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SUMMARY

A finite-element Galerkin formulation has been used to study the effect of

material surface deposits on the reflective characteristics of straight uniform
ducts with PEC (perfectly electric conducting) walls. Over a wide frequency
range, the effect of both single and multiple surface deposits on the duct
reflection coefficient were examined. The power reflection coefficient was

found to be significantly increased by the addition of deposits on the wall.

INTRODUCTION

Many common waveguide components are intrinsically mismatched. The mis-
match is often corrected by placing a discontinuity (deposit) or so called iris
into a duct or guide to correct the problem (Alison, 1972, p. 137). Marcuvitz
(1986) has presented analytical models which describe the effects of many dis-
continuities on microwave networks. He presents equivalent-circuit parameters
in both analytical and graphical numerical form which allow predictions of the
scattering properties of the discontinuity. The predictions apply to metallic
discontinuities where the wavelength is generally much larger than the
discontinuity.

In the present paper, a finite-element Galerkin formulation has been used
to study the effect of material deposits on the reflective characteristics of
a two-dimensional straight uniform duct. The present work will broaden pre-
vious work to include dielectric deposits and to wavelengths on the order of
the size of the deposits. This paper will focus on the interaction of a plane

propagating 131 duct mode traveling down the uniform entrance duct with both
single and multiple two-dimensional material rivulet deposited on the lower

wall as shown in figure 1.

In a number of case studies, the effect of material deposit length, width

and excitation frequency on the power reflection coefficient will be examined.
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total imaginary part of permittivity, equation (4)

real part of dielectric constant

wavelength

total permeability, equation (5)

permeability

permeability in vacuum
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relative permeability, _'/Po

imaginary part of relative permeability

real part of relative permeability
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dimensionless conductance, _,c a
0 0

angular velocity

a
dimensionless angular velocity, ,
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Subscripts:

a entrance region

o reference value (entrance region)

Superscripts:

' dimensional quantity

~ approximate quantity

GOVERNING EQUATION AND BOUNDARY CONDITIONS

The dimensionless duct coordinates used to describe the duct in figure 1

are defined as

I

, z' L' bay _.Y' z --- L - _ ba ., 1
b a - ba b a = ba

(1)
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with b' the height of the duct used as the characteristic length in convert-
a

ing to dimensionless quantities. The prime, ', is used to denote a dimensional
quantity and the unprimed symbols define a dimensionless quantity. This con-
vention will be used throughout this report. These and all other symbols used
in the report are defined in the nomenclature.

For time harmonic variations in the electromagnetic field

Magnetic intensity = Hx(Y,z)e+J _t (2)

The governing differential equations are the standard Maxwell's equations which
can be combined to form a single variable property wave equation for the trans-

verse magnetic wave propagation (Silvester, 1983, p. 48, eq. (4.07)). For a
two-dimensional duct, the scalar form of the wave equation can be written as

(Baumeister, 1986, eq. (25))

(3)

where the total permittivity including conduction, and the total permeability
are defined as

R
8 = 8

r
(4)

R • I (5)

(Cheng, p. 300 or Harrington, pp. 24 and 25, equations (1-74), (1-76) and
(1-77)). The various parameters are real positive quantities with dimension-
less conductivity,

tob'
a

0 0

(6)

dimensionless frequency f

f D

f'b' b'
a a

C f -- _l

0 0

(7)

and

= 2_f (8)

A variety of boundary conditions will be used in the finite-element solu-
tion of equation (3). Each of the required conditions will now be briefly
discussed.

A modal solution (Cheng, 1983, p. 458) is used to represent the magnetic
field in the semi-infinite, PEC wail entrance and exit regions while a finite

element solution is used to generate the solution in the portion of the duct



containing the material deposit. The elements representing the material
deposits inside the air duct require no special consideration such as an inter-
facial boundary condition. The heterogeneous form of the wave equation, equa-
tion (3), automatically handles the change in properties.

Continuity of the tangential components of the magnetic and electric field
is applied at the entrance and exit interfaces separating the finite element
and modal regions (Baumeister, 1986). The analysis also assumes a given number
of propagating modes moving down the entrance duct towards the material depo-
sits embedded in the finite element region. These modes effectively set the

level of the magnetic field in the finite element region.

At the perfectly conducting wall surrounding the duct, the tangential com-
ponent of the electric field vector is zero (Cheng, 1983, eq. (7-52(a)) or
Kraichman, 1970, eq. (1.69)). Again, using Maxwell's equations to relate the
electric field to the magnetic field (Jordan, 1968, eq. (7-4)), the component
of the gradient of the magnetic field normal to the perfectly conducting walls
shown in figure 2 becomes

vfi • : 0 (9)
X

FINITE ELEMENT THEORY

In the central portion of the duct used to contain the material deposits,
the continuous domain is first divided into a number of discrete triangular

areas as shown in figure 2. The magnetic field will be determined at the nodes
which define the corners of the triangles. The finite element aspects of con-
verting equation (3) and the boundary conditions into an appropriate set of
global difference equations can be found in text books (Burnett, 1987) or more
explicitly in the paper presented by Baumeister (1986) and for conciseness will

not be presented herein.

In the finite element region, electromagnetic properties are assigned to
each element represent by a small triangle shown in figure 2. In most cases,
the values of e and _ are assigned values of unity associated with air pro-
perties. However, those elements which are forced to align with the material
deposits can have an assigned real value of e ranging from 3.0 to 9.0. The
value of the permeability remains at unity.

RESULTS AND COMPARISONS

A number of example calculations are now presented to calculate the
reflected energy coefficient of a plane TM wave propagating down the uniform
ducts shown in figure 1 with a material deposit on the wall. The reflection
coefficient in decibels is defined as

dB = 10 loglo [p]
(I0)

where Po is the propagating input energy in the positive z direction and
Pz is the reflected propagating energy in the negative z direction. The



energy is a product of the magnetic and electric fields (Poynting Vector) and
duct area as presented by Baumeister (1986, eqs. (86) and 88)). Material
deposits of heights and widths of 10 and 5 percent of the duct height were con-
sidered in the calculations to follow. The range of dimensionless frequencies

(eq. (7)) calculated will be from 0.5 to 5.

Example 1: Reflection Coefficient As Function of Frequency

The reflected power coefficient for a single two-dimensional material
deposit of 0.1 height and width is shown in figure 3. The geometrical config-
uration is shown by the inserted sketch. The lowest solid line defined by the
o symbols represents the reflective power from the duct without deposits. It
should be at minus infinity because in principle no reflection should occur in

the straight duct. The approximately 60 dB down curve solely represents numer-
ical inaccuracies in the calculation.

As seen in figure 3, the material deposit significantly increases the
total reflective power over a wide frequency range as compared to a duct with-
out deposits. To generate figure 3, 37 nodes are used in the transverse y
direction and 60 nodes in the axial z direction. The reflection coefficients

displayed in figure 3 have considerable scatter at the higher frequencies. To
check on numerical convergence, the calculation was repeated with 49 nodes in
the y direction and the same number of nodes per wavelength in the axial
z direction. As seen in figure 4 the onset of scatter in the reflection coef-
ficient still begins at a dimensionless frequency of 1.5 which is the same
scattering onset frequency seen in figure 3. Also, the magnitude of the
reflection coefficients are in agreement in both figures 3 and 4. Therefore,
both calculations have converged to the same results. The physical nature of
this high frequency fluctuation in the reflection coefficient will be discussed
shortly. Similar results are also shown in figure 5, for a deposit of 0.05

height and width. In this case the reflection coefficient are lower than those
shown in figure 3 due to the reduction in cross section area of the deposit.
As expectedl for both the 0.1 and 0.05 deposits, the reflection coefficient
decreases at the lower frequencies. In the lower frequency cases, the diffu-
sive nature of the electromagnetic wave allows the energy to bend around the
obstructians in the duct and thereby reduce the reflection coefficient.

As seen in figures 3 to 5, as the frequency increases the various material
curves begin to overlap. In figure 4, overlapping of the reflection coeffi-
cient begins at a dimensionless frequency of 1.5 for a deposit height and
width of 0.1 while the overlapping begins at a dimensionless frequency of 3.0
for the deposit of 0.05 height and width as shown in figure 5. The scatter of
the reflection coefficient at these higher frequencies appears to be a direct
result of periodic impedance matching of the signal and the material deposits.
This scattering phenomena can be related to the standard radome design calcul-
ation. For a dielectric window as shown in figure 6, the absence of reflec-
tions occurs for the thinnest radome when the following dimensions occur.

1 Co
w' - -- - - (11)

2 2 f '_-_ 2f'_22_ 2



(Cheng 1983, p. 351)
Dividing both sides of equation (11) by the characteristic duct height

setting p equal to 1 yields (assume ¢rl = 1 and Or2 = _r )

b' and
a

1
w - (12)

Or, the frequency associated with zero reflection

f = 1 (13)

For example, in figure 4 if

R 9 0 (14)w = 0.I c r = .

then f according to equation (13) has a value of 1.66. This corresponds to
the first crossover point in figure 4. According to equation (13) the cross-
overs for the smaller values of the relative permittivity occur at higher fre-

quencies as is seen in figures 3 and 4. For example, for a permittivity of
5.0, equation (13) predicts a crossover frequency of 2.23 which corresponds to
the results shown in figure 4. For the thinner deposit of 0.05 the predicted
f value from equation (13) will double to 3.3. This agrees with the finite
element results in figure 5 where the crossover is now delayed till a fre-
quency of 3.0.

Equation (13) can be written in its more general form as

(15)

where n is an integer (Cheng 1983, p. 351). The higher values of n account
for the continued fluctuations in the reflection curves as the frequency
increases.

Example 2: Reflection Coefficients As Function of Deposit Height

Similarly, for material deposits of 0.05 and 0.1 height and width, the
relationship in reflected power with deposit height is shown in figure 7.
Again, the geometrical configuration is shown by the inserted sketch. With
normal plane wave incidence, the reflection coefficient can be roughly
estimated by the simple formula

dB = 20 lOglo [hb-J-i_
(16)



This formula assumes all normally directed rays which contact the material

deposit are reflected. For a deposit to duct height ratio of 0.1, equa-
tion (16) predicts -20 dB which is close to the calculated value calculated by
the finite element theory at the higher frequencies shown in figure 7. Simi-
larly, when the deposit to duct height ratio is 0.05, equation (16) gives rise
to a 6 dB lower value of -26 dB which again is close to the finite element pre-

diction shown in figure 7.

Example 3: Reflection Coefficient for Multiple Deposits

Finally, for two deposits of 0.1 in height and width placed in a uniform
duct, the relationship in the reflection coefficient and the gap between the

deposits is shown in figure 8. Again, the geometrical configuration is shown
by the inserted sketch. The circular symbol represents the smooth duct while

the square symbol with the dashed connecting lines represents a single deposit.

Generally, the two deposits have a slightly higher reflection coefficient
than the single deposit. There does not seem to be any obvious trends with the

gap thickness between the deposits. At dimensionless frequencies below 1.5,
however, the reflection coefficient for the two deposits can drop below the
value for the single deposit. This may be the result of some impedance match-

ing as was discussed earlier.

CONCLUDING REMARKS

A finite-element electromagnetic duct propagation code was modified to
study transverse magnetic (TM) wave propagation in two-dimensional uniform
ducts with material deposits on the walls. Example solutions illustrated the
relationship of material deposit length, width and excitation frequency on the
power reflection coefficient of the duct. Small single two-dimensional mate-
rial rivulet deposits were found to significantly increase the reflected

energy.
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