
NASA Contractor Report

ICASE Report No. 90-64

187438

ICASE

CONSERVATIVE PARALLEL SIMULATION OF

PRIORITY CLASS QUEUEING NETWORKS

David M. Nicol

Contract No. NAS1-18605

September 1990

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, Virginia 23665-5225

Operated by the Universities Space Research Association

[/kSA
N_linnnl Ap, ronm Ilic_ _nd

Space A(lminislralion

LRn@ley Research Center

t tampton, Virginia 23665-5225

5[wuz; _inJl #_'c'ort

_A_A[.LvL

CLAS q "_UrU _; :'t3

(ICAC_) L--'" _Bt";tL O_q

C,.J / o 1

Conservative Parallel Simulation of Priority Class

Queueing Networks

David Nicol *

College of William and Mary

Abstract

This paper describes a conservative synchronization protocol for the parallel simula-

tion ofqueueing networks having C job priority classes, where a job's class is fixed. This

problem has long vexed designers of conservative synchronization protocols because of

its seemingly poor ability to compute lookahead: the time of the next departure. For,

a job in service having low priority can be preempted at any time by an arrival having

higher priority and an arbitrarily small service time. Our solution is to skew the event

generation activity so that events for higher priority jobs are generated farther ahead

in simulated time than lower priority jobs. Thus, when a lower priority job enters

service for the first time, M1 the higher priority jobs that may preempt it are already

known and the job's departure time can be exactly predicted. Finally, we analyze the

protocol and demonstrate that good performance can be expected on the simulation

of large queueing networks.

*This research was supported in part by NASA grant NAG-l-l132, in part by NASA grant NAS-1-18605,

and in part by NSF Grant ASC 8819373.

1 Introduction

We are interested in using a parallel computer to execute a discrete-event simulation of an

open queueing network with the following properties.

Each job in the network belongs to one of C priority classes; a job never changes its

class as it moves between queues. We adopt the nomenclature that a job from class j

has lower priority than one from class k > j.

• A job in service is immediately preempted by the arrival of one with a higher priority.

• Once a class k job enters service for the first time, it must complete its service before

any other class k job is serviced.

• At the time a class k job joins a queue, its eventual service requirement at the queue

is known.

Once a class k job enters service for the first time, its next destination queue can be

determined. That destination is not permitted to depend on any information about

jobs from lower priority classes.

The third assumption is satisfied by any non-preemptive priority discipline where priorities

depend only on the original arrival time, e.g., FCFS, or LCFS. We do permit a preempted

job to "lose" the service it received before preemption. This is useful in a context where

a preempted job has to start over. This phenomenon has been described in the context

of a simulation where the jobs correspond to messages being sent between processors in

a simulated multiprocessor system [3]; a message is successfully sent only after it receives

enough time to complete a transmission without interruption. Each transmission attempt

has the same service time, as it would if the service time were determined by message length.

The last two assumptions are trivially satisfied in the most common type of stochastic

simulation, where service times and destinations are chosen randomly in accordance with

class-specific probability distributions. Intra-class priority disciplines that are explicitly ex-

cluded from our approach include any that depend on service time requirements, for example,

processor-sharing, shortest-job-first, or longest-job-first. Nevertheless, the simulation model

we assume is fairly standard for the stochastic simulation of communication networks where

messages (i.e. jobs) have different priorities. It is also important to note that while the math-

ematical analysis of queueing networks has progressed far, this particular class of queueing

networks does not admit to an exact solution even under the most benign assumptions [7].

Simulation remains an important tool for the performance analysis of these types of networks.

A principle issue in parallelizing a discrete-eventsimulation is synchronization. One
generallyassumesthat eachprocessormaintains its own simulation clock,which is advanced
eachtime the processorevaluatesanevent. Evaluation of an eventon a processormay cause
an event which must be evaluated on another processor. The results of the parallelized
simulation are equivalent to a serially executedsimulation if each processorevaluatesits
eventsin monotonenon-decreasingtime-stamporder. Synchronization protocols that ensure

this monotonicity are sometimes called conservative. Optimistic methods have also been

developed to permit processors to evaluate events in non-monotonic order. The end result

of an optimistic simulation is still the same, as a processor "rolls back" in simulation time

whenever it is called upon to evaluate an event at a time strictly less than the processor's

simulation clock. Fujimoto [4] gives an excellent survey of the current state-of-the-art in

parallel simulation.

The present paper presents a conservative algorithm for simulating priority class queueing

networks. With a single possible exception, an efficient solution of this problem has long

eluded conservative methods, because they require lookahead-an ability to predict future

behavior. As applied to a queue, lookahead is the ability to predict when next a job will

depart the queue. The conservative conditional-event approach of Chandy and Sherman [2]

may provide the exception; while they do not present any performance measurements or

analysis of priority class networks, they do show how their method deals with a two-class

network. Otherwise, the lookahead properties of priority class queueing networks have been

thought to be poor [3], owing to the fact that at any time a highest priority job with an

arbitrarily small service time may arrive at a queue servicing a lower priority job, preempt

it, immediately receive service, and depart. We will show that lookahead properties can

actually be quite good, provided that one concurrently simulates different job classes in

different non-overlapping regions of simulation time. This is possible because the behavior

of a job from a high priority class is completely unaffected by jobs from lower priority classes.

Higher priority classes can therefore be correctly sinmlated far enough ahead in simulated

time so that when a lower priority job enters service, the existence and behavior of higher

priority jobs that will affect it are already known. The independence of higher priority jobs

from lower priority ones was first noted and exploited by Sevcik in proposing the "shadow

CPU" algorithm for approximating the performance characteristics of priority class networks

[7].

The protocol we propose and analyze is an extension of one analyzed in [10] and [11].

Like its predecessors, it is a synchronous protocol, meaning that it repeatedly defines global

synchronization points in such a way that processors are fi'ee to execute completely in paral-

lel between two synchronization points. Selection of the synchronization points depends on a

run-time analysisof the simulation modelstate. At issueis whetherenougheventsare found
betweensynchronizationpoints for oneto achievegoodperformance. We answerthis ques-
tion analytically, showingthat in "homogeneous"networks (meaningthat queuescannot be
distinguishedtopologically) the averagenumberof eventsprocessedbetweensynchronization
points is Ft(DM + x/-ffD, where M is the number of queues and D is a lower bound on a

job's service requirement. Thus, the number of events processed between synchronizations

increases without bound as the number of queues increases without bound; furthermore, the

increase is super-linear in M when D > 0. We also analyze the memory requirements of our

approach, showing that the average memory required for our approach is O(CM log M).

This paper is organized as follows. §2 defines the events in the simulation model, and our

assumptions concerning their meaning and ordering. §3 describes our earlier protocol, while

§4 introduces its extension to priority class networks. §5 presents our performance analysis,

and §6 summarizes this work.

2 The Discrete Event View

The parallel algorithm we propose is described in terms of manipulation and analysis of

event lists. We assume that each queue has its own event list, organized as a linearly ordered

doubly linked list. This simplifies the logic of the synchronization protocol, and permits easy

run-time analysis of the pending events for a given queue. Since the list is for a single queue,

its length should not get so long as to make the linear-time insertion cost too great. This

section gives a brief summary of the events, their meaning and ordering.

We will assume that an event's representation includes the event type, the event time,

the identity of the job, and the job's priority class.

Obviously, the first event for a given job and queue is the job arrival, an event we denote

as Arrival. The job may have been sent from another queue or it may be the result of an

external arrival process. At some point the job enters the server for the first time, an event

we denote by FirstServieeEntry. If the job enters service immediately we will place the

FirstServiceEntry event directly after the Arrival event in the event list; of course, both

events have the same time-stamp. Once a job enters service it may be preempted by the

arrival of a job with higher priority. Should this occur, a LeaveServiee event is inserted

immediately prior to the preemptive Arrival event. Again, both of these events will have the

same time-stamp. The departure of a job from the queue is represented with a Departure

event. The departure of a high priority job may permit a preempted job to return to service.

In this case an ReenterServiee event will immediately follow the Departure event, and

have the same time-stamp.

3

If two job arrivals have the sametime-stamp we will order them by priority class,with
the higher priority job occurring first.

The arrangement we describehas the useful property that one can easily analyze the
event list to determinewhether anArrival ought to placeits job immediately into service--
one need only examine the event just prior to the Arrival. Obviously the server is busy
if the prior event is a FirstServiceEntry or ReenterService event for a job of equal or
higher priority, becauseevery departure from service is marked with a LeaveServiee or

Departure event. However, the arrival may enter service if the prior event relates to a

lower priority job or is a Departure event for any priority. It may be that the Arrival

has no prior event in the event list. We will assume the existence of a queue-state record

to describe the queue state at the time of the first event in the list. The queue state will

indicate whether the server is busy, and what class of job is receiving service, if any.

It is also easy to determine the next time a class k job may enter service, relative to any

event in the list. Given a pointer to the reference event we need only scan forward looking for

the first Departure event (which may be the event initially pointed at) whose immediate

successor either has a time-stamp strictly larger than the Departure, or is an event for a

job with priority lower than k. Once we determine the next time t a class k job may receive

service it is a simple matter to compute the length of time the job may receive service before

being preempted: we scan forward looking for the first Arrival event for a job of higher

priority. The class k job may receive service time up to the difference between the Arrival

event's time-stamp and t.

Our algorithms will make frequent use of these abilities to determine the server's status,

find the next time a class k job may enter service, and determine maximal service intervals.

3 Single Class Protocol

The synchronization method we develop here is the concurrent application to different job

classes of a protocol we have developed and analyzed elsewhere [10]. The earlier protocol is

now reviewed.

Imagine a queueing network that satisfies the assumptions outlined in §1, save that

there is only one job class. The queueing discipline is non-preemptive; whenever a job enters

service we can exactly predict when the job leaves service, and the queue to which it dep_rts.

Parallelism is enhanced if, whenever a job enters service, we immediately report its future

arrival to the next queue the job will visit. We call this the pre-sending of the departure

job-message. The time-stamp on the pre-sent message is the arrival time of the job-message,

not the clock value of the sending queue. The non-preemptiveness of the queueing discipline

4

providesus with the neededlookahead.
Weassumean implementation whereeachqueuehas its own event list. We assumethat

the M queues in the network have been distributed among P processors in a multiprocessor

system. A description of a testbed implementing this protocol is found in [9]; performance

measurements from various problems are reported in [10].

Suppose the entire simulation has advanced up to time t, so that all job-messages caused

by jobs entering service before t have already been sent and received. From among the jobs

in queue at t and the jobs known to arrive at Qi after t we can identify the next job d to

enter service, provided that no further jobs arrive at Qi before d does enter service. Because

we are able to select a job's service time upon receipt of the job-message reporting its arrival,

we are able to predict the time 6_(t) when Y would complete service: t + max{ri, ai - t} + s_,

where r i is the residual service time of any job receiving service at t, ai is d's arrival time, and

si is d's service requirement, hi(t) is defined to be ec if there are no known jobs enqueued or

in the list of job-arrivals. Because we pre-send job departures, 5i(t) is a lower bound on the

time of the next job-message Qi will send, provided it receives no further job arrivals before

d enters service.

Finally, define

5(t) = min {5i(t)}. (1)
all queues Oi

The protocol is very simple, and is given in Figure 1. Its net effect is to define a window

of global simulation time, [wn, 5(wn)). The window is defined so that all queues may be

simulated completely in parallel over this range of time. Once all queues have been so

simulated the protocol is engaged again to define a new window.

The synchronization is implemented by having each processor determine the minimal

51(t) among all queues for which the processor is responsible. The processors then engage

in a global min-reduction, which can be accomplished in O(log P) parallel steps on many

parallel architectures.

In [10] we have proved that the protocol is "safe", meaning that no job-message will ever

be received with a time-stamp less than a processor's simulation clock.

Theorem 1 Let [wn, 5(wn)) be a window established by the protocol. Then every job-message

sent during the processing of [w,_, 5(w_)) has a time-stamp at least as large as 5(wn).

[]

Another result which will prove to be useful is that a job entering service at Qi during

the nth window has completion time 5i(w,_).

Lemma 2 Suppose that at time t E [w,_,5(w,_)) job J enters service at queue Qi. Then J

departs service at time 5i(wn).

.

2.

3.

.

Define wl = O, n = 1.

Given wn, the processors cooperatively determine 8(wn).

Each queue may be simulated in parallel with all others until the time of

the event with least time-stamp at the queue is as large as 3(w_). The

processing of any event which puts a job into service must include pre-

sending the associated departure's job-message to the job's next destination

queue.

Queues receive the job-messages sent during the processing of [w,_, o¢(wn)),

select service times for the arriving jobs, and insert events into their event

lists.

5. n = n + 1. Set w_ = 5(Wn_l). Goto step 2.

Figure 1" Synchronization protocol for single class network

Proof: 5i(wn) is the completion time of the next job, say J', to enter service at

Qi. By Theorem i we know that no further jobs arrive at Qi before time 6(w, 0 > t.

Furthermore, a job that enters service within a window cannot depart within that

same window, ttence the job that was foreseen to have highest priority to receive

service next after time w,_ is the same job that enters service, i.e., J' = J.

[]

4 Priority Class Protocol

We now extend the technique of §3 to priority class networks. The key observation is that the

behavior of a job in one class is completely unaffected by jobs in a lower priority class. This

permits us to correctly generate the events for high priority jobs farther ahead in simulation

time than lower priority jobs. We will do so in such a way that whenever we generate the

event that a job J first enters service at Qi, the events at Qi for all jobs of higher priority

will have already been generated past J's completion time, say to. This means that we are

6

ableto exactly compute to, and so immediately generate J's departure event and subsequent

arrival event at another queue. As with the earlier protocol, we have the ability to predict

job completion times, at least if we can push the generation of high priority job events

sufficiently far ahead of lower priority job events. Since we are also able (by assumption) to

determine a job's service requirement upon receipt of the job-message reporting the arrival,

we will be able to compute/_i(t)-type values for each class at each queue, and so employ the

protocol described in §3 to each individual job class. In fact, we will apply that protocol

simultaneously to different classes; each class will have its own window, and the individual

class windows will be sufficiently far apart in simulation time to ensure the necessary ability

to predict departure times.

Our protocol maintains separate windows for different classes. An individual window is

defined just as it was for single class queueing networks. At the nth synchronization point

suppose we have generated all class k events up through time wn,k, for k = 1, 2,..., C.

Recalling that class C has highest priority, we will always ensure that

Wn,1 ___ ?-Un,2 _ .'' _ Wn,C.

At each queue Qi, for each class k, we can identify the next job J to enter service (barring

further arrivals to the queue). We then estimate J's completion time, _i(h,w_,k), using

a method to be described in §4.1. Within each class k we may then take the minimum

estimate over all queues. This minimum is denoted _(k, wn,k). Applying this rule to each

class, we define a set of windows [wn.k, 6(k, w,_,k)) for k = 1,..., C. Unless otherwise noted,

the discussion to follow will assume that the windows are separated enough to yield the

properties we exploit. Later we develop methods that ensure the separation.

A useful way to view our approach is to think of a queue's simulation time-line. A

discrete-event simulation places events on the time-line; our protocol defines non-overlapping

windows on the time-line, one window for each class. Within the window for class k one

finds job arrival and job departure events deposited there by the processing of previous

windows. As we scan through the events in a window we will expand certain ones, further

fleshing out the event-list. For example, within the class k window we will expand a class

k Arrival event into a "first-time-in-service" event (FirstServiceEntry) if the arriving

job goes immediately into service. Likewise, we expand a Departure event from any class

to include a class k FirstServiceEntry event, if the departure permits a class k job J

to enter service. The FirstServiceEntry event is in turn expanded into various service

departure (LeaveService), service reentry (ReenterService), and finally queue departure

(Departure) events to reflect the effects of preemption on J. The process of scanning

through a window's events in increasing time-stamp order and expanding them is called a

window expansion. In the course of a window expansion no event is ever removed from the

event list. One should think of it asbuilding up the correctsequenceof queueevents,rather
than as an execution of known events. Event execution will occur in the lowest priority

window, whereweknow that all eventshavebeengenerated.
One special problem arisesif the network is open. At everyqueuewhere external jobs

may arrive wemaintain separatearrival processesfor eachjob class. The processingof an
external arrival for classk includes the generation of the next external class k arrival. This

arrangment permits a queue Qi to correctly incorporate the external arrivals when computing

the 5i(k, wn,k) values.

We would like to expand every priority class window once between each pair of global

synchronization points. This is not always possible, but we do make every effort to permit the

concurrent expansion of different class windows. This improves performance by amortizing

the synchronization cost over more computation. Following a synchronization the edges of

newly expanded windows are moved forward to cover a new region. A separation test is

applied to determine which windows may be safely expanded. Following these expansions

the synchronization protocol is engaged once again. Eventually every simulation time instant

will have been contained within a window once for every class.

The complete state of a queue at simulation time t is not known until after the window

for each class has encompassed t. Thus, the actual simulation with its attendant statistics

collection and system measurement (presumably the point of the simulation) is performed on

events within the lowest priority window, after the lowest priority window is fully expanded.

These ideas are illustrated in Figure 2.

The scheme described above requires the solution of three inter-related problems.

1. For each queue Qi, class k, and lower window edge wn,k we must be able to compute

the departure time *i(k, wn,k) of the next job J to enter service at Qi, barring further

arrivals. This computation must consider all the preemptions that may interrupt J's

service; it must consider the value of J's residual service following a preemption.

2. We must design a scheme for expanding events and populating a queue's simulation

time-line.

. We must ensure that before we expand the FirstServiceEntry event for job J, we

have already generated all events at Qi for jobs of higher priority, up through the time

of J's departure from Qi. That is, if J has priority k we must ensure that the class

k + 1 window is sufficiently separated from the class k window.

These problems are now addressed in turn.

8

& Class 1 Event _ Class 2 Event

Class 1 Class 2

Window Window

100 103 105

rex0 ndc Ex0an0Ca Iin [100,103). Execute I events in [105,111)

all events in [100,103) I

111

Global Simulation Time,

_O Class 3 Event

Class 3

Window
113 115

Expand Class 3

events in [1 13,11 5)

v

Step n

Class 1

Window

103 106

I Expand Class 1 events
in [103,106). Execute I
all events in [103,106) I

I

Class 2

Window

111 112

Expand Class 2 I

events in [1 1 1,1 12) I

Global Simulation Time,

Class 3

Window

115 118

[_

events in [115,118)

Step n + 1

Figure 2: Class windows on simulation time-line

4.1 Computing a lower bound on departure time

The computation of a lower bound on a job's departure time is straightforward. We provide

each queue with its own event list, maintained in increasing time-stamp order as a doubly

linked list. This single data structure will serve all priority classes. We also need a queue

status record that records the status of the server (is the server idle or busy, what class of

job is in service) just prior to the time of the first event in the list. For each priority class

we maintain a Start pointer into the list reflecting the point up to which all events for that

class have already been expanded. This arrangement is illustrated in Figure 3. In addition,

for each priority class at each queue we maintain a queued-list of jobs which have not yet

9

Queue Status
Record

Linear

Start Class 1

--1 Start Class 2 _--Start Class 3

Event List, Doubly Linked

Figure 3: Data structures for concurrent class simulation

had their service and departure events generated. Each such list for each class is maintained

in a priority heap based on the intra-class priority scheme. For example, a LCFS priority

scheme will order the jobs by decreasing arrival times.

Let J in class k be the next job at Qi to enter service after time w,,,k, barring further class

k arrivals to alter J's dominant priority within class k. For the sake of illustration let us

suppose that each time J is preempted it must start over with the same service requirement,

s. Let t be J's arrival time. Our first problem is to determine when J enters service. There

are two cases to consider, depending on whether t _> wn,k. If so, then J's Arrival event has

not yet been expanded. We enter the event list following the class k Start pointer, and scan

forward until we find J's Arrival event. We then determine whether the server is busy at

that point, using the method described in §2. If J does not immediately enter service we

scan forward searching for the server's first idle period (again using a method described in

§2). The second case to consider is when t < w_,k. The fact that J has already arrived and

is not in service implies that the server is busy. We may therefore begin a scan forward from

the class k Start event to find the server's next idle period.

Having determined when J first goes into service we must now determine when it departs

the queue. Assume that our scanning pointer is positioned at an event whose time t_ is equal

10

to J's first entry into service (this event will not be J's FirstServiceEntry event, as that

event has not yet been generated). J will finish service at time te + s if the next Arrival

event in the list for a higher priority job occurs after te + s. Otherwise J is preempted before

completing its service, and we must scan forward to find the next idle period where J might

reenter service. This process continues until we find a long enough service period, and so

compute J's completion time.

If we scan past the end of the event list we'll assume that J starts its service at the time

of the last event in the list.

It may happen that this procedure is used to predict J's departure time tc before all events

for higher priority jobs have been generated past to. We can easily detect this occurrence by

determining whether tc exceeds w,_,k+l (the lower window edge of the next highest priority

class). Note that an erroneous completion time is still a lower bound on J's completion

time--any unaccounted for higher priority jobs can only serve to delay J by preemption.

Using &(k, wn,k) = t_ still provides a lower bound on the time of the next job-message Qi

will send; we may thus compute 6(k, w,_,k) type windows with the assurance that Theorem 1

still holds.

4.2 Window Expansion

Suppose we have just established the next class k window [wn,k, 5(k, w,_,k)). As the first step,

for every queue we move the class k Start pointer up to point at the queue's first event

in the window. The window encompasses an interval of simulation time which may have

class k Arrival and/or Departure events deposited there by the processing of previous

windows. It may also have completely expanded events for jobs from higher priority classes.

The window expansion process scans forward through the list of all events in [w,_, 5(k, w,_,k))

expanding any class k event that it can according to the rules described below.

Every class k Arrival, Departure, and FirstServiceEntry event is expanded, as fol-

lows. To expand an Arrival event for Qi we first determine whether the arrival goes immedi-

ately into service. We can determine whether the server is busy at the time of the arrival, as

described in §2. We know that if the server is busy, it is servicing a job with priority at least

as high as the arrival. In this case the job is placed in the class k queued-list at Qi, and the

event list remains unaltered. If the job is to enter service, we generate a FirstServiceEntry

event for it at the arrival time, and insert that event directly following the Arrival event.

The FirstServieeEntry event will be expanded as the next step of the window expansion.

If we encounter a class k Departure event we know that it is possible to put another

class k job into service. The highest priority job in the class k queued-list is removed, and

a FirstServieeEntry event for it is inserted directly following the Departure event, with

11

the same time-stamp. The only possiblehindrance is if a higher priority job just happens
to arrive at the sameinstant as the classDeparture departure--a situation which is easily
detected.

The expansionof a FirstServieeEntry event for a classk job, say J, is closely related

to the departure time prediction procedure. Suppose that the FirstServiceEntry event has

time-stamp t and that J requires s units of service. We must determine the maximal service

burst available to J. We do so by scanning forward until we either reach the end of the list,

or encounter an Arrival event for a higher priority job. If the gap of time between t and the

preempting arrival is greater than s we simply generate a Departure event for J at time

t + s, and send a job-message reporting a new arrival at time t + s to J's next destination.

If d cannot complete service we must record the time it spent in service. We generate a

LeaveService event with the same time-stamp as the preempting Arrival event, and insert

it directly prior to the preempting event. Then we scan forward looking for the server's next

idle period. Once it is identified we generate an ReenterServlce event for J, and insert

it directly following the Departure event which frees the server. Again we test to see if

J receives sufficient service before preemption. If not, we generate another LeaveService

event and repeat the process; if so, we generate a Departure event and send a job-message.

4.3 Keeping Windows Separated

The correctness of the expansion for a class k window [w,_,k, _(k, w,_,k)) depends on having

already expanded all higher priority jobs sufficiently far into the future. In this section we

determine how to ensure sufficient separation between class windows. The expansion of a

class k window will be correct if, during the expansion of a FirstServiceEntry event for

job J, all events for higher priority jobs have already been expanded past the time of J's

completion, say to. In other words, we must have tc < wn,k+l.

Recalling equation (1), 6(k, wn,k) is the minimum "next-served-job-completion-time" for

class k. Now suppose that in addition to computing this minimum we compute the maximum

value

r(k,w,_,k) = max {6i(k,w,_,k)}. (2)
all queues Q,

The following lemma uses this value to define a test for sufficient separability.

Lemma 3 Suppose that T(k, wn,k) < w_,k+l for some class k < C. Let J be any class k job

that enters service at Q, for the first time during [wn,k,_(k,w_,k)). Then the expansion of

J's FirstServiceEntry event is correct, meaning that the class k window is expandable.

12

Proof: By Lemma 2 we know that d's estimated completion time defines the

value 6_(k, wn,k) computed during the construction of 6(k, wn,k). That estimate

is constructed using the departure time prediction mechanism described in §4.l.

The estimate is exact if at the point it is made all higher priority events have

already been generated past time 6i(k, wn,k). We know that all higher priority

events up through time _5(k + 1, w,_-l,k+_) = w_,k+l have already been generated.

Furthermore, w_,k+l > r(k, w_,k) >_ _Si(k, wn,k). Thus all higher priority events are

accounted for in the expansion of d, so that the expansion is correct.

[]

Lemma 3 tells us whether the window for a given class can safely be expanded. Given

[w,_,k,_5(k, w,_,k)) and r(k,w,_,k) for each class k we may identify all expandable windows

between two synchronization steps. These windows are expanded, and new windows for the

e:_panded classes are positioned. We adopt the notional convention that Wn+l,k = w,,k for

any class k whose window is not expanded during the nt.h step. The expansions at step n

may permit the expansion during step n + 1 of windows which failed to satisfy Lemma 3 at

step n. However, a certain amount of recalculation of r values is unavoidable, as we now

illustrate.

Suppose the class k window fails to satisfy the hypothesis of Lemma 3, and so is not

expanded during the n_h step. As part of defining the (n + 1)st step we must recompute

Si(k, w,,+l,k) for any queue Q where during step n we observed _5_(k, w,,,k) > w,_,k+l. The

need for recomputation follows from the fact that _Si(k, w,_,k) is then only a lower bound,

whereas if _Si(k, wn,k) < w,,,k+l we would know it to be exact by Lemma 2. Consequently,

the job whose estimated completion time defined r(k, w_,,k) may actually complete at a later

time--possibly later than w,,+l,k+l. We can only safely expand class k after recomputing

r(k, wn+l,k), and observing that its new value is less than w,_+l,k+l.

These observations lead us to a statement of the complete priority class algorithm, given

in Figure 4.

Observe that the highest priority class window will always be expandable. However, the

algorithm above does nothing to prohibit the highest priority class from moving its window

arbitrarily far into the future. Eventually memory constraints will prohibit unconstrained

advances. This problem is easily fore-stalled by including a maximal separability check. For

example, to keep the class k window from advancing too far we might require w,_,k - r(k -

1, w,_,k-1) < Ak, for some Ak > 0 as a further requirement for the expandability of the class

k window. The inclusion of this constraint does not affect the fact that at every step, at

least one window is expandable.

13

.

2.

IO1,1 Wl,C = 0, and n = 1.

Given w,_,k for k = 1,..., C the processors cooperatively determine _(k, w,_,k)

and r(k, wn,k) for k = 1,..., C. Each 7(k, wn,k) value is explicitly reeom-

puted regardless of whether the class window was expanded during step

n- 1. /_(k',w,,k,) need not (but may) be recomputed for a class k' whose

window was not expanded at step n - 1.

3. Identify each expandable class: any class k for which T(k, w,_,k) < wn,k+l.

4. For every expandable class, say k, the class k events for each queue may be

expanded, in parallel with all other queues.

5. If the lowest priority class (class 1) was expanded, then execute all events for

all classes in [w,_,l, _(1,10,_,1)). Release the memory used to represent these

events.

°

.

Queues receive the job-messages sent during the window expansions, select

service times for the arriving jobs, and insert Arrival events into their event

lists.

n = n + 1. For every expanded class k set w,_,k = 6(k, wk.n-1). For every

non-expanded class k' set wn,k, = w,_-l,_,. Goto step 2.

Figure 4: Synchronization protocol for priority class networks

Lemma 4 For every n, at least one window is expandable at step n.

Proof: If class C is expandable we are done. If class C is not expandable, it

is constrained by having wn,c - r(C - 1, w,_,c-1) > Ac. This implies that class

C- 1 is expandable, unless it is constrained by w,_,c-1 -r(C-2, wn,c-2) > Ac-1.

We can repeat the argument backwards through classes until either we find an

expandable window k > 1, or we reach class 1. In the latter case, class 1 has no

maximal separability constraint on a lower class, and so must be expandable.

[]

14

It is alsostraightforward to modify the algorithm in order to support the "rolling back"
of a window. This would be neededif midway through the expansionof a window we
discoverthat dynamic memory is exhausted. It is straightforward to "undo" eventsin the
list, provided wecanaccurately reconstruct them when morememory is available.

We needonly three additional activities in order to support rollback. The first is purely
notational. Recall that we defined w,_+l,k = w,_,k whenever the class k window was not

expandable. This convention must change, because we need the ability to rollback only

some subset of windows in order to free up memory. Thus, we define a synchronization

step number nk for each class k, and advance it only for those steps where the class k

window is expandable. The second activity is to stamp every event with the identity of the

synchronization step (now localized to class) during which the event was inserted into the

list. Then if we decide to roll the class k window back from its step nk position to its step

nk - j position, we simply scan through the list backwards, releasing the space for any event

inserted during and after step nk -j. The last activity is to periodically checkpoint the state

of class k activity. When one rolls back one must rollback to a checkpoint. Once the state

is restored, the simulation proceeds as before with the assurance that exactly the same set

of events will be regenerated. One does presume that the sequence of window expansions

is somehow modified so that the memory is not exhausted again. For example, following a

rollback of the class k window we might tighten the separation constraint Ak.

There is an important difference between this style of rollback, and the rollback used

in optimistic systems [5]. Our rollbacks reclaim the space used to store correct events; the

exact same set of events will later be regenerated. A queue therefore never sends a false

job-message which will have to be undone. Thus, message cancellation is not needed, and

rollback in one class will not directly cause a rollback in another class.

5 Analysis

In this section we develop an analysis of our method. We show that as the simulation model

increases in size--all other things being constant--the average number of events executed or

expanded between two synchronizations is fl(MD + x�'--M), where D is a minimal service time

and M is the number of queues. This demonstrates that on sufficiently large problems there

will be enough parallel workload to achieve good performance on coarse or medium grained

parallel architectures. We also show that the algorithm's expected memory requirement is

o(cm log M).

15

5.1 Events Processed Per Window

Our analysisis basedon resultsdevelopedfor the single-classmodel in [10]. To simplify the
notation and description over that in [10] wewill assumethat in eachclass,eachqueuein
the network haspreciselythe samecharacteristics,and that as the network sizeis increased
thesecharacteristicsremain unaltered. This situation occurswhenthe network is completely
homogeneous--noqueuecan be distinguished topologically from any other. For example,
toroidal and hypercube networkssatisfy this assumption. We let _k be the arrival rate of
classk jobs at each queue, regardless of the number of queues in the network. _k includes

external and internal arrivals--consequently its value will not be known prior to running

the simulation, because the internal arrival rate depends on the simulation's behavior. We

assume that the service requirement of a class k job is distributed as Dk + exp{#k}: a

constant Dk plus an exponential with mean/_k. Our discussion of single-class networks will

drop the class subscript.

We have the following result, adapted from [10], for a homogeneous single class network

with M queues:

Theorem 5 The limiting value lim=._.o_ E[_(w_) - wn] is approximately bounded from below

by D +
D

This theorem makes a statement about the mean width of a synchronization window. In

order to bound the mean number of events processed we must consider the density of events

on the simulation time line. If jobs arrive at rate A, and each job requires at least two events,

then the density of events is at least 2_ per unit simulation time. We can therefore bound

the equilibrium mean number of events processed in a window by multiplying the density

times the window width: 2M)_(D + I_/V/--M) = a(MD + v/-M). Thus, as M increases the

average number of events processed in a window increases at least as x/_. Furthermore, if

the service times have a minimal strictly positive component then the increase is super-linear.

It is straightforward to modify this result for priority classes. Let us now make a dis-

tinction between a class k job's service requirement, and its so-called service-lag, the total

time between when a job enters service for the first time and when it departs the queue.

A job's service-lag is always at least as large as its service requirement. The distribution

of the service-lags comprising the 5i(w,_,k) values are all stochastically larger [12] than the

service requirement distribution. This means that probabilistically a random variable from

service-lag distribution tends to be larger than a random variable from the service require-

ment distribution. Hence, a "window" built on the basis of service requirements will be

always be smaller than the real window which is based on service-lags. This implies the

16

extendedresult:

Theorem 6 For every class k = 1,..., C, the limiting value limn--.oo E[(5(wn,k) - w_,k] is

approximately bounded from below by Dk + pk/v/M.

[]

Since class k jobs arrive at a queue at rate Ak, and each job generates at least 2 events,

the equilibrium mean number of events falling within a class k window is _(MD + x/_).

Lemma 4 shows that at least one window is expandable every step. It follows that the

limiting average number of events processed per step is _(MDmin + v/M), where Dmin =

mink{Dk}.

The practical importance of Theorem 5 has been verified empirically, as reported in [10].

On large models of several different types of problems (infinite server queueing networks,

logic networks, Game of Life, timed petri nets) we have achieved excellent speedups on a 32-

node Intel iPSC/2 [1]. We may have confidence then that the proposed protocol for priority

class networks will achieve good performance on sufficiently large queueing networks.

5.2 Memory Requirements

Our simulation technique obviously requires more memory than an equivalent serial simula-

tion, because more of a queue's event list is retained in memory than is necessary in the serial

case. A natural question asks how much memory is required, and how those requirements

change as the simulation model increases in size. Under the assumption that service times

are composed of a constant plus an exponential, we will show that memory requirements are

O(CM log M).

Consider again the situation where we increase the number of queues in such a way

that all essential queueing characteristics remain the same. In particular, the overall rate

that events appear at a queue per unit simulation time, say AQ, does not change. Now

consider an implementation of our protocol. Ideally the windows are sufficiently separated,

meaning that T(k-- 1,w,_,k_l) < w_,k for k = 2,...,C. Let us also assume that we restrain a

window from advancing more than A units of simulation time past its predecessor. Defining

S_,k = T(k, w_,k) -- W,_,k, the span of simulation time represented in the queue is thus no
C

more than (C - 1)A + _k=l Sn,k. The mean number of events in the event list is then no

c-1 E[Sn,k]. Recall the definition of the r function, given aslarger than AQ(C - 1)A + _k=l

equation (2). We are interested in the behavior of an expected maximum, as M increases.

First consider the highest priority class. Each (5; value involved in r(C, w,_,c) is the sum

of the residual time of a job in service, plus the full service time of another job. Now the

residual is stochastically dominated by the full service distribution. Thus the distribution of

17

each6i(C, wn,c) - w,_,c value is stochastically dominated by the sum of 2Dc plus an Erlang-

2 with parameter Itc (i.e., the sum of two exponentials, each with mean Itc). Assuming

independence among the fi values 1 Sn,c is stochastically dominated by 2D plus the maximum

of M identically distributed Erlang-2's.

Analysis of hazard rate functions [12] helps to quantify a bound on Sn,c. Let f(t) and _P(t)

respectively be the probability density function and one minus the cumulative distribution

function for some probability distribution. The distribution's hazard rate function is defined

to be h(t) = I(t)/F(t); informally, h(t) is the probability that a random variable from the

given distribution achieves value t, given that it is at least as large as t. For example, an

exponential with mean tt has a hazard rate function h(t) = 1/it; this is just another statement

of the exponential's memoryless property.

We will use the fact that if (i) rnl is the maximum of M independent and identically

distributed (lid) random variables having hazard rate function h(t), (ii) m2 is the maximum

of M lid random variables having hazard rate function 9(t), and (iii) h(t) >_ 9(t) for all

t, then rn: stochastically dominates rnl. In order to bound E[Sn,c] from above we seek a

random variable with a smaller hazard rate than an Erlang-2.

The hazard rate function for an Erlang-2 increases monotonically, reaching an asymptote

at 1/itc [13]. This is not surprising, given the intuitive understanding of the hazard rate

function. We can view an Erlang-2 as the "lifetime" of a serial system with two stages, each

of whose lifetimes are exponential. As t increases, the probability that the first stage has

already completed increases. If the system is into the second stage, then its hazard rate

function is that of the second exponential--the constant function 1/itc. So the longer the

system life is known to be, the more likely it is that the remaining life is that of an exponential.

Let h(t) be the hazard rate function for the Erlang-2 distribution with parameter Itc- It

turns out that h(0) = 0, and h(t) increases monotonically to approach 1/itc. We may

therefore choose a value to such that h(to) = 1/(2#c). Let X be an Erlang-2, and define a

random variable Z as follows. If X < to then Z = to. Otherwise, choose an independent

exponentially distributed random variable with mean 2itc. The hazard rate function g(t) for

Z's distribution is 0 for t _< t0, and is 1/(2#c) for t > to; thus h(t) >__g(t) for all t. We can

therefore bound the expected maximum of M lid Erlang-2's with the expected maximum of

M lid random variables Z1,..., ZM, having Z's distribution. Clearly the latter expectation

is no larger than to plus the expected maximum of M lid exponentials with mean 2itc. This

latter expectation is commonly known [6] to be no greater than 2itc log M. Thus we have

shown that E[S_,c] <_ 2itc log M.

Lower priority classes are treated similarly, at least approximately. Let Pk be the average

1This is not rigorously true, but suffices for these complexity approximations.

18

serverutilization for class k jobs. The shadow CPU technique pioneered by Sevcik [7] for

the quantitative analysis of priority class networks approximates the service-lag of a class

k < C job as an exponential with mean (Dk + Irk)/(1 -- y-_ci=k+lPi)- Making the same

approximation, Sn,k becomes a constant plus the maximum of ;11 Erlang-2's as before. Each

Sn,k may therefore be bounded by a constant times log M.

The discussion above shows that memory requirements at each queue are O(C log M), so

that the overall memory requirements are O(CM log M).

6 Summary

It has long been thought that good performance could not be achieved using a conservative

synchronization mechanism for the simulation of priority class queueing networks. This

conclusion followed from the observation that such networks fail to provide much lookahead,

upon which all conservative methods rely. In this paper we develop a conservative technique

that finds lookahead in a simple, yet obvious way. The behavior of a high priority job is

completely unaffected by any lower priority jobs. We may therefore simulate high priority

jobs farther ahead in simulation time than low priority jobs. When determining the departure

time of a low priority job we will already have the complete history of all higher priority jobs

that affect it.

Using this observation we describe and analyze a synchronization protocol for the parallel

shnulation of priority class queueing networks. The analysis shows that the average number

of events that may be processed in parallel is _t(MD + x/if[), where D is a minimal service

time, and M is the number of queues. This implies that on sufficiently large networks

we can expect good performance on a coarse or medium grained multiprocessor, as the

synchronization overheads are amortized over a great deal of parallel workload. We also show

the expected memory requirements to be O(CM log 54), and describe a simple mechanism

that permits one to recover from exhausting memory, at the expense of re-computing events.

Our synchronization protocol may be overly conservative in the sense that no topological

information about the network is used to increase the width of the class windows. Our

protocol essentially assumes that any queue can receive the job whose completion defines

5(w,). Other synchronous protocols such as the bounded-lag protocol [8] explicitly use

topological information, and might be substituted for our own when defining class windows.

The additional issue of ensuring separability would have to be treated.

The class of queueing networks we address is practical and important. But the contribu-

tion of this paper extends beyond just that of queueing networks. We have illustrated a new

way in which one might find lookahead for exploitation by conservative methods. Similar

19

ideas can be applied to the simulation of any physical system where there is some sense of

priority, or non-symmetric independence between subclasses of components.

References

[1] L. Bomans and D. Roose. Benchmarking the iPSC/2 hypercube multiprocessor. Con-

currency: Practice and Experience, 1(1):3-18, Sept. 1989.

[2] K.M. Chandy and R. Sherman. The conditional event approach to distributed simula-

tion. In Distributed Simulation 1989, pages 93-99. SCS Simulation Series, 1989.

[3] R. M. Fujimoto. Lookahead in parallel discrete event simulation. Proceedings of the

1988 International Conference on Parallel Processing, 3:34-41, August 1988.

[4] R. M. Fujimoto. A survey on parallel simulation. Communications of the ACM, 1990.

To appear.

[5] D. R. Jefferson. Virtual time. A CM Trans. on Programming Languages and Systems,

7(3):404-425, 1985.

[6] D.E. Knuth. The Art of Computer Programming, vol. 1. Addison-Wesley, New York,

1968.

[7] E. Lazowska, J. Zahorjan, S. Graham, and K. Sevcik. Quantitative System Performance.

Prentice-Hall, Englewood Cliffs,N J, 1984.

[8] B.D. Lubachevsky. Efficient distributed event-driven simulations of multiple-loop net-

works. Communications of the ACM, 32(1):111-123, 1989.

[9] D. Nicol, C. Micheal, and P. Inouye. Efficient aggregaton of multiple LP's in distributed

memory parallel simulations. In Proceedings of the 1989 Winter Simulation Conference,

pages 680-685, Washington, D.C., December 1989.

[10] D.M. Nicol. The cost of conservative synchronization in parallel discrete-event simula-

tions. Technical Report 90-20, ICASE, 1990. Available from ICASE, Mail Stop 132C,

NASA Langley Research Center, Hampton, VA 23665.

[11] D.M. Nicol. Performance bounds on parallel self-initiating discrete event simulations.

ACM Trans. on Modeling and Computer Simulation, 1(1), 1991. To appear. Also avail-

able as Technical Report 90-21 from ICASE, M.S. 132C, NASA Langley Research Cen-

ter, Hampton, VA, 23665.

2O

/12] tt.S. Ross. Stochastic Processes. Wiley, New York, 1983.

[13] K.S. Trivedi. Probability and Statistics, with Reliability, Qucueing, and Computer Sci-

ence Applications. Prentice-Hall, Englewood Cliffs, N J, 1982.

21

Report Documentation Page

1. Report No.

NASA CR- 1874 38

ICASE Report No. 90-64

2. Government Accession No.

4. Title and Subtitle

CONSERVATIVE PARALLEL SIMULATION OF PRIORITY CLASS

QUEUEING NETWORKS

7. Author(sl

David Nicol

9. Performing Organization Name and Address

Institute for Computer Applications in Science

and Engineering

Mail Stop 132C, NASA Langley Research Center

Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23665-5225

3. Recipient's Catalog No.

5. Report Date

September 1990

6. Performing Organization Code

8. Performing Organization Repo_ No.

90-64

10. Work Unit No.

505-90-21-01

11. Contract or Grant No.

NASI-18605

13. Ty_ ofRepo_andPeriodCovered

Contractor Report

14. Sponsoring #,gency Code

15. Supplementary Notes

Langley Technical Monitor:
Richard W. Barnwell

Final Report

Submitted to IEEE Trans. on Parallel

and Distributed Systems

16. Abstract

This paper describes a conservative synchronization protocol for the parallel

simulation of queueing networks having C job priority classes, where a job's class

is fixed. This problem has long vexed designers of conservative synchronization

protocols because of its seemingly poor ability to compute lookahead: the time of

the next departure. For, a job in service having low priority can be preempted at

any time by an arrival having higher priority and an arbitrarily small service

time. Our solution is to skew the event generation activity so that events for

higher priority jobs are generated farther ahead in simulated time than lower pri-

ority jobs. Thus, when a lower priority job enters service for the first time, all

the higher priority jobs that may preempt it are already known and the job's de-

parture time can be exactly predicted. Finally, we analyze the protocol and demon-

strate that good performance can be expected on the simulation of large queueing
networks.

17. Key Words (Suggested by Author(s))

parallel simulation, priority classes,

preemption, queueing networks, parallel

computing

18. Distribution Statement

61 - Computer Programming and Software

66 - Systems Analysis

Unclassified - Unlimited

19. SecuriW Cla_if. (of this repot)
Unclassified

20. Securi_ Cla_if. (of this pagel
Unclassified

21 No, of pages
23

22. Price

A0 3

NASA FORM 1626 OCT 86
NASA-L_g|ey, 1990

