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DEVELOPMENT OF A TIME-DEPENDENT INCOMPRESSIBLE
NAVIER-STOKES SOLVER BASED ON

A FRACTIONAL-STEP METHOD

Moshe Rosenfeld

INTRODUCTION

T'tnis»S!ti!j<!iy«Eluas^bee|î focused^on'cthe development, validation and
application of a fractional step solution method of the time-
dependent incompressible Navier-Stokes equations in generalized
coordinate systems./^ A solution method that combines a finite-
volume discretization with a novel choice of the dependent variables
and a fractional step splitting to obtain accurate solutions in
arbitrary geometries has-been previously developed for fixed-grids,^,
see-Ref-ftyr Ut̂ '

In the present research effort, this solution method is
extended to include more general situations, including cases with
moving grids. The numerical techniques are enhanced to gain
efficiency and generality. This^report ^summarizes briefly the'work
performed during the period October 1, 1988 through February 15,
1990. Additional details on the various aspects of the study are
given in Appendix A. -

NUMERICAL ENHANCEMENTS

The fixed grid solution method has been extended to general
moving grids. Errors originating from the discrete approximation of
the time-dependent coordinate system are minimized by satisfying
the discrete geometric conservation laws for the time-varying
computational cells. To improve the efficiency of the fixed grid
case, two versions of the solution method have been coded: (1)
fixed-grid method, (2) moving-grid method.

During the present study, several enhancements of the
numerical method have been introduced. A partial list of the
modifications is given below:

(1) Implementation of more general boundary conditions
implicitly. The allowable boundary conditions are:



(a) Periodic conditions,
(b) Symmetric conditions,
(c) Mixed Dirichlet and Neumann type boundary conditions.

(2) The solution method has been extended to geometrically
singular boundaries for the three types of grid topologies (C, O
or H grids).

(3) A multi-grid Poisson solver has been written and partially
debugged.

(4) Extensive efforts have been made to increase the efficiency of
the method by improved vectorization. Presently, the fixed-
grid method runs at 80 MFLOPS on the CRAY YMP (single CPU)
and about 300 - 400 . 10~6 CPU sec/mesh-point/time-step are
consumed. The moving-grid code is not yet fully vectorized.

VALIDATION OF THE METHOD

Several additional cases have been solved to validate the
method against other numerical and experimental results. In all the
cases tested so far, good agreement is obtained. The validation
cases include:

Fixed-Grid Case:

(1) Flow in a two-dimensional polar cavity.

(2) Flow in a two-dimensional channel with a fixed constriction
and a time variable pressure gradient.

(3) Flow over a two-dimensional elliptic airfoil with a steady and
pulsatile upstream flow and a high laminar Reynolds number
(Re « 14,300).

(4) Three-dimensional flow in curved ducts, both with rectangular
and circular cross-sections.

(5) Flow over a submarine body at an incidence of 0° and 20°.



Additional details of these validation cases can be found in
Ref. (2). A brief summary of preliminary results for two
validation cases is given below:

Flow Over an Elliptical Airfoil at a High Reynolds Number

The two-dimensional flow over an elliptical airfoil of
thickness ratio 1:2.91 at 14° angle of attack and a Reynolds number
of 14,300 has been solved to compare with the recent experimental
results. Two cases have been considered, (a) steady upstream flow,
(b) pulsatile upstream flow. In the second case, a sinusoidally
pusatile upstream flow with an amplitude of 5% of the steady part,
and a non-dimensional period of T = 6.86 was simulated. A non-
orthogonal 0-type grid of 161 x 141 mesh points in the radial and
circumferential directions, respectively, has been used. Figure 1
gives the time-evolution of the lift and drag coefficients for the
steady and pulsatile upstream flows (it should be noted that in the
pulsating case, the time is normalized by the period time T). The
analysis of the results and the comparisons with the experimental
results will be reported elsewhere.

Flow Over a Submarine Body at Low Reynolds Numbers

The axisymmetric flow over a submarine body has been
computed for a low Reynolds number of Re = 1000 and a zero angle of
attack. Figure 2 compares the pressure coefficient on the body of
the submarine with the computed results of Ryan (Private
Communication), while Fig. 3 shows the effect of the Reynolds
number on the pressure coefficient. Figure 4 shows the distribution
of the pressure coefficient for an incidence of 20°- Figure 5 plots,
for the same case, the limiting streamlines (viewed from the rear
end of the submarine) and the particle traces (side view).

Moving-Grid Case:

(1) Flow over a circular cylinder with a moving outer boundary.

(2) Flow in a two-dimensional channel with a moving constriction.

(3) Flow in a two-dimensional cavity with a moving piston.



Additional details on these validation cases can be found in
Appendix A.

CONCLUDING REMARKS

In the present study, a fractional step solution method of the
time-dependent, viscous and incompressible Navier-Stokes
equations has been extended, enhanced and validated for both fixed
and moving generalized coordinate systems. The method has been
used to simulate time-periodic vortical flow fields. Investigation
of these flows by novel analysis methods that are being developed by
the author, may advance the understanding of the complex vortical
flow phenomena found in pulsating flows.

The study has demonstrated the capabilities of the present
fractional solution method in simulating accurately complicated
incompressible time-dependent viscous flow fields.
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Fig. 1 - Time evolution of the force-coefficients on an elliptic
cylinder at 14° incidence and Re - 14,300.
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Fig. 2 - Distribution of the pressure-coefficient on the submarine
body at 0° incidence.
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Fig. 3 - Effect of Reynolds number on the pressure-coefficient on
submarine body at 0° incidence.
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Fig. 4 - Distribution of the pressure-coefficient on the submarine
body at 20° incidence.



O.OU KG
i.oo«io»3 um
7.a rite

S3n2Siill3 64)10

Fig. 5 - Limiting streamlines and particle traces for the submarine
body at 20° incidence.
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NUMERICAL SOLUTION OF UNSTEADY
INCOMPRESSIBLE VISCOUS FLOWS IN

GENERALIZED MOVING COORDINATE SYSTEMS

Moshe Rosenfeld* and Dochan Kwak*
NASA Ames Research Center, Moffett Field, CA 94035

Abstract
A solution method of the time-accurate, incompressible
Navier-Stokes equations in generalized curvilinear moving
coordinate systems is presented in this paper. Accuracy
is achieved by a conservative finite-volume discretisation
which satisfies the geometric conservation laws in gener-
alized moving coordinate systems. The solution method
is second-order accurate in space and first-order accurate
in time. A fractional step solution method is used to
efficiently solve the discrete equations. The unknowns,
namely the prtttun and the volvme-flvzet, are chosen to
facilitate the formulation of a consistent Poisson equa-
tion and to obtain a robust Poisson solver with favorable
convergence properties. The method is validated by com-
parisons to other numerical and experimental solutions.
The comparisons show good agreement.

1 Introduction
Numerous solutions have already been obtained for
steady, incompressible flows in complicated three-
dimensional configurations, see for example Kwak ei el.1.
Time-dependent, viscous simulations requite large com-
putational resources and only recently, with the advent of
new and large supercomputers, has their solution become
feasible for complicated flow problems. However, the ma-
jority of the existing studies consider cases where a fixed
grid can be employed. In many realistic situations one or
more boundaries move and therefore the choice of a fixed
grid is inadequate. Moving boundaries can be found in
internal flows with a moving piston, bio-fluid flows with
elastic boundaries as in cardiac flows, as well as in exter-
nal aerodynamics where the contour of the configuration
may deform either due to forced motion of the controls
or aero-elastic interactions. Another circumstance which
requires the use of moving grids is the application of adap-
tive grids to the solution of time-dependent flowfields.
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Very few flow solutions exist for cases with moving
grids. Ogawa and Ishiguxo* solved a two-dimensional
model of the blood flow in a human ventricle and the
dynamic stall process on an oscillating airfoil by employ-
ing moving grids in a stream-fnnction-vorticity formula-
tion. Tamura ei a/.* have solved the two-dimensional
flow over a circular cylinder with forced vibrations and
with vortex-induced vibrations using primitive variables.
Rogers and Kwak4 have recently extended their time-
accurate high-order upwind solution procedure, based on
the artificial compressibility method (see Ret [5]), to
moving grids. This method was applied to the solu-
tion of the three-dimensional flowfield in a model of the
artificial-heart developed by Pennsylvania State Univer-
sity. Kiris and Rogers6 used this method to solve the
internal flow in a cavity with a periodically moving pis-
ton. A somewhat restricted application of moving grids
was used by Ralph and Pedley7 to solve the flow in a
two-dimensional channel with a moving indentation. The
numerical method uses the stream-fnnction-vorticity for-
mulation and employs a specially devised time-dependent
coordinate transformation to resolve the difficulties asso-
ciated with the moving boundary. However, this proce-
dure can be used only for a particular class of problems
and can not be applied for more general cases where the
mesh points may move arbitrarily.

In all these works a finite-difference approach is used.
The grid's motion is accounted for by terms derived from
the time-derivatives of the coordinate system. The finite
volume approach to the discretization of the incompress-
ible Navier-Stokes equations offers flexibility in applying
certain geometric conservation laws and minimizing the
truncation errors in complicated geometries. In the finite
volume discretization methodology the geometric param-
eters have clear meaning such as the volume and faces'
area of the computational cells.

In the present work, a fractional step solution proce-
dure is developed for the time-dependent, incompressible,
viscous flows in generalized moving coordinate systems.
The formulation of the governing equations, the dis-
cretization process and the numerical solution phases are
combined together to yield an accurate solution method



foi complicated flow problems. Special attention is given
to the satisfaction of the. "geometric conservation laws"
(both in space and time) to minimise the discretisation
errors in complicated coordinate systems. This work em-
phasises the development of a conservative finite-volume
formulation for moving grids with an efficient fractional
step solution method based on a robust Poisson solver.
Details pertaining to the fixed grid solution method can
be found in other publications by the present authors.**0

2 Formulation

The equations governing the flow of isothermal, constant
density incompressible, viscous fluids in a time-dependent
control volume with the face S(i) and volume V(i) are the
conservation of mass

(1)

(2)

• + f «fS-(u-v) =

and the conservation of momentum

•J f udV = I dS-f ,
dtjy J5

where t a the time, u is the velocity vector, dS is a surface
area element and dV is a volume element. The surface
element velocity resulting from the motion of the grid is
v. The tensor f is given by

f = -(u - v)u - P 7 + »/ (Vu + (Vu)T) (3)

for Newtonian fluids. The quantity 7 is the identity ten-
sor, Vu is the gradient of u while (•)T is the transpose
operator. The pressure is P, and v is the effective kine-
matic viscosity.

The only differences between the fixed and the mov-
ing grid equations are the terms that include the surface
element velocity v and the time dependence of the cell
geometry (volume and face). The volume conservation of
each time-varying cell (special case of (1)) requires

BV_ t
M ~fs

dS • v = 0 (4)

where the term dS • v represents the volume swept out by
the face dS over the time increment dt. Thus, the mass
conservation equation has exactly the same form as for
fixed grids

' (5)

The usual practise is to transform equations (2) and (5)
into a differential form. In the present work the integral
formulation is maintained to assist in the derivation of
the finite-volume equations for obtaining a conservative
scheme for arbitrarily moving geometries.

S Discretization

3.1 Geometric Quantities
A general nonorthogonal coordinate system ((, t),() is de-
fined (discretely) by

(6)

where r = (x,y,z)T is the Cartesian coordinate system
and t is the time. The computational domain (£, 17, C) is
divided into uniform primary cells with mesh sise A£ =
At; = A( = 1, and the center of each primary cell is
designated by the indices »,J, n. The area of the face Z of
a primary cell, see Fig. ??, is given by the vector quantity

_i _
~

Or ot
0(1 + 2) (7)

where the computational coordinates I = {, TI or ( are in
cyclic order and x is the cross product operator. The vec-
tor S1 has the magnitude of the face area and a direction
normal to it. It is also the contravariant base vector V/
scaled by the inverse of the Jacobian 1/7, i.e., S1 = — V/,

see10

Vinokui10 has pointed out that an accurate discretisa-
tion should satisfy certain geometric identities. The con-
dition that a cell is closed should be satisfied exactly in
the discrete form

where the summation (with proper signs) is over all the
faces of the computational cell. Equation (8) can be sat-
isfied if S1 is approximated from (7) by a proper apprcoti-

9r
mation of — (see details in Ref. [8]). The volumes of all

VI

discrete computational cells will sum up to the total vol-
ume at a given time if the volume of each computational
cell is computed by dividing the cell into three pyramids
having in common the main diagonal and one vertex of
the cell, resulting in the following

In the present method, the volume conservation equa-
tion (4) is satisfied discretely by interpreting the term
<fS • v in equation (4) as the rate of the volume swept by
the face dS. For example the volume swept by the face
S*i+ 1 can be computed by a formula similar to (9)



where the time-level is given by k. The quantities .

and SS( . are the areas swept by the motion of the face

S<<_} - see the shaded areas in Fig. ??. The area <S^_ ,
is computed from

and 6S( . can be computed in a similar way. The volume
*~i

of the cell at the time level k + 1 is computed from (4)

where the summation (with the proper signs) is over all
the faces of the computational edL Note that JV'/At
is the volume-flux due to the motion of the coordinate
system and has a meaning similar to the volume-flux U1.
The computation of the volume of each cell at the time
level k 4 1 as the sum of the volume at time level k and
the contribution of the volumes 6V1 swept out by the cell's
faces is important for the accurate representation of the
momentum equation.

In the present finite volume formulation, no coordinate
derivatives appear directly in the discrete equations, as
in the case of finite-difference formulas. Instead, quan-
tities with clear geometric meaning such as the volume
and faces area of the computational cells are used. Their
discrete approximation is based on geometric interpreta-
tions which satisfy the geometric conservation laws. A
principal difference between the finite volume and the fi-
nite difference approach to moving grids is in the inter-
pretation of the quantity £V*/At. In the finite- volume
method it is treated as a geometric quantity which ex-
presses the rate of displacement of a cell face, whereas in
the finite-difference method, the grid velocity is combined
with the fluid velocity to define a 'relative flow velocity*
(see Ref. [10]).

3.2 Mass Conservation Equation

The mass conservation equation (5) has the same form as
for fixed grids. Second-order spatial discretisation over
the faces of the primary computational cells yields

+ (S" - (S*

+ (S<-u).+j-(S<.«)._i=0 (IS)

Note that throughout the present paper the default in-
dices (i,j,n) and the default time-level (k + 1) are usu-
ally omitted for simplicity. Each term on the left hand
side of (13) approximates the volume-flux over a face of
the primary cell. A simple discretised mass conservation
equation can be obtained by using the following variables

tr» = s*
u< = s<

as the unknowns instead of the Cartesian velocity com-
ponents. The quantities U(, U11 and U< are the volume-
fluxes over the (, ij and C faces of a primary cell, respec-
tively. In tensor algebra nomenclature, these are the con-
travariant components of the velocity vector (in a stag-
gered grid) scaled by the inverse of the Jacobian (I//).
With this choice of the dependent variables, the continu-
ity equation takes a form identical to the Cartesian case

Accumulated experience with fractional step solution
methods shows that the exact satisfaction of the discrete
mass conservation equation is crucial for obtaining ac-
curate solutions and for the convergence of the Poisson
equation, see for example Ret [11]. Therefore, the simple
form of (15), which can be satisfied to round-off errors in
any coordinate system, suggests that the volume-fluxes
are the 'natural* dependent variables for fractional step
methods. This choice complicates the discretisation of
the momentum equations, but is important for obtaining
a divergence-free velocity field in generalised coordinate
systems.

3.3 Momentum conservation equation

Spatial discretisation of the momentum conservation law
(2) for a computational cell with volume V yields

(16)

Following the development of the scheme given by Rosen-
feld ct o/.a, a general two-step temporal discretisation of
(16) for a constant time-step Ai is

- F*'1)), (17)

where k is the time level and e, 9 and <j> are arbitrary pa-
rameters. A truncation error analysis shows that second-
order accuracy in time is obtained only if

(18)

In order to replace u by the new dependent variables U1,
the corresponding area vectors are dotted with the mo-
mentum equations. The integral momentum equation is
applied on different computational cells for each unknown
U1, Each cell has the dimensions A£ x At? x AC, but
the centers are located at (*+ |,^,n), (i,j + \,n) and
(*i Jin +1) f°r the U*,U*, and U< momentum equations,
respectively. The derivation of the (-momentum equation

(1 + e)(Vu)k+l - (1 + 2e)(Vu)fc +
= A«(0F*+1 + (1 - 0)F* +



will be described in this section. The other two momen-
tum equations can be obtained by cyclic permutation.

The dependent variables ate the pressure and the
volume-fluxes (see 3.2). In order to replace the unknown
u by U', eq. (17) is dotted by S( and using the identity

u = s(u< + s,zr> + s(u< = sm (19)

results in

e)(V U<)k+l - (1 + 2e)(V U')k(S< • Sf )

-1(S{.SJ*-1) (20)

= A<(0S< - P*+1 -I- (1 - 0)S* • F* + 4S< - (P* - F*-1))

where Sm is the inTerse base of S'. Note that the k + 1
is the default time-level and therefore S* is computed
at k + 1. In order to save computations, only the term
L = Sf • P at the time-levels k - l,k, and k + 1 should
appear in (20). Therefore, the right hand side of (20) is
modified to

= 6(S< - 9)(S< • P)*

(21)

= 6Lk+l + (1 - 0)1* + j(Lk - 1*-1)

This approximation is first-order in time. The tem-
poral truncation errors can be minimised by choosing
e = 5 and 4> = 1 - 8. The resulting scheme is

S< • Sf) -I- (VU')k-l(S< • Sf'1)

(1 - 0)(2I* - L*-1)) . (22)

For stability reasons, usually 9 = 1 is chosen.
The computation of the operator L is similar to the

fixed grid case and details can be found in*'9. The only
difference is in the computation of the convection terms
which should include the motion of the grid. For example,
the convection flux of the {-momentum equation on the
(-face center (», j,n) is given by

The difference equations could have been second-order

accurate in time if SV* would not lag in time by — over

the volume-flux terms U1 (see eq. (10)).
The resulting discrete equations are conservative in any

moving coordinate system and are spatially second-order
accurate. For high Reynolds number flows, fourth-order
dissipation is added to annihilate high frequency compo-
nents of the solution. The dissipation terms axe inter-
preted in terms of fluxes and therefore the conservation
properties of the equations are «nM^tMBy<l

4 Solution Method
The dependent variables are the pressure, defined at the
center of the primary cells, and the volume-flaxes de-
fined on the faces of the primary cells. This selection is
equivalent to a finite-difference formulation over a stag-
gered grid with the choice of scaled contravariant velocity
components as the unknowns. The mass and momentum
conservation equations (5) and (22) are solved by a frac-
tional step method. First the momentum equations are
solved for an approximate U1 by an approximate factor-
isation method. In the second stage, the pressure and
the volume-fluxes U1 are corrected to satisfy the mass
conservation equation by solving a Poisson equation. It
should be noted that the exact satisfaction of the dis-
crete mass conservation equation ensures the convergence
of the Poisson equation with good convergence proper-
ties. More details on the solution method can be found
in Refs. [8,9].

The original solution method used an explicit approx-
imation of the convection terms. In the present imple-
mentation, the most important convection terms may be
approximated also implicitly and therefore the scheme has
no severe restrictions on the allowable CFL-nnmber. Ex-
plicit or implicit fourth-order dissipation can be used for
high Reynolds number flows.

5 Results
Several test cases have been solved so far. The solution
procedure and the computer-code are capable of solving
three-dimensional flowfields, but at this stage of the study
only two-dimensional cases have been considered.

5.1 Flow over a Circular Cylinder
The flowfield over a circular cylinder at Re = 40 was
solved as the first test case. This example is a common
test case for fixed grid solutions since the resulting flow-
field is quite complicated and numerous other numerical
and experimental results are available for comparison. In
the present solution, the grid is expanding radiaDy due to
a moving circular outer boundary

(23)

where ROM, is the distance of the outer boundary from
the cylinder center (normalised with the cylinder's diam-
eter). In the present ease the dependence of the grid on
time is pre-determined. . However, the same procedure
may be used to solve a time-dependent problem by an
adaptive-grid method, if a suitable adaptation criterion
would have been defined.

A cylindrical coordinate system is used with mesh
points clustered near the cylinder and in the wake region.



Figure ?? gives the grid and the instantaneous stream-
lines for t = I and t = 8. Between the times shown,
the radial mesh sise is almost doubled in sise. Neverthe-
less, the time-evolution of the separation babble, which
is a critical test parameter, agrees well with previous nu-
merical and experimental results, see Fig. ??. The full
line in Fig. ?? describes the solution obtained in the this
study while the dashed line gives the solution obtained by
the fixed-grid version of the present method. The trian-
gular symbols and the dotted line give the experimental
results of Contanceau and Bouard19 and the numerical
solution of Collins and Dennis,1' respectively. All the
results practically coincide, except the numerical results
of13 for t> 7. As was explained by Rosenfeld ei ai* this
deviation results mainly from the "wall effect." Note es-
pecially the good agreement with the experimental results
which have been obtained for an equivalent outer bound-
ary of about 14 diameters. This is about the same as the
outer boundary distance in the present computations at

5.2 Channel Flow with an Asymmetric
Oscillating Indentation

This test case considers the flowfield in a two-dimensional
channel with an oscillating constriction. This geometry
is a model for the large amplitude self-excited oscillations
that arise when fluid flows through a collapsible tube such
as a vein. In a series of flow visualisations, Stephanoff et
a!.14 and Pedley and Stephanoff1* have found in the core
of the flow a train of waves, downstream of the oscillating
indentation, and a double row of eddies along the walls
of the channel.

In the experimental apparatus the walls of the chan-
nel were rigid except for an indentation of length 10 (the
distance between the fixed parts of the waDs is the ref-
erence unit length). The indentation is made of a thick
rubber membrane and is driven by a piston with a sinu-
soidal motion with time. At the begining of each cycle,
the indentation is flushed with the channel's wall. The
channel starts at a distance of 120 units upstream of the
oscillating constriction and is 250 units long. The flow-
field upstream of the indentation is fully developed and
the flow is essentially laminar.

In the present work a simplified model of the test ap-
paratus is employed. The upstream boundary is at a dis-
tance of 5 units from the oscillating constriction and the
downstream boundary is at a distance of 30 units from
the upstream boundary. An algebraic grid is generated at
each time step with 31 x 251 x 3 points along the heigth,
length and width of the channel, respectively. Points are
clustered near the two walls and a non-uniform distribu-
tion of points is used in the axial direction with cluster-
ing in the region downstream of the indentation where
the flow structure was found experimentally to be most

interesting. The mesh points are fixed in time except at
the indentation region where mesh points stretch linearly
with the the distance between the moving indentation
and the opposite fixed wall. The maximum indentation is
0.38 units. The grid for this position is shown in Fig. ??,
where only every other point is plotted in the normal and
axial directions and the vertical scale is twice as large as
the axial scale. The shape of the indentation is approx-
imated by a hyperbolic tangent, as has been suggested
by Pedley and Stephanoff11 and Ralph and Pedley.7 The
apparent asymmetry of the indentation is a result of the
non-uniform grid used in the present case. It was found in
Ref. [7], as well as in the computations performed in this
study, that the flowfield downstream of the indentation is
not sensitive to the upstream conditions.

Fully developed flow is given as the initial condition and
as the upstream boundary condition. The downstream
condition imposes parallel flow and a uniform pressure
gradient which is computed from the integral mass con-
servation law. At the upper and lower walls, the velocity
of the wall is specified (icro everywhere, except at the
moving parts of the boundary).

Figure ?? shows a comparison of the instantaneous
streamlines with a flow visualisation of Stephanoff et oJ.14

at the non-dimensional time of 1 = 0.55 (based on the
period) and for a case with a Strouhal number of Si =
0.038 and a Reynolds number of Re — 610. The flow
visualisation shows quite a complicated flowfield although
the resolution is not good enough for revealing the fine
details, especially in the regions of eddy motion. The first
separation of the flow occurs downstream of the sloping
wall. A second large eddy is formed on the opposite wall
with a secondary separation bubble buried inside it. Still
further downstream, an additional pair of weaker vortices
appear, one on each wall. The core of the flow prescribes
a wave motion which can be observed easily both in the
experimental and the numerical results.

Favorable agreement can be obtained if the plot of the
numerical result is moved about 0.4 units in the down-
stream direction relative to the experimental results. In
other words, the separation length of the first eddy at
the upper-wall is under-predicted in the present compu-
tations. Nevertheless, the distances between the vortices,
which are related to the wavelength of the core-flow, com-
pare favorably. The reason for this discrepancy is not
clear and requires additional study. The differences do
not seem to be related to the resolution since grid re-
fining does not affect the separation length significantly.
Kins and Rogers0 has solved the same case with a high-
order upwind scheme and found similar results. The fact
that two solution procedures, which differ in numerous
aspects, result in similar solutions can indicate that the
differences may be related to the non-exact reproduction
of the experimental set-up and conditions.

One very likely reason for the discrepancy may be at-



triboted to three-dimensional effects. In the present com-
putations a two-dimensional flow is assumed. In the ex-
periments conducted by Stephanoff et al.14 the width of
the channel was 10 times larger than its height. The
three-dimensional affects of the sidewalls on the center-
plane, where the visualisations were taken, could not be
assessed. Armaly et al.ie have investigated experimen-
tally the steady flow past a backward-facing step and
found three-dimensional effects for Re > 400. The most
sensitive quantity was the length of the separated eddies.
In unsteady flows, the three-dimensional effects are even
more pronounced, see for example Ref. [17]. Another rea-
son for the disagreement could be the inaccurate descrip-
tion of the wall shape in the numerical computations. Ob-
viously, any difference in the shape may affect the length
of the separation from the indentation.

The flow evolution for Re = 600 and a higher Strouhal
number, Si = 0.057, is given in Fig. ??. Here the
instantaneous streamlines are plotted for several non-
dimensional times at the first cycle of the indentation's
motion. The flow development is essentially the same
as that found experimentally by Pedley and Stephanoff15

and is summarised only briefly here.
Near the beginning of the cycle, a single separation

bubble forms on the sloping wall of the indentation
(Fig. ??a) and the core-flow remains parallel to the walls.
As time increases, the separation length increases and
a second counter-rotating eddy appears on the opposite
wall, downstream of the first eddy - see Fig. ??b. Still
later, a third eddy is formed at the upper wall further
downstream (Fig. ??c). As time proceeds, the core-flow
becomes wavy and a sequence of eddies with alternating
signs appear on the walls. The amplitude of the core-
flow increases with time until t — 0.75 (Fig. ??g). In
the last quarter of the period, the eddies shrink in size
and strength and are washed downstream. At the end of
the cycle the residual eddies are quite small and do not
affect the next cycle. We shall adopt the convention of
Ref. [15] in labeling the eddies alphabetically, as shown
in Fig. ??d.

Of particular interest is the phenomenon of eddy-
doubling which was found experimentally (Ref. [15]) as
well as computationally (Ref. [7]). In this phenomenon, a
single eddy splits into two co-rotating eddies. The present
calculations show that eddy-doubling occurs for eddies A,
B and C for t > 0.55.

The genesis of the wavy flow as well as the mechanism
of the eddy-doubling is still not fully understood. Most
previous studies agree that the wavy core-flow is deter-
mined primarily by inviscid vorticity dynamics and is a re-
sult of the non-iero vorticity gradient, see Reft. [7,15,17].
It is also clear that the eddy-doubling is essentially a
viscous bifurcation, Refs.[7,15]. The motivation of the
present paper is to describe the numerical solution proce-
dure, therefore no further attempt will be made to analyse

this flowfield.
Figure ?? plots the center of the vortices A, B, C

and D (which approximately coincides with the crests
and troughs of the core flow streamlines) as a function of
time for four different results. The experimental results
are given by square symbols while the various numeri-
cal computations are represented by lines. The numer-
ical results include the present study (full lines)as well
as the computations of Kiris and Rogers0 (dash lines)
and Ralph and Pedley7 (dotted lines). The agreement
between the present results and the results obtained by
Kiris and Rogers is good, except perhaps for the first
separated eddy (A). The numerical results of Ralph and
Pedley,7 who used a stream-function-vorticity formula-
tion and a mesh with about 3.5 times more points in the
axial direction, show better agreement with the experi-
mental results, obviously due to the better prediction of
the first separation length. However, the distances be-
tween the vortices (or the wavelength) compare favorably
between all these results.

5.3 Internal Flow Driven by a Piston

The last case demonstrates the capabilities of the present
numerical procedure. In this case, a two-dimensional in-
ternal flow in a rectangular cavity driven by a vertically
pulsating piston is solved for a Reynolds number Re=100,
see geometry in Fig. ??. During the downward stroke of
the piston, the fluid leaves through an exit at the left ver-
tical wall, and during the upward motion the entrance at
the right vertical wall opens and the exit is closed. This
flowfield is an idealization of a reciprocal engine or an ar-
tificial heart. The piston has a sinusoidal motion between
y = 0.6 and y = 0.3 with a period of 1.2 non-dimensional
seconds.

An algebraic grid of 49 x 45 x 3 points in the z, y and z
directions, respectively has been employed. Mesh points
are clustered near the two side walls and near the lower
wall. Along the y-direction, the mesh points are stretched
linearly with the motion of the piston. The z-direction
distribution remains fixed. Figure ?? shows the time
evolution of the force-coefficients in the y and z direc-
tions on the lower stationary horizontal wall (opposing
the piston). A fully developed periodic flow is seen to
persist from the second cycle of the piston. The abrupt
closing of the exit (at t = 0.6,1.8,3., etc.) and the abrupt
closing of the entrance (at t = 1.2,2.4,3.6, etc.) can be
clearly observed as a sharp change in the x-component of
the force-coefficient.

Figure ?? gives the velocity vector and the pressure
contours for the fifth cycle. The velocity vector is plot-
ted for every other mesh point in both z and y directions.
At the beginning of the cycle a strong vortex, which was
created in the previous cycle near the entrance, is found
along with a contra-rotating weaker vortex. At half stroke



downward, ao vortices exist (except very weak vortices
near the two lower corners). A very strong pressure gradi-
ent builds up at the exit. As the entrance opens, Fig. ??c,
two main vortices are found in the core region, bat they
are weaker than at the beginning of the cycle. During
the upward motion of the piston, a strong vortex is gen-
erated at the entrance, Fig. ??d. A favorable agreement
has been found with Kiris and Rogers,6 who has solved
the same case by a time-accurate artificial compressibility
method with high-order npwinding.

6 Concluding Remarks

A general solution method of the time-accurate incom-
pressible Navier-Stokes equations in a generalised curvi-
linear moving coordinate system is presented. Accuracy
is achieved by employing conservative finite-volume dis-
cretisation with special attention to the satisfaction of
geometric conservation laws in generalised moving coor-
dinate systems. A fractional step solution method is used
to efficiently solve the discrete equations. The pressure
and the volume-fluxes are chosen to be the independent
variables. This choice simplifies the construction of a ro-
bust Poisson solver. The present method is an alternative
to other finite difference methods.

Several test solutions show promising results. It is es-
pecially encouraging to obtain smooth solutions near in-
flow and outflow boundaries which are time dependent.
Future work will include the solution of more realistic
three-dimensional cases with moving boundaries as well
as time-dependent problems with self-adaptive grids.
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Figure 2: Definitions related to moving grids
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Figure 4: Time-erolation of the separation length over a
circular cylinder at Re = 40

Figure 5: The grid for the channel flow with oscillating indentation
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Figure 6: Comparison of the instantaneous streamlines at t = 0.55 and Si = 0.038, Re = 810. (a) experimental
results (b) present results
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Figoze 7: Instantaneous streamlines, Si = 0.057, Re = 600

10



PRESENT
KIRIS (6)
RALPH AND PEDLEY [7]

• PEDLEY AND STEPHANOFF [15]

y!

.500 .750

Figure 8: Time evolution of the vortices center

0.6

T~|
0.21

0.06

EXIT

y-0.6 (1-1/4cot2*0

ENTRANCE

•1.0-

Figure 9: The geometry of the piston flow case

.8

.6

.4

2

0

-X 0

-10

Figure 10: Time-evolution of the force-coefficients on the
lower wall . . .

11



Velocity t = 4.82 Pressure

0.0 0.1 0.1 0.1 0.4 0.1 0.( 0.» 0.0 0.1 1.0

t =

0.0 0.1 04 04 0.1 0.1 04 t.r o^ o.o 1.0

0.1 04 0.3 0.4 0.1 04 O.J 0.0 0.0 14

0.1 OJ 0.1 0.4 0.1 0.0 •.> 0.0 0.0 I 0

t =

$ / / /1 \ \ \ \ ;i
If iii P ? ? '? '• 1 1 } ]

0.0 0.1 0.1 0.] 0.4 0.1 0.1 0.7 O.I O.t t.O 0.0 O.I 04 0.) 0.4 0.1 O.I 0.' 0.0 O.I 1.0

t = 5.7Q

U J J J J J J .1 J J J,\

04 0.1 04 04 0̂ 4 04 04 i5 04 04 14 ••• 0.1 04 0.1 0.1 0.1 0.0 0.» 0.0 0.0 1.0
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