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INTRODUCTION

The research described in this report was performed in conjunction with

the Intelligent Cockpit Aids (ICAT) project conducted by the Vehicle

Operations Branch at NASA Langley Research Center. The goal of this

project is to develop artificial intelligence (AI) techniques and systems to

assist flight crews in the performance of their tasks. Such assistance can

become particularly crucial when malfunctions occur; a significant portion

of the project is accordingly devoted to the development of tools that will

help flight crews cope with system faults.

When an in-flight malfunction occurs, the first priority after stabilizing

the aircraft is to determine the nature of the fault. Much of the prior work

on this project accordingly focused on fault diagnosis. A number of

approaches were taken, including traditional rule-based expert systems,

model-based performance monitoring [Sch], and model-based diagnosis

[Abb]. These systems have achieved a significant level of success, and are

able to supply plausible diagnoses for a wide variety of fault symptoms.

Once the nature of the fault has been established, the flight crew must

determine how to deal with it. This task involves determining the effect

of the malfunction on the aircraft's performance, both momentary and in

the future. The latter determination involves developing a prognosis of

the effects of the fault, including prediction of possible propagation to

other aircraft components. The research described in this report had the

goal of developing AI-based techniques to assist in the development of

such prognoses.

Since the above-mentioned diagnostic dealt quite successfully with the

task of determining the nature of the malfunction, it was possible to

assume, for the purposes of prognosis development, that the output of

diagnostic systems such as DRAPHYS would form the input to our

prognosis-development system. The goal of our project was thus the

automatic construction of answers to the question: what will be the

effects of this fault, and how will it propagate? The following diagram

illustrates this organization; FPS denotes the Fault Propagation System.
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How this question is answered depends on the amount of information

available. The least amount of information that can be available about a

fault is the mere fact that it exists, e.g. "fuel system malfunction". If

only such minimal information is available, only qualitative answers

reflecting component status can be derived. For example, given a

diagnosis of fuel system malfunction, the system can produce the
following prognosis:

propagation from fuel system to combustor

propagation from combustor to turbine_l

etc.

The Draphys system reasons on the basis of such minimal information to

produce diagnoses, but can be run "forward" to produce predictions of
future behavior.

If information about changes in system parameters is available, more

precise qualitative answers can be produced. For example:
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Diagnosis:

fuel system malfunction" decreased fuel flow

Prognosis"

propagation from fuel system to combustor
Effect: burn rate decreased

propagation from combustor to turbine_l
Effect: rotation speed decreased

etc.

This kind of reasoning requires qualitative knowledge of how parameters
that represent component and process measurements affect each other.
The work of Kuipers [Kui] typifies this approach" constraints among
parameters are used to produce qualitative simulations of the system in
question. These constraints may be

arithmetic, e.g. A = B + C

functional: Y = M+[X] (resp. Y = M'[X]) denotes that Y is a monotonically
increasing (resp. decreasing) function of X

derivative: Y = dX/dt

Such qualitative information is frequently available. It is worth noting,
however, that in many real-life situations the relative time scale of
events is crucial. It is necessary, for example, to distinguish between a
tire blowout and a slow leak, since the response to the two situations
differs radically; most current qualitative reasoning systems do not,
however, have adequate facilities for making such distinctions.

In the ideal situation, of course, sufficient information is available to
permit the derivation of quantitative answers such as
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fuel system malfunction has reduced
engine performance by 70%

Impact on thrust: reduced by 80%

Impact on fuel consumption: increased by 15%

Impact on range: reduced by 50%

etc.

The research being reported has focused on reasoning based on
quantitative models, in particular models of continuous systems. It goes
almost without saying that such models have many advantages. After
hundreds of years of development this notation is extremely concise,
powerful and expressive, allowing analysis as well as numeric simulation.
Furthermore, qualitative statements such as "burn rate decreased" may be
minimally useful, in that it is not possible to determine the appropriate
course of action on the basis of such information: divert to alternate
airport? brace for impending crash? Quantitative information is needed to
distinguish between such alternatives.

In defense of qualitative reasoning it must be stated that qualitative
information is often valuable, especially in the context of highly complex
systems where fault ramifications are not obvious. In fact, it is clear that
in an emergency situation the personnel involved will lack the leisure
required to study reams of qn simulation output, and that only qualitative
condensations of the data will be of use. Furthermore, the generally
chaotic nature of failure situations makes it unlikely that precise
information will be available. The automated system must do the best it
can in this context, but no better : producing quantitative data of spurious

precision from imprecise inputs is worse than useless. It is expected that

future work will integrate qualitative reasoning to a greater extent.

In the final analysis, the motivation for persevering in the use of

quantitative model technology even in the absence of precise information
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was the superior ontology offered by system dynamics models,
particularly bond graphs. This ontology is discussed in detail below.

QUANTITATIVE PROGNOSTICATION

Traditional expert system technology is based on rules such as

if symptom a then fault b

if fault x then symptom y

together with inference processes of greater or lesser sophistication that

reason on the basis of these rules. This approach works well for

anticipated faults: those which have been experienced previously either in

the field, in computer simulations, or predicted by human experts. For this

reason a traditional expert system should form the first stage of the

diagnostic/prognostic system in question, performing the function of

dealing with familiar situations.

It is inevitable, however, that there will be a residue of occurrences with

which such an expert system cannot cope, since these occurrences are

either unforeseen, or correspond to novel constellations of familiar faults.

Traditional expert systems are notorious for their graceless degradation

in unforeseen circumstances; a different approach is required. It is clear

that to deal with unforeseen circumstances we need to reason from "first

principles", i.e. from models of the structure and functionality of the

system. DRAPHYS deals with unanticipated faults by employing such

model-based reasoning, and our prognosticator, which we have named FPS,

(Functional Propagation System) follows and extends this approach.
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Models and Model-based Reasoning

We have stated that it is necessary to have a model of the subject system
in order to reason about unanticipated phenomena involving that system. If
we accept the definition "A is a model of B for C if C can use A to obtain

answers about B", the statement is true by definition. Unfortunately this
definition is overly general: a traditional expert system certainly
qualifies, as does flipping a coin. What is required for our purposes is a
formal system whose objects and relationships map onto the real-world
objects and relationships of interest. The objects of interest are the
physical components of the machines and systems undergoing failure; the
relevant relationships include causality, is_a, part_of, among others. Any
model we employ must reflect these objects and relations.

Models of the engineered systems of interest to us, particularly airplane
systems and subsystems, are widely available: the reliability
requirements of aviation are such that it is not feasible to use components
whose operation is poorly understood. "Well-understood" in this context
means that mathematical and/or simulation models of the (sub)system
exist or can be formulated. In addition, it is generally possible to predict
the behavior of composite systems if their components are well
understood. Unfortunately for us, however, mechanical failures produce
systems undreamt of in engineers' imaginings, and it is about such
pathological components that we must reason. Thus the question is:
how do we obtain a model of the faulty system?

An obvious answer is to update the model of the intact system in some

fashion. This may not be possible, however, since the intact model may

not reflect the causal mechanisms involved in the modeled system at all:

it may be no more than a response surface. Models consisting of regression

lines fitted to data derived from the physical system exemplify this
situation.

For our application domain it is usual for models of dynamical physical

systems to be based on differential equations, which reflect at least some

aspects of the physical system. A typical example is provided by linear
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harmonic oscillators such as the mass/spring/damper system:

m'x" + d'x' + k'x = F(t)

Dynamical systems in general can be described by state equations, which
have the canonical form

x' 1 _-F l(x 1,..., x n,u 1,..., u r)

...

x' n = Fn(x 1,..., x n, u 1,..., u r)

The linear harmonic oscillator, for example, can be put in this form by

introducing a new variable u = x'; the equation then becomes

u' = (F(t) - d'u - k'x )/m
X__-U

Later we will discuss methods for systematically deriving canonical-form

state equation sets whose variables have a closer correspondence to the

underlying physical quantities.

Models built from differential equations are based on what may be termed

an adjective-oriented ontology. Ontology, a philosophical term denoting

the nature of being, refers in this context to the basic building blocks
available to the modeler for model construction. It is evident that

components and processes are not explicitly represented in the ontology

underlying state equations. Instead, the equations express constraints

among attributes of components: the massiveness of an object, the

resistivity of a damper, the stiffness of a spring. The components to

which these attributes belong have been abstracted away; the numbers,

types, and interconnections of these components can not, in general, be

recovered from the state equations.

The fact that components are not explicitly represented in an

adjective-oriented ontology can cause problems for fault diagnosis. The

problem that arises is: if a component breaks, how should the model be
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updated? In some cases this is straightforward: spring breakage in the

mass/spring/damper system, for example, is correctly modeled by setting

k to 0 in the equation

m'x" + d'x' + k'x = F(t)

Other faults present greater difficulty. If the damper seizes up, it may be

said that its resistivity has become infinite. Setting d to _, however, does

not yield a valid equation. Even the expedient of using a very large number

for d may not be useful: simulation and analysis are difficult or impossible

with such parameters. As will be evident in the subsequent discussion, the

problem is that the equation has been invalidated by the fault.

In order to obtain a valid model of the faulty system, it is necessary to

know what entities the attributes (parameters) are attributes of, and

what the role of these entities is. Lacking this information, if the

entity/component breaks, we cannot determine what should happen to its

attributes in the equation, or how the equations change.

It should be noted that the concept of role is not easily pinned down.

Among other things, the role of a component has to do with the purpose of

the system of which it is a part, in particular the way it enables the

containing system to perform its role. We clearly have a recursive

definition here, ending only at the top level, where the role of the entire

system is defined in terms of human goals. The role of a wheel of an

automobile, for example, is multiple: the wheel enables propulsion,

heading control, and ground friction minimization. The role of the car in

its entirety, on the other hand, has to do with the human goal of

transportation.

In the present context, the term role refers to the category of building

block a particular entity is in terms of the regnant model ontology. We

thus require an ontology that allows us to categorize components of

physical systems as one of a finite, well-defined set of building blocks,

each of which plays a fixed, well-defined role in the system.
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What Ontology is Appropriate?

We have indicated above that a major motivation for the use of
quantitative models, in particular quantitative models based on state
equations, was the fact that the ontology underlying such models was
superior to the alternatives. In particular, the notational system for
describing dynamical systems provided by bond graphs [R&K] provided

many of the required features: a simple but powerful component-oriented

ontology, the capability for automatic generation of (quantitative) state

equations, and automatic generation of constraint networks that can serve

as basis for qualitative reasoning. Most importantly, however, bond graphs

allow model updates that correctly reflect faults. Since reasoning from

first principles inherently requires a model embodying those principles,

this last capability is crucial.
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DYNAMICALSYSTEMS/BONDGRAPH ONTOLOGY

The world according to bond graphs consists of only a few constituents.
Fundamental concepts are effort and flow, which are generalizations of

- force and velocity, torque and rotational speed

- voltage and current

- pressure and fluid flow

- temperature differential and heat flow

- cause and effect, yin and yang, etc.

Among the unexpected consequences of the bond graph notation is the

duality between effort and flow it brings to light. Intuitively, concepts

such as, say, force and velocity would seem to belong to inherently

different categories; formally, however, they are seen to be

interchangeable.

Given the concepts of effort and flow, the bond graph ontology provides

entities - components - to store, transform, and dissipate these basic

constructs. Generalized capacitances are devices that store effort:

springs store mechanical effort (force), capacitors store electrical effort

(voltage), surge tanks store fluidic effort (pressure), thermos bottles

store thermal effort (heat).

Generalized inductances store flow. Physical masses and moving fluids

store physical flow, i.e. velocity, in the form of momentum; electrical

coils store current. It is interesting to note that there are no thermal
inductances.

Generalized resistances dissipate power. Examples are provided by shock

absorbers, resistors, clogs in pipes, friction, and a multitude of other

devices. It is not difficult to find ways to waste energy.
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An important component category transforms effort into flow and vice
versa. Levers, pulleys, transmissions, transformers, pumps, turbines,
gyrators are examples of devices that perform this function in various
energy domains.

It should be noted that resistances are actually transformers, a fact that
becomes obvious when conservation of energy is considered. Thus
resistors, shock absorbers, and the like perform their function by acting
as transformers that transform one form of energy, such as electrical or
mechanical, into another, which is deemed to exit the system without
interesting interactions. The latter form of energy is typically thermal,
which is transferred (harmlessly, if all goes well) to the environment. The
concept of resistance is thus merely a convenient abbreviation.

Finally, there are effort sources and flow sources. Effort sources impose

an effort on a component; they provide a generalization of motors,

batteries, generators, pumps, and similar devices.

Flow sources, as the name indicates, impose a flow. This is a far less

intuitive notion than that of effort source, since ostensibly instantaneous

imposition of a given flow requires infinite energy. Flow sources are in

fact a convenient fiction: we treat something as a flow source if the

amount of effort it supplies is essentially infinite with respect to the

object to which it is applied. Thus the road imposes a flow on a car wheel;

a large engine driving a small auxiliary pump imposes a flow on whatever

is being pumped, etc. The concept of flow source did not originate with

bond graphs; current sources, for example, are a familiar concept of

electrical engineering. As regards bond graphs, however, an important

consequence of admitting flow sources is the duality that is thereby
produced between effort and flow results.

And that's all! Or almost all. A small number of auxiliary (albeit

important) concepts exist, such as signals and modulated transformers. By

and large, however, the constructs presented above comprise a complete

listing of the bond graph ontology. To recapitulate: the effectiveness of

bond graphs for our application arises from the following sources:
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1. The ontology is quantitative but still noun-oriented. That is, it is
possible to algorithmically transform bond graphs into sets of state
equations, or if desired, block diagrams or signal flow graphs (or their
close relatives, Kuipers diagrams). All of these forms, however, are
adjective-oriented: they consist of sets of constraints holding among
attributes of entities that have been abstracted away. If we are to reason,
however, about the effects that malfuncting entities will produce, we
need to remember at least what these entities are, and what attributes
referenced in the constraint sets go with which entities.

2. The ontology provides a very small set of primitives: the number of
constructs involved is approximately ten. Alternate device-oriented
ontologies do exist; [deK], for example, refers to devices, conduits, and
"stuffs" transformed and transported by these. The number of device and
stuff types, however, appears to be unlimited. If the building blocks to be
used can be invented ad hoc, systematic model construction and processing
becomes extremely difficult.

Constitutive Relations

For each component, an effort:flow relationship, called the constitutive

relation, exists that describes the operation of the component. For

electrical resistances, for example, we have the familiar equation

V=i'R

while mechanical dampers can often be approximated by F = d'x'.

The general form of resistance constitutive relations is

effort = fR(flow)

i.e. effort is a function of how much flow there is at the present moment.

A similarly general relation governs capacitances. Thus, the formula for an

electrical capacitor is
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A spring is
have

Vcapacito r = 1/C fq dt

an example of a mechanical capacitance; by Hooke's Law we

k'x -- kj'velocity'dtFspring =

The general form of the capacitance constitutive relation is

effort -- fc(.rflow dt)

i.e. effort is a function of how much flow has accumulated.

The general constitutive relation for inductances is

flow = fl(J'effort dt)

i.e. flow is a function of how much effort has accumulated. Examples are

provided by the relations

q = lambda'.rVdt

for electrical current, and

velocity = 1/m j'Force dt

for mechanical motion.

Bond graphs are a graphical device for representing this ontology. They

express what components are present, and how power flows among these

components.

The concept of power in this context is used more loosely than is the case

in traditional physics. The formal definition, of course is"

power = effort * flow
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For our purposes, however, the notion of power is often treated less
formally. The system under consideration is deemed to contain a variety
of types of effort, effort being the activating principle whose resulting
activation is termed flow. Thus each component responds to an effort that
is imposed on it by manifesting a characteristic kind of flow. Duality
considerations require that there also be devices that respond to flow
with effort, although strictly speaking this aspect of the modeling process
is a convenient fiction.

Dealing with power flow rather than "effort and flow" flow simplifies the
modeling process. The effort imposed on a component, and the resulting
flow, are bundled into a single graphic element that facilitates the
specification of effort and flow sources, destinations, and constraining
relationships among them. Furthermore, junctions permit the concise
specification of what parts of the system share a common effort,
respectively a common flow.

Graphical Constituents of Bond Graphs

Bond graphs consist of nodes corresponding to system components,
junctions specifying common effort and common flow constraints, and
arcs connecting these elements. These arcs, called bonds , are a graphical

device denoting power flow among components.

Example: A circuit consisting of an effort (voltage) source and a

resistance.

" t e
E T R S E f •

R

The resulting bond graph consists of two nodes corresponding to the

voltage source and resistor components, and a bond connecting the two.
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The hook on the bond indicates the direction of power flow. Effort and flow
variables are associated with the bond; the relation

power = e*f

always holds.

Since bonds are the basic constituent of bond graphs, it is useful to
examine their meaning more closely. The graphic representation of a bond
makes it appear as if some sort of substance were flowing between the
constituents it connects, but this is not usually the case. Instead, the
meaning of a bond between two constituents is that one of the components
is imposing an effort on the other, which is responding with flow. The
relationship between the imposed effort and the resulting flow is given by
the constitutive relation. Furthermore, the causal stroke (see below)
indicates which of the components is imposing the force, and which is
responding with flow. It is, however, an error to assume that this flow is
the flow of some substance from one of the constituents to the other.
Thus, a car's engine imposes an effort on the car, which reponds with flow
(motion); in no sense, however, is this motion flowing back from the car to
the motor.

This raises the question of how the actual flows of materials are
represented in a bond graph, if not by bonds. The answer is that such flows
have been abstracted away and thus are not represented, and that a single

bond graph can be the representation of a wide variety of systems. What is

represented is what constituents are imposing efforts and flows on each

other, and (by means of junctions ) which elements are subject to
identical efforts and flows.

Causality

One of the most important properties of bond graphs is their ability to

specify and express causality. Consider the following graph fragment:

e _N 2N1 f
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The vertical bar at the end of the bond is called a causal stroke, and

denotes that component N 1 imposes an effort e on component N 2, which

reponds with flow f. In other words, N 2 is a component that inputs effort

and outputs flow, while N 1 outputs effort and inputs flow.

We have indicated above the formal duality that exists between effort and

flow. Intuitively, however, application of effort to an entity causes it to

respond with flow, and thus in the intuitive sense the causality specified

by causal strokes is clear: components that output effort act on

components that input effort. The resulting flow may act to modulate the

magnitude of the effort, but it is difficult to conceive of flow causing

effort. The bond graph thus specifies the causality inherent in the

modeled system in an explicit and unambiguous manner.

Junctions

Junctions have the function of expressing constraints among multiple

components. As stated, the bonds in a bond graph express the flow of

power rather than material, and thus do not specify matters such as serial

or parallel connectivity in electrical or hydraulic circuits, or physical

connections in mechanical systems. Rather, such connectivity is expressed

in terms of junctions, which specify the following constraints:
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O-junction:

common effort

flows sum to 0

e f2
e1,,O e3_

fl f3

l-junction:

common flow

efforts sum to 0

e2 f2

el ,, e3_

fl f3

eL f4

e I = e2 = e3

f l- f2 - f3 = 0

f l = f2 = f3 = f4

e2 + e4 - e I - e3 = 0

While the examples show junctions formed of three and four bonds,

arbitrarily many more bonds may impinge on junctions. Regardless of the

number of bonds, 0-junctions stipulate that all attached bonds share the

identical level of effort and that the flows must sum to 0 (incoming flows

have positive signs, outgoing ones are negative), while 1-junctions

stipulate analogous constraints with the roles of effort and flow reversed.

It is evident that 0-junctions capture the essence of parallel connectivity

of components in electrical or hydraulic circuits: such components are

necessarily subject to identical effort (pressure or voltage). 1-junctions

abstract serial connections: components connected in series clearly will

have the same current flowing through each. In the mechanical realm

1-junctions are used to specify that a set of components is constrained to

move at the same speed, i.e. that the components are physically coupled

together.

Nodes

Nodes occurring in bond graphs represent components, or rather the bond

graph category of components: capacitances, inductances, etc. The number

of bonds impinging on a node is determined by the node category.

Capacitances, inductances, resistances, and effort and flow sources have
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exactly one bond associated with them; for this reason they are called
one-ports. Entities such as transformers have two associated bonds, and

are, naturally enough, termed two-ports.

The idea of categorizing an entity such as an electrical capacitor as a

one-port may seem counterintuitive; after all, capacitors have two wires

attached to them. This apparent discrepancy disappears when it is recalled

once again that bonds are not conduits carrying flows of material such as

electrons, but are abstractions denoting power flow. Power either flows

into or out of the capacitor, depending on whether it is charging or

discharging. By no means, however, can power be deemed to flow in by one

lead and out by the other.

As stated above, each component has associated with it a constitutive

relation that specifies how the efforts and flows on the bonds associated

with the component are related. In the case of an electrical resistance, for

example, effort V and flow i are related by the familiar V = iR. In fact, as

we shall see, the form of a constitutive relation determines the node

category just as uniquely as the node category determines the constitutive
relation.

We will tie these concepts together by means of an example. Consider the
following electrical circuit:

a b c

We need to express the following facts:
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(1) power flows out of voltage source Se and into C and R

(2) voltages ea = eb = ec

Our first attempt might be"
R

Se/ 
C

This expresses (1) but not (2). We recall that 0-junctions stipulate

equal-effort constraints, which in arise from parallel connectivity of

components. The following bond graph expresses the necessary"

C

el fb e = e a = e b = e c

Se e "-0 e',R
fa fc fa = fb + fc

As indicated, the structure of bond graphs expresses constraints among

their constituent elements. Conversely, the constraints to be expressed

provide extensive guidance in the construction of bond graphs. The

following example, involving the construction of a bond graph for the

well-known mass/spring/damper system, clarifies this idea.
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mass/spring/damper system

physical hookup conceptual hookup

Fin

S

d (----- Fin

It is evident that the following elements are

represented:

C (spring s)

present and must be

Se I (mass m)

R (damper d)

The constraints are: velocity fs of input to spring = velocity fd

damper = velocity fm of mass

A 1-junction is appropriate for expressing common flow:

oe,'lf
""1

f f

f = fin = fs = fd = fm

of input to

Joining the nodes with these bonds produces
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SG_

C (spring s)

es1 fs

ein" 1 ern_ I (massm)

fin ] fmed fd

R (damper d)

Figure 1

fin = fs = fd = fm

ein- es- ed- em = 0

BOND GRAPH-BASED REASONING

Given that we have produced a bond graph model of the system of interest,
what can we do with it? As indicated in the preceding section, a bond

graph determines a set of constraint equations corresponding to the

constraints expressed by the graph's junctions and constitutive relations.

Thus, the bond graph of Figure 1 determines the equation set

1. ein - e m - e s - e d = 0 (* from the 1-junction *)

2. fin -- fm = fs = fd

3. ein = Ee(t)

4. e d = (t)d(fd)

5. e s -- (I)s(J'fsdt)

*)
6. fm = (I)m(J'emdt)

*)

(* from the 1-junction *)

(* Ee describes the voltage supplied by Se *)

(* (1)d is the constitutive relation for the resistance *)

(* (I) s is the constitutive relation for the capacitance

(* (I) m is the constitutive relation for the inductance

Equations (5) and (6) can also be put in derivative form:

5'. e' s = rs(f s)

6'. f'm = rm(em)
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Equations 1-4, 5', 6' are stated in terms that are immediately translatable
to the QSIM paradigm of [Kui], thus establishing the feasibility of
qualitative reasoning and qualitative simulation on the basis of bond
graphs. This theme will be developed further in a subsequent paper; in the
present report we will report on methods of reasoning on the basis of the
state equations that can be derived automatically from any bond graph.

Derivation of State Equations

Bond graphs represent dynamical systems, which can be
state equations having the canonical form

x' 1 =F l(x 1,...,x n,u 1,..., ur)

x' n ___Fn(x 1,..., xn, u1,..., ur)

described by

where the xi are state variables, and the ui are input variables. We will

sketch the procedure for transforming bond graphs into state equations;
details are contained in [R&K].

Sketch of Transformation Procedure

Each inductance has a generalized momentum p associated with it, which
is the accumulation (mathematically: the integral) over time of the effort
that has acted on it:

p = J'edt

The constitutive relation for the inductance will have the form

f -- fI(P) = fl (j'e dt)

E.g. for a mass we have effort F = ma = mv' = p' = dp/dt, so flow v is
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v = j'v'dt = (1/m)'j'p'dt = p/m = fl(P)

Similarly, each capacitance has a generalized displacement q associated

with it, which is the integral of the flow to which it has been subjected

over time:

q = .rf dt

The constitutive relation for the capacitance will have the form

e = .fc(q) = fC (j'f dt)

For a spring operating under Hooke's Law, for example, we have, for

effort F,

F = k J'x'dt = kx = kq = fc(q)

x' is, of course flow, whereas x is displacement q.

The state equations will contain these p's and q's as state variables, while

the E(t) and F(t) associated with effort and flow sources become input

variables. The systematic procedure for deriving canonical-form state

equations in p, p', q, q' from bond graph junction constraints and device

constitutive laws is described in [R&K]; the following example gives the

flavor of the process.

Example:

For the mass/spring/damper system we have these equations:

From the bond graph junctions:

ein--em + es+ ed fin =fm =fs =fd

The constitutive laws of the devices involved are:
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R:e d =dfd C: es_-kj'fs I" fm = (1/m)j'e m dt

Also, by definition of displacement and momentum,

q = displacement = .l'fsdt , so q' = fs, and e s = k q

and p -- momentum ---J'emdt, so p' = e m

Using ein = e m + e s + e d and the constitutive laws, we have

E(t) = p' + k q + d p/m

and since q' - fs --fm = p/m, we obtain the state equations

p' =-kq-d p/m + E(t)

q' = p/m
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REASONING ABOUT MALFUNCTIONS

We have emphasized above that bond graphs provide a noun-oriented (or, in
programming parlance, object-oriented) ontology. This orientation yields a
major advantage: in a gratifying number of situations, bond graph models
can be updated in a systematic manner to reflect malfunctions In the
subsequent discussion we explore what the consequences for the bond
graph model are when objects of the modeled system break.

Updating Bond Graph Models to Reflect Malfunctions

Since bond graphs are object-oriented, certain components of the physical

system may correspond directly to entities in bond graph model. Thus, a

generator would play the role of an effort source, while a rivet would

enforce common flow, i.e. act as a 1-junction. A turbine is a transformer,

a dashpot is a resistance, as is an electrical resistor, as is friction, etc.

Those components that do not correspond directly to a bond graph entity

will be a component part of such an entity. In the extreme, the component

must be a part of the system as a whole, which is modeled by the entire
bond graph.

Suppose, then, that a malfunction in component X occurs. The following
procedure is used to update the bond graph model.
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Step 1:

X either corresponds to a bond graph constituent C,
or

X part_of Y ... pa__of Z,

where Z corresponds to a bond graph constituent C.

Update the bond graph to reflect the failure of C.

Step 2. Generate new state equations from updated bond graph

Step 3. Prognosticate on basis of updated model

Updating the bond graph to properly reflect a malfunction is a

knowledge-based operation: resistors do not fail in the same way as shock

absorbers, etc. We have found, however, that in a great majority of cases

the malfunction can be modeled by clamping an effort or flow to 0. This

observation becomes plausible when we consider what most malfunctions

entail: either something that is supposed to move (flow) stops moving, or

something that is supposed to be exerting force (effort) on something else

stops doing so. The following example illustrates this point.

Example of Malfunction Processing

Consider this mechanical system:

S

Fin
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where s is a spring, m a mass, d a resistance, and Fin (t) is the input force.

This system has the bond graph

Sf

C R

e2If2=q ' e4If4e5 =p,

el \_) e3 ", I "I

fl f3 f5

F(t)

Deriving the system's state equations yields:

q' = F(t) - p/I

p' = q/C- R'p/I

Now suppose that the dashpot breaks. Draphys examines the symptoms and

produces a diagnosis: malfunction in component D-4162AK3. Accessing the

component database produces a variety of useful information, including

the fact that the component type is dashpot, and that such a component

corresponds directly to a resistive element (element "R") in the bond

graph.

The database also contains possible failure modes for dashpots of

D-4162AK3's type. These are:

seize-up : movement stops (flow clamped at 0)

breakage: force transmission stops (effort clamped at 0)

fluid leakage : complex failed behavior

Generally each failure mode of a component will produce a distinctive set

of symptoms; if this is not the case, alternate possibilities must be

explored. For our example we will examine the case where the dashpot has

seized up.
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A seized-up damper has effectively infinite resistance; if the forces on it
do not lead to breakage, all movement of the damper shaft ceases.

In terms of the equations of the traditional dynamical systems model,
deKleer's confluences [deK], or the processes of Qualitative Process Theory
[For], it is not obvious what happens to the intact system as resistance
R-> o_. In terms of the bond graph model, however, we can reason as
follows:

flow f4 through R becomes 0. Thus:

f4 = f5 = f3 = 0, and so

e4-f 4 = 0 (* power to resistor R *)

e5"f 5 -- 0 (* power to inductor I *)

e3"f 3 -- 0 (* power to the I/R serial system *)

Bonds denote power flow, so no power flow between nodes means that no
bond exists between these nodes. It is thus evident that the appropriate
model update to reflect the damper seize-up is to erase the bonds whose
power flow is 0, rather than modifying the constitutive law of the
resistance. This insight is a major contribution of the bond graph ontology;
the traditional means for reflecting malfunctions has been to relax the
constraints imposed by the constitutive relations defining the faulty
component.

With these bonds gone, the system becomes
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C R

el e21f2 = q,

Sf "0 I
fl

F(t)

Two-port junctions can be eliminated (see [R&K] for details), producing:

ei,2

Sf fi,2= q' =F(t) "C

Since F(t) -- fl --f2 = q', the updated model has state equation

q'= F(t)

This is intuitively plausible, since with the dashpot immobilized, all that

remains of the system is the flow source driving the capacitance (spring).

Reasoning with Bond Graph Models

A more precise definition of the concept of model than was given above is

in order. For our purposes a model consists of:

• a set of variables

• a domain over which the variables range, and

• a set of constraints on the variables.

In the fully general case, the constraints are simply theories in the

predicate calculus; in practice, however, specialized vocabularies and

notations are the rule. Bond graphs, for example, are specified in terms of

a domain of nodes, plus constraints that specify bond connectivity among
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nodes, the ontological types and constitutive relations associated with the
nodes, causality and power flow, and similar information. Bond graph
models can be transformed systematically into state equation models, in
which the domain is Euclidean n-space, and the constraints take the form
of a set of equations.

The preceding definition of models was included to permit a clear
distinction between the model itself, and the techniques available for
extracting information from the model. For the case of linear state
equations, for example, we distinguish between the model, which consists

of the equation set, and the information extraction techniques, usually

termed Dynamical Systems Theory, and including techniques such as

Laplace Transforms, vector and matrix analysis, and a multitude of similar
tools.

Research performed subsequent to the work being reported here has led to

a number of techniques for extracting information from bond graphs. These

have largely involved transforming bond graphs into qualitative models,

particularly Kuipers models, and reasoning on the basis of the transformed

system by means reported in the qualitative physics literature. The

present report has concerned itself chiefly with model update techniques,

and with methods for performing quantitative reasoning on the basis of

bond graphs.

We have seen that bond graphs can be systematically transformed into

systems of state equations in canonical form, and that bond graphs

facilitate modification to reflect system malfunctions. The updated model

will again be a bond graph, and thus we can obtain state equations

representing the faulty system. Work to date on quantitative reasoning

with bond graphs has focused on quantitative reasoning on the basis of

state equations.

What kinds of quantitative reasoning can be performed using a state

equation representation? This is tantamount to asking what the results of

dynamical systems theory are, and admits no concise answer. A more

appropriate question is: what kinds of quantitative techniques can be
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applied to state equation sets to produce information useful to flight
crews?

Two categories of information present themselves immediately:

1: given that the fault has been diagnosed and the model updated to reflect
it , how will it propagate? and

2: how will the behavior of the aircraft (sub)system be affected?

As it happens, quantitative reasoning is better suited for the second
category of question, while qualitative reasoning is appropriate for the
first. This is true because functional propagation is an ill-specified
phenomenon for which accurate models generally are unavailable, since
propagation is often caused by components being driven beyond their
design specifications by upstream fault occurrences. In most cases,
however, the data and theory required to model component behavior
precisely is available only for the component's design enelope. An example
is provided by the flight envelope specifications for an aircraft. This
specification may stipulate that the aircraft can sustain a "g" loading of 6
g's, with a safety margin of 1.5. The pilot would be ill-advised, however,
to assume on this basis that he can safely impose a load of 8.9, but that
the aircraft will disintegrate at 9 g. Behavior at design envelope edges
typically becomes chaotic, both in the colloquial and mathematical sense.
(This is true essentially by definition: the envelope is usually drawn where
chaotic behavior begins.)

The upshot of these considerations is that component failure propagation
can not generally be predicted with quantitative precision, and that this is
an appropriate arena for qualitative techniques. A very general and
abstract approach is to extend the techniques incorporated in Draphys to
extend the propagation simulation beyond the present time point. This has
been accomplished, and is implemented in a PC-based prototype.

Predicting the behavior of the faulted system, given the updated model, is
far more appropriate for quantitative techniques. The most obvious
information extraction technique is to perform a simulation by numeric
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solution of the state (differential) equations. While a flight crew in an
emergency situation will not usually have the time required for leisurely
perusal of reams of simulation results, a user-friendly graphics-based
interface can yield a comprehensible preview of system behavior. It is
interesting to note that the information sought from even quantitative
models is nonetheless qualitative in many respects; "will g loads reach
dangerous levels?" is a typical formulation. An interface that can produce
qualitative answers from quantitative data is thus an indispensable
adjunct to the simulation.

A wide variety of analytical techniques are relevant as well to extracting
qualitative information from state equation models. A detailed exposition
of these may be found in [P&L]; we will present an example based on the
use of Jacobians to determine the effect of changes in parameters on the
equilibrium behavior of the system. The relevance of this technique is
based on the fact that the parameters involved are quantities that were
designed to remain constant, but may undergo changes induced by faults.

Analysis of Parameter Change Effects

Consider the system of state equations

X'l = fl(Xl, ---, Xn, Cl, "-',Cn)

X'n = fn( xl, "", Xn, Cl , "-',Cn)

where the ci denote any parameters occurring in the equations besides the

x i variables such as coefficients and input variables. We pose the query:

if cj increases, what happens to the equilibrium level of xi?

Assuming our set of state equations is linear:
The formula
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_xil_cj =

a11 --- ali-1 -_fl/_Cj ali+1---aln

anl ---ani-1 -_fnl_cj ani+1 ann

a11 ---aln

anl --- ann

serves to determine such relationships [P&L].

We will illustrate a typical qn-model-based reasoning technique in light

of an example: a physical system consisting of a servomechanism

constructed from an electrohydraulic valve, which supplies pressure

proportional to a control voltage. This hydraulic pressure P is applied to a

ram of area S which moves a mass m represented by a spring constant k

and a damper (friction) of constant b [R&K, p. 420].

I

hy drauli¢ P
valYe

e

b

By applying techniques detailed in [R&K] we obtain the bond graph model

of this system:
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I:m

S e p TF T

G Q S T

R:b

This bond graph yields he following equations:

q' = p/m

p' -- Ge/S- kq- p b/m

What is the effect of a change in the gain G on displacement q at

equilibrium? We have:

aql_G = = el(S'k)

I/m 0

-b/m -elS

ol-b/m -k

Transformer and damper constants S and k are necessarily > 0; therefore q

varies directly with G.

Superficially these conclusions appear identical to the sort of information

that could be extracted from a qualitative model, particularly a Kuipers

model. In fact, however, significant differences exist. Thus, the monotonic

relationships given above refer to steady-state behavior rather than

direct, presumably transient, influences of one variable on another. In

most cases it is steady-state behavior that is of interest, which is

difficult to determine from qualitative models.

In addition, the above relationships are clearly quantitative. Thus, if G
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changes by p%, q will change by p*e/(S*k)%.

Many more qualitative answers can be derived from quantitative (state
equation) models, including oscillation and long-term behavior. For the
sake of uniformity we rewrite the hydraulic system equations as:

q'= 0*q + (1/m)*p + 0*e(t)

p'= k*q- (b/m)*p + (G/S)*e(t)

Applying the Laplace transform, we obtain transformed equations

sQ(s) -q(0) -- 0*Q(s) + (1/m)*P(s) + 0*E(s) and
sP(S) - p(0) = -k*Q(s) - (b/m)*P(s) + (G/S)*E(s)

Solving for Q(s) and P(s), we obtain

q(o) -1/m

p(0) + (G/S)E(s) s + b/m
Q(s)= =

s -1/m

-k s + b/m

q(0)(s + b/m) + (1/m)(p(0) + (G/S)E(s))

s2 + (b/m)s + k/m
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S

-k q(O) Ip(O) + (GIS)E(s)
P(s) =

s -I/m I-k s + b/m

s(p(O) + (GIS)E(s)) + k*q(O)

s 2 + (b/m)s + k/m

The roots of the characteristic polynomial s2 + (b/m)s + k/m are

S "-

-blm + ,/(b/m) 2 - 4(klm)

2

If the discriminant (b/m) 2 - 4(k/m) is positive, the roots are real and the

system will not oscillate. If it is negative, the system will undergo
damped oscillations [R&K, Ch. 5].

To determine long-term steady-state behavior, we use the Final Value

Theorem of the Laplace transform. Thus we have

q(t -> o_) = lim s ->o sQ(s) = (G/k*S)*lim s .>oSE(s)

p(t -> oo) = lim s ->o sP(s) = m*G/(k*S)* lim s ->o s2*E(s)

If e(t) = constant e, then E(s) = e/s, so

q(t-> =) = (G/S)*lim s _>oS*e/s = Ge/(k*S), and

s2*e/s = 0p(t-> ,_) = m*G/(k*S)* lira s ->o

Thus for constant e, the block moves to a fixed location and stops.
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CONCLUSION

The work described in this report has addressed the problem of
determining the behavior of physical systems subsequent to the
occurrence of malfunctions. It was established that while it was

reasonable to assume that the most important fault behavior modes of
primitive components and simple subsystems could known and predicted,
interactions within composite systems reached levels of complexity that
precluded the use of traditional rule-based expert system techniques.
Reasoning from first principles, i.e. on the basis of causal models of the
physical system, was required.

The first question that arises is, of course, how the causal information
required for such reasoning should be represented. While the work on
qualitative physics exemplified by the papers in [QR] represents an
obvious starting point, it soon became apparent that the modeling
techniques set forth there were not well suited to the requirements of
representing malfunctions of components in cOntinuous physical systems.
Models based on [deK] and [Kui], like traditional equation-based
quantitative models, consist of sets of constraints among attributes of
entities that have been abstracted away. It is clearly difficult to update a
model to reflect the failure of entities that are not represented in the
model. Forbus' QP models, on the other hand, do explicitly reference
physical entities in their Individuals and Preconditions sections; these

representations, however, are too haphazard and unsystematic to make it

clear what new entities, propagation paths, and processes come into being
when a malfunction occurs.

The bond graphs presented in this report occupy a position intermediate

between qualitative and quantitative models, allowing the automatic

derivation of Kuipers-like qualitative constraint models as well as state

equations. Their most salient feature, however, is that entities

corresponding to components and interactions in the physical system are

explicitly represented in the bond graph model, thus permitting systematic
model updates to reflect malfunctions. We have shown how this is done,

as well as presenting a number of techniques for obtaining qualitative

38



information from the state equations derivable from bond graph models.

It is typical of research projects such as the present one that certain
insights unifying a variety of aspects of the research are reached only at
the very conclusion of the work. One such insight is the fact that one of
the most important advantages of the bond graph ontology is the highly
systematic approach to model construction it imposes on the modeler,

who is forced to classify the relevant physical entities into a small

number of categories, and to look for two highly specific types

interactions among them. The systematic nature of bond graph model

construction facilitates the process to the point where the guidelines are
sufficiently specific to be followed by modelers who are not domain

experts. As a result, models of a given systems constructed by different

modelers will have extensive similarities. Furthermore, the process is

sufficiently "top-down" to allow at least coarse-grained models to be

created if detail is unavailable. The successor report to this one will

illustrate these points by presenting the construction of a jet engine

model (correct, to the given level of detail), by a modeler whose

knowledge of such engines is quite limited.

We conclude by pointing out that the aforementioned ease of updating bond

graph models to reflect malfunctions is a manifestation of the systematic

nature of bond graph construction, and the regularity of the relationship
between bond graph models and physical reality.

In a subsequent report we will consider the process of bond graph model

construction and updating in greater detail, as well as showing how such

models can be automatically transformed not only into qualitative models,

but also into continuous simulation models. This capability provides an

interface with earlier work, which applied predicate transformer

techniques to continuous simulations. In addition, we will show how bond

graphs can be integrated into traditional AI representations such as

frames and semantic nets, thus allowing automatic interpretation of the

predictions produced by the embedded models.

39



REFERENCES

[Abb] Abbott, K., Robust Fault Diagnosis of Physical Systems in Operation,

Ph. D. Dissertation, Computer Science Department, Rutgers University, New

Brunswick, N J, May 1990.

[QR] Bobrow, D. (ed.), Quafitative Reasoning about Physical Systems, The

MIT Press, Cambridge, MA, 1985.

[deK] deKleer, J., & J. Brown, A Quafitative Physics Based on Confluences,

in Qualitative Reasoning about Physical Systems, D. Bobrow, (ed.)The MIT

Press, Cambridge, MA, 1985.

[For] Forbus, K., Qualitative Process Theory, ibid.

[Kui] Kuipers, B., Commonsense Reasoning about Causality, ibid.

[P&L] Puccia, C., & R. Levins, Qualitative Modeling of Complex Systems,

Harvard University Press, Cambridge, MA, 1985.

[R&K] Rosenberg, R., & D. Karnopp, Introduction to Physical System

Dynamics, McGraw-Hill, 1983.

[Sch] Schutte, P., Real-time Fault Monitoring for Aircraft Applications

using Qualitative Simulation and Expert Systems, in Proc. of the AIAA

Computers in Aerospace VII Conference, Monterey, CA, October 1989.

40


