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Physical Interpretation and Application of Principles of Ultrasonic Nondestructive
Evaluation of High-Performance Materials

I. Introduction:

In order to meet the need for more advanced ultrasonic nondestructive testing systems, capable
of ascertaining the strengths and limitations of high-performance materials, a more fundamental
understanding of the anisotropic properties of these materials is necessary. The basic knowledge
of how the material responds to ultrasonic interrogation will permit the optimization of the
measurement system for the extraction of information needed for making material integrity
decisions. To aid in the development of ultrasonic measurement systems, improved visualization
techniques for the physical interpretation of the elastic properties of materials and their inter-
relationships are beneficial. During the current grant period valuable insight has been gained
through the production of 3-dimensional representations of the anisotropic nature of the ultrasonic
group velocity and the engineering parameters (Young's and shear moduli) for graphite/epoxy
composites. Video-taped animations of these surfaces have been delivered by Dr. James G.
Miller, principal investigator for this grant, during a visit with Drs. Heyman, Madaras, and
Johnston at NASA Langley Research Center in August, 1990. Visualization of the anisotropic
properties of composite materials along with experimental verification provides necessary
information for the design of advanced measurement systems.

In Section IT we discuss an ultrasonic measurement system employed in the experimental
interrogation of the anisotropic properties (through the measurement of the elastic stiffness
constants) of the uniaxial graphite/epoxy composites received from NASA Langley Research
Center. Section III discusses our continuing effort for the development of improved visualization
techniques for physical parameters. In this Section we set the background for the understanding
and visualization of the relationship between the phase and energy/group velocity for propagation
in high-performance anisotropic materials by investigating the general requirements imposed by the
classical wave equation. Section IV considers the consequences when the physical parameters of
the anisotropic material are inserted into the classical wave equation by a linear elastic model.
Section V describes the relationship between the phase velocity and the energy/group velocity 3-
dimensional surfaces through graphical techniques.

II. Elastic Stiffness Coefficient Measurements:

In this Section we describe the measurement system employed for the determination of the
anisotropic elastic properties of a set of uniaxial graphite/epoxy composites received from NASA
Langley Research Center. The structure of uniaxial composites can be approximated by hexagonal
symmetry. This implies that five elastic coefficients are required to describe the structure of the
material. Table 1 displays the functional relationship between the ultrasonic phase velocities and
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the elastic stiffness coefficients for measurements in a meridian plane (a plane that completely
contains the fibers). The velocity notation is defined as

VPropagation w.r.t. fibers
Modepgarization w.r.t. fibers . (1)

Measurement of Stiffness Coefficients - Meridian Plane

(Fiber axis aligned along the x axis)

¢y = p (V! ) Longitudinal Mode:
|

Propagation parallel to fiber axis

Css = P (Vgarbitrary 2 Shear Mode: arbitrary polarization
Propagation parallel to fiber axis
Shear Mode: polarized along fiber
css = p( Vé‘" )2 axis - Propagation perpendicular to
fiber axis
Cyp = P ( vil )2 Longitudinal Mode:

Propagation perpendicular to fiber axis

Shear Mode: polarized perpendicular
Cag = Cpp— 2p( Vél )2 to fiber axis - Propagation
perpendicular to fiber axis

V represents either VCZIL or Vés.

‘\/ b—ap V24 p2 \a )
- - Cs5 The angle between the propagation
[sin®| cosw| direction and the fiber direction is

given by Y.

Ci2 =

where a = ¢y sin®W + Ciy cos® ¥ + Css5

and b = (c;; cos™¥ + css sin”¥) (cyy sin®W + css5 cos™¥)

Table 1
Sample Preparation:
As described in the March 1990 Progress Report we have prepared three uniaxial samples for
the measurements. Two of the samples were surface-ground so that their sides were parallel and

perpendicular to the fiber orientation as illustrated in Figure 1. The final dimensions of the samples
are 21.4X 304X 28.9 mm.
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Graphite Fibers

Figure 1: Two samples prepared for the propagation of longitudinal and shear
waves parallel and perpendicular to the fiber orientation.

The third sample was prepared so that insonification normal to the surface will produce ultrasonic
waves whose phase velocity direction will be at an angle of 77° inside the sample with respect to
the fiber orientation (see Figure 2).

Graphite Fibers

//

Figure 2: In the third sample the direction of the phase velocities for longitudinal
and shear waves will be at an angle of 77° with respect to the fiber orientation.

The final dimensions of this sample are 14.5 X 30.4 X 28.9 mm.

Experimental Measurement System and Protocol:

The time-of-flights were measured in a reflection mode system using 2.25 MHz, 0.5 inch
diameter longitudinal and shear wave contact transducers, as illustrated in Figure 3. A HP8112A
pulse generator provided the master clock signal to which all subsequent timing measurements
were referenced. The trigger output of the pulse generator is the initial timing event which triggers
the digital oscilloscope. The output port of the pulse generator is delayed with respect to the trigger
output by 100 nsec. This signal is used as the external trigger input to the ultrasonic pulse
generator. RF attenuators were incorporated into the system to ensure that the electronics were
operating in a linear fashion. The returned RF pulse is routed to a wideband RF receiver for
amplification before being fed to the digital oscilloscope.
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The timing diagram for the measurement system is illustrated in Figure 4.

(R S T ?

to ty t tAE ts
External External Electronic Digital Scope Digital Scope
Trigger Trigger Excitation Input Channel 1: Input Channel 1 :
Input Input Pulse, At the Transducer First Returned
Digital Ultrasonic Transducer Electronic Acoustic Pulse
Scope Pulser Excitation Pulse from the Sample

Figure 4: Timing diagram (not to scale) for the measurement of the time-of-flights.

Only the first returned RF pulse was used, in order to minimize the bonding effects of the
transducer to the sample. The difference in time between when the transducer starts to respond to
the electronic pulse and the returned ultrasonic RF pulse determines the time-of-flight for a given
measurement.

Time—-of—Flight = ts - tAE (2)

Because the time-of-flight is obtained by taking a difference in time, the measurement is
independent of the electronic (receiver) and coaxial cable propagation delays.

For each of the five time-of-flights required for the determination of the five elastic stiffness
coefficients the following measurement criteria were carried out. Three spatial sites were
insonified for a given measurement. All signal amplitudes, routed to the input of the digital scope,
were adjusted to make maximum use of the digitization range of the scope while maintaining
linearity in the measurement system. A survey trace with the timebase of the digital scope set to 1
or 2 psec/div was used to obtain an overall view of the distribution of returned ultrasonic pulses.
The timebase on the digital scope was set to 10 nsec/div and the pulse corresponding to the
transducer excitation pulse was captured for determination of the timing point tpg. The first
returned RF pulse was captured using 500 nsec/div, 200 nsec/div and 100 nsec/div timebases for
the determination of the timing point ts. The data are currently being analyzed and will be reported
in the March 1991 Progress Report.

III. Classical Bulk Wave Propagation

In this Section we obtain fundamental results from the classical wave equation which are
useful in increasing physical intuition for wave propagation in linear elastic media. The concept of
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phase and group velocity are discussed for monochromatic plane waves and the necessary
conditions imposed upon them to satisfy the classical wave equation. In what follows we will
assume that the media is lossless and homogeneous and the strength of the acoustical disturbance is
small so that linear theory is applicable.

Homogeneous Classical Wave Equation:

We will begin by investigating what general information can be obtained from one form of the
homogeneous classical wave equation for a three-dimensional medium. The classical wave
equation (neglecting body forces) can be written as

1 o%u(r, 1)
2 2 '
feky, ky, k)17 ot 3)

3

Viulr,t =

where u(r,t) is a vector that represents the particle displacement. The above equation states that
the solutions for the differential equation must have its second-order spatial derivatives equal to the
second-order time derivatives times a proportionality term independent of space and time
coordinates. In general the proportionality term can be a function of Xk, ky, kz, the vector
components of the propagation wave number. Solutions of the form f(k-r  wt) will satisfy the
equation along with the appropriate initial and boundary conditions.

Plane Harmonic Wave Solution:
Angular Frequency Function: "Dispersion Relation'
One class of solutions which satisfy the classical wave equation is the monochromatic plane

harmonic wave which has the following form

ilk-r— ok,k,k)t]
U(r, t) = UO Cl ' O Ky 2! (4)

where Up is assumed to be a constant vector. First, we will substitute Equation (4) into Equation
(3) and see what general information we can extract from the wave equation. Since

du(r, 2
u—g;tl = —iwlk,, ky, k) ulr, ), -a——l-l—(g—tl - [k, ky, kz)]2 u(r, t)
ot
(5)
and
du(r, t) . o%u(r, 1)
a—)(j = 1 kj u(r, t), T - ](]2 ll(l', t)
)
Viur, o = -+ k§+k3)u(r, 0 = - |k|%ulr, t), 6)

1t follows that



K, ko, k) 7]°
lk|? u(r,0) = [Li-—)] u(r, 1)

clky, Ky, k,) e

Thus, for the plane harmonic wave to be a solution of the wave equation the differential equation
demands that

2
IO )

C(kx, ky, kz) (8)
or
2 2
[k, ky, k)T = [Kk[? Lelky, Ky, Ky o)
or
2
wlk, ky, k) = = [k et ky k) 1™ (10)

The above equation is a "dispersion relation” which states that the angular frequency is a function
of the components of the wave number vector, k. The proportionality term has units of [m/sec]
and thus is a velocity-like term. We will soon see that the proportionality term of the wave
equation (which defines the functional form of the angular frequency) is the point at which the
physical properties of the medium (density, elastic coefficients, etc.) are inserted into the wave
equation. This proportionality term plays a major role in the determination of the allowed
propagation modes, the resultant localized particle motion and the elastic wave propagation velocity
for each mode.

The form of this equation, ® as a function of the wave number vector components, is counter
intuitive to the way one normally thinks about initiating the wave phenomena. In the laboratory we
use a transducer, coupled to the medium being investigated, to generate pressure waves to start the
wave propagating. We assume a simple model for the generation of the pressure waves. A pulse
of acoustic energy is radiated by an ultrasonic transducer. Plane waves are generated and initially
propagate along the axis of the transducer. The axis of the transducer defines the initial direction of
the k vector. The wave-packet is limited in the lateral dimensions by the size of the transducer
and in the third dimension by the pulse length. We control the frequency components of the wave-
packet by whether we choose to perform a CW, tone-burst, or wide-band measurement.
Therefore, o is an independent parameter in the measurement system, which we control. In the
following mathematical analysis of the wave equation, instead of letting ® and the direction of k
be the independent parameters, we will consider k to be the independent parameter. Since the
angular frequency function defines a relationship between these two parameters we will have the
ability to invert the final results to convey the information in a more conventional form.



Phase Velocity:

Starting with the monochromatic plane harmonic solution to the wave equation we can define a
set of planes in space, called surfaces of constant phase, by requiring the argument of the
exponential function to be a constant.

k-r - ok, ky, k,) t = constant

d
Tk - ok, k,k)t} =0
Let & = k - r the component of the position vector along the k vector.
LilklE - alkk,k)t} = 0
d[ X0y Rz -
dg
k| 2 = ol ky, k)

Vphase Kxo Kys k) = dg (D(kx,k k)
$ ( x>y z) = I = __Ily—z
11

The direction cosines of the planes of constant phase are proportional to the components of the
wave number vector K. Thus, k is normal to the surfaces of constant phase and these surfaces
move in the direction of k at a rate equal to the phase velocity. The phase velocity can be written
in a general vector form as

[(k-x) x+ (k-y)y + (k-z) z]
k| (12)

a(k,, ky, k,)

VPhase(kx’ ky’ kz)

From the above equation we see that the magnitude of the phase velocity is equal to the angular
frequency w(ky, ky, k;) divided by the magnitude of the wave vector k and in general is a
function of the wave number vector components.

Velocity of Modulation on a Wave - "Group Velocity':

To find the group velocity we start as we did for the surfaces of constant phase by looking at
the argument of the exponential function. But this time we perform a gradient operation with
respect to the wave number vector components before the time derivative.
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Vi Slxor - o, ky k) th} = 0

4
dt
d
Vk{a{kw-}} = Vil ok, ky k) )

SV LKt} = Vil ol k, k)

dr

E Vk { m(kx; ky9 kz) }

(13)
The quantity Vi w(ky, ky, k;) is defined as the velocity of modulation on a wave or group
velocity . This quantity can be obtained from the angular frequency function as follows,

dolk,, ky, k;) .
Vroup(ky ky, k) = Vi w(ky, ky, k,) = —————— X

3K,
aw(k)p kys kz) A
+ ok,
dulk,, ky, k) .
t —— 2
. . (14)

The angular frequency function will be constrained in some manner to satisfy the classical wave
equation. The physical properties of the medium play a major role in determining the actual
functional form of the angular frequency function.

Case 1:

For an isotropic medium the angular frequency relation is w(ky, ky, k;) = (ki) = constant
times |kl and is independent of direction of propagation.
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(k) = constant x Ikl o(Ik)

Slope is Vgroup
[V iy, ky, k)1,

Slope is VPhase
[ lk,, Ky, kz)]

K y

K +lkl

Figure 5: For a monochromatic plane harmonic wave propagating in a lossless
isotropic media the phase and group velocity are collinear and equal in magnitude.

For an isotropic medium the curve (lkl) is a straight line having a slope equal to the phase
velocity. The derivative of the angular frequency curve with respect to the wave number is the
slope, therefore, the magnitude of the phase and group velocities are equal. Since the angular
frequency function is a constant times Ikl, the gradient of w yields a vector direction along the
direction of the wave number vector. Thus the phase and group velocity are collinear for an
isotropic medium. In general for an isotropic medium the angular frequency relation can be written
as

WK = Vipgganf K2+ K24 K2 (15)

We see that w scales directly with [ki, therefore, the phase and group velocity surfaces are spheres
of constant radii Vppase and Vgroup, respectively. If we consider the functional form when k; =0
we see that the angular frequency has the form of a right circular cone with

2 2
(kD = Vppe 4/ K+ ky (16)

used as the generator for the surface of revolution. The magnitude of these velocities correspond
to the slope of the w(kkl) curve as depicted in Figure 5. Inverting Equation (15) yields

(ki) )2

Vl’hase

g+@+g:(
a17)
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If we were to think 3-dimensionally we could construct k space which would correspond to
concentric spheres scaled by o(|kl). The 3-dimensional surfaces in k space can be thought of as
equipotential surfaces such that the normal at a point on a surface points in the direction of the
energy flow. Slowness or inverse velocity space is defined as Ikl/w(ky.ky,kz). Since @ isa
homogeneous function of degree one in |kl for an isotropic medium, the slowness is a sphere of
constant radius 1/Vppase. The slowness is a function independent of the angular frequency and the
magnitude and direction of the wave number vector for an isotropic medium.

Case 2:
For this case we will consider an angular frequency relation which is a function of the wave
vector components.

(k)

Slope is Vgroup
[V, olky, Ky, k)

Slope is Vpjaqe

[m(kx, Ky, kz)}
T

k

Kk +k

Figure 6: For a monochromatic plane harmonic wave propagating in a lossless
medium the magnitude of the phase and the group velocities need not be equal for
angular frequency functions for which the proportionality term in the wave equation
is a function of the wave number components.

Since the phase velocity is the value of ® (evaluated at k) divided by the magnitude of k, this
corresponds to the slope of the straight line drawn from the origin to w(k). The group velocity is
defined as the derivative with respect to k evaluated at k. From Figure 6 we see that the phase and

group velocity are not equivalent for a medium in which the angular frequency relation is not solely
a function of the magnitude of k.
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Since the surfaces of constant phase travel at a speed ®(ky, ky, kz)/Ikl and the group velocity
travels at a speed of IVyw(ky, ky, kz)I, we are able to determine some information about the
functional form of the angular frequency function by performing a little math and applying
dimensional analysis.

ok, ky, k)
Vphasey ky’ k) = —#—Z_
Vi olky, ky, k) = Vi { Ikl Vppaselkys, ky, ky) 1
Vi ok, ky, k) = Vphase(kss Kys kj) Vid ki} + Kl Vi{Vppaselky, kys k,)}
Vi ok, ky k) = Veneolky kyn k) ko + KL Vil Vppae(ky, ky, k)b
[ meters} [ meters] [ 1 ] [metersz]
= +
second second meters second (18)
We see that in general the group velocity is the superposition of two vector quantities. One with a
magnitude of the phase velocity along the direction of k, and one along a direction defined by the
gradient operation on the phase velocity. For an isotropic medium the gradient of the phase

velocity is zero and we obtain the expected result that the phase and group are equivalent in
magnitude and direction.

Physical Interpretation of the Group Velocity:
Why the gradient of the angular frequency function is called the group velocity can be seen by
considering the propagation of two monochromatic plane harmonic waves.

u(r,) = uy(r,t) +uy(r, v)
= Uy ol kit - ol kyn k)l Uy, ol Ky = oy kyp K ] (19)
Inserting Equation (19) into the wave equation yields
[0 (kyy, kyp, k) 72
Ik [2uy(r, ) + [k %uy(r, 0 = A uy(r, t
1 1 2 2 ] C(kxl, kyl’ kzl) ] 1 )
-2
+ [ @2k Ky ki) u,(r, t)
PASKE]
| clkya, kyos ko) | , (20)

the linear superposition of the two waves. In general, the resultant acoustic disturbance will
depend on the initial wave number directions and the angular frequency of each of the
monochromatic waves.



-13-

Group Velocity for an Isotropic Medium: Modulated Harmonic Wave

Consider the case for two monochromatic plane waves, having slightly different frequencies
but collinear wave number vectors, propagating in an isotropic medium. The angular frequency
relation for each wave is given by

0;(kyp, kyl’ k) = of l k, l) Ik1 | Vphase

| k; | constant

(02(1(,(2, kyz, kﬂ) = o l kz‘ ) = l kz! constant Ik2| Vphase . 2D

Each angular frequency is directly proportional to the magnitude of the wave number vector and
independent of its direction. The gradient of the angular frequency relation for each wave,
considered individually, is equal to the constant phase velocity. Thus, when each wave is
considered alone the group velocities and phase velocities have equal magnitude and direction, and
the group and phase velocity for one wave is the same as for the other wave.

Consider each wave launched such that at time t =0 seconds they each have coincident nodes
(see Figure 7a). The surfaces of constant phase for each wave travel at a speed Vphase Which
implies that the ratio w(kN/Ik! is constant. That is, for each individual wave the speed at which its
surfaces of constant phase travel is independent of the magnitude and direction of the wave number
vector and therefore of frequency. But since the two waves have different wavelengths, even
though they each start out at a node, their nodes do not line up as time progresses because the
distance between corresponding nodes is different for the two waves (A1 # A2).

A Ay
T AL S Vpnase » € & constant )
2 2
W, 2 22)

If we let the two monochromatic plane waves have equal amplitudes, then
Ugp = Uy = Up
k; = (kg-Ak) k
k, = (kg+Ak) K

where Ak << ky

I

m](kxl,ky], kzl) (D(Ik()') - Aw

il

(Dz(kXZ’ ky2’ k/j) (l)( ' k() | ) + A(D ) (23)

Substituting these expressions into the plane harmonic solution yields
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Time (sec)

weoer 3226 MHz = 3.704 MHz
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Amplitude
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Time (usec)

——  Superimposed RF = Modulation Envelope

Figure 7: (a) Two monochromatic RF plane waves having equal amplitudes and slightly
different frequencies propagating with collinear k vectors. (b) Superimposed RF signal
plus the modulation envelope.
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ulr ) = U el o= a0 (k r) - Tolky) - Aw) t]
s = Yoo

i [k, + AK) (k- 1) — (o(k,) + Aw) t]
+ UOO e] ot r ollk, (24)

or after some algebra

u(r, 0 = Ugye [ko (k- 1) ~ o(lkgh t] { ei[Ak(i{'r) - dot] Ak (k1) - Aot] }
u(r,t) = 2Uge lig () = @k 1] o0 (A (R - 1) — Awt) 25)
or
u(r, ) = 2Ug ol Llko Itk - r) ~ olkg)t] cos (Ak ((k - r) — VGroupt))_ 26)

The form of the plane harmonic solution looks like a carrier wave oscillating at an angular
frequency of ®(Kkgl) [®;(Ik;l) < wy(lkgl) < wy(lkzl)] multiplied by a cosine term (see Figure 7b).
The resultant wave is an amplitude modulated wave whose carrier frequency is given by the
exponential term and whose amplitude (spatial/temporal distribution) is determined by the cosine
term. The argument of the exponential term yields the carrier phase velocity and the argument of
the cosine term the modulation envelope or group velocity. The modulation envelope changes
slowly in space and time compared with the carrier term. The density of the wave energy is
concentrated in the area where the modulation term is large and thus propagates at the group
velocity (for a lossless media). Strictly speaking the concept of phase velocity only applies when
the form of the wave remains constant throughout its length. This condition is necessary to be able
to measure the wavelength by taking the distance between any two successive corresponding
points on the wave.

What the above relations tell us is that for a monochromatic plane harmonic wave to be a
solution of the classical wave equation the following relations in Table 2 must be satisfied.
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What the Classical Wave Equation Tells Us About a Monochromatic Plane
Harmonic Wave Solution

For a plane harmonic wave to be a
solution of the classical wave equation
the angular frequency, ®, must be
equal to the magnitude of the wave ok, ko k) = + M ‘\/[ ok, ko, k,) ]2
number vector times a term which may ©oyE 4
be a function of the wave number vector
components.

The ratio of the angular frequency, ©,
with respect to the magnitude of the
wave number is the speed at which w(k,, ky, k,)
surfaces of constant phase travel in the V phaseCKxo ky, k) =
direction of the k vector for a
monochromatic plane wave having the
frequency .

|k |

The gradient of the angular frequency
curve, ®, with respect to the wave
vector components is defined to be the
modulation on a wave or group \Y4 Group(kx’ky9kz)
velocity. The energy of the wave
travels in the direction and with the
speed of the group velocity for a
lossless medium.

= Vyolky, ky, k)

Table 2

IV. Classical Bulk Wave Propagation - Linear Elastic Medium

In this Section we assume a linear elastic model for the material in which the acoustical waves
propagate. As stated in Section III the physical parameters that describe the structure of the
material are inserted in the proportionality term of the classical wave equation. Starting with the
acoustic field equations (acoustical analogue of Maxwell's equations for electromagnetics) we
obtain the linear elastic wave equation. By investigating the functional form of the phase and
group velocity we see that these velocities will be dependent on the density, the elastic stiffness
coefficients that describe the medium, and the direction of the wave number vector. We also see
that they are independent of the magnitude of the wave number vector and the frequency of the
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monochromatic plane wave. The independence of the phase and group velocity on the frequency
and magnitude of the wave number vector allow the generation of three-dimensional surfaces that
completely describe the wave propagation parameters for a linear elastic medium (phase velocity,
energy velocity, group velocity and slowness). The following analysis assumes that the medium is
lossless and homogeneous and that there exist a constitutive relation that relates the applied stresses
to the resulting homogeneous strains via the elastic stiffness constants.

The linear elastic wave equation is obtained using the 81 component notation so that
directional information contained in the equation may be more easily seen. The wave equation
written in the 36 component notation (Voigt) is also given for computational purposes.

Linear Elastic Acoustic Field Equations:

We can write the acoustic field equations in a form similar to the electromagnetic field
equations (Maxwell's equations) as shown in Table 3.

Acoustic Field Equations “
Equation of Motion . = _8_\_'_ -
Strain Displacement Relation Vv = _aai
S
t

Table 3: T denotes the stress, v the particle velocity, Fg external body forces,
and S the strain
Constitutive Relations:

For a linear elastic medium the stress and strain are related by the constitutive relations
S = s:T and T = c¢:8§ Q7

where ¢ corresponds to the elastic stiffness constants and s the elastic compliance constants.
These elastic constants contain the information about the physical structure of the medium.

Homogeneous Linear Elastic Wave Equation:

Starting with the acoustic field equations we can obtain a wave equation as follows. The
equation of motion (neglecting body forces) can be written as

2
VT = a—;
ot (28)

Rewriting this equation in matrix form yields



2 X;
ot =1 (29)
Since the stress is related to the strain by the linear elastic constitutive relation
2 Z Cijia Ski
11=1 30)
the physical structure of the medium can be inserted into the wave equation to produce
3 3 3
aqu aS k1
= =22
ot i=1k=11=1 ' , (31)

We see that each component of the particle displacement's acceleration is dependent on the spatial
derivatives of the strain (weighted by the elastic stiffness coefficients) with respect to all three
spatial directions. In general for a medium not exhibiting high degrees of symmetry each
component of the particle displacement or velocity will be a complicated set of coupled equations.
By making use of the strain definition

1 (auk oy, )
= 7 (T T 32)
Equation (31) can be expanded as

azuj Rk oSy S 1 9 (9ug  du
D 35 9 YL 3 ) YRS ST

i=1k=11=1 i=1k=11=1 . (33)

3 3 3

azuj z azuk
2 ikl 9x;0x
Jt i=lk=11=1 e

(34)

Equation (34) has the form of a wave equation. In general, Equation (34) describes a set of three
coupled equations for each allowed mode of propagation in the medium. The physical properties
and structure of the medium are contained in the density and elastic stiffness coefficients.

Monochromatic Plane Wave Solutions:

One class of solutions for the linear elastic wave equation is the monochromatic plane wave
having the form
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ilkr - olk,k,k)t]
j < © ¢ : (35)

u

As we have seen in Section IIII of this Progress Report a relationship between w(ky, ky, kz) and
k is required for the solution to satisfy the wave equation. By noting that

% i kK, k) g D i k
'? = ~—10MW,, yoKz U; an axi = 1KjUy (36)

we can substitute the plane wave solution into the wave equation to obtain an eigenvalue equation.
3
2
p Lol kyk )] vy = 2 Z Cijia ki kg uge
i=lk=11=1 (37)
By rearranging and summing over the index j we have
3 3 3 3
2
2.2 2, D Lotk k)l 85— cyakiku = 0
j=li=lk=11=1 . (38

This equation defines a system of homogeneous equations that have non-trivial solutions if and
only if the determinant is equal to zero.

3 3 3 3
Zz Z 2 lp [“)(kx’kyrkz)]2 Sk — Cijkikil| =0

j=li=lk=11=1 (39

The determinant or characteristic equation is a cubic equation in ®2. For a given wave number
vector k the equation has three roots 2, w32, w32, which in general are different for
anisotropic media. Each root gives the angular frequency as a function of the wave number vector
components. Substituting a particular root for ®? into Equation (38) yields the corresponding
orthonormal components for the displacement vector for that mode of propagation (since the
equations are homogeneous only the normalized vector components or direction cosines of the
displacement will be obtained).

By inspection of Equation (39) we see that the angular frequency w(ky, ky, k;) is a
homogeneous function of degree onc of the components of wave vector k. If instead of solving
for w(ky, ky, k;) we solve for the ratio w(ky, ky, k,)/kl, we obtain the speed at which the
surfaces of constant phase travel along the k direction. Since the elastic stiffness coefficients in the
equation do not depend on the magnitude of k, the velocity of propagation of the surfaces of
constant phase along the k direction is a homogeneous function of degree zero of k;. Therefore,
the phase velocity is a function of its direction (which is determined by k) but not the magnitude of
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k or its frequency. Since, in general, there are three possible modes of propagation for a given k
direction, there will be three angular frequency relations, thus three different phase velocities.

When we assume a given k vector the determinant of the eigenvalue equation determines the
principal values p w? of a tensor of rank two, cij ki ki, which is symmetrical with respect to
the indices j,k. Equation (38) yields the principal axes of this tensor (the particle displacement
directions) which are always mutually orthogonal.!

Modulation Envelope or Group Velocity for a Lossless Linear Elastic Medium:

The group velocity (modulation envelope velocity) is defined to be the gradient of the angular
frequency relation with respect to the wave vector components. As we have seen in Section III for
a single monochromatic plane wave propagating in an isotropic medium the phase velocity and
group velocity were equivalent both in magnitude and direction of propagation. A monochromatic
plane wave propagating in an isotropic medium is a very special case of bulk wave propagation in a
general linear elastic medium. In order for the group velocity to have its own distinct meaning in
an isotropic media we had to consider the superposition of at least two monochromatic plane waves
propagating in the medium (hence the name group). From the analysis in Section III we saw that
the energy in the superimposed monochromatic waves travelled at a speed equal to the group
velocity not the phase velocity for each of the individual monochromatic plane waves. Therefore,
the magnitude of the group velocity was different from the magnitude of the phase velocity. A
very important piece of information was lost in this analysis because of the isotropic nature of the
medium.. When we carry out the analysis in a medium that has a physical structure that influences
the direction of the resultant wave propagation we see that even for a single monochromatic plane
wave the phase and group velocities are distinct entities.

In an isotropic medium we have one purely longitudinal wave and two degenerate transverse
waves. For the longitudinal mode the particle displacement is collinear with the k vector and the
particle displacement for the transverse modes are orthogonal to the k vector, always. For each
mode of propagation in an anisotropic medium there corresponds a wave in which the displacement
vector can have components both parallel and perpendicular to the wave number direction. This
implies that the response of the medium, to the application of external stresses, is determined by
the physical parameters (cjjx) that describe the structure of the material. The resultant particle
displacement for a given propagation mode and k vector may not be along the k vector direction.

Energy Velocity:

For a general linear elastic medium the direction of the energy velocity is the direction in which
the energy contained in the wave propagates. In anisotropic media the direction of the energy flow
need not be collinear with the initial k vector direction. This is a direct consequence of the medium
having a physical structure in which there are preferred directions. In other words the response of
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an anisotropic medium to the application of a stress stimulus depends on the physical structure
(symmetries or lack of symmetry) of the medium. Consider a stress stimulus that varies
sinusoidally with time applied to a uniaxial composite medium as illustrated in Figure 8.
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Figure 8: Illustration of the various velocity directions resulting from the applied
stress Ts33.

Because the response of the medium depends on the symmetries of the medium in general the
resultant displacement will not be along k. Therefore, the longitudinal mode has a polarization
(particle velocity) that is not parallel to the k vector direction. The acoustic Poynting vector (the
energy flow vector), for a given k vector direction and a given mode of propagation, is
proportional to the particle velocity dorred with the stress stimulus.

VEnergy o P < —v-T (40)

If all the stresses are zero except Tas, as illustrated in Figure 8, and we rotate the system to align it
with the principal axes, the stress can be written in terms of the rotated coordinate system as

[sin(B)]2 Ts3 0 —cos(B) sin(B) Ts3
[T’ij] = 0 0 0
—cos(B) sin(B) Ty3 0 [cos(B)]” Ty _ @1

The equations of motion for a given mode of propagation are



-2 -

ov'y 1 v e 1 { dT'y oT'3, }

ot p (v = E{ 0x'y * ox's
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The acoustic Poynting vector in the rotated system is
Py e —{v/' T+ vy Tyl
P, = 0
P3' oc - { VI' T'13 + V3' T'33 } (43)

or after inserting the constitutive relation
Py o« —{vlcS+ 1383+ ¢'158's] + V'3 [c'158" 1+ €'358'3+ €'s58's] }
P, =0
Py o = { v [c'58"+ ¢'358'3+ C'558's1 + vy [c'138" 1+ €'338'3+ ¢'3s8's1 b (44

We see that the direction of the energy flow is determined by the resultant particle velocity, elastic
stiffness coefficients and the resultant strains. For lossless linear elastic media it can be shown that
the group and energy velocity are equivalent.?

Wave Equation in Reduced Subscript Notation:

In general there can be at most 81 independent elastic coefficients. Because we have required
the stress and strain to be symmetric tensors, this number is reduced to 36. Materials for which an
elastic strain energy density function can be written have at most 21 independent elastic
coefficients. If the material exhibits other symmetries then a further reduction in the number of
independent coefficients can be achieved. The linear elastic wave equation can be written in
reduced subscript notation (Voigt notation) as

3 6 6
DD Dkilg g KTy = platkek, k)P v;
j=1K=1L=1 45)

where lig and I are functions of the direction cosines of the wave number vector.

Uniaxial Symmetry: Fiber Axis Along the x Axis

The physical structure of a uniaxial graphite/epoxy composite can be approximated by a
material exhibiting hexagonal symmetry. The density and the five independent elastic stiffness
constants determine the physical structure and the wave propagation parameters for the material.
The angular frequency relations for wave propagation in a xy meridian plane are:
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Quasi-Longitudinal Mode:

( 2 2 y 172
[O)(kx, ky, kz)]qL = C11 kx +Cyg ky + Cs5
2
+{I (C“— C55) k,% + (C22— C55) k§ ] L
) 2 2,212
+ 4 [(co+ c55) "= (c11— cs5)(cap— cs5)] Ky kg }
L 2p J e
Quasi-Shear Mode:
1 2 2 l 1/2
[m(kx’ ky’ kz)]qs = | n kx +Cy ky + Cs5
2
~{ [ (cy— c55) k2 + (cop— Css) kf,] |
) 2 2,212
+ 4 [(c)p+ e55) = (c))— cs5)(egy— css)l ki ky
\ 2p J@

The particle displacement/velocity is contained in the xy meridian plane for the quasi-longitudinal
and quasi-shear mode.

Pure-Shear Mode:

1 2 2 ) 12
'f(czz— c3) ky + Css kg }

Y

[oo(k,, k,, k)]s = {

xs Ky K 70pS (48)
For the pure-shear mode the particle displacement/velocity is always perpendicular to the xy plane
for all k vectors contained within the plane. From the above equations we explicitly see that the
angular frequency relations are homogeneous equations of degree one with respect to the wave
number vector components.

Case 3:

Consider a monochromatic plane harmonic solution to the wave equation for a material
exhibiting uniaxial symmetry with the fiber axis aligned along the x axis. The angular frequency
function for the pure-shear mode propagating in the xy meridian plane is

I ) 5 ) 172
5(C = e ky + css kg }

p

k,, ky, k)1 ={
O )

The phase velocity can be obtained by taking the ratio of the angular frequency function and the
magnitude of the wave number vector.
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) 21172
-~ .I_(C - Cy2) (-ISZ-) + C (ﬁ)
w(ky, ky k,) 22T M K 35\ Ikl
[Vphase(kx ky, k)lps = Ikl dps - P
1 2 2 172
[ (D(kx, ky, kz) | { E(sz - C23) ly i = lx }
Vphase(lx 1y» 12)] = ["'—_— =
Phase\x» 'y» 12/1pS Ikl dos p (50)

Where 1 is the wave number unit vector and ly, 1y, 1 are the direction cosines of the wave number
vector.

KX k k-y k S Z K,
2~ kI T I (51)

l, = = , = == = =

.3 i
X ki kI Y ki kP
The above equation explicitly shows that the phase velocity is a function of the density, linear

elastic stiffness constants and the direction cosines of the wave number vector It is independent of
the magnitude of the wave number vector and the frequency of the monochromatic wave.

The group velocity is obtained by taking the gradient of the angular frequency relation with
respect to the wave number vector components.

172

1 2 2
'2'(022 —c3) ky + Css kg
[VGroup(kx, kya kz)]ps = Vk[m(kx’ k)” kz)]pS - Vk P (52)
T o ] ky Cs5
[V Group, (kxs Kys klps = =
Group, \™x» Rys 82/1pS ] akX-pS p [Q)(kx, ky, kz)]pS
X (022 — Cy3 )
T Om T Y 2
roup, K> Ky» Kz/lp [ 9Ky Js p Lok, ky, kp)lps (53)
If we divide both the numerator and denominator by the magnitude of the wave number vector
K, ky
-_C —C
ki €55 Ikl 35
[V Group, (kes Ky, k)lps = =
Group,*™x» Fy» 2/1pS [(D(kxs ky’ kx)]bS P I'VPhasc(kx’ ky’ kZ)]PS
p
ki
ﬁ(022'—023) EL(CZZ_CZ:;)
ki 2 Kl 2

v (k,, k,, k)ls = =
Group, x> Ky» K2/1pS [olk,, ky, k)ps P [Vpnase(ky, Ky, K;)lps
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then we can explicitly show that the group velocity is a function of only the direction cosines of the
wave number vector.

I Css
p [VPhase(lx’ ly’ 12.)]PS

L (S22 3 )
y 2

P [Vphase(xs 1y 1)Ips (55)

[VGroupx(lx’ ly’ lz)]ps

[VGroupy(lx’ ly’ lz)]ps =

For a given k direction in the xy meridian plane the magnitude of the group velocity is given by

2 1/2
2 2 27 %3 2
! l 1 css Iy + ( 2 ) y
\Y 1.1l
[ GrOUP(X y L)]ps [Vphasc(lxaly’lz)]ps p2 (56)
or
. . ) 172
2 2 22 7 23 2
C5s 1y + ( 2 ) y
2
Y
| [VGroup(IX’l)”lz)]pS | = 12
2 C22—C23 )2
Css Iy + ( 2 )l”
5 , 57

We explicitly see that the group velocity is also a function of only the direction cosines of the wave
number vector not its magnitude.

Functional Dependence of the Phase Velocity on Wave Number Vector:
The phase velocity for an isotropic linear elastic medium can be written in general terms as

elastic stiffness coefficient
Vihase = — = constant
d@n&lty (58)

Using the fact that the elastic stiffness coefficients have dimensions of [Newtons/meters?] we can
check the dimensions of Equation (58). Dimensionally we have

kg meters 172
2 172 2 2
[meters] _ Newtons/meter _ seconds” meters _ [meters ]
second | ke/meter’ - kg second

3
meters . (59)
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For the general anisotropic medium the numerator will be a linear combination of the elastic
stiffness coefficients. In order to include the wave number vector information in the equation and
to maintain the proper dimensions only dimensionless quantities such as the direction cosines of k
can be involved in the numerator term. As we have seen above this implies that for a linear elastic
medium the phase velocity is a function of the density, elastic coefficients, and the direction of the
wave number vector and not the magnitude of the wave number or the frequency. Thus, for the
general anisotropic linear elastic medium we should rewrite the numerator as a linear combination
of the elastic stiffness coefficients weighted by the direction cosines of the wave number vector.

k, k, k, wave number direction cosine weighted 172
phase([-k-xl', ﬁ- m) linear combination of the elastic stiffness constants
density (60)

This dependence is explicitly seen from the eigenvalue form of the linear elastic wave equation.
The exact linear combination and weighting of the elastic stiffness constants depends on the
particular linear elastic system (cubic, hexagonal, etc.) that describes the physical properties of the
medium,

In Table 4 we summarize the results for the homogeneous classical wave equation for a linear
elastic medium.
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Monochromatic Plane Harmonic Waves in Linear Elastic Media

The angular frequency, o, is
equal to the magnitude of the wave
number vector times a term which
is a function of the density, elastic
stiffness coefficients and wave
number vector directions.

ok, ky k) = ilkl\/[f(

k, k, k, )]2
p’CIJ’W{Tv-u-(Tym "

The phase velocity can only be a
function of the density, elastic
stiffness coefficients, and the
direction cosines of the wave
number vector. The phase
velocity is independent of
frequency.

ke K kz)
VPhase(m’ m! 'lm'

ok, ky, k;)
Ikl

The group velocity can only be a
function of the density, elastic
stiffness coefficients, and the
direction cosines of the wave
number vector. The group velocity
is independent of frequency. The
energy of the wave travels in the
direction and with the speed of the
group velocity for a lossless
medium.

Table 4

Vo (ky, ky, k;)

V. Group Velocity for Anisotropic Media: General Physical Interpretation

In an isotropic medium for the concept of group velocity to have any meaning we had to
consider at least two monochromatic waves propagating in the medium in order for the phase and
group velocity not to be equivalent. We have to remember that the isotropic medium is a very
special case of the general anisotropic medium. Since the angular frequency, for an isotropic
medium, is a function of the magnitude of the wave number vector and not its direction, the phase
velocity is a function independent of ® and the direction of k. The phase velocity is a function of

the density and the elastic stiffness constants only. This is a very special case.
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In general, for an anisotropic linear elastic medium, the phase velocity is a function of the
direction of k as well. For this case the phase and group velocity are not equivalent even for a
monochromatic plane wave. The reason for this is that the particle displacement must be
considered. Let us consider a longitudinal linear elastic wave propagating in an isotropic medium.
As we push on the material the resultant particle displacement vector is along the direction of the
push (k). Therefore, there are no components of the displacement vector orthogonal to the wave
number vector (for a given mode of propagation the 3 vector components of the displacement are
decoupled in the eigenvalue equations). In an anisotropic medium as we push on the material there
is no guarantee that the resultant displacement vector will be along the direction of k (in general for
a given mode of propagation the vector components for the displacement are described by 3
coupled eigenvalue equations). In fact, due to the anisotropic nature of the material, in general the
resultant displacement vector will have components both parallel and perpendicular to k. Keeping
this in mind, we see that the physical picture we obtained from the case of two slightly different
monochromatic plane harmonic waves propagating in the same direction in an isotropic medium is
not the complete picture for what the group velocity means. Since for a lossless linear elastic
medium the group and energy velocity are equivalent we should view the group velocity as the
direction and speed the energy in the elastic wave travels. Now even for a monochromatic plane
harmonic wave the group velocity has its own distinct meaning. The launching of a single
monochromatic wave in a given k direction implies that the surfaces of constant phase are planes
perpendicular to the direction of k. But because the resultant displacement vector may have
components orthogonal to K, the resultant displacement vector may not be collinear with k. This
implies that the elastic wave does not propagate in a direction perpendicular to the surfaces of
constant phase (defined by the monochromatic components of the wave). The energy contained in
the wave (for a lossless medium) propagates in the direction of the group velocity. As we saw
above, this is a direct consequence of the proportionality term in the classical wave equation having
the ability to be a function of the direction cosines of the k vector.

Graphical Interpretation of the Relationship Between Phase and Group Velocity
Surfaces:

In the March 1990 Progress Report 3-dimensional surfaces were presented for the group
velocities for wave propagation in uniaxial graphite/epoxy composites. As was discussed the
interpretation of these surfaces was not as straight-forward as the phase velocity and slowness
surfaces presented in the September 1989 Progress Report. The physical interpretation of the
phase velocity surface can be understood by placing an observer at the origin of the 3-dimensional
surface and allowing the observer to look in any direction. Where his/her line-of-sight intercepts
the surface defines a vector whose direction indicates the direction of k, and magnitude the phase
velocity for the given mode of wave propagation. The corresponding group velocity surface can
not be interpreted in this manner. As we have seen in Section IV of this Progress Report the
resultant direction of the energy is in general not in the direction of the wave number vector k but
is in the direction of the group velocity. This implies that for ultrasonic measurements made in
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transmission mode the receiving transducer may have to be offset in order to intercept the
ultrasonic wave. The resultant group velocity direction for a given propagation mode can easily be
determined by graphical means by making use of the slowness surfaces as described in previous
Progress Reports. The direction and magnitude of the group velocity can be determined by making
use of a relationship between the phase and energy/group velocity surfaces.

The wave vector surface is the plot of the wave number vector as a function of its direction for
a given (kyx,ky.k;).

ok,ky k)

ki =
lVl’hase(lx’ly’lz)I (61)

It can be shown that for a lossless linear elastic medium the wave number vector k is always
normal to the ray surface (energy flow direction, Vlgm,rgy).2 This statement implies that

k- VEnergy 1
(D(kx, ky, kz)
kI (k © Vgnergy) |
w(k,, ky, k,)
(- Venarg) = 2 = Vi 2 5
Energy ki T VPhase\k]* TkI” kI (62)
therefore,
IVPhasel = lVEnergy' (lz ’ VEnergy) = IVEnergyI COS(‘V) . (63)

The angle Wy is the angle between the energy velocity and the wave number vector direction.
Since Equation (62) must apply at every point on the normal surface (phase velocity surface), the
ray surface (energy velocity surface) is the envelope of the planes normal to Vppgee (normal to k).
Since the phase fronts of a plane wave are normal to k each portion of the ray surface

corresponds to the phase front for a plane wave with energy traveling in that direction (see
Figure 9).
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Surface of Constant Phase

VPhase(lx’lyvlz) = ‘VPhase(lx’ly’lz)I k
T
]

VG!‘O up (Ix ] ly ’ lz), VEnerg y (]'X’ ly, 12)

Figure 9: The surfaces of constant phase are perpendicular to k, the
speed and direction for which a point on a given surface of constant phase travels is

determined by the group/energy velocity.

If we superimpose the phase and the group velocity surfaces, for a given mode of wave
propagation, we can graphically obtain both the direction and magnitude of the resulting group
velocity for any given k direction. As described above we let the observer be placed at the origin.
Where his/her line-of-sight intercepts the phase velocity surface defines a vector whose direction
indicates the k direction and magnitude the phase velocity for the given mode of wave propagation.
Next we find the plane normal to the phase velocity vector. This plane will be tangent to group
velocity surface at a point. If the observer looks in the direction where the plane is tangent to
group velocity surface then where his/her line-of-sight intercepts the group velocity surface defines
the direction and magnitude of the resulting group velocity for the given k direction. In Figure 10
we demonstrate this graphical technique for a quasi-longitudinal mode propagating in a meridian
plane of a uniaxial graphite/epoxy composite material. Since the group and energy velocity are
equivalent for a lossless linear elastic material, this technique allows the determination of the
placement of the receiving transducer by a simple graphical technique. In order to more clearly
visualize the connection between the phase velocity and the resulting energy/group velocity
directions and magnitudes, we are currently making a video tape for delivery to NASA Langley
Research Center illustrating this relationship.
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Figure 10: Graphical determination of the group velocity from the phase
velocity for a quasi-longitudinal mode propagating in a meridian plane of a
uniaxial graphite/epoxy composite.
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Summary:

The velocities of wave propagation in an lossless anisotropic linear elastic material should be
viewed as follows. For a monochromatic plane wave the direction of k is normal to the surfaces of
constant phase always. If we pick a point on a particular surface of constant phase and follow it in
time we see that it follows a path determined by the group velocity nor by the phase velocity or k
vector direction. This is a consequence of the fact that the proportionality term in the wave
equation can be a function of the vector components of k. That is, each successive snapshot in
time displays the surface of constant phase always perpendicular to k but the direction in which
any given point on the surface travels is in the direction of the group velocity. The phase velocity
for a monochromatic plane wave should be thought of as the component of the elastic wave
velocity along the k direction.

The preceding description focussed on the surfaces of constant phase. We can also describe
the interaction of the monochromatic plane wave in terms of the resultant particle velocity and
homogeneous strains produced by the response of the material to the harmonic stresses applied to
the material. This description lead to the energy velocity in terms of the acoustic Poynting vector
(energy flow vector). As we saw this was a direct consequence of the fact that the response of an
anisotropic material (particle displacement/velocity) to a push along a given direction may have
components both parallel and perpendicular to the push direction. As discussed above for a
lossless linear elastic material the group and energy velocity are equivalent. Therefore, both
descriptions lead to the same conclusion; the energy in a linear elastic wave travels in the direction
of the group velocity.

The emphasis in the latter Sections of this Progress Report has been on obtaining a more
physical understanding of anisotropic nature of graphite/epoxy materials. The allowance of the
proportionality term in the classical wave equation to be a function of the wave number
components provided the starting point towards the understanding of why the phase and
energy/group velocities are distinct quantities in an anisotropic material for even a monochromatic
plane wave. Since the energy/group velocity is the measurable quantity in a nondestructive
ultrasonic measurement system, a better understanding of the anisotropic nature of this velocity
should prove valuable towards the design of advanced ultrasonic measurement systems.
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