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Abstract 

Preceding program flight tests, a ground vibration test and modal test analysis 

of a UH-60A Black Hawk helicopter was conducted by Sikorsky Aircraft to 

complement the UH-60A test plan and NASA/ARMY Modem Technology Rotor 
Airloads Program. The O NASA/AEFA O shake test configuration -hadeimbe6m tested for 

modal frequencies and shapes and compared with its NASTRAN finite element model 

counterpart to give correlative results. Based upon previous findings, significant 

differences in modal data existed and were attributed to assumptions regarding the 

influence of secondary structure contributions in the preliminary NASTRAN 
modeling.	 An analysis of an updated finite element model including several 
secondary structural additions 4i: oGkip*t doors, has 
confirmed that the inclusion of specific secondary components produces a 
significant effect on modal frequency and free-response shapes and 

improves correlations at lower frequencies with shake test data. 
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ROTORCRAFT DESIGN PHILOSOPHY & APPROACH 

The structural analysis of a modern rotorcraft is preceded by an 

understanding of the iterative design process. The process of design seeks to 

maximize specific performance/mechanical characteristics of the structure while 

minimizing others. 	 The methods employed are often dictated by expected loading 

quantities.	 The basis for many structural design approaches are defined by the 

following limit, yield, and ultimate load concepts:	 Limit Loads are the maximum 

loads anticipated on the vehicle during normal flight operation. The structure shall 

be capable of supporting limit loads without undergoing excessive elastic or plastic 

deformations. Loads greater than limit loads can be designed for. Unfortunately, the 

greater load capacity would introduce an increase in structural weight and cost and a 

decrease in payload capacity. 	 Yield Loads induce stresses that will produce a small 

amount of permanent deformation. 	 Elastic behavior is exhibited in structural 

members below the yield strength. 	 Above yield strength, plastic deformation begins. 

In most cases, the yield load is set equal to limit load. Ultimate Loads induce the 

maximum stress value in the structural material.	 Just below the ultimate strength, 

strain hardening of the ductile material is observed. 	 After ultimate strength has 

been reached, necking may occur in tensile members. 	 Continued plastic behavior 

after this point will lead to member failure. The structure shall be designed to carry 

certain ultimate loads without failure.	 Thus, ultimate loads are equal to limit loads 

multiplied by an ultimate factor of safety (i.e. FS=1.5). 	 Increased safety factors may 

also be used depending on the mission or operational requirements.	 The extra

reserve of strength created by the safety factor will also account for variables such 

as: 1) approximations in aerodynamic and structural theory/analysis 2) variations 

in the physical properties of materials and 3) differences in construction and 

inspection standards. 

Since yield loads correspond to limit loads in most cases, two forms of design 

approaches are consistently seen in the aerospace industry: limit load design and 

ultimate load design. Thus, two design methods are described: one governing elastic 

theory exclusively, and the other accounting for elastic and plastic behavior. Unlike 

other structural design/analysis disciplines such as reinforced concrete design 

where only one form of design is chosen (either a working stress or ultimate 

strength design), a rotorcraft production may rely on a combination of both methods 

for overall design.	 At the minimum, structural members must carry all limit loads 
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while optimizing weight, strength, and/or fatigue characteristics. At the 

maximum, important components, such as engines, transmission support structure, 

or landing gear, that must endure critical flight or environmental situations, may be 

designed for ultimate loading. The standards governing the use of limit load or 

ultimate load design depend greatly on any military specifications (i.e. MIL-S-8698, 

Structural Design Requirements, Helicopter) or civilian criteria (i.e. FAR 29, Federal 

Aviation Requirements) which may be imposed on the production rotorcraft. Thus 

given a specific design approach, a complete stress analysis must accurately estimate 

the load capacity of its structural members to minimize weight and cost as well as 

maximize strength and fatigue characteristics in a time efficient manner. Given a 

large and complex structural system, in terms of physical geometry and the use of 

diverse metal and composite materials, this estimation becomes a difficult task and 

requires advanced methods (ie. finite element techniques) other than previous semi-

empirical "industrial cookbook" or "hand" methods (ie. shear and moment diagrams). 

From the formulation of these static models to calculate the load or stress failure 

condition of the rotorcraft, a basic dynamic model must be evolved to predict the 

vibratory 'in-service' condition.
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BACKGROUND 

DAMVIBS PROGRAM 

With the U.S. rotorcraft industry's recent capability to accurately calculate 

static characteristics of helicopter fuselage structures, the even greater dynamic 

design problem of vibration prediction and control still remains. Significant 

vibration decreases overall vehicle performance and flight safety, increases 

maintenance efforts, and is of great concern in terms of human factors. On 

numerous occasions, inaccurate analytical predictions have led to costly "quick fixes" 

and unwelcome compromises in design detail. 

Several programs have contributed to the development of rotorcraft finite 

element models and their predictive capabilities. One recent advance in assessing 

the requirements for definitive vibration prediction and control comes from Phase I 

of the continuing DAMVIBS program. To achieve a superior capability in utilizing 

finite element models to support the Country's industrial design of helicopter 

airframe structures, NASA Langley Research Center sponsored the DAMVIBS 

program (Design/Analysis Methods for VIBrationS) with industry and academia in 

the early 80s to present day.	 Major technological contributions were received from 
the four industrial participants: 	 Boeing-Vertol, McDonnell-Douglas Helicopters, Bell 

Helicopter-Textron, and Sikorsky Aircraft. Each participant discussed, planned, and 

modeled a large scale finite element model of its chosen rotorcraft. Shake tests and 

modal test analyses were subsequently performed and compared with the analytical 
model.	 A current summation of results from this program indicates that significant 
deficiencies exist in the development of rotorcraft FE models and their subsequent 

correlations with experimental results. It has also demonstrated the need for 

improved basic finite element modeling guidelines, efficient computational and 

generic analytical procedures, and commonly accepted methodologies in treating 

this unique structural dynamics problem. 

Sikorsky Aircraft's contribution to the DAMVIBS program comes through its 

development and continuing refinement of the UH-60A Black Hawk finite element 

model. Sikorsky's NASTRAN model of the UH-60A DAMVIBS baseline weight and 

primary structural configuration is the analytical foundation and fundamental 
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starting point for the current improved NASTRAN model which includes secondary 

structural components and a modified "NASA/AEFA" flight weight distribution as 

prescribed by the NASA/ARMY Modem Technology Rotor Airloads Program. 

MODERN TECHNOLOGY ROTOR AIRLOADS PROGRAM 

Currently, NASA and the U.S. ARMY are sponsoring the Modem Technology 

R otor A irloads P rogram (M T R A Program), with industry and academia to 

experimentally define vibratory airloads for the: 

Validation of CFD and Comprehensive Rotorcraft Codes 

Investigation of Unique Flow Phenomena 

Modernization of Industry Empirical Design Methods 

Hence,	 a	 comprehensive	 database	 will	 be formed	 to validate	 the techniques	 and 
methodologies	 required	 to	 improve	 the performance,	 dynamics, acoustics,	 and 
handling	 qualities	 of	 civil	 and	 military	 rotorcraft.	 A justification for	 this	 research 
Consists	 of	 past	 acoustic,	 aerodynamic, aeroelastic, and	 several interdisciplinary 
studies	 recognizing	 rotor	 system	 vibratory airloads	 as the	 main	 source	 of rotorcraft 
noise	 and	 vibration.

The key element of the MTRA Program is the UH-60A Black Hawk test plan 

(also known as the UH-60A Airloads Program) which will further evolve the database 

of the modem rotor through numerous flight tests, model scale, and full scale wind 

tunnel tests for rotor airload definition in conjunction with the development of 

specific code applications for analytical prediction and correlation (ie. NASTRAN 

modal prediction/correlation). The following ground vibration test and finite 

element analysis/comparison serves as a complementary contribution to the UH-60A 

test plan. The UH-60A NASTRAN model will be periodically revised for the 

improvement of overall predictive capabilities and for specific applications in 

support of the MTRA Program and UH-60A test plan. Through the validation and 

continuing improvement of a predictive analytic model, a generic understanding of 

inherent fuselage characteristics may be achieved. Ultimately, their role within 

rotor-fuselage coupling behavior may be characterized and resulting overall 

vibration may be controlled in design.
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GENERAL INTRODUCTION 

To support the Modern Technology Rotor Airloads Program and UH-60A test 
plan, the UH-60A Black Hawk Helicopter has undergone a series of comprehensive 
experimental and analytical tests to determine accurate dynamic characteristics of 
the fuselage structure. Preceding program flight tests at the U.S. Army's Aviation 
Engineering Flight Activity (AEFA, Edwards Air Force Base, California), a ground 
vibration test (GVT) and subsequent modal test analysis was conducted by Sikorsky 
Aircraft using an equivalent flight weight configuration henceforth denoted as 

"NASA /AEFA". The NASA/AEFA GVT article was tested for modal frequencies and 
shapes and compared with its NASTRAN finite element model counterpart. Previous 
undamped results showed significant differences in modal response data. These 
differences could be attributed in part to modeling assumptions made concerning the 
influence of secondary structural components. Secondary components such as 
firewall, transmission bridge, cockpit doors, etc. were not part of the analytical model 
of primary structure. 

In this report, an analysis of a second, updated NASTRAN model including 
various secondary structural components is described and their effect on the modal 
response characteristics of the UH-60A Black Hawk Helicopter is assessed.



TEST CONFIGURATIONS 

DESCRIPTION OF SIKORSKY UH-60A BLACK HAWK HELICOPTER 

The UH-60A Black Hawk Helicopter is a single rotor helicopter design for the 

transportation of troops and cargo with an operational gross flight weight of 22,000 

lbs. The aircraft is designed to normally carry 11 and up to 14 fully equipped troops 

with a high density seating arrangement plus a crew of three: pilot, copilot, and crew 

chief. The helicopter has a large cabin which enables it to be used without 

modification for medical evacuation, reconnaissance, command and control purposes, 

or troop resupply. For external-lift missions, its cargo hook has a capacity of up to 

8,000 lbs. 

The main rotor system consists of four blades with a fully articulated 

elastomeric bearing main rotor head. The craft has main and tail rotor diameters of 

53 ft., 8 in. and 11 ft. , 0 in., respectively with a fuselage length of 50 ft., 3/4 in. 

Directional control is provided by a four bladed tractor tail rotor mounted on the top 

right hand side of the tail rotor pylon. Normal main and tail rotor speeds are 258 rpm 

and 1190 rpm respectively. The UH-60A has a 373 mile range and cruises at a speed of 

145 kts with a maximum level speed of 160 kts. The primary power is supplied by two 

1,151 kW General Electric T700-GE-700 advanced-technology turboshafts located 

above and on each side of the aft portion of the mid cabin. 

Fuel is carried in two large crashworthy self-sealing fuel tanks located in the 

transition section. The landing gear consists of main wheels on each side of the 

fuselage and a tail wheel. The oleo struts of the three wheels operate as normal air-

oil struts in normal landing but are designed to stroke at constant load in crash 

conditions with high vertical impact velocities. The struts are also used to lower the 

aircraft until it almost contacts the ground to allow for air transportation in aircraft 

with limited ceiling height. Just aft of the tail wheel is a splice in the tailcone which 

allows manual folding of the tail rotor pylon. One helicopter can be accommodated in 

a C-130 transport aircraft, two in a C-141, and six in a C-5A. The UH-60A horizontal 

stabilator is moveable with the angle of attack being controlled by a linear electrical 

actuator mounted within the tail rotor pylon and attached to a fitting on the upper 

surface of the stabilator.



The UH-60A is intended to serve as the U.S. Army's primary combat assault 

helicopter. Its mission adaptability has allowed it to perform under different 

configurations within other branches of the rotorcraft community such as the U.S. 

Navy, Coast Guard, and Drug Enforcement Agency. 

DAMVIBS BASELINE CONFIGURATION 

UH-60A ground vibration testing was conducted by Sikorsky Aircraft in 

Stratford, Connecticut. NASA/AEFA shake testing for the Modern Technology Rotor 

Airloads Program was performed in conjunction with similar tests for the DAMVIBS 

Program. After the baseline DAMVIBS UH-60A was tested for various modal response 

functions and parameters, equivalent masses of flight components were added at 

specific locations to duplicate the NASA/AEFA flight weight distribution and retested. 

The NASA/AEFA GVT was finally conducted using this weight and structural 

configuration. The baseline DAMVIBS GVT article is described as a flight worthy, 

government owned UH-60A helicopter (S/N 86-24507., No. 640) with the following 
parts and equipment removed: 

Main rotor blades 

Main rotor hub 

Spindles 

Bearings 

Dampers 

Bifilar 

Lower pylon fairing 

Fuel

Tail rotor blades 

Tail rotor hub 

Cabin troop seats 

Tail gearbox cover 

Intermediate gearbox cover 

Nose absorber access cover 

Various aerodynamic fairings/covers 

Various	 aerodynamic	 fairings and	 covers were	 removed to	 allow	 access	 to 
measurement	 locations.	 The presence	 of most	 secondary structural	 components 
intact	 in	 both	 GVT	 articles	 is noted.	 For both DAMVIBS and NASA/AEFA GVT 
configurations,	 the	 nose,	 forward	 cabin,	 and	 aft	 cabin	 vibration	 absorbers	 were 
rendered inactive.	 The following are	 installed in the DAMVIBS GVT article:

Modified Black Hawk main rotor hub 
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Main rotor head ballast 

Main & tail rotor excitation hardware 

Main & tail rotor suspension hardware 

Dummy tail rotor hub 

Six hundred forty pounds were added to the main rotor hub, in the form of main rotor 

head shaker hardware and dummy steel plates at hub arms, to simulate the removed 

bifilar mass and 50 percent of the flapping mass of the main rotor blades. Thus, the 

GVT article rotor head mass will be equal to the static (non-flapping) mass of the 

aircraft rotor head plus 50% of the dynamic main rotor blade mass (flapping). These 

additions to the main rotor hub are effected to approximately simulate the 4/rev rotor 

impedance of the UH-60A, and to consequently yield test modes near the 4/rev region 

with properties similar to the modes of an in-flight aircraft which has frequencies 

in the 4/rev region. 

As was done with the main rotor hardware, the tail rotor hub and blades were 

replaced by an equivalent hub mass modified to include an attachment for tail 

suspension and have equivalent lumped mass and inertia properties. 

NASA/AEFA GROUND VIBRATION TEST CONFIGURATION 

To satisfy the NASA/AEFA flight test weight distribution requirement as 

defined by the MTRA Program, the equivalent masses of the following flight 

components were added to the DAMVIBS GVT article for modal testing (figure 1): 

Pilot 

Copilot 

Ballast 

Full Fuel (actual) 

Instrumentation Racks (3) 

One notes that these additions to the GVT article effectively change mass distribution 

only (ie. the stiffness contributions from the addition of true flight test components 

such as instrument racks, ballast rack, etc. is unreflected in GVT and NASTRAN data). 

The sole difference between the NASA/AEFA and DAMVIBS GVT configurations is the 
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addition of the component masses mentioned above. The NASA/AEFA shake test 

configuration weighs approximately 17,800 lbs. with the addition of the seven 

components, while the base DAMVIBS shake test article weighs 10,140 lbs.



GROUND VIBRATIONS TESTING 

TEST DESCRIPTION & OBJECTIVES 

Several objectives and requirements are maintained for the NASA/AEFA 
ground vibration test. Among the objectives are the gathering of modal data leading 
to the extraction of free-response quantities such as resonant shapes/frequencies, 
damping levels, and frequency/time domain response functions. A statement of 
minimum loading excitation levels and their corresponding frequency ranges used 
by inertial actuators is required, as is the placement and orientation of these 
excitations.	 The accurate gathering of data must be accomplished using existing 
computational software and hardware and it should be done in a time efficient 
manner for the on-site review, interpretation, and plotting of data. Another GVT 

requirement is the selection of specific correlation points and the coincidence of 
accelerometer measurement locations with NASTRAN model grid points. In addition, 

a specific form of suspension is needed to simulate the free-free dynamic response 
condition of the in-flight aircraft. 

AIRCRAFT SUSPENSION SYSTEMS 

The test article was suspended from overhead support I-beam trusses by a 
series of spring packs made from elastic bungee cords, chain hoists, and long steel 
cables at both the main and tail rotor hubs (figure 2). This was done to simulate the 
'free-free' analysis condition which simulates the in-flight aircraft free of 
grounding restraints. The spring packs also act as soft springs to isolate the GVT 
article from overhead supports and provide for article rigid body modes of less than 
1.5 Hz.

GVT results have shown that the bungee system was subject to modes of the 
"plucked string" variety which had a significant effect on shake test frequency 
response measurements for the DAMVIBS GVT article. Without the presence of the 
suspension system, it was expected that only one peak indicating the fuselage 1st 
lateral bending mode would occur in the 5 to 6 Hz region. However, when the 
aircraft was excited laterally, two and sometimes three closely-spaced resonance 
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peaks were observed in the region. The peaks were found at 5.3, 5.5, and 5.7 Hz for 

the DAMVIBS configuration. The bungee systems (local lateral cables) of both 

forward and aft suspension systems were being excited and were coupling with the 

1st lateral bending mode to produce three coupled fuselage/bungee modes. 	 A brief

attempt was made to lower the frequencies of the cable modes by adding weight and 

by removing bungee strands. Shifting these frequencies proved difficult to do and 

the effort was abandoned due to lack of time. No evidence of the cable modes was 

observed at higher frequencies. Tests after the NASA/AEFA and DAMVIBS GVT were 

conducted with an instrumented bungee system to characterize these anomalous 

effects. We note that the inclusion of the bungee systems into the finite element 

models to be discussed has been made to reflect the correction of any comparative 

anomalies. 

Ceiling supports were shown to make little or no contribution to the measured 

airframe response by acceleration measurements of the overhead trusses. Response 

of the test facility ceiling near the attachment points of the suspension system were 

measured during vertical excitations. Minor vertical responses in the forward 

ceiling support due to main rotor excitations in the 14 to 18 Hz range did not appear to 

influence any of the structural modes of the DAMVIBS configuration fuselage. 

Lesser responses were encountered in the aft ceiling support for vertical tail rotor 

excitations. 

APPLIED LOAD EXCITATIONS 

Longitudinal, lateral, and vertical forces as well as pitching, rolling, and 

yawing moment excitations were achieved through the proper alignment of the 

shakers. Vibratory loads induced by swept, step since force inputs were applied with 

the use of two electrohydraulic inertia actuators placed at the main rotor hub on 

opposite arms of the aircraft hub and one actuator placed at the tail rotor hub. Thus, 

there are two excitation locations at the main and tail rotor heads.and three 

excitation orientations for the actual test setup (table I). The shakers are high 

performance servo controlled actuators with closed loop displacement feedback 

systems which resulted in a shaker force that varied over the frequency range of 

excitation.	 Applied shaker forces at the main rotor hub were calculated from the

measured acceleration of the shaker moving mass while the input shaker forces at 
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the tail rotor were measured with a proving ring load cell and reacted by a large 

reaction mass at rest on the floor. 

The force level of excitation is based on the practical considerations of 

response magnitude, nonlinear response, and the behavior of the shaker through 

resonances involving large motions at the rotor head. Ideally, the magnitude of the 

applied dynamic loads should be as large as possible, up to the levels of operational 

loads. A sinusoidally driven external weight force level of 100 lbs. was used for most 

of the test although other force levels ranging from 50 to 200 lbs. to as high as 550 

lbs. were applied to investigate nonlinear response. 

The	 selection	 of	 the	 frequency range	 of	 main rotor	 head excitation	 is 

motivated by the UH-60A's 4/rev blade passage frequency of 17.2 Hz. It ranges from 

0.2 to 2.2 times the 4/rev frequency with the approximate range from 3.4 to 37.8 Hz or 

for practical	 considerations,	 0	 to	 45	 Hz to	 identify	 rigid body modes and	 clear the 

highest	 contributing	 frequency	 to	 modal response	 for the NASA/AEFA configuration. 

A	 similar	 frequency	 range	 selection	 is chosen	 to	 cover the	 4/rev	 forcing	 frequency 

range of the tail rotor blades from 3 to 80 Hz.

The use of the second excitation location at the tail rotor hub was proposed for 

the measurement of response modes not adequately defined from main rotor head 

excitations. The servo-controlled hydraulic actuator at the tail rotor hub actuator 

was attached to an aluminum fitting at the centerline of the stabilator attachment 

lugs.	 Unfortunately, its use was limited to preliminary checks and secondary 

investigations due to test scheduling restrictions. Two vertical excitation sweeps 

were performed to provide a preliminary evaluation of measurement systems and 

various test techniques prior to real time data acquisition and to characterize the 

airframe response. Valid reciprocity checks were conducted with the main rotor 

excitations as well as the measurement of additional elements of the frequency 

response function matrix to serve as an additional check of modal parameters and to 

assess the extent of nonlinearities in the aircraft response. Lateral excitations were 

also performed in the same fashion with the shaker attachment location at the tail tie 

down fitting located at the base of the tail pylon. 

DATA ACQUISITION & ANALYSIS SYSTEMS 

12 



The gathering of modal test data requires the use of existing test transducers, 

computational hardware, and software. Seventy-two locations were selected as 

measurement locations to coincide with NASTRAN finite element model grid points to 

fully define fundamental mode shapes of the airframe and major components. 

Correlations and modal surveys were made using 32 of these points by Sikorsky 

Aircraft for the NASA/AEFA GVT.	 The measurement locations were dispersed
throughout the test structure with an emphasis in the forward and aft cabin sections 

at major frames, stringer, and beam intersections (figure 3). 	 Accelerometer
mounting blocks were bonded at these locations, allowing the timely installation and 

removal of accelerometers which attached to the blocks with threaded studs. The 

corresponding NASTRAN grid points were modified, if necessary, to reflect the true 

measurement locations for correlation. For both DAMVIBS and NASA/AEFA ground 

vibration tests, the following dynamic test and analysis systems were utilized (figure 
4):

Solartron 1250	 18 Channel Frequency Response Analyzer 
Consists of:	 2-Channel Frequency Response Analyzer 

8-Channel Frequency Response Analyzer Extensions (2) 

Solartron 2 Channel FFT Spectrum Analyzer 

Hewlett Packard 9836 Computer and Peripherals 
Consists of:	 Winchester 14.5 Mb Disk 

Hewlett Packard-7475A 6-Pen Plotter 
Hewlett Packard-2673A Graphics Printer 

Imperial College of Science & Technology System Control/Analysis Software 

SMS Modal 3 SE Control/ Analysis Software 

Quantities such as modal deformation shapes, resonant frequencies, and frequency 

domain data were computationally extracted with the use of two different system 

control and analysis programs from the Imperial College of Science and Technology 
and SMS.
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ANALYTICAL MODELS 

REVIEW OF NASTRAN PRIMARY/SECONDARY STRUCTURAL SYSTEMS 

Preceding the final comparison with NASA/AEFA modal data, two NASTRAN 

finite element models describing the shake test configuration were developed and 

studied for changes in modal frequency and shape. The first FEM describes primary 
structure of the fuselage exclusively. 	 Generically defined, primary structures are 	 - 
components that are designed to be load carrying members. Primary structure 

consists of aluminum semi-monocoque structure including frames, stringers, skins 

or panels, beams, and bulkheads. In areas of high temperature or concentrated load, 

titanium and machined parts are used, respectively. Generally, the airframe is built 

up from extruded stock. The finite element model for this primary structural system 

is composed of 8,819 elements, specified geometrically by 4,669 grid points, and 

utilizes 25,509 degrees of freedom (DOF)(figure 5). By various modal reduction 

methods, the number of global DOF's are decreased to approximately 60 modal 

coordinates depending on the frequency range of eigenvalue extraction. 

The	 second,	 revised	 FEM	 combines	 both	 the	 primary	 structure	 and 
specific	 secondary structural	 components.	 Generally,	 glass,	 plexiglass, 
fiberglass,	 and	 keviar coverings	 or	 skins	 fall	 into	 the	 secondary	 structure	 category. 
They	 are	 generally formed	 in	 a	 composite	 sandwich	 construction	 made	 up	 of 
aluminum honeycomb cores	 with	 laminated	 fiberglass	 or	 keviar	 skins.	 In	 some 
areas,	 the	 aluminum core	 is	 not	 used	 with	 the	 fiberglass	 and	 keviar	 skins.	 The 
windows in the midcabin and cockpit, except for the windshields in front of the pilot 
and	 copilot	 are	 stretch	 plexiglass.	 The	 windshields,	 which	 have	 wipers,	 are 
laminated	 glass	 inside with an outside layer of PVB	 plastic.	 Examples of secondary 
components	 are	 given in	 figure	 6	 The	 primary	 and	 secondary	 structural	 system	 is 
discretized	 by	 9,742 elements,	 geometrically	 described	 by	 4,379	 grid	 points,	 and 
requires 26,547 DOF's (figure 7).	 By similar reduction methods, the number of DOF's 
are decreased to	 a smaller modal subset.	 Both NASTRAN models have an equivalent 
weight	 of	 17,800	 lbs (including	 lumped	 masses	 of	 pilot,	 copilot,	 fuel,	 ballast,	 and 
instrumentation	 racks). The models are analyzed with the use of the MSC NASTRAN 

structural analysis package and Cray Y-MP/832 supercomputer located at NASA-Ames 

Research	 Center.
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In addition to the selected secondary structural components, several modeling 

revisions are included to correct physical and material properties of the former 

primary structure FEM. For this modified FEM, the following revisions/additions 

were made:

Added Firewall 

Added Transmission Bridge 

Revised Shell Properties for Transmission 

Simulated Windshield 

Gunner's Window Approximation 

Simulated Cockpit Doors 

Cabin Doors Approximation 

Revised Stabilator Springs 

Although	 all secondary structural	 components	 may	 be modeled,	 a few	 key 
components	 are	 projected to	 contribute	 much	 greater	 stiffness effects	 to the	 static 
and	 dynamic models	 in comparison	 to	 other	 components. In	 modeling revisions 
then,	 priority must	 be given	 to	 those	 components	 that are	 thought to	 cause 
significant	 changes	 in	 fundamental	 dynamic	 response	 modes. The above mentioned 
modifications are motivated	 by	 two	 studies	 conducted	 in	 the post-DAMVIBS testing 
phases.

DEVELOPMENT OF SECONDARY COMPONENT STUDY 

The first inquiry pertaining to secondary components and analytical 

structural stiffness effects came directly after DAMVIBS shake testing. A review of 

analytical mode shapes and test results indicated that the DAMVIBS baseline NASTRAN 

model appeared to be weak in the midcabin area and transmission support structure 

as demonstrated by a lack of correlation of the transmission pitch and second vertical 

bending modes. A sensitivity analysis was conducted to approximate the effects of a 

full finite element discretization of the cabin doors for the model. Several simple 

analysis cases were conducted using "steel cable" approximations of various 

dimensions connected to the opposite corners of the door openings. 	 Cross sectional 
areas were varied from 0.000196 to 1.77 in2 .	 Changes in mode shape frequency 
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placement for the configuration became evident as the cross sections were increased 

(figure fern model modifications sensitivity analysis). The cabin door simulation 

proved to be favorable in decreasing the frequency percent errors of the second and 

third vertical bending modes as seen in table II. Thus, a chief assumption of the 

study is supported by previous DAMVIBS work suggesting that minor changes in 

stiffness resulting from additional secondary components in the analytic model will 

give improved correlations with GVT data. 

The second study was conducted by Sikorsky Aircraft in recent support of UH-

60A and EH-60A aircraft production efforts for the Army • and related design 

programs. Most of the secondary components and modeling revisions are motivated 

by the Sikorsky study using a non-linear optimization programming code called 

PAREDYM (PArameter REfinement of DYnamic Models), which identifies the 

structural changes required in a finite element model to yield improved correlations 

with GVT results. The following relation describes the basic formulation of the 

optimization program: 

where 

(LY ) = { Y. ) - ( Y. }	 Difference between analytical and experimental data 
Generally containing eigenvectors and eigenvalues 

[ T ]	 Sensitivity matrix with respect to design parameters 

{ LB } = { Br ) - { B. )	 Difference between revised and original design 
parameters 

{ R }	 Residual vector summing errors arising from: 

Truncation of Taylor series (non-linear effects) 
Incomplete design parameter selection 
Experimental errors 
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The sensitivity matrix is defined specifically by: 

8Y 1 IB 1	 BY,I6B2	 .	 .	 BY, I6Bm	 1 
I6Y2 16B1

 

[T]
 

8Y / B 1	 .	 •	 8Y I 8B,, 

where	 n = number of modal data points 
m = number of design parameters 

The formulation relates differences in modal shapes and frequencies to finite 

element model parameters using a first order Taylor series expansion thus defining a 

system of equations involving first order derivatives or sensitivities. The PAREDYM 

program utilizes NASTRAN solution sequences and DMAP formats for normal modes 

and design sensitivity analysis under FORTRAN control for iterations and 

input/output routines.	 Basically, PAREDYM first extracts eigensolutions of the 
NASTRAN model, (Y a ), and computes eigensolution sensitivities, [T], with respect to 

design parameters, (B). The selected design parameters refer to finite element 

properties such as element thicknesses, cross sectional areas, etc. that are subject to 

modification. The code also converts shake test data to an equivalent NASTRAN 
format, (Ye ), such that a similar comparison database is created for subsequent matrix 

computations. Given mode shape/frequency differences between analysis and test, 

the sensitivity matrix, and original design parameters subject to systematic 
modification, the code will compute the element modifications, (B} ( and thus (Br ) ) 

and estimate the residual errors, (R) (depending upon matrix characteristics and 

solution method), needed to minimize the modal differences, {AY}. Using the revised 

model, PAREDYM will then recalculate the eigensolution, new mode shape/frequency 

differences, and sensitivity matrix. While continually updating the model and 

recalculating the analytical and sensitivity quantities, the solution process will 

iterate towards the minimization of test/analysis differences until convergence 

criteria are met. The method of solution will depend upon the number of design 

parameters, number of modal data points, and other properties of the matrix 

formulation. Specific model optimizations suggested by the PAREDYM code are not 
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incorporated into the final UH-60A improved model however. The structural 
modification suggestions are used instead as guidelines in making justifiable 
structural additions and modeling revisions (ie. secondary structure, stabilator 

improvement) based upon physical modeling principles. The PAREDYM code is 

currently limited to locating the areas deficient in terms of stiffness and defining 

the qualitative model changes that must be effected if they can be physically 

warranted. Sikorsky Aircraft plans to build upon the theoretical, computational , and 

practical aspects of the refinement code. The PAREDYM code, developed by I.U. Ojalvo 

and T. Ting of the University of Bridgeport, is based on J.D. Collins' original method 

regarding the statistical identification of structures 

MODEL OVERVIEW 

Structural Model 

The connectivity, material properties, and dimensional characteristics of 

structural members of the UH-60A Helicopter are discretized analytically through the 

formulation and selective combination of several basic finite elements. A general 

overview of those elements used to represent the general substructures of the UH-

60A such as frames, aerodynamic shells, pylons, etc. is presented. 

Quadrilateral plate elements or CQUAD4s represent a significant percentage of 

the total number of elements that compose the UH-60A structural models. These shell 

elements are characterized by the coupling of bending and membrane stiffnesses 

and thus may be subject to bending and twisting moments in addition to shear and 

normal forces.	 For the representation of UH-60A primary and primary/secondary 

structural systems, 8,803 to 9,742 finite elements are required respectively. The 
CQUAD4s number 3,240 /3,309 (Primary / Primary & Secondary) and are used 

consistently to model the repeated fuselage frames, bulkheads, and skins including 

the following structures (figure 8): 

External stores support structure (ESSS) 

Transmission and engines 

Fire walls
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Tailcone skins 
Tail rotor pylon structure 
Stabilator fairings 

For the specific case of UH-60A structural dynamics, skins of the vibration model are 
treated as a material which has both in-plane shear and in-plane stiffness to 
maintain the assumption of unbuckled (fully effective) skin in mild flight 
maneuvers. In a previous static model leading to the development of the dynamic 
model, skins were once treated as shear only material in keeping with the 
assumption of buckled skin in severe maneuvers. Thus, a difference in skin 
effectiveness is found between the current vibration model and its predecessor static 
model.

Triangular plate elements or CTRIA3s are used in place of CQUAD4s to describe 
highly curved, warped, or swept surfaces. CTRIA3s are commonly used to represent 
nonrectangular sections in modeling difficult or complex geometries. These shell 
elements, also characterized by the coupling of bending and membrane stiffnesses, 
may undergo bending and twisting moments in addition to shear and normal loads 
behavior. CTRIA3 elements, which total 836 / 878 (Primary I Primary & Secondary) 
in number, supplement the CQUAD4 quadrilateral plate discretization of frames, 
bulkheads, and skins in the UH-60A models (figure 9). 

Uniaxial bar elements or CBARs may exhibit extension, torsion, and bending 
behaviors and may thus be subjected to torque and bending moments in addition to 
shear and axial forces. For the UH-60A models, 4,718 / 5,510 (Primary / Primary & 
Secondary) uniform bar elements are used repeatedly in the discretization of buttline 
beams, beam flanges, and web stiffeners for the UH-60A's frames and bulkheads 
(figure 10). CBARs are also found in the discretization of the following: 

Main rotor shaft 
Tail rotor pylon structure 
Stabilator 
Main and tail landing gear 

Cockpit door/window supports 
External Stores Support Structure (ESSS) 
Firewall
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Cockpit windshield/door approximation 

They are commonly used in the modeling of longerons and stringers which are 

subject to axial and transverse bending loads. 

Rods or CONROD elements ,which are subject to axial extensions and torsional 

behavior exclusively, are unique extensions of the simple beam element. Because 

these structural elements are easily modified in terms of variable stiffnesses and 

cross sectional areas within the NASTRAN data decks, they are used in a limited 

capacity for the approximation of cabin door, gunner windows, main and tail rotor 

bungee suspension systems.	 There are 6 / 41 (Primary / Primary & Secondary) 
such members 

Elastic springs or ELAS2 elements scalar spring elements are useful for 

representing elastic properties that cannot be conveniently modeled with the usual 

metric structural elements (elements whose stiffnesses are derived from geometric 

properties). The stiffness coefficient of the scalar element may be directly specified 

without reference to dimensional and material properties (ie. area moment of inertia, 

element length, Young's modulus, etc.). Allowance for the specification of spring 

stiffnesses between degrees of freedom is helpful in the approximation of spring-

type mechanisms where dynamic behavior is unclear and an analytical estimation is 

required. For both the primary and primary/secondary structural systems, 4 ELAS2 

elements are used in the discretization of stabilator isolation springs. 

Mass Model 

The analyst is presented with the tedious and time consuming task of 

distributing structural and nonstructural weight to the appropriate areas of the 

finite element model.	 In the case of rotorcraft, most weight is of a nonstructural 
nature.	 Automated procedures with a NASTRAN interface program are used in 
industry to generate the necessary NASTRAN input data. 

The mass model is generated by first creating a computer file listing the 

weight and inertia properties of approximately 5,000 components (both structural 

and nonstructural) in a MIL-STD tabulation form. Hence, a description of the item 
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(ie. pilot, cabin seat, frame section, etc.), its mass, centroid location, and mass 

moments of inertia, in terms of the model coordinate system are stored. Second, a 

volume describing the entire aircraft, again using the model coordinate system, is 

defined in the mass model generation program and divided into a greater number of 

smaller, equally sized subvolumes or regions. The interface program assigns each 

mass item a location in the model volume and respective region based on its 

centroidal coordinates. Next, the program calculates a new center of gravity and 

single lumped mass from the summation and computation of mass items data for each 

region. Finally, NASTRAN input data lines are written specifying a grid point (GRID) 

and concentrated mass (CONM2) at the new centroid of each region. This process is 

repeated for each region over the entire volume. Another RBE3 rigid element is 

specified "by hand" for each concentrated or lumped mass to connect the 

concentrated mass item to the structural model. The RBE3 element allows the mass to 

undergo components of motion calculated from the average summation or weighted 

average of other nearby structural grid points. 	 This mass modeling procedure is 
depicted in figure 11. The volume and region shape may be arbitrarily chosen based 

upon the unique structural and mass configuration of different aircraft. For 

example, the UH-60A NASTRAN model by Sikorsky uses a finite pie shaped inertia 

region, while Boeing-Vertol uses a rectangular box shape for their finite element 

models. Special mass items may also be input separately "by hand" to represent 

unique flight components or different weight configurations (ie. NASA/AEFA flight 

weight distribution). 

Damping Model 

The analyst is presented with the problem of developing an analytical 

damping model for the global finite element model based upon the realistic dynamic 

behavior of the rotorcraft fuselage. For the UH-60A NASTRAN model and others 

borne of the DAMVIBS program, no damping model is assumed for general modal 

analyses. A generic understanding of rotorcraft fuselage damping theory and its 

application to analytical models is currently lacking. 

A few practical techniques are used in industry to make a crude estimation of 

modal damping levels. One standard practice is to assume a 'straight line' critical 

damping ratio ranging from 2.0 to 2.5% across the -frequency range of interest The 
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initial ratio estimate is based on the analyst's experience with the particular design 

type and configuration., flight tests results, or vibration experiments. The estimate is 

then incorporated into eigenvalue extraction procedures to calculate the mode 

shapes and frequencies of the fuselage model. Another current practice involves the 

incorporation of critical damping percentages or ratios for each mode in the finite 

element model after several approximations from various vibration excitations -and 

actuator orientations of the modal test can be averaged. However, such linear or 

tabular assumptions cannot be utilized in the pre-prototype design process since 

such damping data is needed 'a priori' to prototype building and shake testing. While 

the inclusion of "mode to mode" damping ratios from shake tests may be seen as an 

acceptable method for model validation and has proven to be successful in several 

correlative studies, such an approach also assumes that the analytical model can find 

all test mode shapes and frequencies within a specified frequency range with some 

reasonable degree of accuracy. The approach also assumes that the integrity of the 

eigensolution extraction is preserved (ie. critical damping ratio approximations do 

not affect eigensolution of other modes found exclusively in analytical model). 

Clearly, a damping function and model which is dependent upon structural 

discretization, connectivity, static, dynamic, and mass characteristics needs to be 

developed and more importantly understood. A fundamental and generic 

understanding of physical damping sources and their analytical representation is 

required for the further development of predictive finite element techniques. 

It is noted that the NASTRAN program does not include advanced damping models. 

For rotorcraft studies, damping in NASTRAN is incorporated through tabular 

functions of critical damping percentages vs. frequency and the limited use of 

viscous and structural damping elements. 
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MODELING CHECK 

To attain a certain level of confidence in the finite element discretization, 

several modeling checks may be performed by the analyst to ensure that the model 

characterizes the true dynamic behavior of the physical structure. Modeling checks 

also have the purpose of ensuring the proper representation internal and external 

constraint conditions in both static and dynamic analyses.	 Numerous checks have 
been developed for general rotorcraft finite element analyses through pre-DAMVIBS 

efforts in industry. Of the several methods available, the rigid body/enforced 
displacement check is the most informative and simplest to apply for the UH-60A 

dynamic model and warrants a brief description. 

The principal purpose of the Rigid body I Enforced Displacement Check 
is to ensure that there are no inconsistent constraints, primarily single point  
Constraints (SPC5), applied to the model. If the dynamic model is placed in a free 

body condition with no inconsistent constraints present, then it must be capable of 

undergoing rigid body motions without inducing internal forces. 

The NASTRAN model is rigidly constrained at grid points corresponding to the 

main and tail rotor shaft heads in all translational and rotational degrees of freedom 

excluding the longitudinal degree of freedom (DOF). Single Point Constraints (SPCs) 

are used to specify the rigid constraints.	 In the free longitudinal DOF, a unit 
displacement is applied to the main rotor shaft (figure 12). 	 This applied unit
displacement will yield clearly defined zero displacements and significant force 

reactions at overconstrained grid points.	 For correctly unconstrained grid points,
including the node specifying the tail rotor shaft head, unit displacements in the 

longitudinal direction will be computed. 	 Results are easily evaluated from the 

examination of printed displacement and single point constraint force output. If all 

grid point displacements on the model are equal to the applied displacements and.all 

internal forces, including SPC forces, are zero or deemed negligible, then the 

fuselage model will be unrestricted in translation and rotation motions (table III). 

Deviation from these conditions will indicate the presence of unspecified constraints. 

The rigid body/enforced displacement check is also conducted along the other five 

directional axes.
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STATIC STUDY 

OBJECTIVES 

The main objective of the limited static study is to perform a preliminary 
quantification of the effects of added secondary structure using the two 
NASTRAN models. Two structural configurations of the NASTRAN UH-60A model are 
investigated:

1) Primary Structural System 

2) Primary and Secondary Structural Systems 

Static characteristics (such as displacements and stress concentration 

redistributions) of these configurations are defined and changes in structural 

behavior, resulting from the addition of the secondary components and modeling 

revisions to the primary structure model, become evident. Equivalent static loads, in 

the form of self weight or uniform gravity loading applied to all concentrated masses 

in the fuselage, are employed individually in the longitudinal, lateral, and vertical 

directions to both configurations giving respective deformation and stress states. 

CONSTRAINTS 

Numerous external and/or internal constraints are required in both static and 

dynamic analyses. The static load analysis is performed by first imposing external 

constraint conditions upon the UH-60A fuselage such that rigid body movement is 

suppressed and several of the problems associated with singular matrices are avoided. 

In the finite element model, the main rotor shaft head is rigidly constrained in all 

directions. Thus, the three translational degrees of freedom (DOF) and three 

rotational DOF will be removed at the main rotor hub. External constraints such as 

Single Point Constraints or SPCs are defined to specify boundary conditions at the 

appropriate degrees of freedom by applying a fixed value to a translational or 

rotational component at a geometric grid point, thus eliminating a percentage of the 

unwanted degrees of freedom with zero stiffness.	 Conditions such as the 
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enforcement of zero motion at a grid point are deemed necessary in a static analysis 

(ie. constrained main rotor shaft) for the allowance of self weight deflections. 

Internal	 constraints	 such	 as Multiple Point Constraints or MPCs are defined to 
describe	 linear	 relationships among displacements between	 two	 or more	 selected 
degrees of freedom.	 They are used in the model to approximate the beam or frame 
connectivity	 relationships. MPCs are	 maintained at	 several	 grid points	 between 
structural	 elements	 such	 as beams and	 frames (element	 CBARs and	 CQUAD4s, 
respectively)	 to	 preserve	 the design relations	 and conditions.-

Another NASTRAN form of internal constraint used consistently throughout 

the static and dynamic analyses is the AUTOSPC function. This feature examines the 

stiffness matrix, locates potentially singular degrees of freedom at the grid point 
level, and A U T 0 matically generates an internal Single Point Constraint at all 

singular degrees of freedom. This acceptable method of dealing with ill-conditioned 

matrices for the eventual decomposition, execution, and solution of the matrix 
formulations must be used with single point constraint force output to confirm that 

reaction forces at the constrained degrees are negligible. Other analytical 

techniques to deal with the singular stiffness matrix computation such as eigenvalue 

shifts or grounding restraints using springs with negligible stiffness may be 

implemented but these methods prove to be time consuming or tedious for large 
degree of freedom systems. 

LOADING 

Load magnitudes are taken from NASA/AEFA flight test data stored on the 

Rotorcraft Technology Branch TRENDS databases. Given a specific flight maneuver 

(e.g. in hover, level flight, angled maneuvers, etc.), the helicopter centroid will 

undergo a maximum acceleration and respective increased gravity field or 'self 

weight' loading in the longitudinal, lateral, and vertical directions. Centroidal 

acceleration values measured experimentally may be used in computing an 

equivalent static load quantity, given the UH-60A flight test article mass. Hence, 

equivalent forces Fx, Fy, Fz may be calculated given the helicopter centroid 

accelerations AxCG, AyCG, AzCG and the mass of the flight rotorcraft from flight data. 

These equivalent static loads may be applied to the lumped masses of both NASTRAN 
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structural	 configurations	 in the form	 of uniform gravity	 fields	 specified	 in	 one	 or 
more of the model	 axes. Differences	 in	 stress and deformation responses	 between 
both	 configurations	 resulting from	 the	 application of equal	 forces are	 studied	 from 
contour plots	 of stress	 concentration	 redistribution and displacement data.	 One	 notes 
that TRENDS NASA/AEFA flight	 data	 acts	 as a	 guideline	 only in	 defining	 load 
magnitudes	 and	 their orientations	 for purposes	 of static	 response examination.

COMPUTATION METHODS & SOLUTIONS 

The static analyses for both finite element models are based on the 

displacement method. A Gaussian elimination algorithm is employed to find the 

deformed state solution, given the formulation of the element stiffness matrix and 

definition of a load vector (in this case, uniform gravity loading). The NASTRAN 

rigid format Solution 24 for Static Analysis is used. 

INFLUENCE OF SECONDARY STRUCTURAL COMPONENTS 

The static analyses have shown changes in stress concentrations, strain 

energies, and structural deformations (figure 13) resulting from the addition of 

secondary structure. As an ulterior goal, this preliminary analysis will eventually 

aid in an evaluation of the stiffness of the overall airframe and selected parts of the 

structural systems (e.g. stabilator, cabin door, etc.) after the development of graphics 

visualization tools. Information regarding regional stiffnesses will assist in 

explaining/describing important modes involving torsion, vertical displacements, 

lateral reponses, or other combinations which will arise in the later real data 

analysis of the comparison. Both configurations of the NASTRAN model including 

and excluding secondary structure are studied in describing the static effects of 

secondary structural additions.
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DYNAMIC STUDY 

OBJECTIVES 

The main objective of the dynamic study is to quantify .the. dynamic 
effects of added secondary structure through the comparison of modal 
shapes and frequencies from both analytical models. As in the static study, 
the two structural configurations of the NASTRAN UH-60A model are investigated: 

1) Primary Structural System 

2) Primary and Secondary Structural Systems 

Dynamic characteristics	 of	 these configurations	 are defined	 and	 changes	 in 
structural behavior,	 resulting	 from the	 addition	 of	 the secondary	 components	 and 
modeling revisions	 to	 the	 primary structure model,	 become	 evident. 
Eigenvector/eigenvalue 	 extractions are	 performed	 for each	 configuration	 giving 
respective modal	 deformation	 states and	 resonant	 frequencies.

CONSTRAINTS 

For dynamic analyses, the NASTRAN model is subjected to an unconstrained 

'free-free' response condition that simulates the in-flight UH-60A aircraft free of 

grounding restraints. Hence, external single point constraints are not specified to 

restrain the structure, thus allowing the eigensolution extraction of rigid body modes 

of translation and rotation for the free body. The imposition of this condition poses 

several computational problems such as the decomposition of a singular stiffness 

matrix. The use of MPC displacement relationships and the AutoSPC function in the 

generation of internal constraints is continued as in the previous static analyses. 

BASIC FORMULATION
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An eigensolution extraction does not require a definition of dynamic forces 

since the formulation of the free response of a single or multi-degree of freedom 

system is founded upon the following basic relation: 

[M] {x) + [C] {x} + [K+iG] {x} = 0 

where	 M	 =	 mass matrix 
C	 =	 viscous damping matrix 
K	 =	 stiffness matrix 
0	 =	 structural damping matrix 
x,x,x =	 respective nodal acceleration,velocity, & displacement vectors 

For the undamped case (ie. C = 0, G=O), the solution of the eigenvalue/vector problem 

leads to a determinantal extraction of the following basic form which may be 

rewritten in several forms depending upon the extraction method chosen: 

[K - 2. M ] Cu) = 0 

where	 X=	 set of eigenvalues (resonant frequencies) 
(u)	 =	 set of eigenvectors (mode shapes) 

It becomes evident from the formulation of the eigensolution problem for the 

undamped case, that there exists no dependence on a loading quantity and that the 

determination of the modal deformation vectors and resonant frequency values are 

dependent only upon the stiffness and mass matrices and approximations inherent of 

the chosen reduction and extraction methods. 

COMPUTATION METHODS & SOLUTIONS 

In the dynamic analyses, emphasis is placed on the use of eigenvalue analysis 

in yielding the most informative data in the quantification of additional components 

and the correlation with shake test results. The studies of both NASTRAN models rely 

on several matrix decomposition, reduction, and computation techniques to compute 

the eigenvectors (mode shapes) and eigenvalues (resonant frequencies). NASTRAN 

Rigid Format 3 for Normal Modes Analysis is used with a modified algorithm based on 

Givens method of tridiagonalization for the real eigenvalue/eigenvector extraction 

in the free undamped vibrations case. This method is chosen from among the other 
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basic Givens and Inverse methods for its computational efficiency and accuracy for 

large, complex degree of freedom systems where numerous eigensolutions are 

required after extensive static or dynamic matrix reductions are performed. 

With greater than 25,500 degrees of freedom specified for each NASTRAN 

model and restrictions on memory and CPU time, it becomes reasonable to reduce the 

number of degrees of freedom to a smaller subset, prior to the eigenvalue extraction, 

which preserves the physical discretization of the actual structure and mathematical 

integrity of the dynamic formulation. The general method for -this type of modal 

reduction in NASTRAN is called Generalized Dynamic Reduction (GDR) by which a 

smaller number of modal degrees of freedom are defined on the basis of their modal 

participation. Generalized Dynamic Reduction is an extension of the static 

condensation method (Guyan reduction). The number of degrees of freedom in the 

subset is approximately equal to the 1.5 times the number of roots found below the 

maximum frequency of interest in the extraction range. In the case of the UH-60A 

model (0 to 35 Hz, frequency range of interest), approximately 60 degrees of freedom 

are used. The details of these reduction and extraction procedures is discussed in the 
referenced NASTRAN manuals. 

INFLUENCE OF SECONDARY STRUCTURAL COMPONENTS 

Table IV shows changes in NASTRAN mode frequencies with the cumulative 

removal of secondary components. Generally, slight changes are achieved with the 

removal such that no one single component can be said to cause a systematic change 

in all mode estimates with the exception of the cabin door approximation which still 

warrants a correct discretization based on physical modeling principles before being 

accepted as part of the 'best estimate' NASA/AEFA NASTRAN finite element model. The 

effect of secondary components is briefly described: 

Simulated Windshield 

The approximation of upper and outboard cockpit windshields with beam 

elements to simulate the local stiffness associated with laminated glass and plexiglass 
fairings.	 This approximation which creates additional structural connections 
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between the cockpit roof and floor in the analytical model have an effect in 

changing the mode frequency placement of the Transmission Pitch/2nd Vertical 

Bending , Transmission Roll/Stabilator Yaw, and Transmission Roll/Stabilator Roll 
modes. 

Simulated Cockpit Doors 

In place of a full discretization of both cockpit doors, beam elements are 

utilized in approximating the local stiffness associated with structural aluminum 

core, kevlar/composite covers, and plexiglass. These double hinged, single piece 

components are found to affect the the Transmission Pitch/2nd Vertical Bending and 

2nd Vertical Bending modes. 

Added Firewall 

The firewall is fully discretized in the primary/secondary structural model. 

This main rotor pylon fairing component which lies between the exhaust outlets of 

the twin turboshafts is an internal component subjected to high temperatures. It is 

fabricated from built-up titanium sheet stock with a combination of spot welding and 

riveting. This component effects greatly increases the frequencies of the 1st 

Vertical Bending, Stabilator Roll, and Transmission Pitch, Transmission 

Roll/Stabilator Yaw, Stabilator Roll/Transmission Roll, and 2nd Vertical 
Bending/Transmission Vertical modes. 

Added Transmission Bridge 

A discretization of the transmission bridge is included in the 

primary/secondary model. The transmission bridge is a minor set of titanium beams 

components designed to support the rotor transmission and laterally connect the two 

firewalls on both sides of the engine. The addition of component is found to affect 

the Transmission Roll/Stabilator Yaw, Stabilator Roll/Transmission Roll, and 2nd 

Vertical Bending/Transmission. Vertical modes. 
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Revised Shell Properties for Transmission 

In the previous DAMVIBS and EH-60A studies using the primary structure 

model, several locally-controlled engine forward and aft modes were found. The 

PAREDYM optimization code suggested doubling the thickness of all plate elements in 

the main transmission housing to investigate these modes. For these studies, it had a 

favorable effect on mode correlation although such a change was not based on 

physical modeling principles. This modeling revision is found to affect the 

Transmission Pitch/2nd Vertical Bending, Transmission Roll/Stabilator Roll, and 2nd 

Vertical Bending modes of the NASA/AEFA configuration. 

Revised Stabilator Springs 

A mode frequency comparison for the increase in stabilator spring stiffness is 

not offered with this part of the study. The change is considered to be a revision 

towards the continued refinement and improved modeling of an inherently non-

linear component as found in past ground vibration tests. 

Gunners Window Approximation 

The approximation of small, sliding doors on both sides of the forward cabin 

are included in the primary/secondary structural model. These laminated glass, 

composite, and structural aluminum components are represented with respect to 
stiffness with axial beam elements. 	 This component affects the Transmission Pitch 

and 2nd Vertical Bending/Transmission Vertical Bending modes. A full discretization 

of this component may be warranted since it is shown to increase percent errors 

between analytical and test results. 

Cabin Doors Approximation 

The approximation of large, sliding doors on both sides of the midcabin are 

included in the updated model.	 These components composed of laminated 
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glass/plexiglass, composite/aluminum sandwich structure, and aluminum sheet are 

represented by axial beam elements to incorporate lateral and vertical panel 

stiffnesses associated with door sliders and roller supports. A full discretization of 

this component may be warranted in the future since it affects the 1st Vertical 

Bending, Transmission Pitch, Transmission Pitch/2nd Vertical Bending, Stabilator 

Roll/Transmission Roll, Transmission Roll/Stabilator Roll modes. The inclusion of 

this approximation causes a significant frequency. deviation in the 2nd Vertical 

Bending/Transmission Vertical Bending mode. 
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MODAL COMPARISON OF ANALYTICAL MODELS 

OVERVIEW OF MODES OF PRIMARY/SECONDARY STRUCTURAL SYSTEM 

The primary and secondary structural system represents the most recent and 

significantly refined finite element model of the -UH-60A Black Hawk. Table V 

describes 38 dynamic response modes obtained from the primary and secondary 
structural systems in the 0 to 35 Hz range. The first six mode shapes close to 0 Hz are 

identified as rigid body modes and act as a modeling check corresponding to 

translational and rotational attitudes. 	 The analysis of undamped modal frequencies
and shapes has shown good comparison with test results for modes in the 4 to 17 Hz 
range.	 After 17 Hz however, analytical shapes begin to diverge from shake test 

results. Fundamental modes including lateral or vertical bending components show 

excellent agreement and improve with the addition of secondary structural 

components as will be seen. An overview of the significant mode shapes found also 

in ground vibration tests is presented: 

1st Lateral Bending 

Figure 14 shows the first analytical mode found after the six rigid body modes. 
The 1st Lateral Bending mode is placed at 4.965894 Hz in the P/S structural system. A 

small 0.43 % increase to this frequency from previous primary structural system 

estimates is achieved through the addition of secondary components and modeling 

revisions.	 Notable lateral deflections about the midcabin section is evident with 

torsion and roll deflections of the tail rotor pylon.	 Significant torsion in tail rotor 
pylon begin after the , pylon fold joint.	 This mode exhibits the first of many anti-
symmetric bending behaviors of the stabilator. 	 Stabilator behavior for this mode is 

accompanied with torsion and yaw rotations. For the frequency range of interest 

and test accuracy of 0 to 35 Hz, two modes are found to qualify as lateral bending 

modes for the primary and secondary structural systems. 

1st Vertical Bending
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The 1st Vertical Bending mode is placed at 6.047724 Hz in the P/S structural 
configuration (figure 15).	 This fundamental shape is signified by major upward 
vertical deformations centered about the midcabin section. 	 Full fuselage bending as 
in the previous mode is present.	 Vertical displacements in the stabilator region are 
due to the upward deflection of the tail rotor pylon base at fold joint. The P/S 
structural system shows a 3.87 % improvement in frequency correlation from the 
primary system estimate of 4.944847 Hz. Under 35 Hz, fives modes qualify as vertical 
bending modes for the primary and secondary structural systems. 

Stabilator Roll 

The Stabilator Roll mode at 9.956318 Hz is characterized by isolated anti-
symmetric bending of the stabilator wing (figure 16). Minor lateral bending in the 
aft tailcone before the pylon fold joint is present. A minor .91 % frequency increase 
9.866302 Hz is brought about through the addition of secondary components. The 
Stabilator Roll mode is one of seven modes under 35 Hz that include well pronounced 
and isolated stabilator bending. 

Transmission Pitch 

This mode shape at 11.25406 Hz is characterized by the pitch rotation of the 
transmission section and main rotor hub shaft (figure 17). Significant vertical 
bending in tailcone with anti-symmetric bending of stabilator is present. 
Longitudinal displacements are found in the tail rotor pylon with additional but 
limited vertical bending in the cabin areas. 	 A 7.517 % improvement from the 
previous primary structural system estimate of 10.53568 Hz is achieved through the 
secondary component additions. Twelve modes in the frequency range of interest 
some type of pitch, roll, or yaw rotation behavior of the transmission and main rotor 
hub structures. 

Transmission Pitch/2nd Vertical Bending 

34



At 13.07353 Hz, this mode is characterized by notable vertical displacements in 

the nose and cockpit/cabin transition section to the aft cabin transition section 

(figure 18). Well defined vertical bending of the fuselage is exhibited as is found in 
the 1st Vertical Bending mode. 	 Pitching of the transmission shaft is a dominant 
feature of this mode shape. 	 Full vertical bending of general tailcone section is 

present. Anti-symmetric vertical bending and yaw rotation of stabilator is also 

present. From the previous baseline estimate of 11.32761 Hz, a 15.413 % improvement 

is found. 

Transmission Roll/Stabilator Yaw 

Although the Transmission Roll/Stabilator Yaw mode is characterized by 
isolated anti-symmetric bending with yaw rotation of the stabilator wing and the 

limited roll rotation of the transmission structure (figure 19). Isolated and limited 

vertical and lateral displacements near the cockpit nose and tailcone aft regions are 

included in this mode. A minor .5257 % frequency increase to 13.75396 Hz from 

13.68203 Hz is brought about through the addition of secondary components. 

Stabilator Roll/Transmission Roll 

The Stabilator Roll/ Transmission Roll mode at 14.14592 Hz exhibits vertical 

displacements in the cockpit and tailcone regions (figure 20). Significant 

displacements are due to rolling of the main rotor hub and transmission support 

structure.	 An Anti-symmetric roll and yaw rotation of the stabilator is a prevalent 
feature of this mode.	 Minor vertical bending displacements are contributed to the 

midcabin floor from the rolling of the transmission structure. A 8.539% 

improvement from previous primary structure model analyses at 13.033 Hz is gained 

towards the correlation with shake test results. 

Transmission Roll/Stabilator Roll 

The Transmission Roll/Stabilator Roll mode at 14.52526 Hz exhibits limited roll 

rotation of the transmission structure coupled with the anti-symmetric vertical 
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bending and yaw rotation of the stabilator (figure 21). This mode is related directly 

to the previous Stabilator Roll/Transmission Roll mode with minor differences in 

phase.	 The fuselage between the midcabin and transition sections undergoes minor 

roll. Minor lateral bending is found about the aft tailcone section. A 1.5426 % 
difference from 14.30409 Hz is achieved through the secondary additions. No similar 

mode is found in modal test. 

2nd Vertical Bending/Transmission Vertical 

At 14.94383 Hz, the 2nd Vertical Bending/Transmission Vertical mode is defined 
on the basis of the well pronounced vertical bending of the full fuselage (figure 22). 

Uniform vertical translation of the transmission structure and main rotor hub is 

found. It is noted that very little lateral and longitudinal bending is present with the 

exception of the tail rotor pylon undergoing longitudinal translation and bending. 

Anti-symmetric vertical bending and yaw rotation of stabilator is exhibited. A 5.4494 

% improvement is achieved from the previous estimate of 14.17157 Hz. 

Cockpit/Cabin Roll 

The	 Cockpit/Cabin Roll mode at 	 17.34857 Hz is	 characterized by an apparent 
roll	 of	 the	 cockpit	 and	 cabin	 regions	 (figure 23). Prominent	 lateral bending	 in 
tailcone	 section	 coupled	 with	 a	 roll	 rotation	 of the tail	 rotor	 pylon base	 is	 present. 
Isolated	 lateral	 displacements	 in	 nose	 also	 occur. Minor yaw rotations	 in	 the 
stabilator	 including	 anti-symmetric	 bending. A 1.7694	 percent difference	 from 
17.04694 Hz is achieved with the addition of secondary components. 

Stabilator Vertical Bending

The Stabilator Vertical Bending	 mode at 26.84547 Hz is characterized solely by 
the	 isolated and	 well	 defined	 symmetric	 vertical	 bending of	 the	 stabilator	 wing 
(figure	 24). Small	 deflections	 are	 present in	 the	 cockpit window	 support	 frames. 
Minor vertical bending is also exhibited in the tail rotor pylon fold region.	 A .6555 % 
difference	 in frequency	 from	 the previous	 estimate	 of 27.0226	 Hz	 is	 achieved	 with
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the addition of secondary components. The Stabilator Vertical Bending mode is the 
last shape found in common among NASTRAN analyses and ground vibration test 
results. 

PRIMARY STRUCTURAL SYSTEM VS. PRIMARY/SECONDARY SYSTEMS 

A direct comparison of the two analytical FE models is depicted in Table VI. The 
first 20 modes of the primary and secondary structural systems are shown to 
correlate well with primary structural modes. At higher frequencies above 17 Hz, 
these two analytical models begin to show a greater separation in terms of mode 
shape frequencies. Table VI shows the mode frequencies of the primary/secondary 
structural system and the primary structural modes found in common. 'Extra' modes 
of the primary structural system are found at the following frequencies: 

Frequency (Hz) 

14.62367 
14.7 1011 
19.28929 
22.95044 
23. 10861 
24.36330 
28. 87464 
29.07011 
34.85303 

In the 0 to 35 Hz range, 41 primary structural modes are found in comparison to the 
38 modes found for the primary/secondary system. Various forms of stabilator 
activity are present in all primary structural modes as in the primary/secondary 
system. 

TRENDS & OBSERVATIONS 

Additional secondary structural components and the incorporation of 
modeling revisions to the transmission shell and stabilator has created several 
noteworthy trends among mode shapes and resonant frequencies: 
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Stabilator Bending Modes
LN 

The presence of numerous mode shapes including the rotation or bending of 

the stabilator wing is a distinct feature of the primary/secondary structural system. 

Even with the inclusion of stiffness upgrades of the stabilator springs in the finite 

element model, realistic characterization of the inherent non-linear behavior of the 

stabilator will continually prove to be difficult as demonstrated through past shake 

tests. Of the total 38 modes, 31 involve some form of stabilator activity. Nine mode 

shapes include anti-symmetric bending of the stabilator while the 22 include 

symmetric bending of varying degrees. Anti-symmetric stabilator bending 

components dominate the 4 to 18 Hz range which is characterized by vertical 
bending.	 Symmetric bending forms dominate the higher frequency scale after 18
Hz. 

Vertical Bending Modes 

Mode shapes utilizing vertical bending components in the 4 to 17 Hz are 

particularly affected. The 1st Vertical Bending mode at 5.822593 Hz begins a trend in 

decreasing percent errors between analytical and test results among vertical modes. 

The modes following the 1st Vertical Bending mode, the Transmission Pitch/2nd 

Vertical Bending and 2nd Vertical Bending/Transmission Vertical modes, show 
percent increases in improvement of 15.4 129 % and 5.4494 % with shake test results, 
respectively. From table VII, one can see the trend in correlation improvement. 

Conversely, decreases in percent error are attained through the increases in 

structural stiffness. For this set of modes, frequencies consistently increase to match 

test results. 

Transmission Modes

Several	 of the	 mode shapes	 involve some	 form	 of	 transmission	 activity. 
Starting with the Transmission Pitch mode at 11.25406 Hz begins a series of coupled 
modes	 including transmission roll	 rotational and	 vertical	 translation	 components.

38 



Stabilator bending or rotation modes are directly coupled with transmission modes in 
the 4 to 17 Hz range of interest. 

Coupling of Mode Shape Sets 

For the primary/secondary structural systems, coupling between sets closely 

spaced modes shapes is common. Three to as many as 4 modes may share distinct 

bending or torsion components. An excerpt from the previous tabular description of 

modes for the primary/secondary system is presented in table VIII to demonstrate 

one such case. Table V shows five modes describing a 'family' of coupled modes in the 

17 to 23 Hz range. The first mode, Cockpit/Cabin Roll at 17.34857 Hz, is defined and 

followed in the second mode at 19.77792 Hz by a similar mode incorporating a fuselage 

vertical bending component. The three following modes at 20.2, 21.81, and 22.06 Hz 

incorporate the major bending and torsion components of the first two 'parent' 

modes in this range. This type of coupling or -relation between neighboring modes is 

consistently seen throughout the entire frequency range. 
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CORRELATION WITH GROUND VIBRATION TEST RESULTS 

PRIMARY/SECONDARY STRUCTURAL SYSTEMS VS. GVT CONFIGURATION 

A comparison of shake test mode frequencies with NASTRAN analytical results 

is presented in table IX. Two interpretations of raw modal test data have been made 

through the use of SMS Modal 3 SE software and test/data acquisition software by the 

Imperial College of Science & Technology. Unlike Imperial College software, SMS 

Modal 3 SE was able to detect the additional modes generated by the bungee 

suspension system warranting the inclusion of the bungee system into the enhanced 

finite element model.	 Generally, shake test estimates from both programs are very 
similar.	 However, both interpretations exhibit minor differences in their ability to 

estimate several modes. Imperial College software did not detect the Stabilator 

Roll/Transmission Roll test mode at 13.9 Hz. Modal 3 SE software was also deficient in 

locating the Stabilator Yaw/Pylon Torsion test mode at 15.3 Hz. (It is noted that the 
Stabilator Yaw/Pylon Torsion mode was not found through analysis for both 

structural configurations.)	 Both test programs were unable to detect a Transmission 
Roll/Stabilator Roll mode found through analysis at 14.5 Hz. 

A comparison of NASTRAN estimates show a consistent increase in mode 

frequencies between the primary structural configuration and primary/secondary 
system model.	 These increases offer an improved correlation with shake test 

estimates. The Stabilator Vertical Bending test mode at approximately 26 Hz is an 

exception to this general trend by incurring an increase in percent error from a 

primary structure estimate of 26.85 Hz to the primary/secondary system estimate of 
27.02 Hz.	 Analytical modes correlate well with shake test results below the 4/rev 

blade passage frequency (17.2 Hz). After this frequency however, correlations show 

increasing differences as seen in the comparison of test and analytical frequencies 

for the Cockpit/Cabin Roll and Stabilator Vertical Bending modes. 

NON-MATCHING MODES 

Several non-matching modes are found in both analysis and test. NASTRAN 

predictions are able to find the majority of mode shapes with a good estimation of the 
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resonant frequencies up to 17 Hz.	 NASTRAN analysis also predicts the relatively 
distant Stabilator Vertical Bending mode at 26.9 Hz. Between the 17 Hz analysis 

confidence limit and this distant mode, 11 extra non-matching modes are found as are 

8 extra modes above the Stabilator Vertical Bending mode in the 0 to 35 Hz range of 
interest. Ground vibration test results have also shown the existence of additional 

mode shapes that could not be adequately defined for the given excitation levels, 

orientations, and limited number of accelerometer measurements. Of these additional 

test modes, four are found between the 17 Hz test confidence limit and Stabilator 

Vertical Bending test mode at 26.1 Hz. Seven additional test modes are found above the 

Stabilator Vertical Bending test mode. The placement of these undefined deformation 

states are similar to analysis. It is conceivable that several of these test modes may 

have already been predicted by NASTRAN analysis. These higher modes may later be 

defined through an in-house shake test of the current UH-60A Rotor Airloads flight 

test configuration. It is valuable to note that, unlike most conservative structural 

analyses (i.e. civil structures) in which the first few modes concerned with 

structural stability are most important, a rotorcraft study must eventually address 

higher modal frequencies at discrete regions such as 4/rev and 8/rev blade passage 
frequencies.	 One notes that this type of divergence trend at higher frequency 
correlation is consistent with previous DAMVIBS efforts. 

DEVELOPMENT OF VISUALIZATION TOOLS 

Graphics software tools are currently being developed by the authors and 

Glenn Deardorff of the NASA-Ames Computer Systems and Research Division to 

permit the graphical visualization the UH-60A structural model characteristics. The 

software is created for the Branch Silicon Graphics Workstation for the graphics 

post-processing of static characteristic plots such as stress concentration 

redistributions and the animation of NASA/AEFA analytical mode shapes. Figures 25 

and 26 show the visualization of the aerodynamic flow fields about the UH-60A main 

rotor and fuselage. Figure 27 shows one frame of an animation sequence depicting 

the deflections occuring in the 1st Lateral Bending mode. 
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CONCLUSIONS 

SECONDARY STRUCTURAL COMPONENTS 

The premise of a secondary components study poses structural stiffness 

modeling as the chief cause of discrepancies between GVT results and analytical 

models. Consistently improved correlations in the lower frequency range show this 
to be a valid assumption. The discrepancies at higher frequency modes need to be 

continually addressed however. Although this study is limited , in scope and may be 

configuration dependent, the addition of such components are found to generally 

improve eigensolutiofl correlations. 

A review of the cumulative effects of secondary structure as one gradually 

compares the primary structural model to a full-up analytical primary/secondary 

structural system shows that all secondary components must act in concert to achieve 

a systematic improvement in mode frequency correlation. The addition of secondary 

components should be viewed as one factor in achieving better correlations. 

DAMPING MODEL 

The ' development of an analytical damping model that may be incorporated 

into a general rotorcraft finite element model may prove useful in addressing the 
uncorrelated higher frequency modes. In an assessment of issues that needed to be 

addressed upon the 1989 review of DAMVIBS accomplishments, R. Kvaternik of NASA 
Langley Research Center cited damping as a one critical area of study for the further 

development and improvement of vibration predictive models. 

Several damping models have been suggested in other areas of study (ie. large 
flexible space structures). Numerous investigations have been performed to 

understand several damping mechanisms, accounting for molecular, magnetic, 

plastic yielding, thermal, and fluid effects. 	 However, the studies were limited in 

scope to warrant only the support of the individual thesis. No general effort has 
been conducted to summarize the research results into a wider scoped quantification 

of the general damping concept. These recent studies were of a varying nature from 
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diverse disciplines ranging from the study of continuum mechanics to large space 

structures and optics. Clearly, a great differentiation exists between classifications of 

damping such as structural or hysteretical, viscous, viscoelastic, material, thermal, 

proportional, and nonproportional. The individual effects of various sources of 

damping may eventually be characterized, and their level of participation isolated in 

terms of its contribution to overall rotorcraft damping. These damping sources could 

be quantitatively and qualitatively- researched encouraging the development of an 

analytical damping model. 

UH-60A AIRLOADS PROGRAM FLIGHT TEST CONFIGURATION 

The previous ground vibration tests conducted for the UH-60A configurations 

under the DAMVIBS and MTRA Program give numerous lessons which may be passed 

onto planned shake tests of the UH-60A Airloads Program Flight Test Configuration. 

Among the issues to be addressed are the: 

Use of the secondary excitation location at the tail rotor 

Assessment of non-linearities and residual terms 

Selection of forcing frequencies and applied load magnitudes 

Orientation of applied loads 

Determination of applied loads 

Selection of suspension system and determination of its error contribution 

Selection of data acquisition and interpretation hardware and software 

Practical placement of measurement locations 

These test concepts must be defined in the pre-shake test phase. The descriptions and 

results from previous UH-60A tests will serve as an invaluable experience base for 
future tests.
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RECOMMENDATIONS 

REVIEW OF AVAILABLE OPTIMIZATION TECHNIQUES 

A review of potential optimization techniques should be conducted for the 

continuation of model refinement. Accurate results from the planned shake test of 

the UH-60A Airloads Program Flight Test Configuration will prove valuable in 

ascertaining the types of modifications that should be made. This is reasonable since 

many optimization codes must use some form of modal test data as a reference 

database from which to improve correlations. For the UH-60A NASTRAN model, three 

current methods appear viable: 

1) PAREDYM PArametric REfinement of DYnamic Models 
A nonlinear programming code by Sikorsky and the University of Bridgeport 

2) NASTRAN 
Recently developed formats for Design Sensitivity and Optimization analyses 

3) COPES/CONMIN 
System Identification/Optimization routines developed by NASA and H. Miura 

Clearly, the continuing refinement of the UH-60A is becoming increasingly 

dependent upon the use of optimization and system identification 

applications/disciplines. 

VISUALIZATION METHODS 

Discussions and collaborative work regarding Visualization techniques should 

be continued with Glenn Deardorff of the Computer Systems and Research Division. 

The development of a generic NASTRAN graphics post-processor for purposes of 

dynamic mode shape identification and video presentation of the UH-60A Model 

should be completed before the planned shake test. The post-processor will allow a 

more time efficient analysis of static characteristics to be made through the use of 

contouring, color graphics, and other visualization benefits. Although other post-

processors are available in the commercial market (ie. PATRAN), use of the graphics 
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software on the Silicon Graphics Workstation will prove superior in terms of video 
presentation material. 

UH-60A AIRLOADS PROGRAM REVIEW COMMITTEE RECOMMENDATION 

Based upon the recommendations of the UH-60A Airloads Program Review 

Committee, which met with members of the Rotorcraft Flight Technology, Flight 

Experiments, and Rotorcraft Aeromechanics Branches in May 1990, work for a 

NASTRAN remodeling effort is proposed. The committee, including engineers and 

faculty from both industry and academia, suggests that a vibration survey of the UH-

60A flight test airframe be included as a complementary component of the 

continuing UH-60A flight test program. It was shown that in-flight vibration test 

data would be of minimal use unless a parallel commitment were made to a complete 

ground vibration test and modal analysis with accompanying finite element analysis 

of the flight test airframe configuration. 

ADDITIONAL MODELING OF FLIGHT COMPONENTS 

The current structural configuration of the UH-60A flight test craft is shown 

in figure 28. This unique article is similar to the previously described NASA/AEFA 

GVT and NASTRAN configurations. This flight test article however, in addition to 

flight masses, will carry the corresponding true flight components such as 

instrumentation racks, ballast rack, ballast cart, etc. 	 Previous GVT and NASTRAN 

analyses have reflected changes in mass distribution only. No changes in stiffness 

due to these flight components have been considered since they were not included in 

NASA/AEFA shake tests. Extra flight instrument components such as instrumentation 

booms have also been added since the NASA/AEFA GVT. The following is a list of 
flight members contributing mass and structural stiffness to the UH-60A flight 
configuration:

MUX Instrumentation Bucket 

Ballast Rack 

Movable Ballast Cart 

Instrumentation Racks (4) 
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Power Source/Converter Mount 

Laser Cube Mounts (2) 

Instrument Bar 

Instrument Boom 

Formatter/Multiplexer Mount 

Multiplexer Base 

Observer Station Mount and Seat 

Tape Recorder Mount 

Various Instrumentation Boxes 

A few of these components may be deemed insignificant in contributing stiffness or 

mass to the model (ie. laser cube mount). But most of these items will contribute a 

notable difference in dynamic response, particularly on the cabin floor where a full 

ballast rack, ballast cart, and five instrument mounts will locally increase stiffness. 

The role of other members in changing global dynamic response, such as the 

instrument boom and bar, need to be ascertained. Both these members are mounted 

directly to frames and longitudinal beams in the forward cabin and cockpit. A 

majority of these members may be added to the existing finite element model through 

the use of approximations or full substructures to reflect their suitable stiffness and 

mass effects. A corresponding shake test of the full UH-60A flight test helicopter is 

planned within the next two years for the eventual correlation of frequency and 

time domain data.
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