
NASA Technical Memorandum 103624 
ICOMP-90-23 

Navier-Stokes Analysis of 
Transonic Cascade Flow 

A. Arnone 
Institute for Computational Mechanics in Propulsion 
Lewis Research Center 
Cleveland, Ohio 

and 

M.-S. Liou and L. Povinelli 
Lewis Research Center 
Cleveland, Ohio 

October 1990 

NI\S/\ 

/D - J. 9 - '1 D 
£"579/ 

NASA Technical Memorandum 103624 
ICOMP-90-23 

Navier-Stokes Analysis of 
Transonic Cascade Flow 

A. Arnone 
Institute for Computational Mechanics in Propulsion 
Lewis Research Center 
Cleveland, Ohio 

and 

M.-S. Liou and L. Povinelli 
Lewis Research Center 
Cleveland, Ohio 

October 1990 

NI\S/\ 

/D - J. 9 - '1 D 
£"579/ 



NAVIER-STOKES ANALYSIS OF TRANSONIC CASCADE FLOW 

A. Arnone* 
Institute for Computational Mechanics in Propulsion 

Lewis Research Center 
Cleveland, Ohio 

and 

M.-S. Liou and L. Povinelli 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 

INTRODUCTION 

In recent years, Computational Fluid Dynamics (CFD) has seen an im­
portant evolution which is due to both efforts in the development of numerical 
models and great improvement in the power of computers. As the need for 
efficiency and weight reduction has driven designers to investigate the details 
of the complex flowfields in which each component is expected to operate, it 
is reasonable to see CFD taking an indispensable role in the development of 
modern, high performance turbomachinery. In the past few years several two 
and three-dimensional codes for solving inviscid flows have reached a good 
level of maturity and are commonly used in turbomachinery applications 
[1, 2J . Inviscid prediction is often cost effective and gives important basic 
information under design conditions. On the contrary, this approach does not 
provide any information about heat transfer and boundary-layer thickening, 
both of which generally require solutions of Navier-Stokes equations. More­
over, in turbine blades, we generally have to deal with rounded and thick 
trailing edges. The flow about this region is very complex and dominated 
by viscous effects which may strongly influence the blade load and the whole 
flowfield. Although important progress has been made in solving the Navier­
Stokes equations (e.g [3, 4, 5, 6, 7]), much work is still neded to achieve 
robustness, accuracy, and especially in turbulence modelling. In addition , 
rotor and stator cascades of modern turbomachinery are often characterized 
by a high turning geometry and/or by strong flow deviations from the axial. 
As results, generation of meshes capable of picking up the flow details is not 
as straightfoward and is an item that still needs to be improved. 

The aim of this work is to present some recent progress in two-dimensional 
cascade viscous calculations with particular attention to aspects which are 
important for the designer, such as accurancy, computational cost and cor­
rect prediction of loss coefficients and exit flow angles. 

*On leave from Department of Energy Engineering, University of Florence, Florence, 
Italy. Work funded, in part, under Space Act Agreement C-99066-G. 

1 

NAVIER-STOKES ANALYSIS OF TRANSONIC CASCADE FLOW 

A. Arnone* 
Institute for Computational Mechanics in Propulsion 

Lewis Research Center 
Cleveland, Ohio 

and 

M.-S. Liou and L. Povinelli 
National Aeronautics and Space Administration 

Lewis Research Center 
Cleveland, Ohio 

INTRODUCTION 

In recent years, Computational Fluid Dynamics (CFD) has seen an im­
portant evolution which is due to both efforts in the development of numerical 
models and great improvement in the power of computers. As the need for 
efficiency and weight reduction has driven designers to investigate the details 
of the complex flowfields in which each component is expected to operate, it 
is reasonable to see CFD taking an indispensable role in the development of 
modern, high performance turbomachinery. In the past few years several two 
and three-dimensional codes for solving inviscid flows have reached a good 
level of maturity and are commonly used in turbomachinery applications 
[1, 2J . Inviscid prediction is often cost effective and gives important basic 
information under design conditions. On the contrary, this approach does not 
provide any information about heat transfer and boundary-layer thickening, 
both of which generally require solutions of Navier-Stokes equations. More­
over, in turbine blades, we generally have to deal with rounded and thick 
trailing edges. The flow about this region is very complex and dominated 
by viscous effects which may strongly influence the blade load and the whole 
flowfield. Although important progress has been made in solving the Navier­
Stokes equations (e.g [3, 4, 5, 6, 7]), much work is still neded to achieve 
robustness, accuracy, and especially in turbulence modelling. In addition , 
rotor and stator cascades of modern turbomachinery are often characterized 
by a high turning geometry and/or by strong flow deviations from the axial. 
As results, generation of meshes capable of picking up the flow details is not 
as straightfoward and is an item that still needs to be improved. 

The aim of this work is to present some recent progress in two-dimensional 
cascade viscous calculations with particular attention to aspects which are 
important for the designer, such as accurancy, computational cost and cor­
rect prediction of loss coefficients and exit flow angles. 

*On leave from Department of Energy Engineering, University of Florence, Florence, 
Italy. Work funded, in part, under Space Act Agreement C-99066-G. 

1 



As for accurancy, a new kind of elliptically-generated C-type grid is 
adopted. The removal of periodicity on the wake allows the grid to be only 
slightly distorted even for cascades having a large camber and a high stagger 
angle. This allows us to pick up details of shock systems with a reasonable 
number of grid points. In addition, a very low level of artificial dissipation 
is guaranteed by using Swanson's and Turkel's eigenvalues scaling [9]. 

The Reynolds-averaged Navier-Stokes equations are efficiently solved us­
ing a Runge-Kutta scheme in conjunction with accelerating techniques like 
multigridding and variable coefficient implicit residual smoothing. The thin­
layer assumption is adopted and the two-layer eddy-viscosity model of Bald­
win and Lomax is used for the turbulence closure. 

The capability of the procedure is shown by comparing computed results 
to experiments for a typical highly loaded blade. Due to the complexity of 
transonic cascade flows, we also investigate the convergence in space of the 
computed solutions. A grid independence study is carried out and discussed 
by comparing wall pressure distributions and loss coefficient. 

With the accelerating strategies, viscous solution can be obtained in less 
than one minute on a modern supercomputer, such as a Cray Y-MP. 

COMPUTATIONAL GRID 

It is known that the grid structure must be selected carefully in order 
to achieve an accurate resolution of complex flow fields. When dealing with 
the construction of grids for turbomachinery blade passages , aspects such 
as accurate leading and trailing edge flow solution and description of wakes 
and shocks are of great importance. 

Sheared H-type grids are fairly common in turbomachinery applications. 
They are easy to generate and to extend to three-dimensional applications. 
Unfortunately those grids provide poor leading and trailing edge flow repro­
duction. On the leading edge truncation errors due to the grid distortion in­
troduce extra entropy which is transported downstream on the blade surface. 

Those kinds of problems do not exist on O-type grids. However, now 
the difficulty is in the wake, where grid clustering, while avoiding distortion, 
is desired. In addition, when the flow is transonic, O-type meshes are not 
suitable for a fine reproduction of the outlet shock system. 

Therefore, if a single grid structure is chosen, the C-type seems to have 
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the best overall capability. The non-periodic C-type grids we used for the 
present calculations are generated with an elliptic procedure that solves the 
discretized Poisson equations using a relaxation procedure [10]. Forcing func­
tions, like the one proposed by Steger and Sorenson [11], are used to control 
the grid spacing and orientation at the wall; while periodicity conditions are 
imposed on the external part of the mesh. Viscous flow grids are obtained 
from the inviscid one by embedding lines with the desired spacing distribu­
tion. 

COMPUTATIONAL METHOD 

The unsteady, Reynolds-averaged, thin-layer Navier-Stokes equations are 
discretized in space using a finite volume approach and a cell-centered 
scheme [12, 7]. The effect of turbulence is taken into account by using the 
eddy-viscosity hypothesis and the two-layer mixing length algebraic model 
of Baldwin and Lomax [13]. Also, the simple transition model suggested in 
reference 13 is adopted. On the wake, where the grid is not periodic, linear 
interpolations are used to compute the necessary flow quantities. 

In order to ensure stability and to prevent odd-even point decoupling, ar­
tificial dissipation terms are added to the governing equations. The Jameson 
artificial dissipation model used in this paper is a blending of second and 
fourth differences. In order to minimize the amount of artificial dissipation 
inside the boundary layer the eigenvalues scaling of Swanson and Turkel [9] 
has been used to weigh those terms. Smoothing fluxes are computed on the 
boundary so that no errors in the conservation property are introduced, glob­
ally, by the artificial dissipation [2, 9, 14]. Boundary conditions are treated 
via the theory of characteristics. Total enthalpy, total pressure, and the flow 
angle are specified at the subsonic-axial inlet while the outgoing Reimann 
invariant is taken from the interior. At the subsonic-axial outlet, the average 
value of the static pressure is prescribed and the outgoing Reimann invariant, 
the total enthalpy, and the component of velocity parallel to the boundary 
are extrapolated together with the circumferential distribution of the pres­
sure. On the solid wall the momentum equation and the no-slip conditions 
are used to compute the pressure which is the only variable needed from the 
cell-centered discretization. 

The equations are advanced in time till the steady-state state solution 
is obtained using an explicit four-stage Runge-Kutta scheme. Good, high­
frequency damping properties, which are important for the multigrid process, 
are obtained from this scheme by performing two evaluations of the dissipa­
tive terms at the first and second stages. For economy the contribution of 
the viscous terms is computed only at the first stage and then frozen for the 
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remaining stages. 

Four techniques are employed to improve the computational efficiency: 1) 
local time-stepping; 2) residual smoothing; 3) multigrid; 4) grid refinement . 
When only the steady-state solution is of interest , local time-stepping and 
implicit residual smoothing can be used to improve the robustness and the 
convergence of the basic scheme. In the present work the variable coeffi­
cient formulation of the implicit smoothing [7, 8] is used and the time step is 
computed locally on the basis of a fixed Courant number (typically 5). How­
ever most of the reduction in the computational effort is obtained through a 
multigrid method. Jameson's Full Approximation Storage (FAS) scheme [15] 
and a V-type cycle with subiterations are used as multigrid strategies. In 
addition, a grid refinement procedure is used to provide an efficient initial­
ization of the flow field. This strategy is implemented in conjunction with 
multigrid to obtain a Full-Multigrid process (FMG) [9]. 

RESULTS AND DISCUSSION 

As an application of the computational procedure which has been briefly 
described we present a detailed study of a typical highly loaded transonic 
cascade: the VKI-MIT. For this large camber cascade the inlet flow is expe­
rienced about 85 degrees turn and accelerated from Mach .25 up to transoni c 
conditions. 

We chose a non periodic C-type 353 x 33 grid as a reference grid , 
in which 129 points are located on the suction side of the blade and 65 on 
the pressure side. The spacing at the wall in the normal like direction is 
1. x 10-4 times the axial cord which allows an average Y+ value of about 
unity at the exit Reynolds number of one million. 

A four-decade drop in the residual of the continuity equation is used as 
convergence criteria and this never required more than 50 sec on NASA Lewis 
Cray Y-MP. 

Figure 1 compares the computed isentropic surface Mach number distri­
bution to experiments . The agreement is very good in the whole range of 
exit conditions that vary from an isentropic Mach number of 1.02 up to 1.44. 
Both the strength and the location of the throat shock are correctly predicted 
by the code. In all three cases the flow has a recirculation at the foot of the 
shock which is cleary indicated by the smooth behavior in the recompression 
part of the shock. 

Due to the complexity of the flowfield , we believed" it is necessary to in­
vestigate the convergence in space of the computed solutions. Both fine and 
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coarse grids of respectively 769 x 65 and 193 x 25 grid points have been 
used to study the case with sonic exit. Results are depicted in fig. 2 where 
the isoentropic surface Mach number for the three grids is compared. The 
convergence in space is basically achieved since the fine grid solution differs 
from the reference one just in small details near the shock. All the solutions 
exhibit separation at the foot of the shock. The computation of the fine grid 
solution took 280 sec on Cray Y-MP at NASA Lewis. 

Figures 3 and 4 compare the exit flow angles and the loss coefficients 
to experiments. Here we report computed data for all the three grids. The 
agreement with experiments is very good especially in terms of the loss coeffi­
cient which is generally very difficult to predict. The level of the convergence 
in space of the reference solution also is good in terms of loss coefficient. 

Details of the fine grid solutions are given in figs. 5 and 6. Figure 5( a) 
shows an enlargement of the computational grid near the blade passage re­
gion. It is evident that low level of skewness obtained using the non-periodic 
wake. Density contours for the three flow conditions are given in figs. 5(b)­
(d). The complex shock system for this blade is sharply captured in the 
whole computational domain. 

Mach number contours near the leading edge are shown in fig. 6(a) where 
the very clean resolution achieved with the C-type structure of the grid is 
evident. The flow is well-behaved and the stagnation point sharply captured. 
The recirculation at the foot of the shock can be seen through the stream 
function plot of fig. 6(b), resulting in the thickening in the boundary layer 
after the shock. As is well known, the flow around rounded trailing edges is 
very complex and care is taken to generate appropriate grids, as shown in 
fig. 6(c). In fig 6(d), the flow pattern as well as the two vorticies downstream 
of the separation on the suction and pressure side of the blade are clearly 
reproduced. 

CONCLUSIONS 

A new kind of C-type grid has been introduced, this grid is non-periodic 
on the wake and allows very good flow predictions even for cascades with 
high turning and large camber. The central-difference, finite volume, scheme 
with eigenvalues scaling for artificial dissipation originally developed for ex­
ternal flows has also proven to be accurate and to converge well in space 
for cascade viscous flows. Good overall prediction can be obtained with the 
Baldwin-Lomax turbulence model both in terms of pressure distribution and 
loss coefficient, for the cases studied. With the accelerating strategies, accu­
rate transonic viscous solutions can be obtained in less than one minute on 
a modern supercomputer. 
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(a) 769x65 non periodic C-type grid for the VKI-MIT blade 

(b) density contours 
(M2is=1.02) 

(c) density contours 
(M2is-l .20) 

(d) density contours 
(M2is~1. 44) 

Fig. 5: Details of the fine grid solution for the VKI-MIT blade. 
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(a) Mach number contours 
near the leading edge 

(c ) grid near the 
trailing edge 

(b) Stream function contours 
near the recirculation at 
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(d) Stream function contours 
near the trailing edge 

Fig. 6: Details of the fine grid solution for the VKI - MIT blade (M2is=1 . 02) . 
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