WASH-TI=102, 732

NASA Technical Memorandum 102732

NASA-TM-102732 19910001605

IMPLICIT FLUX-SPLIT EULER SCHEMES FOR UNSTEADY
AERODYNAMIC ANALYSIS INVOLVING UNSTRUCTURED
DYNAMIC MESHES

JOHN T. BATINA

ny o1 1990
NOVEMBER 1990 LANGLEY RESEARCH CERTER

LIERARY NESA

~ HARZTON, VIRCINA
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665






IMPLICIT FLUX-SPLIT EULER SCHEMES FOR UNSTEADY AERODYNAMIC
ANALYSIS INVOLVING UNSTRUCTURED DYNAMIC MESHES

John T. Batina*
NASA Langley Research Center

Hampton,

Abstract

Improved algorithms for the solution of the time-
dependent Euler equations are presented for unsteady
aerodynamic analysis involving unstructured dynamic meshes.
The improvements have been developed recently to the spatial
and tempora! discretizations used by unstructured grid flow
solvers. The spatial discretization involves a flux-split
approach which is naturally dissipative and captures shock
waves sharply with at most one grid point within the shock
structure. The temporal discretization involves an implicit
time-integration scheme using a Gauss-Seidel relaxation
procedure which is computationally efficient for either steady
or unsteady flow problems. For example, very large time
steps may be used for rapid convergence to steady state, and
the step size for unsteady cases may be selected for temporal
accuracy rather than for numerical stability. Steady and
unsteady flow results are presented for the NACA 0012 airfoil
to demonstrate applications of the new Euler solvers. The
unsteady results were obtained for the airfoil pitching
harmonically about the quarter chord. The resulting
instantaneous pressure distributions and lift and moment
coefficients during a cycle of motion compare well with
experimental data. The paper presents a description of the
Euler solvers along with results and comparisons which assess
the capability.

{ntroduction

Considerable progress has been made over the past two
decades on developing computational fluid dynamics (CFD)
methods for aerodynamic analysis.1.2 Recent work in CFD has
focused primarily on developing algorithms for the solution of
the Euler and Navier-Stokes equations. For unsteady
aerodynamic and aeroelastic analysis, these methods generally
require that the mesh move to conform 1o the instantaneous
position of the moving or deforming body under consideration.
Many of the methods that are currently being developed assume
that the mesh moves rigidly or that the mesh shears as the
body deforms. These assumptions consequently limit the
applicability of the procedures to rigid-body motions or
small-amplitude deformations. Furthermore, these methods
of solution typically assume that the computational grid has an
underlying geometrical structure. As an alternative,
algorithms have been developed recently which make use of
unstructured grids. 3-12 In two dimensions these grids are
typically made up of triangles, and in three dimensions they
consist of an assemblage of tetrahedra. The unstructured grid
methods have distinct advantages over structured grid methods
in that they can easily treat the most complex of geometric
configurations as well as flow conditions, and that the
unstructured grid can be moved to treat realistic motions and
structural deformations of these configurations.10-12

The results presented by the author in Refs. 1% and 12
demonstrated that (1) the methods produce solutions of
comparable accuracy 1o results obtained using structured grid
flow solvers,’1 and (2) that the unstructured grid
methodology can easily analyze complex aircraft geometries
undergoing structural deformation.12 The methods of Refs. 11
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and 12, however, use a spatial discretization based on central
differencing with explicit artificial dissipation, and use a
temporal discretization involving explicit time-marching
based on a mulli-stage Runge-Kutta time integration. The
explicit artificial dissipation used in such schemes tends to
smear shock waves over several grid cells and requires the
tuning of free parameters that scale the dissipation. Also, the
explicit Runge-Kutta time-integration has a step size that is
limited by the Courant-Fredricks-Lewy (CFL) condition to
very small values. Consequently, thousands (and occasionally
tens of thousands) of time steps are required 1o obtain steady-
state solutions, and thousands of steps per cycle of motion are
required for unsteady solutions. Therefore, the purpose of the
paper is to report on improvements that have been developed
recently to the spatial and temporal discretizations of the
unstructured grid flow solvers which resolve the numerical
issues described above. The spatial discretization now
involves a so-called flux-split approach, which is similar to
discretizations presented in Refs. 10, 13, and 14 based on
either the flux-vector splitting (FVS) of van Leer!S or the
flux-difference splitting (FDS) of Roe.16 These flux-split
discretizations account for the local wave-propagation
characteristics of the flow and they capture shock waves
sharply with at most one grid point within the shock
structure. A further advantage is that these discretizations
are naturally dissipative and consequently do not require
additional artificial dissipation terms or the adjustment of
free parameters to control the dissipation. Furthermore, the
temporal discretization has been changed to an implicit time-
integration scheme involving a Gauss-Seidel relaxation
procedure similar to discretizations presented in Refs. 17 and
18. This relaxation scheme is unconditionally stable and thus
allows the selection of the step size based on the temporal
accuracy dictated by the problem being considered, rather than
on the numerical stability of the algorithm.  Consequently,
very large time steps may be used for rapid convergence to
steady state, and an appropriate step size may be selected for
unsteady cases, independent of numerical stability issues.
Steady and unsteady results are presented for the NACA 0012
airfoil to demonstrate applications of the new Euler solvers.
The unsteady flow results were obtained for the airfoil
pitching harmonically about the quarter chord. The paper
presents a description of the Euler solvers along with results
and comparisons which assess the capability.

Euler Equations

In the present study, the flow is assumed to be governed by
the two-dimensional time-dependent Euler equations which
may be written in integral form as

d
3 || Qdxdy + (Fdy - Gdx)=0 1
at nj J;n (1)

where the vector of conserved variables Q and the convective
fluxes F and G are given by
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The contravariant velocities U and V are defined by

U=u-x, V=v-yl (3)

where x; and y; are the grid speeds in the x and y directions,
respectively, and the pressure p is given by the equation of
state for a perfect gas

p=(y-Nle-3p(u®+v¥)] (4)

The above equations have been nondimensionalized by the
freestream density p,, and the freestream speed of sound a,..

Flux-V Splitt

The spatial discretization based on flux-vector splitting is
a cell-centered scheme where the flow variables are stored at
the centroid of each triangle and the control volume is simply
the triangle itself. The boundary integral of Eq. (1) is
approximated by using the flux-vector splitting of van
Leer.'5S In this method the flux vectors are split into forward
and backward contributions which are continuously
differentiable even at sonic and stagnation points. The scheme
is derived as follows. For each edge of a given triangle, the
fluxes are first rotated into a locally Cartesian coordinate

system X—Y¥ with the principa! direction being perpendicular
to the edge. The flux in this direction is defined as

pU
pUT+p
HAs = T(FAy — GAx) = —_ (5)
pUV
cU+pﬁ
where the transformation matrix T is given by
As 0 0 0
1]0 Ay -Ax 0
“alo o ax Ay o (6)
0 0 V] As

In Egs. (5) and (6), Ax and Ay are the directed lengths of the
edge in the x and y coordinate directions, respectively, and

As® = Ax* + Ay*. Also, U and V are the Cartesian velocity
components perpendicular and parallel to the edge defined by

- Ay  Ax
=y——y—
u As v s (7a)
- Ax Ay
= | e— Y —
v As v As (70)

and U and V are the corresponding contravariant velocities

T==x) _vovy2%
U=(u x.)As (v y.)As (8a)

- Ax Ay
V=@u—-x)—+(v-y )—
(u x‘)! (v-y, As (8b)

The flux vector H is split in a one-dimensional fashion into

forward (H*) and backward (H") vectors for Il-fl <aas

H= H*+ H- (9)
where
ht
ht [(-Ux2a)/y+1T
H* = ,[_( Yl (10)
hi,.V
i
and b, =+-=(Uta) (11a)
ht =Rt [‘(‘Y-l)ﬁ2 +2(y —1)Ua +2a?
(11b)
=2 , =2
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As As
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The resulting split fluxes are finally rotated back. into the
original coordinate system so that

FAy -GAx = T'[H*(q7)+H™(q")] (12)

where tl;e notation H*+(q") and H-(q*) indicates that the

fluxes H are evaluated using upwind-biased interpolations of
the primitive variables q. For a given triangle j, for example,
and considering the diagram in Fig. 1(a), the upwind-biased

interpolation for q- along the edge between triangles j and k is
defined by

q'=ql+%-[(1—)c)A_+(1+x)A+] (13)

where
A+=qk—ql (143)
A-=q; -q (14b)

In Eqgs. (13) and (14), q] and Q, are the vectors of
primitive variables at the centroids of triangles j and k,
respectively, and q; the vector of primitive variables at

node i, is determined by an average of the flow variables in the
triangles surrounding node i. The upwind-biased interpolation
for g* along this edge is determined similarly using the flow
variables at centroids j and k and the flow variables at node 1.
The parameter x in Eq. (13) controls a family of difference
schemes by appropriately weighting A_ and A,. On
structured meshes it is easy to show that x = - 1 yields a fully
upwind scheme, x = 0 yields Fromm's scheme, and « = 1 yields
central differencing. The value x = 1/3 leads to a third-
order-accurate upwind-biased scheme, although third-order
accuracy is strictly correct only for one-dimensional

calculations. Nevertheless, x = 1/3 was used in the
calculations presented herein.



On highly stretched meshes, the formula for A is
modified to be

_ 2a e
= +b(qk “1)

=3 (15)

where a and b are the distances from the midpoint of the edge to
the centroids of triangles j and k, respectively, as shown in
Fig. 1(b). This formula weights the flow variables in the
interpolation formula (Eq. (13)) differently to account for
the stretching of the mesh. For example, by substituting Eq.
(15) into Eq. (13) and letting x = 1 yields

__b a
_a+bql+a+b

T 9, (16)

For the case shown in Fig. 1(b), Eq. (16) clearly gives more
weight in the calculation of q" to the flow variables at centroid
j than to the flow variables at centroid k, since b>a.
Furthermore, In calculations involving upwind-biased
schemes, oscillations in the solution near shock waves are
expected to occur. To eliminate these oscillations flux limiting
Is usually required. The flux limiter modifies the upwind-
biased interpolations for q- and q* such that, for example

e centroid
® node |

(a) centroids and nodes used in construction
of upwind-biased flow variables.

(b) distances batween centroids and midpoint
of edge used in Eqgs. (15) and (16).
Fig. 1 Diagrams illustrating details of flux-split Euler
algorithm implementation.

q'=ql+4i[(1-xs)A_+(1+tcs)A*] (17)

where s is the flux limiter. In the present study, the
continuously differentiable flux limiter of Ref. 21 was
employed which is defined by

2A_A,+¢
S= = (18)
AE +4A, +¢
where e is a very small number to prevent division by zero in
smooth regions of the flow.

Elux-Diff Solit

The spatial discretization based on flux-difference
splitting is a cell-centered scheme where the flow variables

are stored at the centroid of each triangle and the control
volume is simply the triangle itself. The flux balance becomes

Y T'HAs=}Y TV[H(q)+H(q")]As
-3Y, TNAI(Q'-Q)4As  (19)

where the first term on the right-hand side is simply the
average of the original flux H evaluated using the flow
variables on each side of the edge. The second term on the
right-hand side represents a flux difference since it involves

the product of the difference in flow variables (Q+- Q) and
the flux jacobian A which is defined as

_9H
=30 (20)

In this context the flux jacobian can be rewritten by a
similarity transformation as

-1
A=RAR (21)
where A is a diagonal matrix whose diagonal elements are the
characteristic speeds U, U, U+a, and U-a. The variable U
is the contravariant velocity normal to the edge being

considered and a is the local speed of sound. The notation |Al
indicates that the flux jacobian is evaluated by taking the
absolute value of the characteristic speeds and by using so-

called Roe-averaged16 flow variables (indicated by the tilde).

In the FDS scheme, the conserved flow variables on either
side of a given edge, Q+and Q-, ars determined by first
calculating the upwind-biased primitive flow variables q and
q* and then converting them from primitive to conserved. The
interpolation formula for q-, for example, is identical to Eq.
(17) including the flux limiter defined by Eq. (18).
Therefore the same parameter « in Eq. (17) controls a family
of difference schemes, ranging from fully upwind to central
differencing, by appropriately weighting A _ and A, asin the
FVS scheme. The calculations presented herein used x = 1/3.

\mplicit T | Discretizati

The implicit relaxation algorithm is formulated by first
approximating the time derivative in the Euler equations by

20 2+6 40 2+0 0'-d
at 2 At 2 At

n n-1
Q-Q
At (22)

-2
2

1 .
where A Q= QM - Q and where the parameter ¢ controls
the temporal order of accuracy. For example, the scheme is



first-order-accurate in time if ¢=0 and the scheme is second-
order-accurate in time if ¢=1. For an implicit temporal
discretization, the flux H must be treated at time level (n+1)
which is accomplished by linearizing according to

JH
H'' =H +— AQ
0Qe=¢q’
where oH/2Q is the flux jacobi.an A as discussed above. Also,
Egs. (22) and (23) involve Q, the vector of flow variables at
an iterate level (*) which is normally taken to be time level
(n). For unsteady applications, however, subiterations may

(23)

. . n+ 1 N
be performed to drive Q to Q and thus minimize
linearization and relaxation errors.

For FVS the forward and backward fluxes are linearized
for a given triangle j as

2 TU[H' (@) + H (@)™ As
=Y T'[H' (q)+ H (q")] As
3
+[Y T'A* As]AQ;+ Y, T'A”AsAQ,

(24)

In this equation the last summation on the right hand side
involves A Qm , the change in the flow variables in the three
triangles adjacent to triangle j. Also, the exact jacobians
A+and A" are determined by differentiation of H* and H- by
the conserved variables Q. By combining Egs. (22) and (24),
the Euler equations are discrelized as

3
[2;'—4’% 1+ T'A* As]AQ;+ ¥, T'A™ AsAQ,
t

m =1

* _Nn n _ An-1

—2+¢areaQ Q +2area——Q Q
2 At 2 At

=Y TH* () +H (a9)] As

(25)

where 1 is the identity matrix and "area” is the area of
triangle j. Direct solution of the system of simultaneous

equations which results from application of Eq. (25) for all
triangles in the mesh, requires the inversion of a large matrix
with large bandwidth which is computationally expensive.
Instead, a Gauss-Seidel ralaxation approach is used 1o solve the
equations whereby the summation involving A Qg is moved to
the right hand side of Eq. (25). The terms in this summation
are then evaluated for a given time step using the most
recently computed values for AQp, . The solution procedure
then involves only the inversion of a 4 x 4 matrix
(represented by the terms in square brackets on the left hand
side of Eq. (25)) for each triangle in the mesh. Also, although
the procedure is implemented for application on (randomly-
ordered) unstructured meshes, it is not a point Gauss-Seidel
procedure. The method is in fact more like line Gauss-Seidel
since the list of triangles that make up the unstructured mesh
is re-ordered from upstream to downstream, and the solution
is obtained by sweeping two times through the mesh as dictated
by stability considerations. The first sweep is performed in
the direction from upstream to downstream and the second
sweep Is from downstream to upstream. For purely
supersonic flows the second sweep is unnecessary.

For FDS the exact jacobian A is too expensive to compute
and thus an approximate jacobian is normally used. There are
several ways to accomplish this, two of which are described as
follows. The first way is to simply use the forward and
backward jacobians from the FVS scheme as in Eq. (25),

except of course, the residual is computed using FDS. The
second way is to construct approximate jacobians using Eq.
(21) and the fact that the forward and backward jacobians
should have non-negative and non-positive eigenvalues
(characteristic speeds), respectively. This is done to produce
a diagonally dominant system of equations for numerical
stability and is accomplished by defining

A"=RA*R” A =RA™R (26)
where
+ A+]A] - A=Al
A = —— T e—— 7

The results presented herein were obtained using the first of
these two approaches.

Results and Di .

To assess the new Euler solvers, calculations were
performed for the NACA 0012 airfoil. These results were
obtained using the unstructured grid shown in Fig. 2 which
was generated using the advancing front method.6.18 The grid
has 3300 nodes, 6466 triangles, and extends 20 chordlengths
from the airfoil with a circular outer boundary. Also there
are 110 points that lie on the airfoil surface. This is the same
mesh that was used to obtain the results that were presented in
Ref. 11. Steady-state calculations were performed for the

airfoil at a freestream Mach number of M_ = 0.8 and an angle
of attack of a,=1.25°. Unsteady calculations were performed
for the airfoil pitching harmonically about the quarter chord
with an amplitude of o, =2.51° and a reduced frequency based

on semichord of k = 0.0814 at M_ =0.755 and a,=0.016°.

These calculations are compared with the experimental data of
Ref. 20.

Steady Flow Results

Steady flow results were obtained for the NACA 0012
airfoil using both the implicit time-marching of the present
study and the explicit four-stage Runge-Kutta time-marching
of Ref. 11. Results are presented first using flux-vector
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Fig. 2 Partial view of unstructured grid of triangles about

the NACA 0012 airfoil.



splitting and then using flux-difference splitting for the
spatial discretization. The explicit time-marching resuits
were obtained using a CFL number of 2.5 (since the CFL limit
is approximately 2.8) and the implicit time-marching results
were obtained using a CFL number of 100,000. Such a large
value was used for the implicit results since the relaxation
scheme has maximum damping and hence fastest convergence
for very large time steps. This is in contrast with implicit
approximate factorization schemes which have maximum
damping for CFL numbers on the order of 10.

A comparison of the convergence histories between explicit
and implicit time-marching for flux-vector splitting is shown
in Fig. 3(a). The “error" in the solution was taken to be the
Lo norm of the density residual. As shown in Fig. 3(a), the
explicit solution is very slow to converge. This solution takes
approximately 10,000 time steps to become converged to
engineering accuracy, which is taken to be a four order of
magnitude reduction in solution error. In contrast, the
implicit solution is converged to four orders of magnitude in
only approximately 500 steps and is converged to machine
zero in less than 2000 steps. The implicit solution costs
approximately 75% more per time step than the explicit
solution because of the increased number of operations
required to evaluate the flux jacobians. This increase in CPU
time is far out-weighed by the faster convergence to steady
state in that a converged solution is obtained with the implicit
relaxation scheme with an order of magnitude less CPU time
than the explicit scheme. The resulting steady pressure
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(b) steady pressure distribution.

Fig. 3 Comparison of steady-state results for the NACA
0012 airfoil at M.,=0.8 and ao = 1.25° computed

using flux-vector splitling.

distribution is shown in Fig. 3(b). For this case there is a
relatively strong shock wave on the upper surface of the
airfoil near 62% chord and a relatively weak shock wave on
the lower surface near 30% chord. The pressure
distributions indicate that there is only one grid point within
the shock structure, on either the upper or lower surface of
the airfoil, due to the sharp shock capturing ability of flux-
vector splitting. Furthermore, the steady pressure results of
Fig. 3(b) are of comparable accuracy in comparison with the
numerous published results for this case such as those
reported in Ref. 21. .

A comparison of the convergence histories between explicit
and implicit time marching for flux-ditference splitting is
shown in Fig. 4(a). Similar to the solutions obtained using
flux-vector splitting, the explicit solution here is very slow
to converge. However, the implicit solution is again converged
to four orders of magitude in only approximately 500 steps
and Is converged to machine zero is less than 2000 steps.
These solutions, with either implicit or explicit time-
marching, cost approximately the same as the corresponding
solutions involving flux-vector splitting. The resulting steady
pressure distribution is shown in Fig. 4(b). The pressure
distribution again indicates that there is only one grid point
within the shock structures due to the flux-difference
splitting, and the shocks appear to be slightly more sharply
captured in comparison with the shocks from the solution
obtained using flux-vector splitting. This is because the FDS
scheme has less dissipation than the FVS scheme.
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(b) steady pressure distribution.

Fig. 4 Comparison of steady-state results for the NACA
0012 airfoil at M..=0.8 and oo = 1.25° computed

using flux-difference splitting.



Unsteady Flow Results

Unsteady results were obtained for the pitching NACA
0012 airfoil using 250, 1000, and 2500 steps per cycle of
motion with the implicit time-marching and flux-vector
splitting to determine the appropriate step size to ensure
temporal accuracy for this case. Three cycles of motion were
computed to obtain periodic solutions. The effects of step size
on the instantaneous pressure distribution at kt=69° in the
third cycle, which corresponds to an instantaneous pitch angle
of a(t) = 2.34°, are shown in Fig. 5. This angle was selected
for this assessment since it lies in the most sensitive part of
the cycle. The results of Fig. 5 clearly indicate that with as
few as 250 steps per cycle the upper and lower surface shocks
both have inaccurate strength and location in comparison with
the results obtained using 2500 steps per cycle. The results
of Fig. 5 also indicate that the appropriate step size for this
case is a time step corresponding to between 1000 and 2500
steps per cycle of motion. This finding is consistent with the
temporal refinement study of Ref. 22, where similar results

The effects of performing subiterations per time step on
the instantaneous pressure distributions at kt = 69° in the
cycle corresponding to an instantaneous pitch angle of a(t) =
2.34° are shown in Fig. 6. The calculations were performed
using 250 steps per cycle of motion with the implicit time-
marching and flux-vector splitting and parallel results were
obtained using 0, 5, and 10 subiterations per time step. As
discussed previously, the purpose of the subiterations is to
minimize linearization and relaxation errors, similar to that
which is done with approximate factorization schemes to
minimize linearization and factorization errors.22 As shown
in Fig. 6, as the number of subiterations is increased the
inaccuracies in shock strength and location are decreased.
With 10 subiterations, for example, the instantaneous
pressure distributions resemble closely those of Fig. 5,
obtained using 2500 steps per cycle of motion and no
subiterations. There is therefore a compromise between
running large time steps with subiterations and running
smaller time steps with no subiterations, since the CPU time
is approximately the same.

were obtained using implicit approximate factorization

solutions of the transonic small-disturbance and Euler
equations. It is noted, however, that for easier cases involving
higher reduced frequencies and smaller amplitudes of motion,
as few as two or three hundred steps per cycle of motion are

sufficient for temporal accuracy.

Instantaneous pressure distributions at eight points in
time during the third cycle of motion from the 2500 steps per
cycle solution using flux-vector splitting are shown in Fig. 7
for comparison with the experimental data. In each pressure
plot the instantaneous pitch angle a(t) and the angular

a(t) = 2.34°
kt = 69°
1.5 u
1.0+ upper surface
Stk -
-C, OF »
lower surface §
-5+ -
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-1.5LL 1 1 1 1 T O | 1 1 1 3 L ! ! t ' |
0 2 4 6 8 10 0 .2 .4 6 .8 1.0 2 4 6 .8 1.0
x/c x/c x/c
Fig. 5  Effects of step size on the instantaneous pressure distribution at ktr = 63° and a(t)=
2.34° during the third cycle of motion for the NACA 0012 airfoil pitching at
Mo = 0.755, ap = 0.016°, oy = 2.51°, and k = 0.0814 computed using flux-vector
splitting.
a(t) = 2.34° 250 steps/cycle
kt = 69°
1.5 [
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Fig. 6  Effects of performing subiterations per time step on the instantaneous pressure

distribution at kt = 69° and a(t)= 2.34° during the third cycle of motion for the NACA
0012 airfoil pitching at Me = 0.755, ag = 0.016° a1 = 2.51°, and k = 0.0814
computed using flux-vector splitting.
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Fig. 7 Comparison of instantaneous pressure distributions for the NACA 0012 airfoil

pitching at M = 0.755, ag = 0.016°, oy = 2.51°, and k = 0.0814 computed using

flux-vector splitting.
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Fig. 8 Comparison of instantaneous pressure distributions for the NACA 0012 airfoil
pitching at M., = 0.755, ag = 0.016°, a1 = 2.51°, and k = 0.0814 computed using

flux-difference splitting.



position in the cycle kt are noted. During the first part of the
cycle there is a shock wave on the upper surface of the airfoil,
and the flow over the lower surface is predominately
subcritical. During the latter part of the cycle the flow about
the upper surface is subcritical, and a shock forms along the
lower surface. The pressure distributions indicate that the
shock position oscillates over approximately 25% of the chord
along each surface, and in general, that the two sets of
calculated results compare well with the experimental data.
Similar to the steady flow results, the shock waves are
captured sharply with at most one grid point within the shock
structure. The calculated results, however, show the expected
symmetry in the flow, in that the upper surface pressure
distribution during the first half of the cycle is very similar
to the lower surface pressure distribution during the second
half of the cycle. The experimental data therefore appears to
have been obtained at a slightly higher effective steady-state
angle of attack than that reported in Ref. 20. Furthermors,
the unstructured grid results of Fig. 7 are of comparable
accuracy in comparison with published results obtained using
structured grid methods for this case, such as those reported
in Ref. 22,

Similar comparisons between calculated and experimental
instantaneous pressure distributions at the same eight points
in time during the cycle are shown in Fig. 8. The calculated
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(b) moment coefficient.
Fig. 9 Comparisons of coefficient versus instantaneous angle
of attack for the NACA 0012 airfoil pitching at
Me = 0.755, ap = 0.016°, a1 = 2.51°, and k =
0.0814

results were obtained using the implicit time-marching with
2500 steps per cycle of motion and the flux-difference
splitting for the spatial discretization. The FDS pressures
show similar features as the FVS pressures of Fig. 7 in that
the shock waves are sharply captured within only one grid
point within the shock structure. In general, the FDS
pressure distributions also agree well with the experimental
data.

Comparisons of calculated and experimental lift and
moment coefficients versus the instantaneous angle of attack
are presented in Fig. 8. The lift coefficient is shown in Fig.
8(a), and the moment coefficient is shown in Fig. 8(b). These
coefficients show the variation as a function of angle of attack
during a cycle of motion, and in general, the two sets of
calculated results compare well with the experimental data.
The comparisons of lift coefficient further indicate that the
data was probably obtained at a higher effective steady-state
angle of attack, since the experimental values are higher than
the calculated values. Also, the largest difference between FDS
and FVS coefficients which occur in the moment coefficient
(Fig. 8(b)) are due to the sensitivity of the moment since the
moment center is at the quarter-chord. The two calculated
moment coefficients are not symmetric about one another

because of the small angle of attack (ax,= 0.016°) for this
case.
Concluding Remarks

Improved algorithms for the solution of the time-
dependent Euler equations were presented for unsteady
aerodynamic analysis involving unstructured dynamic meshes.
The improvements have been developed recently to the spatial
and temporal discretizations used by unstructured grid flow
solvers. The improved spatial discretization involves a flux-
split approach which is naturally dissipative and captures
shock waves sharply with at most one grid point within the
shock structure. The improved temporal discretization
involves an implicit time-integration scheme using a Gauss-
Seidel relaxation procedure which is computationally efficient
for either steady or unsteady flow problems. For example,
very large time steps may be used for rapid convergence to
steady state, and the step size for unsteady cases may be

selected for temporal accuracy rather than for numerical
stability.

Steady and unsteady flow results were presented for the
NACA 0012 airfoil to demonstrate applications of the new
Euler solvers. The steady resulls showed that rapid
convergence to steady state could be achieved with the implicit
time-marching in comparison with results obtained using
explicit time-marching. A factor of ten reduction in
computational cost was obtained for the case that was
presented. The unsteady results were obtained for the airfoil
pitching harmonically about the quarter chord. The effects of
step size and of performing subiterations per time step on the
instantaneous pressure distributions during a cycle of pitching
motion were demonstrated. These results indicated that the
scheme was numerically stable for large time steps although
smaller time steps were required to maintain temporal
accuracy for the unsteady case that was considered. Also, the
calculated instantaneous pressure distributions and lift and
moment coefficients during a cycle of motion compared well
with experimental data.
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