TEMPORAL-ADAPTIVE EULER/NAVIER-STOKES ALGORITHM
FOR UNSTEADY AERODYNAMIC ANALYSIS OF AIRFOILS USING
UNSTRUCTURED DYNAMIC MESHES

WILLIAM L. KLEB
JOHN T. BATINA
MARC H. WILLIAMS

NOVEMBER 1990

NASA
National Aeronautics and
Space Administration
Langley Research Center
Hampton, Virginia 23665


William L. Kleb, John T. Batina, Marc H. Williams

November 1990

NASA Langley Research Center
Hampton, Virginia 23665-5225


William L. Kleb and Marc H. Williams: Purdue University, West Lafayette, Indiana.
John T. Batina: Langley Research Center, Hampton, Virginia.

A temporal adaptive algorithm for the time-integration of the two-dimensional Euler or Navier-Stokes equations is presented. The flow solver involves an upwind flux-split spatial discretization for the convective terms and central differencing for the shear-stress and heat flux terms on an unstructured mesh of triangles. The temporal adaptive algorithm is a time-accurate integration procedure which allows flows with high spatial and temporal gradients to be computed efficiently by advancing each grid cell near its maximum allowable time step. Results indicate that an appreciable computational savings can be achieved for both inviscid and viscous unsteady airfoil problems using unstructured meshes without degrading spatial or temporal accuracy.