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Abstract

This publication reports beginning research into a noisy communication chan-
nel analogy of software development process productivity, in order to establish
quantifiable behavior and theoretical bounds. The analogy leads to a funda-
mental mathematical relationship between human productivity and the amount
of information supplied by the developers, the capacity of the human channel
for processing and transmitting information, the software product yield (object
size), the work effort, requirements efficiency, tool and process efficiency, and
programming environment advantage. The publication also derives an upper
bound to productivity that shows that software reuse is the only means that
can lead to unbounded productivity growth; practical considerations of size and
cost of reusable components may reduce this to a finite bound.
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1 INTRODUCTION

As Boehm [1] notes in a recent article. the computer software industry for years
has been accused of inferior productivity in comparison to its hardware counter-
part. whose productivity continues to increase at an intense rate. Despite ad-
vances in languages, development environments. work stations. methodologies.
and tools, software projects seem to continue to grind out production-cugineered
code at about the same old 8 to 13 delivered lines of source code per staff-day.
Yet, as Boehm also points out, if software is judged using the same criteria
as hardware, its productivity looks pretty good. One can produce a million
coples of a developed software product as inexpensively as a million copies of a
computer hardware product. The area in which productivity has been slow to
increase is the development and sustaining phases of the software life cycle.

Profit-making organizations may amortize their software development and
sustaining costs over large customer markets. so that low development produc-
tivity is mitigated by larger and larger markets. But government agencies, their
contractors, and non-profit organizations must rely on increases in productivity
to avoid costs and improve quality. Development and sustaining costs are not
often recovered by duplicating the product many. many times.

Software development and sustaining productivity has been the subject of
many articles to date. It is also the focus of this publication, which is, In a sense,
a mathematical proof of Brooks' [2] assertion that “there is no silver bullet.”
The avenues for productivity improvement have been adequately summarized
by Boehm [1] as

1. Get the best from people.

2. Make the process more efficient.
3. Eliminate steps where possible.
4. Stop reinventing the wheel.

5. Build simpler products.

6. Reuse components.

All of Boehm’s steps above, except the first, are human-informatron:input
reductive. Software tools, aids, support environments, workstations. office au-
tomation, automated documentation, automated programming, front-end aids,
knowledge-based assistants, information hiding, modern programming practices,
life-cycle models, common libraries, application generators, next-generation lan-
guages, etc. all save labor by supplying or modifying information at a faster
rate or more reliably than can be done by humans.

Software 1s information for computers that 1s made from information sup-
plied by people. Some of the human input information may be new, and some
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may be reused. perhaps altered for the new application. Some of the output
information product is thus new, and some may derive from legacy, perhaps al-
tered for the function intended. [t is therefore intuitive to think of productivity
in terms of the amount of information appearing in the output product relative
to the eflort required from humans to supply the needed information relating
to that product. We shall more precisely define productivity using this concept
a little later; for the present, let us merely acknowledge that software produc-
tion capacity increases when the effort required from humans in supplying the
information needed to construct a given product is reduced.

It is reasonable, then, to put information and communication theory to work
on the theoretical capacity of productivity. In 1949, Claude Shannon [3] proved
that communications channels have thearetical information transnussion rate
limits that are influenced by their channel configurations, signal-to-noise ratios,
and bandwidths!. Humans and computers developing software are communi-
cations devices and channels, and therefore subject to Shannon's law. Humans
are capable of transmitting information only at a rate below their capacily himu
[4]. The channel may transmit more data volume than the actual number of in-
formation bits due to redundancy and encoding; however. the information rate
of bits emanating from the output (u.e., the output entropy) may not exceed
the rate that information bits are input (the input entropy). In the parlance of
information theory and thermodynamics, there can be no “Maxwell's demons™
in the channel.

When building an information product, part of the input information needed
is in the form of “black box” specifications of functional and performance re-
quirements. Some of this is new, supplied by humans, and some of it is old,
retrieved from other existing sources. But which portions of the old informa-
tion are to be reused, and how they are to be located, extracted, modified, and
integrated with the new information comprises more new information that also
must be (largely) supplied by humans.

Once a new or modified software product has been developed, both it and its
components are candidates for reuse in forthcoming software products. Thus.
the repertoire of reusable objects may grow without bound as the industry wends
its way into the future. Reusable objects may be envisioned as new functions ap-
pended to an extensible implementation language that may be used in the next
project. The conceptual minimum information required at the human input
interface is merely that required to select the language features to be used and
to integrate them properly into the operating product(s). In the ideal, we may
look to automated and knowledge-based tools to supply the other necessary
searching, manipulative, transformational, and inferential information associ-
ated with matching function-to-language-feature correspondences, integration
and construction of the product, and validation.

The question arises, then, can the information content of the output products

! The most popular form {3} of Shannon's law is Co = Blog,(1 + S/N).
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Figure 1: An abstract product life cycle process.

in such an ideal software environment continue to grow at a faster rate than the
input rate, or is productivity growth limited by some form of “Shannon limit?"
If so, what are the factors which control that limit? This publication develops
a framework for answering these questions and characterizing the solutions.

2 THE COMMUNICATIONS ANALOGY

The discussion above characterizes the software development process as one in
which, as in Figure 1, various kinds of information are supplied by humans
toward implementing a product whose form is also information: documents,
programs, parametric data, databases, and test data. Software development is
thus an Information-Input/Information-Output (I30) process. In like fashion,
the use and evaluation of software products are also [0 processes. Even the
behavior modification that shapes needs based on the level of satisfaction derived
from use and evaluation of the products is, to some extent, an 130 process.

An I30 process may thus be portrayed, for purposes here, as a noisy com-
munication channel with the following traits:

1. Transformational. Qutput information (1.e., the product) exists in a dif-
ferent form than provided in the input (i.e., requirements).

2. Distortive. Some input requirements may be implemented differently than
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intended.
3. Erasive. Some of the input requirements may not have been implemented.

4. Spurious. Some features implemented may not have been specified in the
input requirements.

Random delay. The transport time from requirements to product is a
variable time, only partially predictable.

o

6. Random cost to use. The cost in dollars and effort needed to transform
requirements into products is only partly predictable. The cost of products
is the cost of operating the channel.

7. Non-stationary. The uncertainty aspects of the channel vary with time.

As is true of other communications systems, the channels themselves must
be constructed before they can be used, at a certain cost. 10 channels consist of
people and machines working in randomly connected orchestration. Moreover.
the [30 channels that are used to construct products are themselves the products
of other 130 channels. Thus, if carried too far, the analogy becomes more
intricately interconnected, complex, and difficult to analyze, but perhaps more
true to life.

Software problems restated in terms of [30 channels are:

e channel costs are too high.

throughput delay is too long.

input/output correlation is too low and difficult to validate.

e input and output are not entirely quantifiable, consistent, nor tangible.
e cost, delay, and throughput are not entirely predictable nor controllable.

More microscopically, an overall communications channel may be viewed as
an interconnected network of noisy components and sub-channels. In analogy,
high-level software problems decompose into smaller interrelated contributory
problems, deriving from many sources. During the conceptualization, require-
ments capture, and alignment processes of the product cycle, distortion and
noise (faults) derive from unknown or unrecognized needs, unexpressed needs,
wrongly expressed needs, conflicting needs, non-stationary needs, and inability
to quantify and articulate needs. During the implementation and alteration
stages, noise comes from misunderstood or ambiguous requirements, conflicting
views of utility, inability to simulate a product in entirety, inadvertent omis-
sion, conflicting requirements, and unfeasible requirements. During the testing
and validation stage, difficulties arise in the combinatorial impracticality of cer-
tainty, in the need for an operational environment in some actual or simulated
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form. in the need for the product in a simulated or completed, mature form,
and in the need for definitive acceptance criteria. Ultimately, the evaluation and
enlightenment processes require products and operational environments in com-
pleted or simulated form. and are exposed to imprecise, subjective, intangible
satisfaction criteria.

Typical considerations which relate to, contribute, or cause these problems
are the complexity of the 130 channels and the products they produce. the
stochastic behavior of people, and rapidly changing hardware and software
technology. Moreover, our understanding of the software process is still in
its evolutionary stage: Tools, environments, and systems are only moderately
sophisticated. Methods, models, and theoretical bases for development and
product analyses are sparse and largely invalidated. Preparation of products
for legacy has often not been properly consummated during development. The
reuse of inheritance has been difficult, even when legacy goals are adequately set
and fulfilled. Automated knowledge bases for software engineering and applica-
tions domains are in their infancy. The transmission medium (i.e., human lan-
guage) lacks precision in many contexts. And, finally, the skill base of software
personnel has not vet been adequately oriented to a disciplined, standardized.
industrial-strength engineering approach.

Feedback i1s commonly used in electronics to stabilize performance. How-
ever, the high costs and long delays in I30 channel usage tend to inhibit firm,
immediate feedback for risk of fomenting an unstable situation and incurring
vet higher implementation costs and longer delays.

The communication system approach to improvement of channel perfor-
mance, however, is simple and straightforward:

1. Measure and characterize the channel and its parameters.

2. Expect transmission to be distorted, noisy, and delayed. and provide ap-
propriate compensation.

3. Design the information throughput rate to be within channel capacity
(as, e.g., Shannon’s limit, or other formula applying to the particular
channel?).

4. Remove redundancy in the source information before transmission.

5. Make the transmitted information be resilient to channel disturbances by
using effective encoding and decoding techniques.

6. Transmit information through the channel with as great a signal force as
possible.

7

. Take steps to reduce disturbances within the communications channel.

2Software production capacity in the absence of fault generation and correction is given by
Eq. 25.
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Figure 2: The 130 life-cycle channel model.

8. Use feedback to correct errors.

The goal of this publication, then, is to characterize and quantify software
production in analogy with communications theory, and thereby is terms of
measurable, causal, and controllable factors.

3 THE SOFTWARE CHANNELS

A basic idealized production configuration was depicted in Figure 1, where needs
are faithfully projected in the form of information through the development
channel to yield information products, which are then used, evaluated, and may
lead to a certain level of satisfaction. Use and accustomization beget behavior
modification, which, in turn, elevates the original set of needs toward higher
levels of automation. Not present in this ideal are the intrinsic distortions,
faults, and other flaws that produce less-than-ideal products, incomplete levels
of satisfaction, and, perhaps, unfortunate modifications of behavior that limit

the tendency toward higher automation.
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A refinement of this concept is shown in Figure 2, where the processes as-
sociated with channel imperfections are displayed more prominently. Needs are
projected through a capture channel to produce a requirements specification;
requirements are transmitted via an implementation channel into the product
set, the product set is put through a testing channel to reveal (some of the)
errors; errors are fed into the alteration channel, which (partially) corrects the
product set: evaluation of the product set against stated requirements often re-
veals shortcomings, leading to an enlightened state; and enlightenment guides
the process of requirements realignment. Usage of the product set, as earlier,
produces a level of satisfaction (not necessarily complete), which alters the state
of need through behavior modification.

Each of the information transmission channels and information sets can be
further dissected and detailed for better understanding of the transformation
processes and better accuracy in modeling the software phenomena.

The critical, and perhaps less philosophical, portion of the refined software
channel analogy is shown inside the dashed lines of Figure 2. This portion com-
prises the software development and sustaining segments of the life cycle. Note
that the analogy can be made to simulate information transmission aspects of
the “ordinary waterfall” life cycle, incremental development, rapid prototyping,
evolutionary enhancement, and “spiral” life cycle paradigms merely by suitable
definitions of channel characteristics. In the next section, the software channel
analogy is used to develop a refinery model of software productivity, to which in-
formation and communication theory are applied to derive statistical limitations
on human capacity to produce larger and larger software systems.

4 THE IMPLEMENTATION CHANNEL

The assumed software implementation components are illustrated in Figure 3.
Five forms of information input by humans are identified: requirements (func-
tion, performance, and constraints), transformational (design and coding), com-
binational (integration), corroborative (validation and verification), and man-
agement (status and control). Each of these potentially contains imperfections
in the form of accidents (inadvertent, random faults) and distortions (deliber-
ate, non-random faults). Together, these latter two constitute a sixth type of
information input by humans that we shall collectively refer to as notse. Also
shown is the set of products resulting from the inputs.

Generation and application of the above input information to the software
implementation channel is assumed to constitute the entire expenditure of hu-
man effort. Information generated by humans is mental, verbal, and docu-
mentation, and only the last of these is amenable to measurement. We must,
therefore, hypothesize that the capture of information in memoranda, docu-
ments, code and comments, parametric and test data, efc., is representative of
and correlates significantly with the total outlay of effort.
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Figure 3: The software production refinery.

Output products are viewed as condensations, transformations, and refine-
ments of the information that came into the environment; hence, we tefer to the
implementation process as the Software Refinery. Productivity improvement
in the refinery is tantamount to reducing the amount of human-supplied input
information required for a given output product set.

Effort-intensive input information requirements will be minimized by elimi-
nating redundancy and by reusing existing information whenever feasible. For
example, if a system has a requirement for a word processor of a known type.
then the single expression “Wordstar® 4.0" could be used to convey unambigu-
ously all the characteristics that the cited word processor possesses. Moreover,
if there were only 1024 = 2!° word processors in the world, only 10 bits would
be needed to distinguish Wordstar among its competitors. Only exceptional and
incremental information would be then be needed to specify a slightly different
capability desired. Additionally, since Wordstar already exists, further infor-
mation relating to design, implementation, and testing is not required, except
where it relates to the integration of that package into the system being built.

Also, when documents must be developed to contain previously generated in-
formation (i.e., “boilerplate™), the only information conceptually required from

3Wordstar is a registered trademark of MicroPro, Inc.
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the human is where to find the boilerplate, how much of it to use, where to put
it. and any necessary alterations.

For the remainder of this publication, we shall focus on that information
leading to the program (set), or product yield. Therefore, effort and informa-
tion used to produce documents is limited to that which is yield related. These
include requirements documents, design specifications, project plans and sta-
tus reports, test plans and procedures, and the like: preplanning, applications.
operations, and maintenance documents are excluded at this time. e have
hypothesized that the information content of these entities correlates strongly
with the total project information. By measuring the information contents of
software project documents and output yields, then, quantitative relationships
among input information and output yield may be established.

Transformational and corroborative information input needs are potentially
reduced by reusing elements of previous designs and code whenever feasible In
the ideal. fully automated case, this reduction could be almost complete: au-
tomated catalogs of solved problems would be searched using knowledge bases
having extensive application domain-dependent inference and design rules that
match functional and performance requirements with known solutions and de-
signs, designs with working code, etc. In the ideal automated software refinery,
the amount of input noise, and thus the need for corroborative information,
could also be drastically reduced. The ideal software refinery is shown in Fig-
ure 4.

Although much of the integrative information would also conceptually be
supplied by automation, some will nevertheless still be required from humans
to relate interdependency among functional features, data flows, and orders of
precedence.

We model the software production refinery in the form of an extensible lan-
guage. That is, the human information input I is used to develop the output
yield } from new information and from instructions to reuse existing informa-
tion and previously developed parts that operate within given time and data
precedence constraints. ‘

The distinguished components of the input T are (Figure 3)

I=I,UZ4UuI. UL, uZ,UTy (1)

These terms represent, respectively, requirements, design, code production, inte-
gration, test (including validation and verification), and management informa-
tion sets. Each of the input sets potentially contains faulty information, or
noise.

In particular, we shall assume that the requirements term, Z,, can be isolated
to contain the functional, performance, and algorithmic specifications and con-
straints, so that, in concept, a fully automated programming environment could
produce the output yield in the current refinery without further information.

We define the inherent product specification, I*, as the least practical infor-
mation required to specify the output yield uniquely. It is the mapping of the
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Figure 4. The ideal software refinery configuration.

input information through the production transformation
nI)=1 (2)

Conversely, that subset of the input, denoted 7, that traces to the as-built
product is defined by the inverse production transform,

NIy =1 (3)

Note that this traceability may not necessarily be direct: Constraints, perfor-
mance requirements, and design goals in Z certainly influence the resulting I%;
but it may be difficult indeed to correspond any tokens of the output product
with tokens of the input information. Therefore, 7 should be regarded as that
(amended) form of T that got built.

The sets of fulfilled and unfulfilled requirements are described by

I;=1.n1I (4)
and
I.=1.-1; (5)
10
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respectively. That is, Iy is that portion of Z, that got implemented. and I, is
the remainder of I,.

The executable program, or apparent yield ¥ will include the inherent prod-
uct specification, I°, as well as the I} of each of the n modules in the refinery
invoked by I*, as transformed by the compiler and linker into a functioning
unit. Y will normally be sensitive to compiler and linker characteristics. such as
type and degree of code optimization. extent of program and data segmentation.
etc. Thus, we define the inherent functional yield, Y*, as the join of inherent
product specifications over all components comprising the final product.

y = (6)
1=0

in which Ij = I*.
We denote the sizes of these sets by

L = |Z4 fork=rdec it m (N
I = )I| <L +L+L+L+1+In (8)
o= o= ()
I = 17| fori=1,....n {10)
Yo=Y {11)

y* = i‘)[; (12)

Naturally, /* < [I. by Shannon's law, and a fortior: [* < [. Also, [" < Y~
because I* C Y°.

Input information is perhaps most meaningfully measured in terms of the
chunks [4] that humans treat as units of information in memory and recall.
However, the mechanism for chunking is not yet well enough understood (at
least, by the author) to be able to compute an input information chunk measure.
Rather, the first-order entropy [3] based on word and symbol, or token, counts
and vocabulary usage will be used:

R, .

He = - Zpk,,- log, pe. for k =r,d,c,1,t, m. (13)
1=1

I, = NH; (14)

Here, R; is the size of the Repertoire, or vocabulary, of words and symbols
used in Ty, px; is the relative frequency in usage of the i-th word or symbol in
that repertoire, and N, is the total number of words and symbols used. Since
words and symbols represent first-order chunking by humans, the information
first-order entropy measures should correlate strongly with information mea-
sures based on chunking. Evaluation of higher-order entropy (phrases, syntactic
forms, etc.) may be appropriate for study at a later date.
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Segments of documents that are included from other sources should not be
counted this way. because the apparent information content would be higher
than that actually supplied by humans (this time) for its reuse. if such por-
tions can be handled separately, the true human input involvement can more
accurately be approximated.

We similarly characterize the inherent input content I~ and output yield ¥~
in terms of the features of the extensible language. Let R be the number of
unique operators and operands that already exist in the current refinery lan-
guage repertoire, or vocabulary. This number will include both the basic set of
built-in functions. as well as every function that has so far been made available
to the refinery for reuse (every new function produced is a candidate for reuse.
if applicable and feasible). Next, let n denote the number of unique refinery
operators of this repertoire actually required for implementing the current ap-
plication. Then. let d signify the actual number of unique input/output data
operands appearing in I*, and let .V be the total number of operators and data
operands appearing in I*. Finally, let }—; represent the average inherent yield
of the n refinery operators invoked by I*°.

The inherent product information Z* is just sufficient to specify the product
yield; in this, it is a translation of Z, into specific refinery terms. It specifies
the needed functions of the repertoire, the inputs and outputs of each, and the
integration of these elements into an appropriate sequence of instructions. We
note, then. that I* is refinery-dependent, because it depends upon the richness
of the repertoire at the time of use. To a first-order approximation, I* will be
equivalent? to N instances of n +d unique operator/operand types arranged in
proper order. The minimum average number of bits needed to specify any one of
the R operators of the current refinery or d data elements of the current operand
vocabulary is the first-order entropy H*® of the refinery and data repertoire.
Thus, in analogy with Eq. 14,

R+d

I = NH'=-N ZP.‘ log, pi (13)
1=1

< Nlogy(R+d) (16)

However, since usage statistics of the refinery and ensemble of applications are
unknown at this time, the measure above can only be approximated. For prac-
ticality and consistency across languages, the size of the inherent product speci-
fication will hereafter in this work be approximated® by its upper bound above,

4One may need to normalize [* across semantically equivalent syntactic constructions of
the refinery language. For example, the C language form “x = x + 1” contains 5 tokens,
whereas the form “x++" contains only 2. The information content of the two is the same.

5Since /* only appears in the productivity equation in ratio with Y*, defined in Eq. 18,
which is also evaluated in the same way, error due to this approximation will normally be of
second order importance.
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also known as the Halstead program volume [5],
I" = Nlogy(R + d) (17)

Note that language processors. for practicality, generally represent tokens using
fixed-bit-length internal representations, rather than by variable, frequency-of-
use-derived (entropy based) ones. This practice also requires the use of at least
log,( R + d) bits per token.

Finally, we express the size of the inherent functional vield as

Y =1I"4nY, (18)

The software refinery model thus provides absolute relationships among the
current refinery vocabulary size and the average yield of those operator modules
in the refinery that were used. Note that [*, ¥, n, and 7:, can all be determined
as measurable properties of the software refinery and the current application
program. The reuse portion of the product yield, Y* — I*, should be measured
in the refinery language that would be used to reimplement it, regardless of the
language used originally to implement it.

5 THE PRODUCTIVITY EQUATION

Let W denote the total work effort (measured in work-months) required to
develop an output information product yield Y from a given information input
set T supplied by humans. Productivity is defined here as the inherent functional
yield per unit work, in total bits per work-month,

o Y’-
T W

P (19)
The use of the inherent functional yield, Y*, in this definition, rather than the
actual apparent yield, Y, which also includes data yield and compiler quirks, is
quite arbitrary, but conforms to a practice analagous to counting “executable
lines of code,” as opposed to “total lines of code.” Although Y may perhaps
be easier to measure than Y*, it is, nevertheless, an inadequate indicator of
productivity because of its compiler dependence: a better compiler would seem
to lower productivity®.

The average rate at which a given population generates information of a
specified type is their mean work capacity, C, in bits per work month,

I
€= (20)

$This fact was pointed out to the author by Robert D. Tausworthe of Hewlett-Packard.
Inc.
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where 1y is that amount of work required to generate the information 7 in an
ideal environment where locating existing information, capturing new ideas, and
preparing these for use are immediate (i.e., Wy 1s measured as the actual work
effort minus the location, capture, and preparation effort). C conceptually.
then. is a function of problem complexity, human intellect, experience, skill.
motivation, work conditions, stafl interaction, and emotional and psychological
factors.

We know from experience that human capacity has a limit, so we define
the potential information capacity, Co, as the ideal value of C that could be
achieved if the workers were to be relieved of adverse problem, environment,
and human factor encumbrances, and were working at a maximum reliable pace.
The unitless ratio

C
=& <! (21)
then represents a mental acuily factor. Since labor wasted in capture and lo-
cation of information, etc., has been eliminated from u, it is only independent
on environment and tools to the extent that these stimulate individual work
capacity. We may note that p will tend to be greater when T is produced well
within the skill, experience, and understanding of the staff, at a motivated pace
of work, and in a smoothly operating and happy organization. However, u will
tend to decrease with other attributes, such as application complexity {1} and
staff size [6]. Much of the behavior of y has been calibrated in various software
cost models, where a variation of 500:1 has been noted as necessary to span the
range of contributory factors. Consequently, the value of u for some projects
may be on the order of 1073,
Next, we define requirements efficiency, p, as the unitless ratio of inherent
product specification and requirements information measures,

p=§—51 (22)

This ratio indicates the level of superfluity between information specifying the
as-built product and that contained in requirements information. It is partially
a natural characteristic of the requirements and refinery languages being used,
but also will depend considerably on the style of the individual(s) writing the
requirements, the complexity of the problem, the extent to which fulfilled re-
quirements lead to measurable product specifications, the extent to which stated
requirements are fulfilled, the amount and distinguishability of new and reused
requirements information, and other factors. Measurements of p are needed
to calibrate the effects of these factors, and to establish norms for its use as
a requirements efficiency indicator. A ball-park figure for p based on a few
document-to-code size estimates is about 0.1.

The ratio of requirements information to total input information reflects the
relative degree to which design, coding, test, and management information are
required from humans for a given problem. The ratio of Wy to W is the effort
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efficiency in location, capture, and preparation of information. Together, these
ratios express the efficiencies of methods, tools, and aids relative to an ideal en-
vironment. Labor-saving methods, tools, and aids are those that tend to reduce
the amount of effort required to generate, capture, or prepare a given amount
of information. Examples are word processors, design languages, automated
graphics. and data dictionaries. Information-reductive methods, tools. and aids
are those that tend to reduce the amount of information that is required to be
generated by humans. Examples here are symbolic notation, automated design
assistants, and test case generators.

We combine these two effects into the tool factor, r, defined as the unitless

ratio
T = Lid o <1 23
T\ W)= (23)

This coefficient reveals the amount of human information, and thus labor, that
potentially can be eliminated by methodology, automation, and practice. It
provides a simple means by which the effectiveness of solution methods, tools,
and engineering processes can be quantified by actual measurements. Note
that 7 is very likely to be influenced by the amount of information that must
be processed; the greater [ is, the greater the difficulty of the human task in
coping with it. Thus, we may expect to see the effectiveness of well-designed
tools increase as the size and complexity of the project it is applied to increase.
A rough estimate of r from some document page and approximated human
effort ratios is about 0.01.

Finally, the refinery language advantage, A, is defined as the unitless ratio
of the reused portion of the output functional yield to the minimum product
specification: .

Y*-I" nY, )

A= =T (24)
This coeflicient is quantifiable from token and vocabulary counts in the current
refinery model. It represents the information gain factor due to reuse, and
signifies how large a product yield can be generated from a minimum product
specification in a given refinery environment. Because it is a unitless ratio, A
should be less dependent on a particular refinery than are /* and Y* individually,
since common tendencies tend to cancel out. A value on the order of about 15
was measured for a group of small C programs using the ANSII standard library
functions.

The productivity equation then follows straightforwardly:

P = Coupr(l+A) (25)
< Co(l +X) (26)

The productivity formula is intuitive: the smallest sufficient requirements
definition, the most effortless implementation, and the most propitious usage of
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tools and methodologies yield the highest advantage: reuse of previous products
as new available refinery features yields a higher language advantage.

The upper bound above would be replaced by equality under the condition
ppr = 1. a situation clearly requiring the existence of automatic programining.
The bound thus shows that the effectiveness of automated programming envi-
ronments will be determined by the extent of reuse of components in the refinery.
Moreover. the only route to unlimited productivity growth 1s through the effective
reuse of tncreasingly larger and larger software components.

6 LANGUAGE ADVANTAGE TRENDS

It is a remarkable fact that there are statistical laws in natural and computer
languages that relate the total number of occurrences of language token types
(word types in natural language, and operators and operands in computer lan-
guages) to the vocabulary of distinct types used. Laws of this nature were first
studied by Zipf [7] in the 1930’s in connection with natural languages. Others.
notably Halstead [5], Shooman (8}, Laemmel [9], Gafiney (10}, and Albrecht [11],
have extended the study to computer languages and specifications.

The assumption of the method is that the specifications and the programs
that embody those specifications are two descriptions of the same thing. Knowl-
edge of one correlates with knowledge about the other. For example, it is rea-
sonable to expect that a statement of basic requirements for a program includes
an itemization of its inputs, processing, and outputs, viewed externally. This ex-
ternal statement translates, through the works of Zipf, Halstead, and the other
authors cited above, into approximate measures of the output product yield.
These measures generally agree within about a factor of 2: hence, we introduce
a factor ¢ to account for the difference between Zipf’s first law and the true
refinery model token length characteristic. )

Zipf's first law, for example, predicts the approximate token length N of 7°
as the value )

N = (n+d)[y + log(n + d)] (27)

where v is the Euler constant, y = 0.57721 .. .. The factor { = N/N makes
the equation exact, by definition:

N = é(n+d)[7+log(n+d)] (28)

The token-length correction factor ¢ fluctuates from program to program, but
ranges approximately between 0.5 and 2.
The refinery language advantage, therefore, is

¢nY,
(n + d)log,(R + d)[y + log(n + d)]

(29)
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Y, log 2 .
< log n log R (30)

Y. log 2

< (31)

log® n
which, as may be noted, is limited only by average utilized module vield and
vocabulary size. As they stand. these expressions are not statistical- A ),,
and n are determined by the particular program. Averaging A over an ensemble
of programs would yield a statistical bound, however, of the form

X<CY;log2

. (32)
log” n

for A = E(A) and appropriately defined ¢ and 7. This statistical form of the
bound reveals that. in order for the refinery language advantage (and thus,
productivity) to grow without bound, the average yield of refinery modules
being used by applications must grow faster than the square of the logarithim
of the number of refinery modules being used. That is, it must happen that
modules of increasingly higher yields are regularly added to the refinery and
regularly used. A soffware refinery with a statuc, non-erpanding library imposes
a fired productivity ltmit on its workers.

7 FUTURE WORK

The work reported here is a part of the newly-begun NASA Initiative in Soft-
ware Engineering (NISE), and is coordinated with other NISE investigations,
notably the development of a dual life-cycle paradigm (separating, but interre-
lating management and engineering processes), the development of a dynamic
software life-cycle process simulator. behavioral researches into the performance
of humans in the software process, and the synthesis of effective supporting
methodologies, tools, and aids.

This first publication reveals only a few rudimentary aspects of the software
life cycle process, here modeled as productivity channels refining crude infor-
mation into highly distilled products. The principle results apply only to the
implementation channel, or software refinery. The effects of information noise,
the stochastic behavior of people, the detailed character of the other individual
component channels, and the dvnamic behavior of interacting channels remain
to be analyzed and validated.

For the implementation channel, near-term work remains to evaluate Co, p.
p, T, and X in a static, low-noise context. Insight into Cy and g may be sought
in human behavioral research journals. Later work may involve experiments in
collaboration with academic researchers.

Typical p and r values may be determined by measurement of documents
and programs in existing project libraries for which effort statistics are available;
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regression with perceived contributory factors would then quantify eflects and
suggest avenues for productivity improvement. Studies of 7 and p may be
expected to calibrate benefits of selected methodologies and tools.

Still other studies remain to examine the statistical behavior of A as a func-
tion of the refinery size and reuse policy, to determine whether there are natural
limits to productivity growth, and thus, to resolve the question posed by the
upper bound in Eq. 31 above.

Further research will quantify the behavior of the other component chan-
nels of the production life-cycle model, as well as the dynamic interaction of
information flows in the model, notably those within the critical loop shown in
Figure 2.

8 CONCLUSION

This publication has developed a model of the software implementation process
that formulates productivity as a product of tangible, definite, measurable, and
meaningful factors. The model characterizes productivity as stemming from
five weakly interrelated factors: human information capacity, mental acuity, re-
quirements specificity, methodology and tool efficiency, and refinery language
advantage. Each of these factors was shown to have absolute, explicit, and
measurable bounds: Human performance is limited by inherent human channel
capacity and by the degree of mental acuity that can be achieved toward real-
izing that capacity. Requirements efficiency is limited by the minimum as-built
product specifications and the extent to which requirements specifications can
be freed from extraneous, superfluous material. The effectiveness of tools and
methodologies is limited to the amount of human (labor) input that can be
avoided. And finally, the effectiveness of a programming environment is limited
by the average growth in yield of modules in that environment.

These factors serve as absolute standards for comparison purposes: u reveals
how well the staff are meeting their potential; p expresses the level of superfluity
of requirements; 7 quantifies the effectiveness of methodologies, tools, and aids;
and A indicates the power of the refinery. Use of these standards will lead
to meaningful tradeoffs and, potentially, to an eventual optimized software life
cycle.
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