if

NASA Contractor Report 187456
ICASE Report No. 90-72

ICASE

VORTEX INSTABILITIES IN 3D BOUNDARY LAYERS:
THE RELATIONSHIP BETWEEN GORTLER AND
CROSSFLOW VORTICES

Andrew P. Bassom
Philip Hall

Contract No. NAS1-18605
October 1990

Institute for Computer Applications in Science and Engineering
NASA Langley Research Center
Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

NASAN

National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665-5225

(MATA=L7=10T745%) VR TeX TNSTAZILTITIOS TH 30 NAL=-1D0G2 2
SOUMUARY LAYL 252 THS 2 LaTIonesIP ol TWe N

DT ER AND T tRLOY VLTTIOTS rinnl o melort

(TCase) 76 | Chclh 2la Uncl.os

~ 271 L XYY Y A
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ABSTRACT

The inviscid and viscous stability problems are addressed for a boundary layer which can
support both Gértler and Crossflow vortices. The change in structure of Gdrtler vortices
is found when the parameter representing the degree of three-dimensionality of the basic
boundary layer flow under consideration is increased. It is shown that Crossflow vortices
emerge naturally as this parameter is increased and ultimately become the only possible
vortex instability of the flow. It is shown conclusively that at sufficiently large values of
the crossflow there are no unstable Gortler vortices present in a boundary layer which, in
the zero crossflow case, is centrifugally unstable. The results suggest that in many practical
applications Gortler vortices cannot be a cause of transition because they are destroyed by
the 3-D nature of the basic state. In swept wing flows the Gértler mechanism is probably not
present for typical angles of sweep of about 20 degrees. Some discussion of the receptivity
problem for vortex instabilities 'in weakly 3-D boundary layers is given; it is shown that
inviscid modes have a coupling coefficient marginally smaller than those of the fastest growing
viscous modes discussed recently by Denier, Hall and Seddougui (1990). However the fact

that the growth rates of the inviscid modes are the largest in most situations means that

they are probably the most likely source of transition.
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§1. Introduction.

Recently there has been interest in the effect of boundary layer growth on instability
mechanisms to which the boundary layers are susceptible. Here, we shall concentrate on
the Gortler vortex mechanism which has been shown to occur in both two- and three-
dimensional boundary layer flows over concave walls. Much of the early theoretical work
concerned with Gortler vortices addressed the problem of the linear stability of external
two—dimensional flows over such concave walls. Early contributions were made by, among
others, Gortler (1940), Smith (1955) and Hammerlin (1956). Later Hall (1982a,b) argued
that much of this early work was fundamentally flawed for all the analyses invoked the
parallel flow approximation (which essentially assumes that the basic flow in which the vor-
tices lie is independent of the streamwise co—ordinate and so neglects the effect of boundary
layer growth). This approximation enables the linear stability equations to be expressed
as ordinary differential equations but Hall illustrated that this assumption is unjustifiable
except in the limit of small vortex wavelength, and indeed this is the explanation for the
considerable inconsistencies in the results of the previous studies. Additionally, in the
case of small vortex wavelength the Gortler instability may be described by an asymptotic
structure which takes account of boundary layer'growth in a rational manner and thence
the parallel flow assumption is rendered superfluous in the only situation in which it has
any relevance whatsoever.

Hall (1982a) examined boundary layer flow over the cylinder y = 0, —o0 < z < o0
where the z-axis is a generator of the cylinder and y measures the distance normal to the
surface. The z- co-ordinate measures distance along the curved surface, which is taken to
have variable curvature (1/b) (%) where b and [ are lengthscales. The Reynolds number

Re, the curvature parameter § and the Gortler number G are defined by

U L
Re = -—Ol, 6= i, G = 2Re?§, (1.1)
v b

where Up is a typical flow velocity in the z direction and v the kinematic viscosity of
the fluid. Hall (1982a) investigated the flow characteristics when Re is large and ¢ is
small such that in the limit 6 — 0 G is held fixed at an O(1) value. By sca,ling the
spanwise co-ordinate z on the boundary layer thickness, it was demonstrated that for
a non—dimensional vortex wavenumber e~ 3> 1 linearised vortex modes within a two-
dimensional basic flow are neutrally stable at a Gortler number G = goe~ %+ ..., where g

is a known O(1) constant whose precise value is dependent upon the properties of the basic



flow under consideration. For larger wavelengths the problem is fully nonparallel and the
linear stability equations, which now take the form of a set of partial differential equations,
have to be solved numerically, see Hall (1983). This paper showed two significant features
of this nonparallel low problem, namely that the ideas of a unique stability curve and
of unique growth rates at a specified downstream location are inapplicable to the Gortler
problem because the location where a vortex commences to grow is dependent upon the
position and the shape of the the imposed disturbance.

Questions concerning the development of nonlinear nonparallel vortices within growing
boundary layers were addressed by Hall (1988). This numerical investigation showed that
as the nonlinear disturbance evolves the perturbation energy becomes concentrated in the
fundamental and mean flow correction; a conclusion consistent with the weakly nonlinear
theory of Hall (1982b) valid for small wavelength vortices. It is well known that Gortler
vortices set up in an experiment conserve their wavelength as they move downstream.
Since the boundary layer itself thickens it follows that the local nondimensional vortex
wavenumber becomes large as the vortex develops. Thus the small wavelength limit in
the external Gortler problem is appropriate to the ultimate development of any fixed
wavelength vortex and hence sufficiently far downstream in many flows the asymptotic
work of Hall (1982¢a, b) becomes applicable.

As with all weakly nonlinear investigations, the results of Hall (1982b) are valid only
within a neighbourhood of the point where the imposed perturbation is neutrally stable.
For vortices of wavenumber e~ 1 >> 1, their development downstream of the point of neutral
stability is governed by the solution of a pair of coupled nonlinear partial differential equa-
tions which adopt a simple asymptotic structure at large values of X, where eX (X = O(1))
denotes the distance of the vortex downstream of the neutral point. Formally, for large
X, Hall & Lakin (1988) showed that this asymptotic structure could be used to deduce
the flow configuration for fully nonlinear Gortler vortices, at which point the mean flow
correction generated by the presence of the vortices is as large of the basic (undisturbed)
flow itself. The vortex structure derived by Hall & Lakin (1988) essentially consists of a
core region in which the vortex is concentrated and which is bounded by two thin layers
in which the vortex activity is reduced to zero expomnentially. Further work by Hall &
Seddougui (1989) has shown that these thin layers are susceptible to secondary instabili-

ties which take the form of travelling waves confined within these layers. This theoretical



investigation, together with the weakly nonlinear account of this form of secondary insta-
bility described by Seddougui & Bassom (1990), provides good qualitive agreement with
several experimental observations, notably those of Peerhossaini & Wesfreid (1988a,b).

All the work described above has addressed problems which arise when Gortler vortices
occur in two-dimensional boundary layers but in many practical situations in which Gortler
vortices are known to arise the basic boundary layer is three—dimensional. For example,
in the case of a boundary layer flow over a three-dimensional obstacle or the flow over a
turbine blade the three-dimensionality of the basic flow is potentially crucial and should
not be neglected. Most significantly, the development of laminar flow airfoils has given
rise to designs which have two areas of concave curvature on the lower side of the airfoil
and when the wing is swept the boundary layer flow is fully three-dimensional and the
previously mentioned analyses are largely inapplicable.

The first attempt to describe this three-dimensionality effect was given by Hall (1985)
who examined the Gortler mechanism in flow over an infinitely long swept cylinder. The
results obtained were quite general and did not require a precise description of the particu-
lar boundary layer under investigation. Hall (1985) showed that it is the relative size of the
crossflow and chordwise flow over the cylinder which is critical in determining the vortex
structure. He demonstrated that as this ratio, say A, was increased from zero the first
significant change in the vortex structure from that in the two-dimensional case occurs
when A ~ Re™ 7, where Re is the (large) Reynolds number defined in (1.1). Then the vor-
tices become time dependent and unlike the two-dimensional case, the high wavenumber
modes no longer have vortex boundaries aligned with the flow direction. Indeed, as the
crossflow increases further, the neutral vortices have axes perpendicular to the vortex lines
of the basic flow. The neutral Gortler number for the vortices was predicted by a large
wavenumber asymptotic analysis, the results of which suggested that for O(1) values of
the ratio of the crossflow and chordwise velocity fields the Gortler mechanism is probably
unimportant compared with Tollmien—Schlichting and crossflow type instabilities.

An investigation into the effect of crossflow on weakly nonlinear Gortler vortices was
made by Bassom (1989). Rather than concentrate on vortices within a growing bound-
ary layer with the inherent difficulties of providing an adequate description of boundary
layer growth, that work considered vortices within a curved channel. This has the ad-
vantage that the problem can be described by solution of ordinary differential equations

as opposed to partial differential equations. Bassom (1989) showed that for this problem



equilibrium, streamwise independent weakly nonlinear vortices could only persist below a
certain threshold value of the crossflow.

One aim in the present paper is to extend some recent work by Denier, Hall & Sed-
dougui (1990) (hereafter referred to as DHS) into a three-dimensional setting. The prin-
cipal aim of DHS was to investigate the problem of providing a rational theory for the
receptivity of Gértler vortices and specifically how the vortices may be triggered by wall
roughness elements. In the course of this work, DHS reconsidered the stability of a vor-
tex in a high Goértler number flow by implementing a linear, spatial stability analysis. In
particular, for G > 1, they considered the structure of vortices in two different wavenum-
ber regimes: they reworked the analysis of Hall (1982a) for high O(G%) wavenumbers
and also examined O(1) wavenumber vortices. This latter disturbance mode is governed
by inviscid equations. By considering the region between these two wavenumber regimes,

DHS identified a new structure which is relevant for vortices of wavenumber O (Gf) and

which has the property that the vortices are trapped in a thin layer of thickness O (G‘ %)
at the wall. This is in contrast to the structure identified previously by Hall (1982a) who
demonstrated that vortices of wavenumber O(G%) are confined to a thin layer embedded
within the boundary layer at some well-defined position.

Of paramount importance, DHS showed that within the O (G%) wavenumber regime
there exists a unique most unstable Gortler vortex according to linear stability theory.
Hence the most dangerous mode within a two-dimensional boundary layer has been found
and our objective now is to extend the work of DHS to consider the effect of introducing
crossflow into the boundary layer flow.

As previously mentioned, DHS conducted a purely spatial analysis of the instability
modes. Here, we firstly add a crossflow into the situation considered by DHS and assess its
effect; we continue to use the spatial approach. For the O(1) wavenumber modes at G > 1
we show that crossflow first has a significant effect on the two—dimensional results once
this parameter becomes O{Re~ ‘;‘G%). By examining the properties of the vortices when
subject to this size of crossflow we can identify several limits of note. We show that as the
crossflow increases the vortex structure takes on an identity which is essentially that of a
crossflow instability, a mechanism first investigated by Gregory, Stuart & Walker (1955).
Additionally, if both the crossflow and the wavenumber of this inviscid vortex increase
appropriately we can obtain a mode whose structure is dominated by viscous effects. It is

found that when this occurs the ratio of crossflow to chordwise flow becomes O(Re™ 3 G'¥)



and the (large) wavenumber of the vortices is that considered by DHS and which pertains
to the most unstable Gortler vortex in a two—dimensional flow. Consequently, we have
the basis for explaining how the stability characteristics of the modes found by DHS are
changed by the presence of crossflow. We demonstrate that the introduction of crossflow
into the problem can have a stabilising effect, at least according to our linear theory. In
particular, whereas in DHS it was shown that stationary vortices are necessarily unstable
at O(Gf) wavenumbers, this is no longer true once crossflow terms are introduced. In
addition, for certain crossflow values there exist neutrally stable vortex modes whilst at
large enough values of the crossflow no vortex instabilities induced by centrifugal effects
persist.

We then develop our description of the disturbance motion by allowing the vortices
to be time dependent. Unfortunately, as in DHS, for all the problems treated here the
equations which determine the vortices form a pair of coupled ordinary differential equa-
tions with associated boundary conditions and this system is only amenable to a numerical
solution for O(1) parameter values. We study this numerical problem for a number of par-
ticular parameter choices and also investigate the asymptotic description of the vortex
structure in both the limits of large and of small vortex wavelengths.

The procedure for the remainder of the paper is as follows. In the coming section
we formulate the problem at hand and obtain the differential equations which determine
the (essentially inviscid) structure for vortices of O(1) wavenumber. After considering the
solutions to this problem, we move on in section 3 to examine the viscous structure which
describes the large wavenumber O(G%) vortices in the presence of crossflow. At this stage
we include both the crossflow and temporal terms described in the preceding paragraphs
and then subsequently we study particular cases. In section 4 we briefly consider the zero
frequency crossflow problem and in the ensuing section examine the effect of allowing the
disturbance to have periodic temporal dependence. We then proceed to investigate various
asymptotic limits which describe the behaviour of the vortex modes in both low and high

wavenumber cases and conclude with some discussion.

§2. Formulation.

Our aim here is to obtain the equations which determine the structure of high wavenum-

ber vortices in a slightly three~dimensional boundary layer. As in Hall (1585), we consider



a boundary layer flowing over the cylinder y = 0, —o0 < z < 00 s0 that the z-axis is a
generator of the cylinder and y measures the distance normal to the surface. The = co-
ordinate measures distance along the curved surface, which is supposed to have variable
curvature (1/b)x ("T) where b and ! are length scales. We define the Reynolds number Re,
the Gortler number G and the curvature parameter § as in (1.1) where Up is a typical flow
velocity in the streamwise direction. The Reynolds number is assumed to be large, whilst
§ is sufficiently small so that as § — 0 the parameter G is fixed and is order one. Again
following Hall (1985), the basic three-dimensional boundary layer is taken to be of the

form
u = Ug [a(X,Y), R $0(X,Y), Re" 3 0(X,Y)] (1+0 (Re 5)), (2.1a)

where
X =

NIH

: Y = (%) Re %, (2.1b)

and A* is supposed to be O(1). To compute this boundary layer profile in practice, @ and
are determined by numerically integrating the two-dimensional boundary layer equations
and the crossflow @ is then found from the spanwise momentum equation.

We now define the variable Z = Re?%z/l and perturb the basic flow. If ¢ is a time

variable scaled on [/Up and if E = exp(iaZ) then we disturb (2.1a) by writing

u="Uo|a+6U(tX,Y)E,sRe™ % + 6Re™ 3V (¢, X,Y)E,

1 1 . (2.2(1)
N Re- o+ 6Re W, X,V)E] (140 (Re?)),
where 6§ < 1. Similarly, we perturb the basic pressure p by writing
p=p+ Re 'P(t,X,Y)E. (2.2b)

Substituting the expressions (2.2) into the governing continuity and Navier-Stokes equa-

tions and linearising yields the perturbation equations
Ux +Vy +iaW =0, (2.3a)
U, + aUx + Utix + 90Uy + Viy + A wialU = Uyy — a®U, (2.3b)
Vi+aVy + Uty + 0Vy + VOy + A 0iaV + Gx(X)aU = —Py + Vyy —d®V,  (2.3¢)
W, + aWy + N Udg + 0Wy + X' Viy + A" 0iaW = —iaP + Wyy —a®W.  (2.3d)
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The scalings (2.2) are those appropriate to Gortler vortices (see Hall (1982a) for
futher discussion). We note the key features that the streamwise velocity disturbance is
asymptotically larger than the other components and that with these scalings the pressure
term drops out of the streamwise momentum equation (2.3b). Further, viscous effects
are brought into the perturbation equations (2.3) by the choice of spanwise and normal
scalings.

At this stage we consider the spatial inviscid Gortler modes of O(1) wavenumber; in
the context of the viscous equations (2.3) this corresponds to taking the limit G > 1. DHS
showed that for A* = 0, a = O(1) the vortex structure is found by considering expansions

of the forms
U= {uo(x,Y) + G Fuy(e,Y) + .. } exp (G§ / ,Bda:) , (2.4)

together with similar expansions for G~ iV, G- W and G-1P. Substitution of (2.4) in
(2.3) yields the problem for the amplification rate 8

2 52 2 Uyy 2
—-B“u 372 " a‘) vo — g vo| = a“xty vo, (2.5q)
with associated boundary conditions
vo=0 at Y =0, vo— 0 as Y — o0. (2.5b)

DHS observed that the most unstable spatial mode which is a solution of (2.5) may

be written in the form
vo = gexp(—aY), g% = _02_X, (2.5¢)

which is valid for all a. Thus we have the somewhat remarkable result that, so long as @
vanishes at the wall, the fastest growing inviscid mode has growth rate independent of the
basic state.

We are concerned with inclusion of sufficient crossflow in the problem so that the
governing equations (2.5) are altered by this effect. We find that this occurs when A* =
O(G*%) and then we write

W, V,W,P) = {Uo(Y) +...,G Vo(Y) +...,GEWo(Y) + ..., GPo(Y)+...}

X exp (G%/ﬁd:c) ,

(2.6a)



A* = A\G7. (2.6b)

At this stage we concentrate on a purely spatial approach so that on substituting (2.6)

into (2.3) we obtain, in turn,

(BUo + iaWo) + Z—‘}/,‘-’ 0, (2.70)
(Ba +iXaw) Up + ay Vo = 0, (2.75)
(ﬁu + if\am) Vo + xalUp = —%9, (2.7¢)
(83 + iXaw) Wo + Ay Vo = —iaPo. (2.7d)
;From (2.7) we can easily show that
(=ipa + Xao) <%2§,K§ - aZVO) — (=ipn+ 3aw) (=iBuyy + Xawyy ) Vo = a®xuay Vo.

(2.8a)

The above equation then controls the inviscid growth of vortices in a weakly three-

dimensional boundary layer; it is of course the appropriate generalisation due to wall
curvature of the well-known Rayleigh equation for unidirectional flows.

Equation (2.8a) needs to be solved subject to suitable boundary conditions. Firstly,

we demand the typical inviscid condition at the surface of the cylinder y = 0 so that
Vo=0 at Y =0. (2.8b)
In addition, to ensure that the disturbance is confined within the boundary layer,
Vo —0 as Y — o0. (2.8¢)

These boundary conditions, when added to (2.8a), constitute an eigenproblem for the
spatial growth rate § in terms of the scaled wavenumber a and the scaled crossflow X.
We notice that since this problem is a localised one about some point ¢ = z, we may
scale the curvature parameter x out of the problem by appropriately redefining 3 and X
Comnsequently, for the remainder of the work described here we shall take x = 1.

To fix our ideas upon some definite boundary layer flow we chose to consider (2.8)

when 7 is given by the Falkner—Skan profile
' i L 1 1 2 ! 1
a=r @y i (-()°) =0 s =F =0, Fleo) =1 290
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This flow is closely related to the steady flow in the boundary layer along a surface of
revolution near a forward stagnation point, see Jones & Watson (1963). Cooke (1950)
showed that for a flow over an infinite yawed wedge at zero angle of attack then if the

streamwise basic flow is given by (2.9¢) then the spanwise component w satisfies
m=g: g +fg =0, g(0)=0, g(c0)=1. (2.9b)

The dependences of @ and @ on Y are depicted in Figure (2.1). We observe that the
Blasius profile would not be a suitable choice for @ and w for then we retrieve the scenario
described in Hall (1985). Hall showed that in flows with zero pressure gradient and with @
and @ therefore linearly related the whole problem of Gortler vortices in three—dimensional
boundary layers becomes degenerate and can be reduced to a two-dimensional case. Con-
sequently, we needed to focus our attention on other physically realistic three-dimensional
flows and the choice (2.9) was motivated by these requirements.

Given this basic flow we then solved (2.8) for a variety of parameter regimes. We
firstly considered the effect of increasing the crossflow ) on the vortex growth rate 3, (8,
denotes the real part of the complex number 3). .The results are illustrated in Figure (2.2)
for a selection of X values and we can make some immediate deductions. When X = 0 we
of course return to the case of DHS and $ is given by (2.5¢). However, as X is increased
then for most prescribed wavenumbers a the corresponding growth rate decreases so that
the effect of increasing the crossflow is to stabilise the vortex flow.

For small crossflows X (less than some critical value, say A, = 4.7) we observe that
although the vortex is more stable than in the two-dimensional base flow case, we still
have 8, > 0 so that the vortex remains unstable for all a. Once X reaches the value /=\c
however, Figure (2.2) indicates that there exists a region of wavenumber space in which
vortices can no longer persist; indeed, for A > X, there exist cut—off values a1(}) and ag(})
such that the vortices only exist for ¢ < a1 or a > ag. As ) increases yet further, we
see that a1 decreases and ag increases and in addition the growth rates 3, in the lower
wavenumber regime grow. In Figure (2.3) we have illustrated the dependence of 8, upon
X for those values of a less than a1(A). We can infer from this figure that as A — oo the
value al(i) converges to some non-zero value, say @1, , and this behaviour is explained in
the asymptotic work elucidated shortly.

Figure (2.4) shows the behaviour of the imaginary part of 3, 5;, as the wavenumber «

and the crossflow A vary. We immediately deduce from Figure (2.4a) that, for 0 < A< /=\c,



B; is negative for all @ and becomes increasingly more negative as a — oo. In addition, we
know from the solution (2.5¢) of DHS that 3; = 0 for all @ when we consider a purely two-
dimensional flow (/=\ = 0). For values of X > X, see Figure (2.4b), we find, as previously
mentioned, that the unstable vortex cannot persist in some wavenumber range which
increases in extent as A grows. In Figure (2.4b) this feature is indicated by the gap in
the possible values of 3; for X > X. As ) is increased yet further, see Figure (2.4¢), 5;
becomes progressively more negative for any prescribed wavenumber a and here we have
plotted the dependence B;(a) for a < a1(}).

We turn now to consider various asymptotic solutions of (2.8). Firstly, we study the
case A > 1, a < ay; i.e. the left-hand solution branches in Figures (2.2b), (2.4b) and those

branches sketched in Figures (2.3), (2.4¢). If we write

B = BX + o(X), (2.10a)
and substitute this expansion into (2.8a) we obtain at leading order

(-iBa + an) (fid—zylg -~ a2V0) — (~ipn" + ") Vo = 0. (2.10b)

Since curvature efects are now negligible at zeroth order this is a standard Rayleigh equa-
tion and we now have a connection between our three-dimensional vortex flow and the
work of Gregory, Stuart & Walker (1955) (hereafter referred to as GSW) who were con-
cerned with a description of stationary crossflow vortices formed in the boundary layer
above a rotating disc. This instability is due to the inflectional character of the basic
velocity profile and GSW showed with china-clay techniques that the crossflow instability
took the form of a regularly spaced pattern of spiral vortices which was stationary relative
to the disc. Stuart (in GSW), using inviscid theory, suggested that the instability could be
associated with a particular inflectional profile in which the inflection point coincided with
a point of zero velocity somewhere in the flow. His calculation gave the predicted number
of vortices to be approximately four times the observed value of about 30, but the angle
of 13° between the axes of the vortices and the radius vector was in excellent agreement
with their experiments.

We can appeal to Stuart’s inviscid analysis and note that there is a solution of (2.10b)
with boundary conditions (2.8b, ¢) for which « is real and 8 purely imaginary if there exists

a point ¥ # 0 at which

~

(—ifa(@) + an(¥)) = (=ifa" (7) + a0"(¥)) = 0. (2.11)
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Some numerical work shows that for the basic profiles (2.9) a suitable solution of (2.11)
may be found and then B;/a ~ —0.85. Consequently, we have, recalling (2.10), neutrally
stable crossflow vortex type solutions of (2.8) if A>1,a=0(1) and

~ —0.85. (2.12)

S|

On figure (2.4c) we indicate, for each crossflow parameter considered, those points for which
(2.12) is satisfied. We can conclude that the asymptotic result (2.12) is very accurate for
surprisingly modest values of 3. Once conditions (2.11) & (2.12) are satisified, the Rayleigh
equation (2.10b) has regular singular points at ¥ = 0 and Y = Y and the solution of
this equation with boundary conditions (2.8b) forms an eigenvalue problem for the GSW
wavenumber . We recall that earlier we observed that for X > A, the vortex mode can only
persist for wavenumbers a less than a1(}) and greater than az(}) and that as X — 00, a1
tends to a non-zero constant a1, . It is now easy to see that a1 is the GSW wavenumber
4. We have chosen not to compute the precise value of & here for its value is dependent on
the choice of the basic boundary layer flow and our present purpose is to concentrate on the
underlying description of vortices in three—dimensional flows as opposed to concentrating
on profiles (2.9) in particular. However, from Figure (2.3), we can deduce that for the
basic flow (2.9), a = 1.3.

Thus within the context of inviscid stability theory we now see the relationship between
Gértler and crossflow vortices. For a two-dimensional boundary layer which is centrifugally
unstable the growth rate of the most dangerous mode is given by (2.5¢c), the exact solution
found by DHS. When the crossflow is increased from zero a maximum value of the growth
rate develops at some wavenumber and the growth rate curve to the right of this point
eventually crosses the zero growth rate axis. Thus at a finite value of the crossflow a
finite band of unstable wavenumbers persists to the right of a = 0. At this stage we can
identify this unstable band of modes as crossflow vortices since at even larger crossflows
they reduce to the modes of GSW. At larger values of the wavenumber an unstable band
of modes persists up to @ = oo for all values of the crossflow; it is perhaps appropriate
to think of these modes as the remnants of the Gortler mechanism. However we shall see
below that at high wavenumbers viscous effects become important and that when these
effects are allowed for these remnants vanish completely at large enough crossflows.

Having examined the asymptotic description of modes for which X > 1, a = O(1) we

next consider vortex states at high wavenumbers a. In Figure (2.5) we show the dependence

11



of the eigenvalue 8 of (2.8a) for a range of crossflows in the cases ¢ = 5 and a = 10. We
observe, as already commented upon, that increasing X tends to decrease the growth rate
B and we expect that for each fixed ¢ > 1 there exists a corresponding crossflow value
at which the vortex is completely stabilised by the crossflow. This deduction is consistent
with the results previously illustrated in Figure (2.2) where as the crossflow increases the
wavenumber range over which vortices are unable to persist steadily widens. We can also
conclude from earlier results that for @ > 1 and X not large the vortex flow will remain
unstable for as a —» 00, 8, ~ a? when X = 0 and it is not expected that an O(1) increase
in the scaled crossflow X could result in a reduction in the growth rate by this dramatic
amount. Consequently, we anticipate that near neutral vortices will be described fora > 1,
A1
When a >> 1, following DHS it is deduced from (2.8) that the vortices will be confined
to a thin region of thickness O(a~ 1) adjacent to the cylinder wall y = 0. We therefore find
it convenient to write
¢ = ay, (2.13q)

and suppose that around y = 0 the basic flow velocities have regular Taylor expansions of
the forms

1 1
o= ppa” 1€ + Euma‘zfz +..., W = pga” e + SH22a” 2¢24 .. (2.13b)

When ) is gradually increased we find that the stability characteristics of the vortices
are first altered significantly once X ~ O(a%). If we write X = asd, A = O(1) we are led
to the expansion

ﬁ:i(a%ﬁo+a%ﬁ1+...) , (2.13c¢)

with So and (3, real. If in turn we expand Vg = Vgg + a~ 1V01 + ... and substitute into

(2.8a) we obtain at the leading two orders the relationships

Bou11 + Auar = 0, (2.14a)

and

d2Vyg
de?

[ﬁ1u11€ + : (ﬁomz + ;\uzz) 62] 2 ( - Voo) -
2

. (2.14b)
[ﬂ1u11€ +3 (ﬂoulz + ;\,uzz) 62} [ﬁoulz + :\uzz] Voo = (111)? €Vao,

12



which needs to be solved subject to Voo = 0 at £ =0and as { — o0 (recall that we scaled
x = 1). This problem needs a fully numerical solution but here we merely remark that

this equation has a critical layer structure at the position

£E=-— 20 (2.14¢)

(,31/112 + 5\;122)

and that this structure has to be fully analysed in order that the numerical scheme be
effected. We are presently considering this problem in further work and hope to be able
to report on this in the near future. However the structure outlined above is certainly
consistent with our numerical calculations which suggest the emergence of a critical layer
structure when a approaches the cut-off wavenumber aj.

For the present purposes, we can infer that Gortler vortex states require, at wavenum-
bers a 3> 1, a crossflow of size O(a%) in order to have a significant effect on their stability.
Further, in this case the whole vortex structure is compressed into a thin O(a~1) region
close to the cylinder surface. Of course, in the development of the inviscid equations (2.7)
which describe the vortex we found that for O(1) wavenumber vortices in a crossflow of
size O(G7) (see (2.6b)) the viscous terms are ne.gligible. However, as a — oo the extent
of the structure reduces so that at some stage we expect that the viscous terms become
significant and no longer negligible. Guided by the asymptotic results (2.13) & (2.14),
study of the fundamental equations (2.3) suggest that viscous terms are crucial and so a

new regime is acheived when
a = O(G¥), (2.15a)

and then
_o(e*) ad p=o0(c%). (2.15b, ¢)

>

Recalling the original scalings (2.4), (2.6) we then have a viscous structure in operation for
O(G*+) wavenumber vortices in crossflows of size O(G?+ ) and then the vortices develop on a
streamwise lengthscale of O(G~ %). Intere\stingly, DHS identified the unique most unstable
vortex within a two—dimensional base flow as occuring within this wavenumber band and
developing on this lengthscale.

In this section we have restricted ourselves to calculations pertinent to stationary
vortices. Much of the above analysis can be modified in a straightforward manner to ac-
count for time-dependence of the vortices. However, our objective has been to concéntrate

on understanding the fundamental connections between the inviscid vortex modes and the
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GSW crossflow instability and viscous, high-wavenumber vortex structures. There are nat-
ural non-stationary counterparts of the GSW stationary instability (see Bassom & Gajjar
(1988) for an example) and these will match with time-dependent inviscid vortices in a
manner virtually identical to that described here. Further remarks relating our inviscid
modes to the crossflow instability mechanism will be made in the conclusions. However, we
now move on to examine the salient properties of the high wavenumber viscous structures

suggested by scalings (2.15).
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§3. The viscous modes.

Following the discussion of the solution properties of the principally inviscid modes
considered in the previous section we now examine the effect of crossflow on the stability
of the viscous modes whose scalings are suggested by the asymptotic results (2.15). The
wavenumber of these vortices is predicted to be O (Gj-'), i.e. is that found by DHS for
the most unstable vortex in two-dimensional flow. For no crossflow, DHS showed that
the vortex is then confined to an O(G'%) thick region which lies immediately adjacent
to the cylinder y = 0 and that the spatial growth rate of the instability is O(G%) in the
streamwise direction. We have, from (2.15b), that when the scaled crossflow A\* = O (G%)
(where \* is defined in (2.2a)) it is to be expected that a significant deviation in the
stability characteristics of the flow from those which occur in the zero crossflow case.
Then, following DHS, we write

a = koG¥, (3.1a)

where kg is O(1) and seek disturbances confined to the layer in which ¢ = O(1) where
b = koG¥Y. (3.1b)

Then we consider modes for which the perturbation velocities (U,V,W) and pressure P

take the forms
(U,V,W,P) =
(Vo+ G301 +...,G Vo + GEVL + ..., GiWo + GiWi+.. GiPo+GiPL+...)

X exp [G% fx (Bo(X) + G- ¥Bu(X) +...) dX —iGE /t (0(t) + G- ¥0u() +...) dt]
(3.2a)

and we fix the crossflow parameter at O(G#) so that

L]

A* = AGs. (3.2b)

Here the unknowns Ug, U1, Vo, ..., Po, P1,. .. are functions of ¥ alone.
We substitute (3.1) and (3.2) into (2.3) and compare like powers of the large parameter
G. In this process, we need to expand the basic flow about Y = 0 and so, as in (2.13), we

assume that
1 1
7 = p11(X)Y + Eulz(X)Yz + gu13(X)Y3 + ..., (3.3a)
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w

1 1
p21(X)Y + Em(X)YZ + Euza(X)Y3 ¥, (3.3b)
t=0(Y?), for Y <1. (3.3¢)

(From leading orders in (2.3a) we have

BolUo + tkoWo = 0, (3.4a)
dV; )
6100 + 51Ug + kod—wq + tkoWy = 0, (3.4b)

and similar manipulation for (2.3b) yields

Bor11

+ 2'5\;1,21 =0, (3.50)
ko
d? Qo Pruny i 2] K11
— -1+ - - pi1p22 — p21p12) ¥°| Up = =5 Vo, 3.5b
[ WP TR 2k ) 7z (3.56)
and
d2 i Py ik 2] p11
— - 14 — - H11p22 — p21pu12) Y| Uy — W
[dw WK 2k ) ]
. 0 (3.5¢)
iA 3, Py Bopnry iﬂl] p12¢
= | =7 (H11K23 — Hu21013 + + — Up + —=Vo.

On considering the spanwise momentum equation (2.3d), at leading orders we just
retrieve a trivial combination of (3.4a), (3.5a) and (3.5b). The third order terms imply
that

d? Qo Srpny i\ 2} A2
— -1 - —~ - Wy — V;
[dtbz + ) ) T (H11p22 — p21p12) 9% | W el
i\ 3 Pruigd?  Bauny iﬂl] A2y 1Py
= 11423 — 1211413 + + — Wo + Vo + —.
[euuké (1128 = pz1i13) ¥ 2ka k3 [y k3 %o
(3.6)

Eliminating U1 and W1 between (3.4b), (3.5¢) and (3.6) yields an equation for the leading

pressure term Py of the form

d3vp dVo ( i\ ﬁwu)
Py = ko —ko 11422 — p21p412) + Vo
T o e R

ModVo _fumy &vy __i (B11422 — p21012) p2 2
ko dy k§  d¥  k3un dy
(3.7a)

16



Finally, leading order terms in the remaining momentum equation (2.3c) give that

dPo [ d2 iQ  frpy i 2 XP11Y
—— =kg|l— -1+ - — p11pze — po1p12) ¥ Vo — =—=z—"Uo,
dp 0 ldy? k2 ko k311 ( ) k2
(3.7b)
so that on eliminating Pp between (3.7a,b) and simplifying we obtain
[ d2 " i Sip1iy i ( )¢2} ( d2 1) y
o pe: k3 Y I [11422 — B21H12 002 0 "

~

+ 553%1—1 (n11p22 — p21p12) Vo = —X—%?-Uo-

It is of interest here to note that if we had chosen the crossflow to have been of the
more obviously significant size O(G %) then the quadratic terms in ¢ in the above equations
would be replaced by linear ones. Then (1 can be redefined to remove these terms so that
such a weak crossflow does not have a significant efect on the viscous modes. To summarise
thus far, the leading order vortex quantities Up, Vp satisfy the sixth order system (3.5b),
(3.8). To simplify this pair we introduce the parameters k, 3, U and V defined by

i i

k, B1= x%uflﬁ, Up=p11U and Vo= X%ul'lv. (3.9a — d)

LT

ko = (XU%1)
Further, if we write

A (p11p22 — p12p21)

3

10 and A= , (3.9¢, f)

| ]

2
00=x*u T
2pup1 X

and substitute (3.9) in (3.50) and (3.8), we obtain our final equations to determine U and
V,i.e.

d? i) By idp? d? _ 2. pU
(- a-%-50) Gr-)7+ w75 (3:104)
d? i By i 1%

We need to impose suitable boundary conditions on the solutions of (3.10). First, in
order to ensure that the disturbance is confined to the thin O(G~ t) zone close to the wall
we demand that the perturbation quantities decay exponentially as ¢ — oo. Additionally,

to satisfy the requirement of zero disturbance velocities on thewallyy = 0,0 =V =0
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on ¥ = 0 and the continuity equation (3.4b) further implies that dV /dy = 0 on ¥ = 0.

Hence, in all; our six boundary conditions are

. _dV
U=V=—=0at y=0, (3.11a)
_ _dV
U:V:E—AO as ¢ — oo. (3.11b)

Now (3.10) and (3.11) constitute an eigenproblem to be solved for the scaled vortex fre-
quency ), scaled spatial growth rate 7 and scaled crossflow X\. We note that once the
eigenfunctions U, V are determined we can retrieve the spanwise velocity component of
the vortex by applying (3.4a) and (3.9).

The equations solved by DHS are precisely (3.10) with @ = X = 0. They demonstrated
that for all £ we then have 3 > 0 so that the corresponding vortex flow is unstable. Further,
as k — 0, 3 ~ k% and as k —> 00, 3 ~ E=2. The behaviour as ¥k —» 0 matches with
(2.5¢) which determines the growth rate of O(1) wavenumber vortices in two—dimensional
flow. Since 3 — 0 as both ¥ — 0 and as £ — oo there is a most unstable vortex at
some intermediate value of k which DHS calculated to be £ = 0.476 with corresponding
§ = 0.312. The dependence of 3 upon % as found by DHS is illustrated in Figure (3.1).
Our interest is with non-zero ) and X, but before we consider any specific calculations
we make one observation concerning (3.10). We see that if (2, 3, A) is an eigenvalue set of
(3.10) & (3.11) then so is (—*, 3*, —X) for real crossflows A and where an asterisk denotes
complex conjugate. Evidently we can therefore restrict our attention to postive crossflow
parameters and do so for the remainder of the paper. As a first detailed examination of
(3.10), (3.11) we will study the effect of introducing the crossflow A whilst maintaining a

zero frequency - this case is treated in the forthcoming section.

§4. Solution of (3.10) for the zero frequency case.

We first consider the solution of governing equations (3.10) with associated boundary
conditions (3.11) for the steady vortex problem (2 = 0). Naturally, this problem had to

be tackled numerically and the solution technique used in practice was based on a method
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suggested by Malik, Chuang & Hussaini (1982). In the zero frequency work described in

this section we solved

d2 By iay? d2 2 vU

(W—l‘?‘?’)(m'l)‘”?v:‘?’ (é12)
d? By idp? 14
(f--F-w)o-m (419

by prescribing values for the real scaled wavenumber k and the crossflow X. Then (4.1)
with its associated boundary conditions (3.11) were solved for the complex—valued spatial
growth rate 3. Recalling the definitions (3.2a), (3.9b) we can see that when Re(B) > 0 the
vortex is unstable and, conversely, for Re(B) < 0 the disturbance is stable. As remarked
already we can, without loss of generality, restrict ourselves to considering A > 0.

Malik et. al. (1982) described a boundary value method for solving eigenvalue prob-
lems. In these methods the differential equations to be solved are reduced to a set of linear
algebraic equations using either a finite difference discretisation or a spectral representation
and the eigenvalues are found by solving the characteristic determinant of a generalised
eigenvalue problem. The particular method devised by Malik et. al. uses a fourth order
accurate (Euler-Maclaurin) finite difference scheme with nodal points distributed so as
to resolve any singular layers. These authors used their scheme to examine the temporal
and spatial stability of a three—dimensional compressible boundary layer flow over a swept
wing. For further detials of this numerical method the reader is referred to Malik et. al.
(1982).

To implement the solution procedure for (4.1) we decided to perform a sequence of
runs with a gradually increasing crossflow X and a fixed wavenumber k = % This choice
of k is not significant, and we duly performed further tests at other values of k in order
to ensure that the results were qualitively similar to those we describe here. For zero
crossflow we were, of course, just repeating the calculation of DHS presented in Figure
(3.1) for which J is real and the vortex is unstable for all £ > 0. For non-zero crossflows
the spatial dependence parameter B becomes truly complex and some solutions of (4.1) are
shown in Figure (4.1). Here we have fixed k = é and we observe that as X increases Re(3)
decreases so that the vortex becomes progressively stabilised. When A = 0, g = 0.313
(from DHS) and Re(B) vanishes when A ~ 0.406, at which point Im(B3) =~ —0.91 (see
Figure (4.10)). As the crossflow increases yet further Re(B) becomes negative and hence

we have the situation of a stable vortex flow. The form of behaviour of 3 when k = % is
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typical of that for other wavenumbers and so we may conclude, at least for these stationary
vortices, that the effect of increasing the crossflow is to stabilise the flow,

We then extended our computations by fixing the crossflow parameter A and solving
(4.1) for a selection of wavenumbers k. The results obtained are illustrated in representative
Figures (4.2¢,b). Here we plot the dependence of Re(B) upon k. In Figure (4.2a) we have
fixed A = 0.414, ie. a little larger than the value at which the vortex of wavenumber
k = 0.5 becomes neutrally stable. It is clearly seen that although Re(3) < 0 for k = 0.5,
there is a range of wavenumbers, approximately 0.37 < & < 0.44, over which Re(3) is still
positive. Consequently, at this crossflow value there remains an interval of wavelengths for
which the stationary vortex is unstable. However, from Figure (4.2b) it is plain that when
X is increased further (here X = 0.434) we have Re(f) < 0 for all wavenumbers and hence
when the crossflow becomes this large the flow is completely stabilised. More detailed
calculations showed that this occurs whenever the crossflow is greater than approximately
0.416.

There are two natural asymptotic regimes to investigate within the context of the
present problem. The first deals with the large wavenumber limit ¥ —» co. We do not
address this limit here because it also arises when making large wavenumber studies of the
temporal problem dealt with in section 5. Consequently, we shall focus our attention on
F — oo there. Second is the case of small scaled wavenumber £ — 0. We can develop
a formal asymptotic solution of (4.1), (3.11) in this limit but rather than concentrate on
small wavenumbers for stationary vortices alone we shall consider a slightly wider class
of flows and shall investigate small wavelength vortices with small frequencies. Of course
we can recover the asymptotic solution for stationary vortices without formal difficulty
but also, much more importantly, considering small wavenumber vortices of the type just
described will allow us to tie this analysis in with results for the temporal case in section
5.

§4.1 Solutions of (3.10) for & < 1.

Guided by the eigensolutions of the problem (4.1) for small % it is found that for
k< 1,Q = O(k?) the solution vortex of (3.10) is neutrally stable for a scaled crossflow of

size O(k7). To demonstrate this we suppose that

~Nje
=

Q=Qk*+..., X=Ckr+..., JB=iDit4+ (4.2)
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Here we have assumed that 3 is purely imaginary so that D is real and with the scalings as
in (4.2) the solution structure divides into a number of distinct regions. For the moment
we take £ > 0 as we will subsequently find that a modified asymptotic structure is required
for the case {! < 0.

Close to ¥ = 0 we write
b=Fkr9, V=Vo+..., U=k "Up+.... (4.3)

Substitution of (4.2) & (4.3) into governing equations (3.10) shows that

d2 . d2V
d? .
(29—2 —iQ)—iD§ — iCOz) Uo = Vo. (4.4b)

We expect the disturbance to be largely confined within this O(I_c%) layer and so
we demand that as § — oo the solution decays. Inspection of (4.4) then imposes the
conditions

1 |
Voocb-—i—..., UOO‘E;';'*'--- as 6 — 0. (4.5a)

Additionally, boundary conditions (3.11a) demand that

UO:VD:_dG_ZO at 6 =0. (4.5b)

Now (4.4), (4.5) together form an eigenvalue problem for the O(1) real constants C and D.
Before considering this further, we need to check that the disturbance decays correctly so
as to ensure that the boundary conditions (3.11b) applicable as ¢ — oo are indeed met.

Inspection of (3.10) subject to the scalings (4.2) suggests that when ¢ = O(1) the

velocity components of the vortex behave according to

>

U=k¥0+..., V=k"V+.., (4.6)

using (4.3) and (4.5a). Substitution of (4.6) into (3.10a) yields the equations

2
- 2( d - ) / / =
¥ a2 1) V+2V =0, (4.7q)
and
—icy?U = V. (4.7b)
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To match with (4.5a) requires V o wl as 1 — 0 and the solution of (4.7a) with this
property is
V= EYiK,s(v), (4.8)

where E is some constant and K, (¥) is the modified Bessel function of order v. Solution
(4.8) has the required exponential decay as 9 — oo and so, therefore, U also decays
exponentially (see (4.7b)). Hence we have obtained the complete asymptotic description
of the solutions of (3.10) & (3.11) for neutral modes when k£ < 1, {1 = O(k%), > 0.

Technically, to complete our description of this limit the solution of (4.4), (4.5) is
desired for various values of 2. We have not done this here for this aspect is not within
our principal objectives. The asymptotic work above demonstrates that for k < 1 only
a small scaled crossflow, O(E%) is required to completely stabilise a vortex of positive
frequency O(IE%). This is an exceptionally tiny frequency and so in practice the scaled
frequency parameter ) defined in (4.2) is likely to be large. It can be shown (and details
are available from the authors) that for Q > 1 we have C = O(f1%) and D = O(Q1+) and
this information matches with further asymptotic limits to be discussed in the following
section.

The above describes the asymptotic solution of (3.10) & (3.11) for k¥ < 1 and Q2 small
but positive. We can show however that for negative a completely different structure
must come into play, and in order to illustrate this revised case we will work with stationary
vortices ((2=0) although our analysis may be easily modified to account for N <«1,0<o.

In the stationary case we need to solve (4.1) for k < 1. We write

B=ikif+..., A=Fk35+...,
o I (4.9)
V=VW+..., U=k3Up+...,
in the region where ¢ = O(1). Substituting these expansions in (4.1) yields
L. d? _ . _
—i (By + Sp?) (@7 - 1) Vo + 265V = —p T, (4.100)
—~i (Bv + Ap?) To = To, (4.100)
so that 9/ 20
R . Vo _ < A . _ _
(6o +302) " ( T %) — 23 (5v + 02 % = 4T, (4.10¢)
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which is an eigenproblem for the quantities 3 and A when we impose the inviscid condition
Vo — 0 as p — 0 and demand that Vg — 0 as p — oo. For neutral modes we
need J real and from the numerical work illustrated in Figures (4.1) & (4.2) we saw that
for positive crossflows A in (4.1) the neutrally stable vortices satisfying (4.1) typically had
Im(ﬁ) < 0. Consequently, in terms of (4.9) we anticipate that the eigenvalues 3, A of
(4.10c¢) are such that B <0, x> 0and so (4.10c) has a critical layer structure surrounding
P = —,@/3\ Of course, the critical layer problem (4.10c) is closely related to (2.14b) (in fact
it is just a scaled version of (2.14b)) which governs the large wavenumber inviscid modes
studied in section 2. As discussed there, in order that a numerical solution on (4.10c) be
possible a detailed analysis of the critical layer structure is required and which we will
consider in a future article. However, the pertinent result from this critical layer problem
is that it represents the description of how the neutrally stable vortex modes are affected
as we pass from the parameter regime of section 2 to those considered in this section.
Although the above description is specific to stationary vortices it is easily generalised
to account for disturbances of frequencies Q= O(Eé) and negative. The effect of the non—
zero frequency is to introduce two extra constants into the critical layer equation (4.10c)
but the overall properties of the problem are virtually unaffected. Again inclusion of these
non—zero frequencies provides scope for further discussion of the critical layer problem.
To summarise thus far, we have shown that for small frequencies the effect of increasing
crossflow in the fundamental equations (3.10) with boundary conditions (3.11) is to tend
to stabilise the vortex flow. Interestingly, we have also demonstrated that for small non-
dimensional wavenumbers the structure of the neutrally stable modes is dependent largely
on the sign of the frequency of the modes. For frequencies Q& > 0 the vortex structure is
dictated by the solution of eigenproblem (4.4) whereas for () < 0 we obtain a critical layer
structure which matches with the large wavenumber inviscid modes described by (2.14).
Having studied the low frequency problem we now move on to consider larger frequencies,

indeed we examine the case for which the scaled frequency Q= 0(1).
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§5. The vortex problem (3.10) for O(1) frequencies.

Here we examine the properties of Gértler vortices of wavenumber O(G +) and fre-
quency O(G%) in the presence of crossflow of size O(G%). In this case, of course, the
scaled parameters €2, § and X in (3.10) are all order one quantities. For the purpose of this
section we will concentrate almost exclusively on neutrally stable states for the results of
the previous sections have suggested how the stability of the flow will be altered by chang-
ing particular parameter values which give rise to neutral modes. To solve for neutral
modes we again used the method described in section 4 subject to a few slight changes.
We then specified the O(1) frequency €2 and the wavenumber % in (3.10) and treated these
coupled ordinary differential equations as an eigenproblem for the crossflow parameter \
and the spatial development quantity 3 which was supposed to be purely imaginary. In
this way we ensured that the resulting eigenvalues corresponded to neutrally stable modes.

Some sample results are illustrated in Figures (5.1) — (5.3) where we show the depen-
dence of the crossflow A and the parameter 3 on the scaled wavenumber % for the three
frequencies = 1, 0 and —1. Briefly, we can see that neutral modes appear to be possible
over the complete range of wavenumbers k and that for large k& the crossflow needed to
produce neutrally stable modes is quite small. However, a striking difference between the
neutral modes is observed depending on whether 2 > 0 or £ < 0. In the former case (see
Figure (5.1a)), as K — 0 X tends to an O(1) value whereas in the latter case A — 0 as
k — 0 (Figures (5.2a,5.3a)). A discussion of the asymptotic properties of these two cases
is given later. We note here that on recalling the results of section 4 together with the
zero crossflow calculation of DHS we can infer that for crossflows greater than the neutral
mode values on Figures (5.1a — 5.3a) the corresponding vortex motions are stable whilst
the opposite is true for lesser crossflows.

We can be confident that the results shown in Figures (5.1-5.3) are sufficient to demon-
strate that increasing crossflow again stabilises these non-stationary vortex modes in a
similar way as was described for the stationary case in section 4. As before, there exist
several regimes in which asymptotic description of (3.10) & (3.11) is possible. We first

concentrate on properties of this eigenproblem in the high wavenumber limit, £ > 1.
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85.1 The high-wavenumber (k > 1) limit

In this limit we are concerned with obtaining an asymptotic solution of the system
(3.10), (3.11) for k£ > 1, Q! = O(1). We can initially consider the problem in the context
of neutrally stable modes in the spirit of the calculations just described. It has been seen
that for low wavenumber modes the vortex structure appears to be critically dependent
on the sign of the frequency ) but inspection of Figures (5.1-5.3) suggest that this is
unlikely to be the case for high wavenumber modes and consequently there is no need to
specify ( further than taking it to be of order unity. An idea of the expected structure
can be gleaned by studying Figure (5.4). Here we present the eigenfunctions of (3.10) &
(3.11) when this pair of equations is solved for neutral modes with § = 0 and k ~ 1.35.
Unfortunately, for values of k much larger than this value we found that it was difficult
to obtain satisfactory numerical convergence but the evidence of Figure (5.4) and close
inspection of the governing equations are sufficient in order to strongly suggest that the
disturbance is confined to an O(1) thick region which moves away from ¥ = 0 as k — o0.

If we write

p = ck® + 1, (5.1a)
B=i(BoR>+ Pk~ %+..), (5.10)

and
= )\01::_2-1—}\1]?:_7—{-..., (5.1c)

together with the eigenfunction expansions
O=U+k5th+..., V=EVo+kVit+.., (5.1d)
and substitute (5.1) into (3.10) we find the following. At leading orders we obtain

Bo = —Aoc, (5.2)

and, at next order,

2

d2 e d
[Zﬁ—l+lﬁ0¢—t(ﬂ1c+>\102)] [W—ll Vo = —cUy, 653

[—di —1+ipop —i (Bre+ )\102)] Uo=W
d? '

25



By redefining ¢ = ¢ — ((Brc + Alcz)/ﬁg) we simplify these equations to

d? [ d2
[—A- -1+ iﬁodi] [-f - 1] Vo = —cUy, (5.4a)
dyp? dip?
[ - 14 4008
@'5 -1+ zﬂol,b U(] = VO, (54b)
which need to be solved for real 59 and ¢ subject to the boundary conditions
A% .
Up, Vo, -d_l; — 0, as P — too. (5.5)

The precise solutions of (5.4) & (5.5) are relatively unimportant- the crucial conclusion
we can draw from this asymptotic work is that for an O(1) frequency we only need a very
small O(k~2) crossflow to stabilise modes with wavenumber k > 1. In passing, we notice
that the eigenproblem (5.4) may be used to deduce other results. In particular, we have
the result that the description of the asymptotic problem ¥ — oo is independent of the
order one value of Q:- a result which is in keeping with the numerical evidence presented
earlier. Indeed, the above is valid for all frequencies { = o(k?) so that in particular it is
valid for the high wavenumber limit of the zero frequency work examined in section 4.

We now make some comments about the low wavenumber limit, & — 0.
§5.2 The low wavenumber (k < 1) limit for O > 0

We have already observed that different eigenproperties of (3.10), (3.11) are expected
for k < 1 and that the sign of  is crucial in determining these properties. Consequently,
here we take {) > 0 and examine the case {} < 0 later (the zero frequency case has already
been dealt with). When 2 > 0, ¥ < 1 the eigenfunctions of (3.10) are concentrated in a
thin region near ¢ = 0, see Figure (5.5). In this figure we illustrate the eigenfunctions U,
V for the case @ = 1, £ = 1.3 x 10-2. This suggests seeking a multi-zoned asymptotic
solution structure of (3.10) for ¥ < 1, 8 = O(1), and we now show how this may be
achieved. Initially, we suppose that the crossflow X\ and spatial dependence 5 assume the
forms

(5.6a)

(5.6b)
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and we recall that we are seeking neutral disturbances so that the O(1) constants Ap, A1, .-,
Bo, B1,. .. are real. After experimentation, we can infer that the disturbance is largely
trapped in an O(k%) thick region which is located at a distance O(k%) from ¢ =
Guided by this, when

b = kiyo+ ki, (5.7a)

say, with ¥g = O(1), we need to expand

T=Uk 5+ s4+Us+..., V= Vo + Vik+ + Vak7 + (5.7b)
Substituting (5.6), (5.7) in (3.10) yields that in this region (refer to it as zone I),

0 + Boo + Ao = 0, (5.84)

Bo + 2%oro = Brvo + A1pg = 0. (5.8b,¢)

If we define @ = Batb0 + A2vd — (82/4X0) and write

b1

=

we deduce that within zone I the leading order disturbance quantities Up, Vo satisfy

{—‘ﬁg — it —iod ] —YZ’ + 2ixoVo = —¥olo, (5.9a)
dy dz/)
{—d; —if - onw | Uo = Vo. (5.90)
d

For the disturbance to be effectively confined to zone I we require the solutions to
decay as z,b — » +00. We can show that the potentially most dangerous mode is even in "qb,

and in addition it is easy to prove that

1 ] -
Vo < =, Up —%—5, as || — o0. (5.10)
(U /\mﬁ

In the course of his investigation into Gortler vortices at O(G+) wavenumbers in
three—dimensional boundary layers, Hall (1985) considered the eigenproblem (5.9), (5.10).

He found that the relevant eigenvalues are

= 4.71 and = —3.59. (5.11a,b)

O>:|u| o
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Even though we now have enough information to determine Ao and fo via (5.8a,b) and
(5.11a), we must check that this zone I solution obtained above can be satisfactorily
matched to the requisite boundary conditions (3.11). Since zone T is fixed at a distance

O(E%) from the wall ¢ = 0 it is natural to define a second region, zone /I, by
= k59. (5.12)

By (5.7b) and (5.10), within IT the eigenfunctions must expand according to

V = vok

4., U = upkt +.... (5.13)

-~

Substitution of (5.6), (5.12) & (5.13) into the governing equations (3.10) yields, on appli-
cation of the results (5.8), that

2
2 d“vp
(6 —%o)" —3 — 200 =0, (5.14a)
and
iAo (8 — lﬁg)zuo = —vg. (5.14b)

Strictly, of course, we need to consider the regions 6 < 1 and 8 > g separately, and we

shall concentrate on the former first.
The region 8 < g

We first recall that the boundary conditions (3.11a) need to be satisfied at § = 0
and, guided by result (5.10), we solve (5.14a) subject to the conditions vy — ;1 +...as
6 — o, vo = 0 at 6 = 0. This yields

_ ¥§ — (o — 6)°

Tﬁg (o —8) (5.15a)

o

and, by (5.14b),
i (43 — (o — 8)°] 15
ug = . .
T TN R (o907

We see that (5.15) satisfies only two of ug = vy = 4% = 0 at = 0 and to force the third

condition to be met we now add a viscous layer, zone III, at 8 = 0. If in this layer we
define the O(1) co-ordinate
¢ = k¢, (5.16)



and the expansions
U = gkt +..., V = dok® + ..., (5.17)

aozéoz—?:O at £=0 (5.18(1)
and
3 . 3¢
ug-—»—zﬁ£+ vo——+@-§+..., as & — oo. (5.18b)
0
Substituting (5.16), (5.17) into (3.10) yields
dZ 22 dZ -\ . .
(—— — zﬁ) 4% _ (—— - zQ) fo = do. (5.19)
de? dg? de?

The solutions of (5.19) satisfying (5.18) are

3(1—4) . ﬂ ] 3¢
0= LAV [exp(—(1+z.)£\/-2- -1+ 52

. 3(1—1) } ( 4) i(1—1) 31{
= |F- = :
0 [ 2m¢% €xp 1+ Z)E\/ ¢2Q\/—_ Qg

where m2 = i) and H is chosen so that #0(0) = 0. In this way we have shown that

S

and

£

the solution proposed so far satisfies the required conditions at ¢ = 0. We now need to
reconsider the O(k¥) zone, zone II, where ¢ = %76 and 0 > vg. Here expansions (5 13)
and equations (5.14) again apply but this time we need to solve (5.14) so that vo — 7 +

as § — g and vg — 0 as § —> oco. The required solution is simply

1
vo = , 5.20a
= T %0) (5.200)
and then '
7
ug = ———3- (5.20b)
Mo (6 — o)

To complete the structure we are led to consider a fourth zone, IV, where ¢ = O(1)

and from (5.20) this means that the eigenfunctions have behaviours of the forms

V = dok , U = aok

>l
-l

+. (5.21)
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To match with (5.20) requires 69 — 1%+. ..and 49 — W ... as Y — 0. Substitution
into (3.10) finally gives that

2 A

d“d
‘bzwg — 2+ ¥vHio = 0, (5.22a)
X 10

The solution of (5.22a) with the required algebraic growth as » — 0 together with

exponential decay as ¥y — oo is
B0 o Y3 K5 (), (5.23)

where K, (¢) is the modified Bessel function of order v. Clearly, g also has exponential
decay as ¥y — oo and so we have a complete asymptotic solution of (3.10), (3.11) for
© =0(1), k < 1 and 3 imaginary. The full four zoned structure of this solution is
summarised in Figure (5.6). Returning to (5.8a,b) and (5.11) yields that

Ao = 0.46Q7, o~ 1.470%  and B~ —1.360%. (5.24)

Hence we conclude that for small wavenumber vortices, a crossflow of approximately
0.460% + ... is required to stabilise the flow. We note also that as @ — 0 in (5.24)
our predictions match with the solution of the ¥ < 1, @ = O(k*#) problem described in
section 4.1. Having now obtained the solution structure for £ < 1, 2 > 0 we turn now to

consider the second case, ¥ < 0.

§5.3 The low wavenumber (k < 1) limit for 0 < 0

Having deduced the difference in behaviours of solution properties of (3.10), (3.11)
when k& < 1 depending on the sign of & we now study the case ) < 0. From Figure
(5.2) we conclude that the most fundamental difference between the two cases is that for
! < 0 both 3 and X tend to zero as & —s 0 in order that neutrally stable modes may be
obtained. In order to study the structure here we show the eigenfunctions of the problem
(3.10) when @ = —1 and k = 8.7 x 10-3, see Figure (5.7). Clearly the eigenfunctions
are confined to a thin region centred away from the wall ¥ = 0 and suggests that some

critical layer type structure is operational. This is in agreement with the low frequency
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work of the previous section where we proved that when  is negative a similar critical
layer approach is required, see equations (4.10).
To describe the detailed structure we suppose that across the majority of the flow,

where ¥ = O(1), we write

V=Vot.. U=k

[T

o+ ..., (5.25a)

and suppose that the streamwise dependence parameter (3 and scaled crossflow A take the

forms

11

GoilBokt+..) and  A=(hoRb+..). (5.250)

Substitution in (3.10) yields that Vo satisfies

. . 2 [ 42V, . N /. . . .
(Bow + Aov?) (WQ - Vo> — 250 (Bow + Av?) Vo = vVh. (5.26)

This equation, which is identical to (4.10¢), nceds to be solved subject to Vo=0aty =0
and VO ——+0astyp — oco. As before, thereis a critical layer structure at ¢ = —ﬁAg/S\O which
needs further study before a full numerical solution of (5.26) can be effected. However, we
can draw the general conclusion that for {1 < 0 the crossflow needed to maintain neutrally
stable vortices vanishes as k£ — 0.

In addition to the work on neutral modes described here we have performed a few
calculations for non-neutral modes. In Figure (5.8) we show the effect of crossflow on
the stability of the vortices. We considered the two frequencies & = —1,1 and took the
crossflow parameter X = .1,.2,.3, .4 and, for various wavenumbers k, solved (3.10), (3.11)
for the complex valued (. Figure (5.8) shows the growth rate curves for vortices with the
above crossflow parameters . We can see (as has already been commented upon) that for a
fixed wavelength vortex an increasing crossflow progressively stabilises the flow. Further-
more we see that instability occurs only for a finite range of values of the wavenumber;
and we note that the width of this unstable band decreases as the crossflow increases. We
also note that the flow is more unstable when the imposed frequency is positive. We now

conclude with some further observations and some discussion.
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§6. Conclusions.

In the previous sections we have described the process by which the Gortler vortex
instability mechanism is destroyed by the introduction of a weak crossflow into a centrifu-
gally unstable basic state. We choose to concentrate on the situation when the crossflow
is of size Re~ 7 because that is the crucial size at which the crossflow first has a significant
effect on Gortler vortices. In addition we elect to concentrate on the large Gortler number
limit because that limit describes inviscid Gortler vortices and nonparallel effects can be
accounted for using asymptotic means. We found that at order one wavenumbers the in-
troduction of a crossflow causes the growth rate—wavenumber curve of inviscid theory to
split into two distinct parts. Thus above a critical size of the crossflow a finite band of
unstable modes exists to the right of @ = 0. This band of modes takes on the asymptotic
structure of crossflow vortices when the crossflow is increased further. The growth rates
of these modes increases monotonically with the crossflow parameter and will become for-
mally of order Re? when the crossflow is comparable to the streamwise basic velocity field.
The second branch of unstable modes occurs at progressively higher wavenumbers as the
crossflow increases. The growth rates of these modes at any fixed value of the crossflow
increases like a3 for large a so it would appear at first sight that, at a fixed value of the
crossflow, the viscous modes have the highest growth rates. However this is not the case
since viscous effects, as in DHS, serve so as to stop this monotonic growth of 3 with a. In
the absence of any crossflow the growth rate peaks at wavenumber of size G% and has a
maximui of order Gs. At higher values of a the growth rate tends to zero and the right
hand branch neutral structure of Hall (1982a) is retrieved. In the presence of a crossflow
we showed that the second, semi-infinite band of unstable modes predicted on inviscid
grounds becomes reduced to a finite band at high wavenumbers when the crossflow is for-
mally of order G*. At this stage the growth rates of the crossflow vortices associated with
the modes to the right of @ = 0 have growth rates of size G comparable with those of
the viscous modes. However as the crossflow is increased further the growth rates of the
crossflow vortices increase whilst the viscous modes become stabilized. We further note
that the unstable band of modes which emerge to the right of as connect with the viscous
modes in an inviscid manner; by this we simply mean that their structure is governed by
a critical layer scenario near as.

In Figure (6.1) we have sketched the growth rate-wavenumber dependence determined

above for the three situations: (a) A* ~ G7, (b) A\* ~ G#, (c) A* > G*+. In (a) the crossflow
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is strong enough only to alter the inviscid modes which have growth rate of size G3; the
viscous modes have growth rates of order G % and are not affected by the crossflow. In (b)
both modes have growth rates of order G+ but the inviscid modes are now independent of
the wall curvature at zeroth order; thus the inviscid modes have deformed into crossflow
vortices. The viscous modes at this stage depend on the crossflow and become completely
stabilized at a finite value of A*/G#%. However before this occurs there are two points
at which the growth rate has a local maximum. The relative importance of the maxima
associated with the viscous and inviscid modes switches over as the crossflow increases. In
(c) only the crossflow vortex mode remains and at zeroth order it is independent of the
curvature of the wall.

The question of which of the possible modes discussed above is the most likely to be
observed in an experiment can only be answered by a receptivity calculation of the type
given by DHS for Gortler vortices in two-dimensional boundary layers. In fact the analysis
given in Secion 6 of the latter paper is easily modified to discuss the receptivity problem
for the viscous modes described by (3.10). Since this type of disturbance is concentrated
near the wall then, following the analysis of DHS, it is a relatively simple matter to show
that the ‘coupling’ coefficient associated with a roughness element at the wall is O(1). By
this we simply mean that the streamwise velocity component of a mode stimulated by an
obstacle at the wall is comparable to the fluid velocity induced near the obstacle. However,
as in DHS, the coupling coefficient depends on the vortex wavenumber and, if all modes
are excited, sufficiently far downstream of the obstacle the fastest growing linear mode will
dominate the flowfield. We shall concentrate on the case (b) above since by taking the
appropriate limits in that situation (a) and (c) can be recovered.

We suppose then that the obstacle stimulates disturbances on a spanwise lengthscale
comparable to the boundary layer lengthscale; this means that the inviscid modes satisfying
(2.8a) will be stimulated. We shall now briefly describe how the coupling coefficient for
this type of mode can be derived.

Suppose then that the roughness element defined by
Y = h(X,2), (6.1)

generates a disturbance field governed by (2.3). We assume that there are no oscilla-
tions in the free—stream so that the disturbed flow will be steady. Following DHS it is

straightforward to show that the system (2.3) must now be solved subject to

U= —1yh, V =0, W = —wy A", at Y =0 (6.2)
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instead of U = V = W = 0 at Y = 0. More precisely we note that we must replace
ta by a partial Z derivative in (2.3) unless the X and Z dependences of h are separable.
For simplicity we asume that this is the case so that without loss of generality we can
take h to be function of X alone in the following discussion. However we note that, if
we wish to generate the flowfields in a neighbourhood of the obstacle, the particular Z
dependence of A must be accounted for when inverting the Fourier transform (in Z) of the
disturbance. Here we are merely interested in finding the coupling coefficients associated
with stationary vortices of wavelength comparable with boundary layer lengthscale so it is
sufficient to take h = h(X).

Since the forcing takes place at the wall we must in effect determine how an inviscid
disturbance satisfying (2.8a) adjusts in a viscous wall layer so as to satisfy the correct
boundary condition at the wall. It is easy to see that this layer must be of thickness G- &
so that (6.2) suggests the following expansions for (U,V,W,P) in the wall layer where
Y = Grg,

(U,V,W,P):(U0+...,G%v0+...,G%W0+...,G%P0+...)(1+0(G-%)), (6.3)

The X dependence of the disturbance field is now taken care of using a Laplace transform.

We suppose that h varies on a G7 lengthscale in the X direction. Thus we write

b - { 0, if X < X,
~ LH(G3[X — Xq]), if X > Xo,

and determine the flow induced beyond X = Xg. Thus we now let B be the Laplace
transform variable with respect to the variable G%[X — Xo|. After a little work we can

show that in the wall layer U? and W0 are related by
BUC 4 jaw 0 = 31‘1N§/ Ai(N3q)dg, (6.4a)
q
where A is the transform of H and
N = fpi1 +daps,
whilst Ai is the Airy function. The function V0 is then given by

Vo= —BBN/q (/w Ai(N'5b)db) dq. (6.4b)
0 q
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We see that the above solution has V0 tending to a constant Vog when ¢ — oo so that in

the main part of the boundary layer the appropriate expansions of U,V,W are
(U, V,W) = (G ¥Ug+...,G Vo +...,G"Wo+..) (1+0(c ).

The function Vp is then found to satisfy (2.8a); but the appropriate boundary conditions

for this equation now become
V0=V£, at Y =0, Vo — 0 as Y — o0.

For given values of the transform variables 3 and a this inhomogeneous differential system
for Vj can be solved. However if § = 3 an eigenvalue of (2.8a,b, ¢) then the solution of the

forced problem near 3 must be found by writing

Voo
Voo —2 4., 6.5
=G_h (6:5)

where Voo = AVp. Here Vo is the eigensolution of (2.8a,b,c) with 8 = B. The constant A

may be written as :
R A4 0))
Io M(q)Vo(a)da
Here the function M is obtained by differentiating the left hand side of equation (2.8a)

with respect to 3 and then setting Vo = Vo. Having determined Vp we then see that in
the main part of the boundary layer the disturbed downstream velocity component in B,a

space near 3 = f3 is given by

y o =G ravty (6.6)

It follows that when the Fourier-Laplace transform U(3,a,Y) is inverted then the pole at 3
will lead to exponentially growing eigensoluti.- ,roportional to AG™ }¢#G 3 (X-Xo) Thus
the coupling coefficient for inviscid vortex modes is of order G~ ¥ so that wall roughness is
a more efficient stimulator of the viscous modes which, from DHS, have an O(1) coefficient.
However as the size of the crossflow is increased the growth rates of the inviscid modes
increases to be larger than the viscous growth rates so this slight difference in size of
the coupling coefficients will be irrelevant beyond a critical size for the crossflow and the

observed instability will be a Rayleigh instability rather than a centrifugal one.
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Finally we say a few words about the relevance of the above calculations to practical
flows. In the obvious practical situations where Gértler vortices are thought to be a likely
cause of transition the basic state is three-dimensional. Thus for example there is little
doubt that the flow over a turbine blade is three-dimensional and our results suggest that
it could therefore not support Gortler vortices. On a swept wing the basic state is three—
dimensional and, for order one values of the angle of sweep, we can be confident that Gortler
vortices cannot exist. However though the size of crossflow required to formally destroy
the mechanism is of size Re~ 7 G% which is necessarily small because of the definition of
the Gortler number the numerical constant multiplying this factor will be a function of
the particular basic state. It could well be that for some swept-wing flows the Gortler
mechanism might survive to modest angles of sweep appropriate to practical situations.
Clearly this matter should be the topic of a careful experimental investigation of the Gortler

mechanism in three-dimensional flows.
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Figure (5.6). Schematic diagram of asymptotic structure of the solution of (3.10) &
(3.11) for the case of small vortex wavenumber k <« 1. The solution configuration divides
into four distinct zones: Zone (I) is a thin region of depth O(k%) at a distance O(k }) from
the wall, see definition (5.7a). This zone is embedded within (II), a region of thickness
O(k¥), see (5.12). The structure has an additional thin viscous layer at the wall, Zone
(I1I), which enables boundary conditions (3.11a) to be met. Finally, an outer region (IV)
of depth O(1) facilitates the exponential decay of the disturbance solutions far from the

wall, see (5.21).
67



?

“(a)my (P (4)°8 (0 (2w (@ (g)ed (B 1— =0 ‘g-01x218=1

iLa 5013104 d[qeys Arenynau 10§ (11°¢) % (0T'E) Jo A ‘(2 swonounyuadyy *(L°g) Indid

S9°0 090 GS'0 0S50 S¥'0 O¥0 GSL0 OL0 G20 0Z0 SL'0 OL'0 SO0 oo.m

.VI
ﬁ
ov-
G-
og-
A
0Z-
Si-

0]

Ot

Gl

0¢

cOL*

68



"(A)mr (P {(4)28 (@ ‘(@)wI (4 (2)°¥ (® 'T- =0 ‘¢-0T X L8 =1
s seo1310A d[qeys Aqrexsmou 103 (11°¢) % (0T'E)Jo A ‘N smonpdounyualry *(L°g) NSy
# 690 090 SS0 0SS0 G¥O O¥O GEO 00 G20 020 SIO 0L'0 SO0 oo.ml

._an

-
|
Il
G
l\a
[e 9]
Q
[e]
Il
e
N

69



(a)mr (p(A)E (2 (2)mI (a(2)Pd (¢ " T- =0 ‘e 01X L8=%
@ ilm 53013104 B1qeIS A[TenInau 105 (11°¢) 25 (01°¢) JO A ‘[ swonounyualy -(L'g) 2andrg

G9°0 090 G50 0S80 S¥O O¥0 60 00 SC0 020 SL'0 0OL'0 SO0 oo.w

\_

— O

— |

Ol

SN

(9

cOl=*

70



(A)uI (P ‘(A)ey (@ (2)wI (q (g)ed (8 'T— =7 ‘¢-01 X L'8=1%
s S9OT3I0A 9[qe3S A[reXInau 10} (11°¢) % (01°¢) Jo A ‘p swonodunyualry (L'g) AIN3Ig

® ¢9'0 090 S50 0S0 S¥O O¥0 GS£'0 0£0 GZ0 0C0 SI0 01’0 GO0 oo.ml

—
|
il

(&

b=

o0

o
S

I
1~

©w n <+ ™M «

o N~

<Ol

N

71



oY)

0.30

T

i

0.20

0.15

0.10F

0.056

0.00¢t

Figure (5.8). The growth rates of some unsteady modes of (3.10),a) @ = 1,and b)
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Figure (5.8). The growth rates of some unsteady modes of (3.10),a)
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Figure (6.1) A sketch of the growth rate-wavenumber dependence for the crucial crossflow

scalings.
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