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1. Introduction. Fractional cloudiness influences the planetary boundary layer by controlling the 
cloud-top radiative cooling rate. and regulating the buoyant production and consumption of turbulence 
kinetic energy. Bells, Hanson, and Albrecht have modeled partly cloudy PBLs by assuming a single 
family of convective circulations. The same Idealized model has been used in observational studies, 
based on conditional sampling and/or joint distribution functions, by Lenschow, Albrecht, and others. 
This approach is extended in the present paper. None of these authors has proposed a method to 
determine u, the fractional area covered by rising motion; finding such a method has been a key 
objective of the present study. 

2. Model formulatlcn. As a starting point, we adopt Lilly's mixed-layer model. It Is assumed that 
in the interior of the PEL, the turbulent fluxes are entirely due to the convective circulations, with 
rising branches covering fractional area u, and sinking branches covering fractional area 1 - u. The 
vertical flux of an arbitrary scalar yl due to the convective circulations is given by 

where g is the acceleration of gravity; W* is the 'convective mass flux"; and subscripts u and d denote 
upward and downward branches, respectively. Near the lower boundary is a *ventilation layer" 
(essentially the same as the surface layer) within which the turbulent fluxes have to be carried by 
small eddies, since the organized vertical motions associated with the convective circulations must 
vanish there. The ventilation layer is assumed to be thin in the sense that the turbulent fluxes at its 
top are approximately equal to those at the surface. The surface fluxes are assumed to satisfy the 
usual bulk aerodynamic formula, 

( F Y I s =  up,- (U,L 
(2.2) 

where V is the oventilation mass flux.' Here subscripts g and S denote the earth's surface and a level 
in the ventilation layer, respectively. At level S. the parcels rising away from the lower boundary 
must be "charged" with the properties of the boundary. We cannot assume, however, that the 
properties of the updrafts at level S are the same as the those of the boundary, because there can be 
very strong gradients across the ventilation layer. The small eddies of the ventilation layer rapidly 
dilute air that has been in contact with the boundary, by mixing it with air that has recently descended 
from the interior of the PBL. In order to take this mixing into account, we introduce a nondimensional 
parameter. My, such that 

(Y")&- ps= M p # -  ; 

(2.3) 

in case Mv = 1, we get = vg . Smaller values of Mv indicate stronger mixing by the small eddies 
of the ventilation layer. We expect Oc Mv c< 1. By combining (2.1 -3), we find that 
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This is a kind of "continuity equation" for the eddies, expressing a relationship between the convective 
mass flux and the ventilation mass flux. 

Near the PBL top is an gentrainment layer- within which the organized vertical motions 
associated with the convective circulations become negligible, and smaller eddies carry the turbulent 
fluxes. The entrainment layer is assumed to be thin in the sense that the turbulent fluxes at its base 
are approximately equal to those at the PBL top. We can show that 

- ME@, B= -6. 

(2.5) 

This is another "continuity equation., analogous to (2.4). 
entrainment layer, and ME is another mixing parameter, analogous to Mv. We expect 0 < ME << 1. 

Here subscript B denotes a level in the 

We now assume that a is independent of height between the top of the ventilation layer and the 
base of the entrainment layer. This allows us to drop the subscripts B and S from a. Comparing (2.4) 
and (2.5), we find that 

The form of (2.6) ensures that <I is between zero and one, so long as the ratio in the denominator is 
positive. To develop a useful expression for a, a logical next step would be to introduce 
parameterizations for ME and My. Because ME and Mv wpresent the effects of small eddies with brief 
lifetimes, they should be highly amenable to parameterization. Unfortunately, however, no such 
parameterization currently exists. 

As an alternative to parameterizing ME and Mv, we assume that the expression in the 
denominator of (2.6) is equal to one. This implies that an increase in the convective mass flux at B or S 
is accompanied by more vigorous mixing there. Using this assumption, we find that 

1 
E '  1 + -  
V 

<I=-- 

According to (2.7), <I decreases as the entrainment mass flux increases relative to the ventilation mass 
flux. Rapid entrainment implies small 0. 

3. Flux profile8 In 8 partly cloudy well mixed layer, Lilly showed that, in a well mixed 
layer. the turbulent fluxes of conservative variables are linear with pressure, and also vary linearly 
with the entrainment rate. He further showed that in a mixed layer of horizontally uniform cloudiness 
the fluxes of liquid water and buoyancy have simple dependencies on height and the entrainment rate, 
even though liquid water and buoyancy are not conservative. In this Section we generalize Lilly's 
results to include the case of partly cloudy layers, by drawing on the results of Randall (J. Atmos. 
Sci., 1987, pp. 850-858; hereafter referred to as R87), and using (2.7). An example is used for 
clarity. 
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We assume that (F,)s satisfie8 a bulk aerodynamic formula, and (FJB satisfies Lilly's -jump' 
relation. The effects of drizzle are neglected for simplicity. As an example, we consider the following 
parameters: Qplu = 70 mb, rM = 7.5 g kg", T, = 70 W m-*, Aad = 2 K, 
AUm= -2 K, ps = 1020 mb. Here d u d  and AUm are the usual dry and moist inversion stability 
parameters. Fig. 1 shows how the latent heat flux varies with u. At the earth's surface, the latent 
heat flux is always equal to its prescribed surface value. Near the PEL top, F, vades strongly with E. 
Since E and a are related by (2.7). (F,)B increase0 rspklly a8 a decrea8ea for a c< 1. 

21 "C, gV = 2.2 mb hrl, 

We assume that (Fh)s satisnes a bulk affodynamlc formula, and (F& satisfies Lilly's 'jump' 
formula. The area-averaged radiative 
cooling obviously depends on the fractional cloudiness. We assume for simplicity that when only ?he 
updrafts are saturated 

(Distributed radiative cooling is neglected for simplicity.) 

- 
AI?= d"MO. 

(3.1 1 

Here aRo denotes the radiative cooling that occurs above a fully overcast optically thick cloud layer. 
The factor Q, is introduced to allow continuous transitions as clouds form and dissipate; for thick 
clouds, Q, II 1. The details are omitted here for brevity. 

For the case in which only the updraft is saturated, the radiative cooling depends explicity on a 
through (3.1)' and the turbulent fluxes also depend on u implicitly because the entrainment rate 
satisfies (2.7). The radiative cooling rate and the entrainment rate depend on the cloudiness, but to 
find the cloudiness we need to know the turbulent fiux. In short, we have to solve simultangously for 
the cloudiness, the radiative cooling rate, and the moist static energy flux. 

Fig. 1 shows how the updraft cloud depth varies with a, for the parameters given above. For I 

greater than about 0.7. no cloud occurs. For smaller values of a, the updrafts are cloudy, but the 

downdrafts remain cloud-free. Fig. 2 shows how varies with u . The maximum value of occurs 
for a P 0.3; for larger values of a the cloud is absent or thin, and for smaller values it covers little of 
the area. 

Up to this point, we have not had to consider latent heat effects, since both the total mixing 
ratio and the moist static energy are conserved under both dry adiabatic and moist adiabatic processes. 
Virtual temperature is not conserved under moist processes, however. As shown by R87, fur the case 
in which on& the updrafts are saturated the convective mass flux model implies that the buoyancy flux 
satisfies 

where 7 is a measure of the relative humidity of the mean state. In (3.2), the forms of F,, for the 
clear-sky and overcast cases are denoted by (F&LR and (FsV)c~o, respectively: L is the latent heat of 
condensation; and b and E are the usual positive nondimensional thermodynamic parameters. Notice that 
in (3.2) the "cloudy" flux is paradoxically weighted by the %tear-sky' fractional area, and vice versa. 
A derivation and interpretation of (3.2) is given by R87. 
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Fig. 3 shows how the fluxes of moist static energy, total water, and liquid water vary with 
with a, at the PBL top level. All three fluxes increase rapidly as u decreases for u << 1. This is due to 
the rapid increase in the entrainment rate as u decreases, which follows from (2.7). As u decreases, 
the liquid water mixing ratio of the updrafts increases, while that of the downdrafts remains constant 
(at zero). This favors an increase in the liquid water flux near the PBL top. Further discussion is given 
by R87. 

Fig. 4 shows the variation of Fsv with u, at the surface, the updraft cloud base, and the PBL 
top. Of course,the surface value is independent of a. For u s 0.5, F,,, decreases upward from the 
surface to cloud base, and increases upward continuously above cloud base. As E increases and (I 
decreases, the vertical profile of F,, responds to several competing factors. First, increasing E tends 
to reduce F5,, below cloud base, because of the inversion at the PBL top. There is a similar but weaker 
tendency for Fsv to decrease above cloud base, unless cloud-top entrainment instability occurs. A 

second factor is that cloudiness leads to radiative cooling for u 4 0.5. For 0.3 < u < 0.5, ZIR increases 
as Q decreases because the cloud gets thicker, even though its fractional area decreases. This increase 

in tends to increase F,,, at all levels above the surface. For u 4 0.3, hR decreases as u decreases, 
and this tends to reduce F,, at all levels. 

4. Plans for comperlsons with FIRE data. There are many ways in which the FIRE data can be 
used to test the assumptions on which the present model is based. Lenschow, Greenhut and others have 
demonstrated that conditional sampling methods can be used with aircraft data to determine the 
convective mass flux profile, and the updraft and downdraft properties, including the fractional area 
covered by rising motion. Using such methods, it should be possible to determine ME and Mv. This can 
best be done by using (2.4) for Mv and the analogous definition for ME, with measured values of the 
updraft and downdraft properties. The values of ME and Mv so determined should be independent of 
"species;" they should be the same for water vapor and ozone, for example. 

The ventilation "and entrainment mass fluxes can also be determined observationally. using 
standard methods. It then becomes possible to check (2.5) and (2.6). which are the key equations used 
in the derivation of our method to determine u. In addition, the assumption that o is independent of 
height can be tested. This assumption leads to (2.6), which is the most general form of our 
prescription for 0. In addition, we can check (2.7). which has been used to determine Q in this paper. 

5. Concluding Remarks. The fractional cloudiness parameterization described here is suitable, with 
minor modifications, for use in a general circulation model. It represents a break with earlier 
cloudiness parameterizations, because in the present parameterization, the cloud amount is partly 
determined by the turbulence. Of course, the more familiar couplings among clouds, radiation, and 
turbulence are retained. The cloud, turbulence, and radiation parameterizations give rise, therefore, 
to a coupled system of equations that mu+t be solved simultaneously. Dealing with this added 
complexity is a challenge for the future. 
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