equation again. More precisely if we look 

for a mode trapped near Y = Y and write 

( = k{Y - Y}, Z = kZ, 

then, if the expansions (2.27) are retained, the zeroth order approximation to (2.12) be-

comes 

which must be solved subject to periodicity in Z and IPI -+ 0,1(1 -+ 00. As yet we 

have found no solutions of this eigenvalue problem but further investigations are being 

carried out. However it is interesting to note that (2.29) is applicable to the inviscid 

stability problem for a general velocity field consisting of a spanwise periodic velocity field 

superimposed on a linear shear flow. Thus, if unstable solutions of (2.29) can be found, 

they are of relevance to a wide class of shear flows. 

The only other alternative localized structure for the inviscid mode in the large 

wavenumber limit would be one which takes account of the localized structure of the 

mean state near Y = Yl, Y2. As mentioned above the vortex activity of the mean state 

decays to zero in layers of depth k- t near Yl, Y2. In fact V in these layers expands as 

+ U03(kt[Y - Y,])cosZ} 

+ ... ,) = 1,2. 

The mean shear term proportional to UOl again prevents a localized inviscid mode structure 

based on parabolic cylinder functions. In fact, Hall and Seddougui (1989) show that the 
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basic state in the shear layers at Yl, Y2 is susceptible to a (viscous) wavy vortex mode of 

instability. Thus we conclude that, unless unstable solutions of (2.29) can be found, there 

are no vertically localized eigenfunctions associated with the highly inflexional velocity 

profiles in the spanwise direction. 
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3. A numerical scheme for the solution of the generalized Rayleigh pressure 

equation 

A suitable scheme to integrate the nonlinear Gortler vortex equations (2.5 has been 

described by Hall (1988) so we assume that (j, the total downstream velocity component, is 

known and outline a scheme to solve (2.11). For computational purposes it is convenient to 

restrict Z in (2.11) to one half of a vortex wavelength and determine boundary conditions 

at Z = 0, 7r /k appropriate to the odd and even modes (2.14a,b). From (2.14) it is easy to 

show that appropriate conditions for the odd and even modes are 

Odd modes Py = 0, y= 0, P~O, 

P = 0, Z = 0, 7r /k, 

Even modes Py = 0, y= 0, P~O, 

Pz=o, Z=O, 7r/k. 

For convenience we define the functions F, G by 

-2Uy 
F= , 

U-c 
-2Uz G =-=-~ 
U-c 

and we define a grid in the Z, Y directions by writing 

Z, = 
(J - 1) 7r 
(M -1) k = (J - l)b,J = 1,2 ... , M, 

Y.= 
(i -1) 

(N _l)Yco = (z -l)h,n = 1,2, ... ,N. 

Y ~ 00,) 

} (3.1) 
J 

y~oo, 

(3.2) 

(3.3a, b), 

Thus band h are the step lengths in the Z and Y directions respectively. Suppose then 

that P" denotes P evaluated at (Z, Y) = (Z" Y.). We now define the vector,{ by 

,{= where P
1 

= for J = 1,N. 
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and if the derivatives in (2.11) are approximated using central differences it follows that 

the discretized form of (2.11) becomes 

Here A" C, are diagonal matrices defined by 

whilst B, is defined by 

) ( 

h\ - ~ ~,C, = ~ 
... J l 

..l. + G ,. 0 
ba y 

) 

h1a + ~ ~ , 
... J 

( G ,. + 1) ( 2 2 2) «( 1 + G ,.) -y i2 -hi" - i2 - a i2 Y 

(3.4) 

(3.5a,b) 

(3.5e) 

In order to take care of the boundary conditions at Y = 0 the matrix Cl is redefined by 

writing 

If the system of linear equations (3.4) has a nontrivial solution then we have an eigenvalue 

c = c(a) of (2.11 - 2.12). The system (3.4) is of block tri-diagonal form and so we can 

make use of this structure to speed up the calculations. In fact we solved a modified form 

of (3.4) by first replacing the boundary condition at Y = 0 by 

Py = 1, Y = o. 
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This leads to an inhomogeneous form of (3.4) which can be solved for 5. using a standard 

block tri-diagonal solver. Having solved this system we then iterate on c until 

In effect this enables us to satisfy the boundary condition Py = 0, y = O. Solutions of 

(3.4) obtained in this way were checked by backsubstitution into that equation. Typically 

we found that it is necessary to use 600 points in the Y direction and 60 in the spanwise 

direction in order to calculate growth rates correct to two significant figures. However we 

shall be more precise about the parameter values used in the following section. 

4. Results and Discussion 

Our primary aim is to see if we can explain theoretically the experimentally observed 

description of the unsteady breakdown of steady longitudinal vortices induced by wall 

curvature. In particular we will focus on the experiments of Swearingen and Blackwelder 

(1987) who have given a detailed quantitative description of the breakdown process. Firstly 

we shll give results which indicate that the nonlinear vortex calculations of the type dis-

cussed by Hall (1988) do indeed capture the essential details of the steady evolution of 

vortices as measured by Swearingen and Blackwelder (1987). 

The experiments of Swearingen and Blackwelder were performed in a wind tunnel with 

a concave section of radius of curvature 320 em and a free stream speed of 500 em/sec. 

We note that in this configuration Tollmien-Schlichting waves are stable in the regime 

where Gortler vortices develop. The vortices W('IL visualized by smoke and velocity fields 

were measured by a hot wire. In Figure (4.1) we compare our results for the displacement 
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thickness and wall shear obtained using the numerical scheme of Hall (1988) with the 

experimental results of Swearingen and Blackwelder for the case of a vortex of wavelength 

1.8 cm. The calculations were started at a distance of 10 cm. along the wall and the 

vortex amplitude was estimated from the experimental observation. In order to compare 

with experimental observations we have computed the wall shear and the displacement 

thickness in the low and high speed regions. We see that the computations predict the 

same kind of trends as observed experimentally upto a distance of 100 cm. from the leading 

edge. Beyond that position the calculations diverge from the observations and in fact at 

a distance of about 120 cm. from the leading edge the computations predict reversed flow 

and are therefore no longer valid. However, we believe that the reason why the calculations 

and observations diverge beyond x = 120 cm. is that by this stage the vortex state has 

suffered a bifurcation to a three-dimensional time-dependent state. Below we shall show 

conclusively that this breakdown is due to the instability mechanisms discussed in §2. 

Before discussing our results for the breakdown problem we will point out some relevant 

details of experimental observations concerning breakdown. 

We refer first to Figures 14a,b,c of Swearingen and Blackwelder which show smoke 

visualizations of the breakdown process for Gortler vortices. The visualizations correspond 

to an initial vortex state of wavelength 2.3 cm. and show conclusively that there are at 

least two types of breakdown which can occur. Firstly there is a sinuous or varicose 

mode in which the vortex boundaries become wavy in the manner typical of secondary 

instabilities of Taylor vortex flows. The second mechanism leaves the vortex boundaries 

flat and the smoke patterns indicate the presence of a horseshoe vortex typical of the 
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later stages of transition in a flat plate boundary layer. We shall show below that the 

theory of §2 can describe both types of process and that the horseshoe and vortex modes 

are to be associated with the even and odd modes of the inviscid stability equations. 

We further note that previous investigations, e.g. Bippes (1972), Aihara and Koyama 

(1981), have identified the two breakdown processes discussed above; we concentrate on 

the experiments of Swearingen and Blackwelder because the latter authors give the most 

detailed measurements in the breakdown regime. Finally, before discussing our results, 

we note that Swearingen and Blackwelder reported that the sinuous mode was the most 

preferred mechanism in their experiments. The downstream wavelength of this mode is 

estimated to be about 4.2 cm. from Figure 14c of Swearingen and Blackwelder. The latter 

authors give a value of about 130 Hz for the measured frequency of this mode. 

In order to generate a basic state to be used as a basis for the theory of §2 we 

considered the configuration discussed above which we recall corresponds to a spanwise 

wavelength of about 2.3 cm. The linearized Gortler vortex equations were mtegrated for 

x = 30 cm. to x = 60 cm. using the initial condition (3.1) of Hall (1983). At x = 

60 cm. the nonlinear terms were switched on and the initial rms value of the vortex was 

estimated from Figure 17 of Swearingen and Blackwelder. In Figure (4.2) we show contours 

of constant U at x = 70, 80, 90, 100 cm. We see that these Figures agree qualitatively 

with Figure 11 of Swearingen and Blackwelder. At x = 100 cm. the calculated contours do 

not show the pronounced 'mushroom' structure shown in the experimental results but we 

note here that improved agreement with the experimental results can be found by 'tuning' 

the position where nonlinear effects are switched on. More precisely the increased vortex 
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activity observed experimentally can be predicted if nonlinear effects are switched on well 

beyond x = 60 cm. However we do not pursue this type of optimization procedure because 

it is, of course, not justified since there is certainly vortex activity at x = 60 cm. 

Our calculations were almost exclusively for the basic state discussed above for x = 100 

cm.; this restriction was necessary because of the computational expense of the solution of 

(2.11 - 2.12). In order to calculate the eigenvalues of that system to the graphical accuracy 

of the figures which follow we used 600 points in the vertical direction with a step length 

k = 0.25 and 60 points in the spanwise direction (for ~ wavelength). 

In the first instance we consider the odd modes of instability associated with (2.11 

- 2.12). In Figure (4.3a) we show ac, as a function of a for the two most unstable odd 

modes at x = 100 cm. We note that since eigenvalues of (2.11) occur in complex conjugate 

pairs the eigenvalues shown do indeed correspond to unstable disturbances. Also shown 

is the only unstable mode we were able to locate at x = 80 cm. We see that the fastest 

growing mode at x = 100 cm. occurs when a '" .037 and this corresponds to a downstream 

wavelength of about 3 cm. Since the odd mode leads to wavy vortex boundaries this mode 

corresponds to the varicose mode of Swearingen and Blackwelder. Thus the predicted 

downstream wavelength of about 3 cm. corresponds to an experimentally observed value 

of about 4.2 cm. Figure (4.3b) shows the frequency of these modes as functions of a, 

the fastest growing mode corresponding to a = .037 corresponds to a frequency of 110 

Hz; again this compares favourably with the experimentally measured value of 130 Hz. 

Later we shall point out why it would be unreasonable, or fortuitous, to obtain better 
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agreement with the experimental results. Now let us turn to the even solutions of the 

pressure disturbance equations. 

In Figure {4.4a} we show the growth rate of the first two unstable even modes at x 

= 100 cm.; we note that no unstable modes were found at x = 80 cm. The corresponding 

frequencies of these modes are shown in Figure {4.4b}. A significant result is that at x = 

100 cm. the fastest growing odd mode has a growth rate twice as large as that of the fastest 

growing even mode. This is entirely consistent with the observations of Swearingen and 

Blackwelder who found that the sinuous mode was the most easily excited mode during 

transition. 

We now consider the flowfields associated y .~h the fastest growing even and odd modes 

at x = 100 cm. The velocity eigenfunction associated with the solution was normalized 

such that the maximum value of Ivl was unity in each case. Figures (4.5a,b) show contours 

of constant lul,lvl in the Y, Z plane for the fastest growing even mode whilst Figures 

(4.6a,b) show the corresponding functions for the fastest growing odd mode. We see that 

in each case the downstream velocity component is an order of magnitude larger than 

the Y component. Again we see in each case that the downstream velocity field is much 

more concentrated than the normal one. Indeed the downstream velocity components are 

concentrated in the flowfield in the region where a - c is small; in other words the inviscid 

mode localizes itself in a region which would develop into a critical layer in the neutral 

case. A major difference between the lui structure for the even and odd modes is that the 

even mode spans the position where upwelling occurs. 

22 



The velocity fields shown in Figures (4.5b,4.6b) are to be compared with Figure 16 of 

Swearingen and Blackwelder at x = 100cm. we note that the experimental results show the 

flowfield over two wavelengths and that the position Z = 1.15 in our work corresponds to 

z = 1.15, -1.15cm in the experiments. The calculations for both modes produce a velocity 

field concentrated in the region where the experiments produced the most significant dis

turbances. In fact the odd mode shown in Figure {4.6b} closely resembles the experimental 

results away from the wall. Since the theory we have developed is inviscid we cannot hope 

to capture the experimentally observed disturbance structure close to the wall. 

Our calculations suggest that each mode is unstable for a finite band of wavenumbersj 

probably the lower end of this range is at zero wavenumber. The numerical scheme we 

used fails if the wavespeed is real in which case there exists a critical layer in the flow, 

see Horseman{1990}. Indeed if any of the growth rate curves are followed towards the 

horizontal axis {2.11} becomes progressively more expensive to solve since the equation 

is tending to become singular. For that reason we did not attempt to search for neutral 

modes by calculating unstable modes at smaller and smaller growth rates; clearly any 

attempt to find the neutral modes must be based on a scheme which takes account of the 

disturbance structure at the critical layer. Since our main aim was to show that Gortler 

vortex flows are inviscidly unstable we choose not to tackle the neutral case though the 

required structure at the critical layer is given in Horseman{1990}. 

Finally we close with a few words concerning the agreement of our results with the 

experimental observations. Essentially we wish to explain why it would be unreasonable 

to expect agreement better than that found above. The reason why we believe that this 
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is the case is that the nonlinear Gortler vortex equations are parabolic in X. This means 

that the vortex flow at a given location depends on its upstream history so that the finite 

amplitude vortex which we calculated as a basis for the stability calculations would be 

altered if the position where it was inserted into the flow was changed. We recall that the 

finite amplitude state we calculated was introduced into the flow 60cm from the leading 

edge. If this position is varied we find that the agreement between the calculations and 

experiments shown in Figure (4.1) can be tuned to obtain optimum agreement. Typically 

we find that the flow properties shown in Figure (4.1) vary by about 10% if the initial 

position of the vortex is pushed back as far as say 20cm from the leading edge. Some 

limited calculations of the stability problem for flows calculated with these different initial 

vortex locations indicated a similar change in magnitude of the growth rates. Of course we 

could fix the initial vortex location so as to optimise the agreement between the basic state 

calculated numerically and that found experimentally. We choose not to do that because 

there is no justIfication for such a procedure; indeed it might be argued that the Inherent 

nonuniqueness of the Gortler problem is present in the experiments as well. However it can 

be said that the calculations we have carried out strikingly reproduce several key features of 

the experiments; to further optimise the agreement between theory and experiment would 

require an inordinate amount of computer time to reproduce features of an experiment 

which might itself no be precisely reproducible. 

The authors wish to thank SERC and USAF for support for part of the work reported 

on above. Further thanks are due to ICASE where part of this work was carried out by 

one of us (PH). 
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Figure (4.1a) A comparison between the experimentally measured bound-

ary layer thickness and that calculated using the method of Hall(1988). 
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Figure (4.1 b) A comparison between the wall shear measured experimen-

tally with that predicted by the method of Hall(1988). 
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Figure (4.3a) The growth rates of the two most unstable odd modes at 

x = lOOcm. Also shown is the only unstable mode found at x = 80cm. 
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Figure (4.3b) The frequencies of the odd modes at x = 80, 100cm. 
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Figure (4.4a) The growth rates of the two most unstable even modes at 

x = lOOcm. 
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Figure (4.4b) The frequencies of the even modes at lOOcm. 
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