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Abstract

This publication reports beginning research into a noisy communication chan-

nel analogy of software development process productivity, in order to establish

quantifiable behavior and theoretical bounds. The analogy leads to a funda-

mental mathematical relationship between human productivity and the amount
of information supplied by the developers, the capacity of the human channel

for processing and transmitting information, the software product yield (object

size), the work effort, requirements efficiency, tool and process efficiency, and
programming environment advantage. The publication also derives an upper

bound to productivity that shows that software reuse is the only means that

can lead to unbounded productivity growth; practical considerations of size and

cost of reusable components may reduce this to a finite bound.
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1 INTRODUCTION

.ks Boehm [1] notes in arecent article, the computer software industr_ for wars

h,'_._b_'_ql accused of inferior productivity in comparison to its hardwar,, ,'ounter-

part, whose productivity continues to increase at an intense rate, [),,spite ad-

vances in languages, development environments, work stations, nwth,.tologies.
and tools, software projects seem to continue to grind out production-,_.gine_*red

code at about the same old 8 to [5 delivered lines of source code per staff-day

Yet, as Boehm also points out, if software is judged using the same criteria

_s hardware, its productivity looks pretty good. One can produce a million

copies of a developed software product as inexpensively as a million copies of a
computer hardware product, The area in which productivity has been slow to

increase is the development and sustaining phases of the software life cycle.

Profit-making organizations may amortize their software development and

sustaining costs o,mr large customer markets, so that low development produc-

tivity is mitigated by larger and larger markets. But government agencies, their
contractors, and non-profit organizations must rely on increases iu productivity

to avoid costs and improve quality. Development and sustaining costs are not

often recovered by duplicating the product many, many times.

Software development and sustaining productivity has been the subject of
many articles to date. It is also the focus of this publication, which is, in a sense.

a mathematical proof of Brooks' [2] assertion that "there is no silver bullet."
The avenues for productivity improvement have been adequately summarized

by Boehm [1] as

1. Get the best from people.

2. Make the process more efficient.

3. Eliminate steps where possible.

4. Stop reinventing the wheel.

5. Build simpler products.

6. Reuse components.

All of Boehm's steps above, except the first, are human-informattofi;mput

reductive. Software tools, aids, support environments, workstations, office au-
tomation, automated documentation, automated programming, front-end aids,

knowledge-based assistants, information hiding, modern programming practices,

life-cycle models, common libraries, application generators, next-generation lan-

guages, etc. all save labor by supplying or modifying information at a faster
rate or more reliably than can be done by humans.

5oflware. ts information for computers that _s made from _nformat_on sup-

plied by people. Some of the human input information may be new, and some
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maybereused,perhapsalteredfor thenewapplication.Someof theoutput
informationproductis thusnew,andsomemayderivefromlegacy,perhapsal-
teredforthefunctionintended.It is thereforeintuitiveto thinkof productivity
in termsoftheamountofinformationappearingin theoutputproductrelatiw"
to theeffortrequiredfromhumansto supply the needed information relating

to that product. We shall more precisely define productivity using this concept

a little later; for the present, let us merely acknowledge that software produc-

tion capacity increases when the effort required from humans in supplying the

information needed to construct a given product is reduced.
It is reasonable, then, to put information and communication theory to work

on the theoretical capacity of productivity. In 1949, Claude Shannon [3] proved
that communications channels have theoretical information transmission rate

limits that are influenced by their channel configurations, signal-to-noise ratios,
and bandwidths 1. Humans and computers developing software are communi-

cations devices and channels, and therefore subject to Shannon's law. Humans

are capable of transmitting information only at a rate below their capac,ly hmit

[4]. The channel may transmit more data volume than the actual number of in-
formation bits due to redundancy and encoding; however, the information rate

of bits emanating from the output (_.e., the output entropy) may not exceed

the rate that information bits are input (the input entropy). In the parlance of
information theory and thermodynamics, there can be no "Maxwell's demons"
in the channel.

When building an information product, part of the input information needed

is in the form of "black box" specifications of functional and performance re-

quirements. Some of this is new, supplied by humans, and some of it is old,

retrieved from other existing sources. But which portions of the old informa-
tion are to be reused, and how they are to be located, extracted, modified, and

integrated with the new information comprises more new information that also

must be (largely) supplied by humans.
Once a new or modified software product has been developed, both it and its

components are candidates for reuse in forthcoming software products. Thus,
the repertoire of reusable objects may grow without bound as the industry wends

its way into the future. Reusable objects may be envisioned as new functions ap-

pended to an extensible implementation language that may be used in the next

project. The conceptual minimum information required at the human input
interface is merely that required to select the language features to be used and

to integrate them properly into the operating product(s). In the ideal, we may

look to automated and knowledge-based tools to supply the other necessary

searching, manipulative, transformational, and inferential information associ-

ated with matching function-to-language-feature correspondences, integration

and construction of the product, and validation.

The question arises, then, can the information content of the output products

tThe most popular form [3] of Shannon's law is Co = B log2(l + S/N).

R. Tausworthe
JPL
5 of 41



_EVELOPMEN_

CHANNEL [ -_

USEAND
EVALUATION

CHANNEL

Figure1:Anabstractproductlifecycleprocess.

insuchanidealsoftwareenvironmentcontinuetogrowatafasterratethanthe
inputrate,or isproductivitygrowthlimitedbysomeformof "Shannonlimit?"
If so,whatarethefactorswhichcontrolthat limit?Thispublicationdevelops
aframeworkforansweringthesequestionsandcharacterizingthesolutions.

2 THE COMMUNICATIONS ANALOGY

The discussion above characterizes the software development process as one in

which, a.s in Figure 1, various kinds of information are supplied by humans

toward implementing a product whose form is also information: documents,

programs, parametric data, databases, and test data. Software development is
thus an Information-Input/Information-Output (I30) process. In like fashion,

the use and evaluation of software products are also IsO processes. Even the

behavior modification that shapes needs based on the level of satisfaction derived

from use and evaluation of the products is, to some extent, an lZO process.

An I30 process may thus be portrayed, for purposes here, as a noisy com-

munication channel with the following traits:

1. Transformational. Output information (i.e., the product) exists in a dif-

ferent form than provided in the input (i.e., requirements).

2. Dtstortzve. Some input requirements may be implemented differently than
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intended.

3. Eraszt,e. Some of the input requirements may not have been implemented.

4. Spurzous. Some features implemented may not have been specified in the

input requirements.

5. Random delay. The transport time from requirements to product is a

variable time, only partially predictable.

6. Random cost to use. The cost in dollars and effort needed to transform

requirements into products is only partly predictable. The cost of products
is the cost of operating the channel.

7. Non-statzonary. The uncertainty aspects of the channel vary with time.

As is true of other communications systems, the channels themselves must

be constructed before they can be used, at a certain cost. laO channels consist of

people and machines working in randomly connected orchestration. Moreover.
the [aO channels that are used to construct products are themselves the products

of other laO channels. Thus, if carried too far, the analogy becomes more

intricately interconnected, complex, and difficult to analyze, but perhaps more
true to life.

Software problems restated in terms of laO channels are:

• channel costs are too high.

• throughput delay is too long.

• input/output correlation is too low and diMcult to validate.

• input and output are not entirely quantifiable, consistent, nor tangible.

• cost, delay, and throughput are not entirely predictable nor controllable.

More microscopically, an overall communications channel may be viewed as
an interconnected network of noisy components and sub-channels. In analogy,

high-level software problems decompose into smaller interrelated contributory

problems, deriving from many sources. During the conceptualization, require-
ments capture, and alignment processes of the product cycle, distortion and

noise (faults) derive from unknown or unrecognized needs, unexpressed needs,

wrongly expressed needs, conflicting needs, non-stationary needs, and inability

to quantify and articulate needs. During the implementation and alteration

stages, noise comes from misunderstood or ambiguous requirements, conflicting

views of utility, inability to simulate a product in entirety, inadvertent omis-

sion, conflicting requirements, and unfeasible requirements. During the testing
and validation stage, difficulties arise in the combinatorial impracticality of cer-

tainty, in the need for an operational environment in some actual or simulated
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form.in theneedfor theproductin asimulatedor completed,matureform,
andintheneedfordefinitiveacceptancecriteria.Ultimately,tileevaluationand
enlightenmentprocessesrequireproductsandoperationalenvironme,tsincom-
plotedor smmlatedform.andareexposedto imprecise,subjective,intangihh,
satisfactioncriteria.

Typicalconsiderationswhichrelateto, contribute,or causetheseproblems
arethecomplexityof the laOchannelsandtheproductstheyproduce,tile
stochasticbehaviorof people,andrapidlychanganghardwareandsoftware
technology.Moreover,our understandingof the softwareprocessis still in
its evolutionarystage:Tools,environments,andsystemsareonlymoderately
sophisticated.Methods,models,andtheoreticalbasesfor developmentand
productanalysesaresparseandlargelyinvalidated.Preparationof products
forlegacyhasoftennotbeenproperlyconsummatedduringdevelopment.The
reuseofinheritancehasbeendifficult,evenwhenlegacygoalsareadequatelyset
andfulfilled.Automatedknowledgebasesforsoftwareengineeringandapplica-
tionsdomainsarein theirinfancy.Thetransmissionmedium(i.e.,humanlan-
guage)lacksprecisioninmanycontexts.And,finally,theskillbaseof software
personnelhasnotyetbeenadequatelyorientedto a disciplined,standardized.
industrial-strengthengineeringapproach.

Feedbackis commonlyusedin electronicsto stabilizeperformance.How-
ever,thehighcostsandlongdelaysin laOchannelusagetendto inhibitfirm,
immediatefeedbackfor riskof fomentinganunstablesituationandincurring
yethigherimplementationcostsandlongerdelays.

Thecommunicationsystemapproachto improvementof channelperfor-
mance,however,issimpleandstraightforward:

1. Measureandcharacterizethechannelandits parameters.

2. Expecttransmissionto bedistorted,noisy,anddelayed,andprovideap-
propriatecompensation.

3. Designthe informationthroughputrateto bewithinchannelcapacity"
(as,e.g.,Shannon'slimit, or otherformulaapplyingto tile particular
channel2).

4. Removeredundancyin thesourceinformationbeforetransmission.

5. Makethetransmittedinformationberesilientto channeldisturbancesby'
usingeffectiveencodinganddecodingtechniques.

6. Transmitinformationthroughtile channelwithasgreatasignalforceas
possible.

7. Takestepsto reducedisturbanceswithinthecommunicationschannel.
2Soft,,,.,are production ca, pacity in the a.bsence of fsult generation and correction is given by

Eq. 25.
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Figure 2: The I30 life-cycle channel model.

8. Use feedback to correct errors.

The goal of this publication, then, is to characterize and quantify software

production in analogy with communications theory, and thereby i% terms of
measurable, causal, and controllable factors.

3 THE SOFTWARE CHANNELS

A basic idealized production configuration was depicted in Figure 1, where needs

are faithfully projected in the form of information through the development

channel to yield information products, which are then used, evaluated, and may
lead to a certain level of satisfaction, Use and accustomization beget behavior

modification, which, in turn, elevates the original set of needs toward higher

levels of automation. Not present in this ideal are the intrinsic distortions,

faults, and other flaws that produce less-than-ideal products, incomplete levels

of satisfaction, and, perhaps, unfortunate modifications of behavior that limit

the tendency toward higher automation.
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A refinementof thisconceptisshownin Figure2, wheretheprocessesas-
sociatedwithchannelimperfectionsaredisplayedmoreprominently.Needsare
projectedthrougha capturechannelto producea requirementsspecification;
requirementsaretransmittedvia an implementation channel into the product

set; the product set is put through a testing channel to reveal (some of the)

errors; errors are fed into the alteration channel, which (partially) corrects the

product set: evaluation of the product set against stated requiremeuts often re-

veals shortcomings, leading to an enlightened state; and enlightenment guides
the process of requirements realignment. Usage of the product set, as earlier,

produces a level of satisfaction (not necessarily complete), which alters the state
of need through behavior modification.

Each of the information transmission channels and information sets can be

further dissected and detailed for better understanding of the transformation
processes and better accuracy in modeling the software phenomena.

The critical, and perhaps less philosophical, portion of the refined software

channel analogy is shown inside the dashed lines of Figure 2. This portion com-

prises the software development and sustaining segments of the life cycle. Note
that the analogy can be made to simulate information transmission aspects of

the "ordinary waterfall" life cycle, incremental development, rapid prototyping,
evolutionary enhancement, and "spiral" life cycle paradigms merely bv suitable
definitions of channel characteristics. In the next section, the software channel

analogy is used to develop a refinery model of software productivity, to which in-

formation and communication theory are applied to derive statistical limitations

on human capacity to produce larger and larger software systems.

4 THE IMPLEMENTATION CHANNEL

The assumed software implementation components are illustrated in Figure 3.

Five forms of information input by humans are identified: requirements (func-

tion, performance, and constraints), transformational (design and coding), com-

binational (integration), corroborative (validation and verification), and man-

agement (status and control). Each of these potentially contains imperfections

in the form of accidents (inadvertent, random faults) and distortions (deliber-

ate, non-random faults). Together, these latter two constitute a sixth type of
information input by humans that we shall collectively refer to as norse. Also

shown is the set of products resulting from the inputs.
Generation and application of the above input information to the software

implementation channel is assumed to constitute the entire expenditure of hu-
man effort. Information generated by humans is mental, verbal, and docu-

mentation, and only the last of these is amenable to measurement. We must,

therefore, hypothesize that the capture of information in memoranda, docu-

ments, code and comments, parametric and test data, etc., is representative of
and correlates significantly with the total outlay of effort.

R. Tausworthe
JPL
10 of 41



_TEST ',

NOISE _ _ESIGN ) ,, iNFORMATION V&,V ,'

/ I !1. COD_NG ' II I1..
./ I ] m ', INFORMATION ,/ I [

PRODUCT _r .m_r,¢:n MIZR ' COMBINER _CCRR(]BGRATOR_--"" PRODUCT /
REQUIRE-,_ ........ R ..... . j

,//,VlANAGEMENT \

@;

Figure 3: The software production refinery.

Output products are viewed as condensations, transformations, and refine-
ments of the information that came into the environment; hence, we refer to the

implementation process as the Software Refinery. Productivity improvement
in the refinery is tantamount to reducing the amount of human-supplied input

information required for a given output product set.

Effort-intensive input information requirements will be minimized by elimi-

nating redundancy and by reusing existing information whenever feasible. For

example, if a system has a requirement for a word processor of a known type,

then the single expression "Wordstar 3 4.0" could be used to convey unambigu-
ously all the characteristics that the cited word processor possesses. Moreover,

if there were only 1024 = 2 l° word processors in the world, only 10 bits would

be needed to distinguish Wordstar among its competitors. Only exceptional and
incremental information would be then be needed to specify a slightly different

capability desired. Additionally, since Wordstar already exists, further infor-

mation relating to design, implementation, and testing is not required, except
where it relates to the integration of that package into the system being built.

Also, when documents must be developed to contain previously generated in-

formation (i.e., "boilerplate"), the only information conceptually required from

3Wordstar is a registered trademark of MicroPro, Inc.
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tilehumaniswhereto findthe boilerplate, how much of it to use, where to put
it. and any necessary alterations.

For the remainder of this publication, we shall focus oil that information

leading to the program (set), or product yzeld. Therefore, effort and informa-

tion used to produce documents is limited to that which is yield related. These

include requirements documents, design specifications, project plans and sta-

tus reports, test plans and procedures, and the like; preplanning, application._.
operations, and maintenance documents are excluded at this time. We have

hypothesized that the information content of these entities correlates strongly
with the total project information. By measuring the information contents of

software project documents and output yields, then, quantitative relationships

among input information and output yield may be established.

Transformational and corroborative information input needs are potentially
reduced by reusing elements of previous designs and code whenever feasible In

the ideal, fully automated case, this reduction could be almost complete: au-

tomated catalogs of solved problems would be searched using knowledge bases

having extensive application domain-dependent inference and design rules that
match functional and performance requirements with known solutions and de-

signs, designs with working code, etc. In the ideal automated software refinery,

the amount of input noise, and thus the need for corroborative information.

could also be drastically reduced. The ideal software refinery is shown in Fig-
ure 4.

Although much of the integrative information would also conceptually be
supplied by automation, some will nevertheless still be required from humans

to relate interdependency among functional features, data flows, and orders of

precedence.

We model the software production refinery in the form of an extensible lan-

guage. That is, the human information input Z is used to develop the output
yield 3,' from new information and from instructions to reuse existing iniorma-

tion and previously developed parts that operate within given time and data

precedence constraints.
The distinguished components of the input 2" are (Figure 3)

Z = I, uZa uZ_ uZ_ uIt uZ_ (1)

These terms represent, respectively, requirements, design, code production, inte-

gration, test (including validation and verification), and management informa-
tion sets. Each of the input sets potentially contains faulty information, or
noise.

In particular, we shah assume that the requirements term, Zr, can be isolated

to contain _he functional, performance, and algorithmic specifications and con-

straints, so that, in concept, a fully automated programming environment could
produce the output yield in the current refinery without further information.

We define the znherent product speczficatwn, Z', as the least practical infor-

mation required to specify the output yield uniquely. It is the mapping of the
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Figure 4: The ideal software refinery configuration.

input information through the production transformation

• (z) = z* (2)

Conversely, that subset of the input, denoted 2", that traces to the as-built

product is defined by the inverse production transform,

=-'(z') =_ (3)

Note that this traceability may not necessarily be direct: Constraints, perfor-

mance requirements, and design goals in 2" certainly influence the resulting Z';
but it may be difficult indeed to correspond any tokens of the output product

with tokens of the input information. Therefore, 2" should be regarded as that

(amended) form of 2" that got built.
The sets of fulfilled and unfulfilled requirements are described by

2-s=L n J (4)

and

I_ = I. - 2-S (5)

I0

.... _+,,---IS
t-,,_",.....,.............'IV'
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respectively. That is, 2"I is that portion of 2", that got implemented, and L is

tile remainder of Z,.

Tile executable program, or apparent y_eld 3; will include the inherent prod-

uct specification, Z', as well as the 2"," of each of the n modules in the refinery

revoked by' Z', as transformed by' the compiler and linker into a functioning

unit. Y will normally be sensitive to compiler and linker characteristics, such m_

type ancl degree of code opt imization, extent of program and data segme,aation.

etc. Thus, we define the _nherentfunctzonal y,eld, 3; °, as the join of inherent

product specifications over all components comprising the final product.

Y" = CJ 2-; (6)
I=O

in which 2-_ = 2"*.

We denote the sizes of these sets by

I_ = [Zk] for k = r,d,c,i,t,m (7)

I = ]2-[ _< I, +Id+l¢+I,+I,+lm (8)

i" = _o = t2-'1 (9)

tF = 12-;I for i = 1,...,n (10)

Y = lYl (11)

Y" = £I7 (12)
t=0

Naturally, I* _< I, by Shannon's law, and a forf_ori I" <_ I. Also, I" < Y"

because2-" C 32".

Input information is perhaps most meaningfully measured in terms of the

chunks [4] that humans treat as units of information in memory and recall.

However, the mechanism for chunking is not yet well enough understood (at

least, by the author) to be able to compute an input information chunk measure.

Rather, the first-order entropy [3] based on word and symbol, or token, counts

and vocabulary usage will be used:

R_

Hi = - Zpk,, log: p_., for k = r, d, c, i, t, m. (13)
t=l

Ik = NkH_ (14)

Here, Ri, is the size of the Repertoire, or vocabulary, of words and symbols

used in Z_, Pk,i is the relative frequency in usage of the i-th word or symbol in

that repertoire, and N_ is the total number of words and symbols used Since

words and symbols represent first-order chunking by humans, the information

first-order entropy measures should correlate strongly with information mea-

sures based on chunking. Evaluation of higher-order entropy (phrases, syntactic

forms, etc.) may be appropriate for study' at alater date.
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Segments of documents that are included from other sources should not be

counted this way. because tile apparent information content would be higher

than that actually' supplied by humans (this time) for its reuse. If such por-

tiol/s can be handled separately', the true human input involvement can more
accurately' be approximated.

We similarly characterize the inherent input content/'" and output yield y"

in terms of the features of the extensible language. Let R be the number of

unique operators and operands that already exist in the current refinery" lan-

guage repertoire, or vocabulary. This number will include both the basic set of
built-m functions, as well as every function that has so far been made available

to the refinery for reuse (every new function produced is a candidate for reuse,

if applicable and feasible). Next, let n denote the number of unique refinery

operators of this repertoire actually required for implementing the current ap-

plication. Then. let d signify the actual number of unique input/output data

operands appearing in Z', and let N be the total number of operators and data
operands appearing in g'. Finally, let _ represent the average inherent yield

of the n refinery operators invoked by/".

The inherent product information 2"" is just sufficient to specify the product

yield; in this, it is a translation of Z_ into specific refinery terms. It specifies

the needed functions of the repertoire, the inputs and outputs of each, and the
integration of these elements into an appropriate sequence of instructions. We

note, then, that 2"" is refinery-dependent, because it depends upon the richness

of the repertoire at the time of use. To a first-order approximation, Z" will be

equivalent 4 to N instances of n + d unique operator/operand types arranged in

proper order. The minimum average number of bits needed to specify any one of

the R operators of the current refinery or d data elements of the current operand

vocabulary is the first-order entropy H ° of the refinery and data repertoire.
Thus, in analogy with Eq. 14,

R+d

I" = NH" = -N ZPil°g2 Pi (15)
i----I

_< Nlog_(R + d) (16)

However, since usage statistics of the refinery and ensemble of applications are
unknown at this time, the measure above can only be approximated. For prac-

ticality and consistency across languages, the size of the inherent product speci-

fication will hereafter in this work be approximated 5 by its upper bound above,

'tOne rrmy need to normalize I" across semantically equivalent syntactic constructions of

the refinery language. For example, the C language form "x " • + 1" contains 5 tokens,

wherea6 the form "x++" contains only 2. The information content of the two is the same.

SSince [* only appears in the productivity equation in ratio with Y*, defined in Eq. 18,

which is also evaluated in the same way, error due to this approximation will normally be of

second order importance.
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alsoknownastheHalsteadprogramvolume [.5],

I" = N log.,(R + d) (17)

Note that language processors, for practicality, generally represent tokens using

fixed-bit-length internal representations, rather than by variable, frequency-of-
use-derived (entropy based) ones. This practice also requires the use of at least
log._(R + d) bits per token.

Finally, we express the size of the inherent functional yield as

Y" = I" + .7_, (is)

The software refinery model thus provides absolute relationships among the
current refinery vocabulary size and the average yield of those operator modules

in the refinery that were used. Note that I', Y', n, and 7_, can all be determined

as measurable properties of the software refinery and the current application
program. The reuse portion of the product yield, Y" - l °, should be measured

in the refinery language that would be used to reimplement it, regardless of the
language used originally to implement it.

5 THE PRODUCTIVITY EQUATION

Let IJ: denote the total work effort (measured in work-months) required to

develop an output information product yield 3; from a given information input
set 2" supplied by humans. Producttvtty is defined here as the inherent functional

yield per unit work, in total bits per work-month,

]¢',

P = -- (19)W

The use of the inherent functional yield, Y', in this definition, rather than the

actual apparent yield, }', which also includes data yield and compiler quirks, is

quite arbitrary, but conforms to a practice analagous to counting "'executable
lines of code," as opposed to "total lines of code." Although Y may perhaps

be easier to measure than Y', it is, nevertheless, an inadequate indicator of

productivity because of its compiler dependence: a better compiler would seem
to lower productivity 6.

The average rate at which a given population generates information of a

specified type is their mean work capacity, C, in bits per work month,

I
C = -- (20)

Wo

6This fact was pointed out to the author by Robert D. Tausworthe of Hewlett-Packard.

Inc.
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whereW0 is that amount of work required to generate the information 2" in an

ideal environment where locating existing information, capturing new ideas, and

preparing these for use are immediate (i.e., _,% is measured as the actual work
effort minus the location, capture, and preparation effort). 67 conceptually.

then, is a function of problem complexity, human intellect, experience, skill,
motivation, work conditions, staff interaction, and emotional and psychological

factors.

We know from experience that human capacity has a limit, so we define

the potential mformatzon capaczty, Co, as the ideal value of C that could be
achieved if the workers were to be relieved of adverse problem, environment,

and human factor encumbrances, and were working at a maximum reliable pace.

The unitless ratio
C

/2= _ _ 1 t21)

then represents a mental acuity factor. Since labor wasted in capture and lo-
cation of information, etc., has been eliminated from/2, it is only independent
on environment and tools to the extent that these stimulate individual work

capacity. We may note that/2 will tend to be greater when 2" is produced well

within the skill, experience, and understanding of the staff, at a motivated pace

of work, and in a smoothly operating and happy organization. However,/2 will
tend to decrease with other attributes, such as application complexity [1] and

staff size [6]. Much of the behavior of/2 has been calibrated in various software
cost models, where a variation of 500:1 has been noted as necessary to span the

range of contributory factors. Consequently, the value of/2 for some projects
may be on the order of 10 -a.

Next, we define requirements efficiency, p, as the unitless ratio of inherent

product specification and requirements information measures,

I"

P = r-7 < 1 (221

This ratio indicates the level of superfluity between information specifying the

as-built product and that contained in requirements information. It is partially
a natural characteristic of the requirements and refinery languages being used,

but also will depend considerably on the style of the individual(s) writing the

requirements, the complexity of the problem, the extent to which fulfilled re-

quirements lead to measurable product specifications, the extent to which stated

requirements are fulfilled, the amount and distinguishability of new and reused

requirements information, and other factors. Measurements of p are needed
to calibrate the effects of these factors, and to establish norms for its use as

a requirements efficiency indicator. A ball-park figure for p based on a few
document-to-code size estimates is about 0.1.

The ratio of requirements information to total input information reflects the

relative degree to which design, coding, test, and management information are

required from humans for a given problem. The ratio of W0 to W is the effort
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efficiencyin location,capture,andpreparationof information.Together,these
ratiosexpress the efficiencies of methods, tools, and aids relative to an ideal en-

vironment. Labor-saving methods, tools, and aids are those that tend to reduce

the amount of effort required to generate, capture, or prepare a given amount

of information. Examples are word processors, design languages, automated
graphics, and data dictionaries. Information-reductive methods, tools, and aids

are those that tend to reduce the amount of _nformatzon that is required to be

generated by humans. Examples here are symbolic notation, automated design
assistants, and test case generators.

We combine these two effects into the tool factor, r, defined as the unitless
ratio

This coefficient reveals the amount of human information, and thus labor, that

potentially can be eliminated by methodology, automation, and practice. It
provides a simple means by which the effectiveness of solution methods, tools,

and engineering processes can be quantified by actual measurements. Note
that r is very likely to be influenced by the amount of information that must

be processed; the greater I is, the greater the difficulty of the human task in

coping with it. Thus, we may expect to see the effectiveness of well-designed
tools increase as the size and complexity of the project it is applied to increase.

A rough estimate of r from some document page and approximated human
effort ratios is about 0.01.

Finally, the refinery language advantage, X, is defined as the unitless ratio

of the reused portion of the output functional yield to the minimum product
specification:

Y" - I" nY_
X- i* - I* (24)

This coefficient is quantifiable from token and vocabulary counts in the current

refinery model. It represents the information gain factor due to reuse, and

signifies how large a product yield can be generated from a minimum product
specification in a given refinery environment. Because it is a unitless ratio, )_

should be less dependent on a particular refinery than are I" and Y" individually,
since common tendencies tend to cancel out. A value on the order of about 15

was measured for a group of small C programs using the ANSII standard library
functions.

The productivity equation then follows straightforwardly:

P = Co#pr(1 + X) (25)

< (70(1 + A) (26)

The productivity formula is intuitive: the smallest sufficient requirements

definition, the most effortless implementation, and the most propitious usage of
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toolsandmethodologiesyieldthehighestadvantage:reuseofpreviousproducts
asnewavailablerefinery'featuresyieldsa higherlanguageadvantage.

Theupperboundabovewouldbereplacedbyequalityunderthecondition
#pr= 1.a situationclearlyrequiringtheexistenceofautomaticprogramming.
Theboundthusshowsthat theeffectivenessof automatedprogrammingenvi-
ronmentswillbedeterminedbytheextentofreuseofcomponentsin therefinery.
Moreover,the only route to unltmzted produchvtty growth _s throu9 h the effect,'e

reuse of increasingly larger and larger software components.

6 LANGUAGE ADVANTAGE TRENDS

It is a remarkable fact that there are statistical laws in natural and computer

languages that relate the total number of occurrences of language token types
(word types in natural language, and operators and operands in computer lan-

guages) to the vocabulary of distinct types used. Laws of this nature were first

studied by Zipf [7] in the 1930's in connection with natural languages. Others,

notably Halstead [5], Shooman [81, Laemmel [9], Gaffney [10], and Albrecht [11],
have extended the study to computer languages and specifications.

The assumption of the method is that the specifications and the programs

that embody those specifications are two descriptions of the same thing. Knowl-

edge of one correlates with knowledge about the other. For example, it is rea-

sonable to expect that a statement of basic requirements for a program includes

an itemization of its inputs, processing, and outputs, viewed externally. This ex-

ternal statement translates, through the works of Zipf, Halstead, and the other
authors cited above, into approximate measures of the output product yield.

These measures generally agree within about a factor of 2; hence, we introduce

a factor ( to account for the difference between Zipf's first law and the true

refinery model token length characteristic.
Zipf's first law, for example, predicts the approximate token length N of.7""

as the value

* = (n + d)h + log(n+ d)] (27)

where "r is the Euler constant, 7 = 0.57721 .... The factor (: = /_'/N makes

the equation exact, by definition:

1

U = + d)b + Iog(n+ d)] (28)

The token-length correction factor ( fluctuates from program to program, but

ranges approximately between 0.5 and 2.

The refinery language advantage, therefore, is

= q"n g_, (29)
(n + d) log_(R + d)[7 + log(n +d)]
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--o

( Y,_ log 2
<

log n log R (30)

77, log 2
<

log "_n (31 )

which, as may be noted, is limited only by average utilized module .vield and

vocabulary size. As they stand, these expressions are not statistical X,(,_.
and n are determined by the particular program. Averaging A over an ensemble
of programs would yield a statistical bound, however, of the form

< ?   -log 2
log2 _ (32)

for _ = E(X) and appropriately defined ( and _. This statistical form of the

bound reveals that. in order for the refinery language advantage (and thus,

productivity) to grow without bound, the average yield of refinery modules

being used by applications must grow faster than the square of the logarithm
of the number of refinery modules being used. That is, it must happen that

modules of increasingly higher yields are regularly added to the refinery and

regularly used. A software refinery with astattc, non-ezpandmg library _mposes
a fized productzt, zly limit on Hs workers.

7 FUTURE WORK

The work reported here is a part of the newly-begun NASA Initiative in Soft-

ware Engineering (NISE), and is coordinated with other NISE investigations,
notably the development of a dual life-cycle paradigm (separating, but interre-

lating management and engineering processes), the development of a dynamic

software life-cycle process simulator, behavioral researches into the performance

of humans in the software process, and the synthesis of effective supporting
methodologies, tools, and aids.

This first publication reveals only a few rudimentary aspects of the software

life cycle process, here modeled as productivity channels refining crude infor-

mation into highly distilled products. The principle results apply only to the

implementation channel, or software refinery. The effects of information noise,
the stochastic behavior of people, the detailed character of the other individual

component channels, and the dynamic behavior of interacting channels remain
to be analyzed and validated.

For the implementation channel, near-term work remains to evaluate Co, p,

p, r, and A in a static, low-noise context. Insight into Co and/a may be sought

in human behavioral research journals. Later work may involve experiments in
collaboration with academic researchers.

Typical p and r values may be determined by measurement of documents
and programs in existing project libraries for which effort statistics are available;
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regressionwithperceivedcontributoryfactorswouldthenquantify'effectsand
suggestavenuesfor productivityimprovement.Studiesof r and p may be
expected to calibrate benefits of selected methodologies and tools.

Still other studies remain to examine the statistical behavior of X as a func-

tion of the refinery size and reuse policy, to determine whether there are natural

limits to productivity growth, and thus, to resolve the question posed by tile

upper bound in Eq. 31 above.
Further research will quantify' the behavior of the other component chan-

nels of the production life-cycle model, as well as the dynamic interaction of

information flows in the model, notably those within the critical loop shown in

Figure 2.

8 CONCLUSION

This publication has developed a model of the software implementation process
that formulates productivity as a product of tangible, definite, measurable, and

meaningful factors. The model characterizes productivity as stemming from

five weakly interrelated factors: human information capacity, mental acuity, re-

quirements specificity, methodology and tool efficiency, and refinery language

advantage. Each of these factors was shown to have absolute, explicit, and

measurable bounds: Human performance is limited by inherent human channel

capacity and by the degree of mental acuity that can be achieved toward real-

izing that capacity. Requirements efficiency is limited by the mini_mum as-built
product specifications and the extent to which requirements specifications can

be freed from extraneous, superfluous material. The effectiveness of tools and

methodologies is limited to the amount of human (labor) input that can be
avoided. And finally, the effectiveness of a programming environment is limited

by the average growth in yield of modules in that environment.
These factors serve as absolute standards for comparison purposes: tJ reveals

how well the staff are meeting their potential; p expresses the level of superfluity'

of requirements; r quantifies the effectiveness of methodologies, tools, and aids;

and X indicates the power of the refinery. Use of these standards will lead

to meaningful tradeoffs and, potentially, to an eventual optimized software life

cycle.
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