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SUMMARY

The flexible parallel link mechanism is designed for increased rigidity to sus-

tain the buckling when it carries a heavy payload. Compared to a one link flexible

manipulator, a two link flexible manipulator, especially the flexible parallel mecha-

nism, has more complicated characteristics in dynamics and control. The objective

of this research is the theoretical analysis and the experimental verification of dy-

namics and control of a two link flexible manipulator with a flexible parallel link

mechanism.

Nonlinear equations of motion of the lightweight manipulator axe derived by

the Lagrangian method in symbolic form to better understand the structure of the

dynamic model. The resulting equations of motion have a structure which is useful

to reduce the number of terms calculated, to check correctness, or to extend the

model to higher order. A manipulator with a flexible parallel link mechanism is a

constrained dynamic system whose equations are sensitive to numerical inte_ation

error. This constrained system is solved using singular value decomposition of the

constraint Jacobian matrix. Singular value decomposition is a stable algorithm for

the dynamic analysis of a constrained system. Elastic motion is expressed by the

assumed mode method. Mode shape functions of each link are chosen using the load

interfaced component mode synthesis. The discrepancies between the analytical

model and the experiment are e.'rplained using a simplified and a detailed finite

element model. The step response of the analytical model and the TREETOPS

model match each other well. The nonlinear dynamics is studied using a sinusoidal

excitation. The nonlinear dynamics due to the flexibility is significant. However,

the nonlinearity of RALF (Robotic Arm, Large and Flexible) is not fully studied

experimentally due to the speed limitation of the hydraulic cylinder. The actuator



xvii

dynamic effect on a flexible robot was investigated. The effectsaxeexplained by

the root loci and the Bode plot theoretically and experimentally. For the base

performance for the advancedcontrol scheme,a simple decoupledfeedbackscheme

is applied.



CHAPTER I

Introduction

1.1 Motivation

A large two degree of freedom fle.'dble manipulator designated RALF (Robotic

Arm, Large and Flexible) as shown Fig. 1.1 has been constructed in the Flexible

Automation Laboratory at Georgia Tech. The structure consists of two ten foot long

links made of aluminum tubing actuated by hydraulic cylinders. The upper link is

driven by a parallel link mechanism. This large manipulator can reach farther than

a traditional robot. Such a configuration would be useful for material handling,

for welding, or for ultrasonic inspection of a large structure such as an airframe .

Using a lightweight material, it is possible to construct a large manipulator with

low power consumption and high speed operation. However, the control law must

take into account the reduction of the structural vibrations due to the distributed

flexibilities Qf links.

In a conventional serial link mechanism, the upper link is driven by a motor

attached at the tip of the lower llnk. The weight of the second motor must be

carried by the first motor which increases the torque and power the first motor

must provide. Especially in lightweight arms, the weight and reaction torque of the

second motor increases the structural vibration of the lower link. The structural

vibration makes the lower link fatigue more quickly. To reduce these effects, the

rigidity of the lower link should be increased. One possible remedy is to include
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Figure 1.1: R.ALF (Robotic Arm, Large and Flexible)



a parallel drive mechanism. The advantages of parallel drive mechanisms are high

rigidity, high loading capacities, and lower interaction between joints.

Although a variety of research on serial link mechanisms can be found in the

robotics literature, the studies of closed-loop chains such as the parallel mechanism

are rare and mostly concerned with rigid manipulators. In a parallel mechanism

with rigid links, there is a simple relationship between generalized coordinates.

However, in a parallel mechanism with flexible links, this relationship is expressed

in the form of a complicated nonlinear algebraic constraint equation. To solve the

dynamics of a flexible parallel link mechanism, a mixed set of differential equations

of motion and nonlinear algebraic equations must be solved simultaneously. Because

the numerical integration of these equations is sensitive to numerical error, a stable

integration algorithm is required.

One link flexible manipulators have been studied in both theoretical and ex-

perimental aspects recently. However, a different approach is needed in dynamic

analysis and control of two link flexible manipulators.

First, two link flexible manipulators have highly nonlinear interaction terms be-

tween links. Furthermore, dynamic equations of motion of flexible manipulators are

more complicated than those of rigid manipulators. The number of equations of

motion increases as the number of modes to be included increases. It is diffcult to

understand'the effect of flexible motion on rigid motion via recursive forms of the

equations of motion for a mnlti-link arm even if it were effcient to derive a inverse

dynamics. On the other hand, a closed form of the equations of motion is useful in

understanding the characteristics of model parameters. However, the equations re-

suiting from existing closed forms are too complex to serve this purpose. Therefore,

a method which is structurally well organized and computationally efficient must

be developed.



Secondly,mode shape functions of each link are not simple to derive due to

coupling between links. The commonapproach to determine modeshas been the

finite element method. Even though the finite element method is a systematic

modeling technique for complex mechanisms,computational efficiencyis lost due

to the fact that a large number of elementsare neededto obtain appropriate and

accurate results. Becauseof its usein control design,the resulting modelshould be

simpleenoughto render the analysisat handtractable while retaining the significant

featuresof the original structure. For simplestructural shapes,a continuoussystem

approachusingassumedmodesseemsto beaneasierway. Usingappropriatemodes,

a lower order model can beobtained.

Third, the control of a flexible manipulator has different characteristicscom-

pared to the control of a rigid manipulator. Even though control inputs are applied

only at the joint, rigid body motion and elastic body motion have to be controlled

simultaneously. The control law constructed on the basisof a reducedorder model

must have robustnessfor truncation error and for uncertainty of its parameters.

The control bandwidth with joint feedbackaloneis below the lowestvibration fre-

quency. Low control bandwidth meansa long settling time and poor disturbance

rejection to external forces. Increasedcontrol bandwidth canbe obtained by feed-

back of additional states suchas strain and tip position which provide information

on the elastic motion of the manipulator. The approximate modeshapesare neces-

sary to get theseadditional states. Whereasthe one link arm is essentiallylinear,

the two link arm is strongly nonlinear and its dynamics change according to its

configuraeion.



1.2 Review of Previous Work

This review consists of several topics which are mentioned in the previous section

on motivation.

1.2.1 Derivation of Equations of Motion

One of the primary concerns in manipulator dynamics is computational effi-

ciency. For the efficient form of the manipulator dynamic equations, various re-

cursive formulations for rigid manipulators using Lagrangian [26], Newton - Euler

[42], or Kane's method [34], have been proposed. For flexible manipulators, Book

used the method of homogeneous transformation matrices. He first considered small

linear motions of a massless elastic chain [7] and later considered distributed mass

and elasticity [10]. When the recursive formulation is used, the structure of the dy-

namic model which is quite useful in providing insight for designing the controller

is destroyed. To overcome this problem, several programs for rigid manipulators

have been developed to derive the equations of motion in symbolic form [13,52].

Symbolic formulation has the advantage of allowing the identification of the dis-

tinct components of the model. For flexible manipulators, Maizza-Neto [45] derived

symbolically the equations of motion of a two link flexible manipulator by hand.

A systematic method to symbolically derive the nonlinear dynamic equations of

multi-link flexible manipulators was presented by Cetinkunt [14]. However, he did

not explore the structure of the terms in the flexible manipulator model. The con-

ceptual framework leads to guidelines for simplifying robot dynamics. The physical

interpretations and structural characteristics of the Lagrangian dynamic model for

rigid robots were derived by Tourassis and Neuman [71,72]. The inertia matrix is

induced by the masses and center of mass of links. In turn. the centrifugal and Cori-
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olis coefficientsare derived from an inertia matrix through the Christoffel symbol.

But, the method of deriving massmatrices is not efficient for a flexible manipula-

tor. Asada [2] presenteda method which usesthe Jacobian matrix to derive the

massand gravity matrices. His method is found in this thesis to be very efficient in

modelling aflexible manipulator. Low [41]usedthe Jacobianmatrix in deriving the

equationsof motion of a flexible manipulator. However,the structure of centrifugal

and Coriolis force is still complicatedand hard to understand.

1.2.2 Mode Shape Function

A flexible manipulator that undergoeslargerigid body rotation canbe modelled

in termsof either an unconstrainedmodesmethod wheretheentire body vibrates,or

a constrained modes method where the joint is held motionless. The unconstrained

modes approach is more rigorous. However, the calculation of the natural frequen-

cies and the mode shapes is relatively complicated and it is difficult to extend this

approach to multi-link arms. On the other hand, the constrained modes method is

a.u approximate solution of the unconstrained modes method when the beam to hub

inertia is small enough. Because with the constrained modes method it is simple to

derive the natural frequencies and the mode shapes, it can be applied to multi-link

arms. The unconstrained modes and constrained modes methods were compared

by Barbieri [3]. Hughes [29] and Hablani [23] compared the accuracy of these two

methods by modal identities and completeness indexes respectively. Schmitz [62]

and Hastings [25] experimentally verified their model with unconstrained modes

method and constrained modes method respectively. In the case of multi-link arms,

the boundary conditions at the joint are not clear because there is coupling between

links. In most studies of multi-link flexible arms, the boundary conditions of each

link are assumed to be clamped -free. The accuracy of this assumption has not been
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yet experimentally confirmed.

The reducedorder model for designof controllerscan beobtained by truncating

the modeswith frequencieshigher than the actuator bandwidth. This is reasonable

becausehigh frequencymodesgenerallyhavesmall amplitudes and canbe regarded

asdisturbances.Furthermore. actuatorswhicharenot excitedby the highfrequency

modesact as lowpassfilters. Hughes[30]and Skelton [68] investigatedthe criteria

of model order reduction. Hastings [-°5]and Schmitz [62] got good experimental

results using only two or three modes. Tsujisawa [74] derived a reduced order

model for RALF by the modal cost analysismethod. He suggestedthat using the

first two modesof eachlink is optimal from the control point of view.

The elasticdeformationof links canbeexpressedby aset of admissiblefunctions.

The selectionof admissiblefunction setsis not unique. The finite elementmethod

(FEM) usessimple admissible functions. FEM can easily deal with complicated

structureswith complexboundary conditions. However,a largenumberof elements

are required to obtain accurate modesand frequencies.To reducethe dimensionof

the model, a componentmodesynthesis(or substructure modal synthesis)hasbeen

developed.A completestructure canbe regardedas an assemblyof substructures.

The lower frequenciesand correspondingmode shape functions of the complete

structure can be obtained by synthesizinga truncated set of modal properties of

the substructure. Three basicmethodshavebeendevelopeddependingon whether

its interface is held fixed [19], free [27],or loaded [6]. Stmada [701 and Shabana [66]

obtained a nonlinear finite element model of a flexible structure for a large rigid

body motion by using the component mode synthesis. However, these programs

still execute too slow for a real time control.
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1.2.3 Constrained Dynamic System Analysis

The dynamics of robot manipulators containing general closed chains in their

structures has been studied very little. The parallelogram, a special case of the

closed chain, has been well studied by Asada [1]. Chung [18] derived the equations

of motion of RALF, but he assumed that the actuating link and the lower link

had the same mode shapes so that the constraints did not need to be considered.

Megahed [48] and Luh [43] derived the equations of motion of rigid robots with

closed chains by Lagrangian and Newton-Euler methods respectively. However,

a computationally stable algorithm is required because the model is sensitive to

numerical error.

There axe two conceptual approaches to solve the constrained equations of mo-

tion. One approach solves the equations of motion simultaneously with the con-

straint equations. The other approach uses a reduction method that eliminates the

constraint forces explicitly from the equations of motion. It is difficult to solve a

mixed set of differential equations of motion (dimension n) and nonlinear algebraic

equations of kinematic constraint (dimension m). For this purpose, Nikravesh [54]

reviewed three integration algorithms. These axe the direct integration method, the

constraint violation stabilization method and the generalized coordinate partition-

ing method: The direct integration method [48,43] converts the algebraic equations

to second order differential equations, then solves these equations with equations

of motion. This method results in constraint violations because, as time progress,

the integration numerical error accumulates. The constraint violation stabilization

method [4] introduces constraint violations as a feedback term to correct the vio-

lations in the next integration step. One difficulty of this method is the selection

of proper feedback gains. These two methods axe sensitive to initial conditions on



the system. In the third method [76], the generalized coordinates are partitioned

into independent (dimension n - m ) and dependent (dimension m) sets. Numer-

ical integration is solves for the independent generalized coordinates. The choice

of the correct initial condition is not critical and the dimension of the equations of

motion is minimum. When generalized coordinates are partitioned, an important

consideration is the choice of independent generalized coordinates. An arbitrary

selection of independent generalized coordinates often results in ill - conditioned

matrices. \Vehage [76] identified independent generalized coordinates by using LU

partitioning of the constraint Jacobian matrix..Mani [46] and Singh [67] used sin-

gular value decomposition, and I(.im [37] used QR decomposition. A unique and

accurate independent set of generalized coordinates can be obtained from the last

two methods. Singular value decomposition is a more robust algorithm than the

QR method and has a variety of applications in linear control systems.

1.2.4 Motion Control of a Flexible Robot

A colocated control scheme, in which sensors are colocated with actuators, has

been used for most flexible manipulator control. With a PD control for each joint

(Independent Joint Control), Book [7] showed that the maximum closed loop band-

width of rigid body motion is a half of the system first natural frequency. If inter-

joint feedback terms are included between actuators (Generalized Rigid Control),

the closed loop bandwidth can be increased up to the system first natural frequency.

Golla et al. [21] showed that IJC also provided control as good as GRC.

A noncolocated control, where the tip position was measured by an optical sen-

sor, was implemented by Schmitz [62]. Because tip position feedback alone creates

a nonminimum phase system, the achievable gain is limited. However, improved re-

sponse, two times faster than the first natural cantilever frequency, was obtained by
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the combinedfeedbackof tip position, link strain, and hub rate. Better disturbance

rejection to end position external forces than with joint feedbackalone was also

obtained . However,the responsetime is limited by the inherent wavepropagation

delay for the beam. A precisedynamic model and a sophisticated control law are

required for satisfactory response.

Control of flexible robots is characterized by control concepts similar to those

being used in the control of rigid body robots. Four major methods have been devel-

oped: linear feedback control, computed torque control, adaptive control, singular

perturbation control.

For a one iink flexible manipulator, Hastings [25] implemented a Linear Quadratic

Regulator with full state feedback. The time varying modal amplitudes were re-

constructed from strain measurements. A reduced order observer was utilized to

obtain estimates of the modal velocities from the reconstructed modal amplitudes.

Sakawa [61] also used LQR. Schmitz [6 o] used a Linear Quadratic Gaussian regu-

lator and its reduced order compensator. These compensators were experimentally

verified regarding robustness and disturbance rejection. Krishnan and Vidyasagar

[40] experimentMly showed that the performance obtained using the bounded input

/-/2 optima/controller was better than that obtained using a discrete time LQG con-

troller. For a two link flexible manipulator, Maizza-Neto {45] discussed the use of

a pole placement _dgorithm to obtain full state feedback gains. Full state feedback

showed high sensitivities to parameter perturbations and higher torque require-

ments. Ower and Van De Vegte [56] applied a classical design technique using Bode

plots to a transfer function model of a two link flexible manipulator. The last two

methods were not experimentally verified.

Unlike one link flexible manipulators, the two link flexible manipulator is strongly

nonlinear due to interactions between links. Bayo [5] used a computed torque
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method for trajectory control. The torque at eachjoint can be found in the fre-

quency domain by means of an iteration procedure. However, the iteration aspect

prevents this method from being used in real time. Pfeiffer et al. [58] developed a

multistage control scheme. First, the rigid body motion is controlled by a conven-

tional computed torque method. Second, the elastic deviations from the reference

path are quasi-statically corrected by modifying the reference path. Third, the

remaining elastic vibrations are actively damped by strain feedback for each link.

Schutter et al. [63] presented a nonlinear feedback which linearized the rigid body

dynamics, followed by linear feedback of the full state. The last two methods, like

other computed torque methods, lead to a computationally intensive controller,

sensitive to model parameters.

Various adaptive concepts are categorized into two types; MRAC(Model Ref-

erence Adaptive Control) and self-tuning control. Siciliano, Yuan and Book [65]

proposed a full state type MI:L_,C for one link flexible arm. Meldrum and Balas [47]

used direct adaptive type MRAC, in which the controller parameters are adjusted

with only the plant output and input signals. Yuh [83] and Yang and Gibson [80]

presented an indirect adaptive control approach based on an identified linear predic-

tion model of the plant. Rovner [60] developed an adaptive algorithm based on the

self- tuning regulator concept for the noncolocated control case and experimentally

proved its performance. Nelson and Mitra [53] and Yurkovich and Pacheco [84] pre-

sented load estimation and load adaptive control. Most researches and experiments

of adaptive control are performed for one link flexible arms because an assumption

that during the adaptation process the elements of the linearized system remains

constant is well satisfied for one link flexible arms. However, in multi-link flexible

arms, the controller has to be applicable to rapidly time varying nonlinear cou-

plings. Cetinkunt [15] applied Adaptive Model Following Control (AMFC) based
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on the generalized inertia matrix for a two link flexible robot. This controller relaxes

some of the restrictive assumptions made by previous AMFC design procedures so

that the use of the AMFC techniques in high speed manipulators becomes possible.

Yuan [8 o] applied a robust controller based on Ml:k, kC for RALF.

Under the assumption that only small elastic deviation from rigid body motion

occurs, the decoupled control of rigid and elastic coordinates can be considered.

Such a concept leads to a two stage control scheme, a slow control for the rigid

body motion and a fast control for the elastic motion. Siciliano and Book [64]

applied a singular perturbation method to a one link flexible arm.

1.3 Thesis Outline

In chapter 2, nonlinear equations of motion of" RALF are derived by the La-

grangian method in symbolic form. The derivation procedures for the equations of

motion are described in detail.

In chapter 3, the nonlinear algebraic constraint equations of RALF are derived.

A mixed set of differential equations and algebraic equations are solved using sin-

gular value decomposition. The main concept of this method is ex'plained using a

simple example.

In chapZer 4, the method for determining mode shape functions of each link

is described. The loaded interface component mode synthesis is used to find the

proper mode shape functions. The discrepancies between the predicted frequencies

and the measured frequencies are explained by the finite element models.

In chapter 5, first, the time response of the analytical model is compared to that

of the TREETOPS model for the model verification. Secondly, the nonlinear dy-

namics of RALF are studied by sinusoidal excitation. Third, the effect of" hydraulic
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actuator dynamics on flexiblearm dynamics isdiscussed.

In chapter 6, a decentralizedcontrol scheme using cylinder position and strain

of each linkisapplied to check the characteristicsof the controlof a two linkflexible

robot.

1.4 Contributions

The major contribution of this thesis is the theoretical analysis and the experi-

mental verification of dynamics and control of two link flexible robots with flexible

parallel link mechanisms.

Detailed descriptions of contributions are as follows:

First, nonlinear equations of motion of RALF are derived in symbolic form

systematically and efficiently. The resulting equations of motion have a structure

which is useful to reduce the number of terms calculated, to check correctness, or

to extend the model to higher order.

Secondly, the dynamics of a closed kinematic chain system with a flexible parallel

link mechanism is solved without any significant constraint violation.

Third, the proper mode shape functions of each link of lZALF are determined

using component mode synthesis. It is verified that component mode synthesis

provides rigorous boundary conditions for modal data of components.

Fouth, nonlinear dynamics of RALF is verified using a sinusoidal excitation.

The degree of nonlinearity of RALF is observed from the power spectra of the tip

acceleration.

Fifth, the effect of actuator dynamics on the flexible robot dynamics is studied.

The hydraulic actuator dynamics is modeled and compared with the dynamics of

the electric D.C. motor. The difference in velocity feedback for the two actuators
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is shown to result in significantly different joint behavior for a flexible structure.

Sixth, a decentralized control algorithm using cylinder position and beam strain

has been demonstrated for the control of RALF. It is shown through experiments

that position feedback through a lag compensator and strain feedback through an

nonminimum allpass filter yield a good trajectory following and beam vibration

suppression respectively.
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CHAPTER II

Derivation of Equations of Motion

2.1 Introduction

In this chapter, a Lagrangian method is used to derive the equations of motion

for a flexible manipulator with parallel link mechanisms. Because flexible manipu-

lator dynamics is more complicated than rigid manipulator dynamics, the amount

of computation increases and there is a possibility of ending up with incorrect

equations. Therefore, an efficient and systematic derivation method is required to

reduce these problems. Furthermore, it is desirable to simplify elements of the mass

matrices and the centrifugal and Coriolis forces for a real time control.

2.2 Description of Structure

The structure as shown in Fig. 2.1 consists of lower,, upper, connecting, and

actuating li_aks. Each link is connected to another by a pin. The upper link is driven

by a parallel link mechanism. Motion is restricted to the vertical plane. The joint

parts of the lower and the upper link are stiffened by increasing the cross sectional

area. Detailed structural data are given in Wilson [79]. In deriving equations of

motion using the Lagrangian method, the coordinates involved in a closed kinematic

chain are not independent. In the flexible parallel link mechanism, the relationship

among coordinates are described by nonlinear algebraic equations. Therefore, a
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constraint dynamic analysisis required to solve nonlinear algebraicequationsand

differential equations Ofmotion simultaneously.To derive the equationsof motion

of this closedkinematic chain system,one joint of the parallel link mechanismis

virtually cut to form an open tree structure as shown in Fig 2.2. The unknown

constraint force is applied at the virtually cut joint.

2.3 Equations of Motion

The open tree structure is regardedas an assemblyof two serial link manipu-

lators - the lower and upper link part plus the connecting and actuating link part.

The equations of motion of eachpart canbe written symbolically.

3=1 j=l 2----1 k=l

where qj is an element of the generalized coordinate vector, M_j is an element of

the generalized mass matrix, I(_ i is an element of the elastic stiffness matrix, Cjk(i)

is an element of the velocity coupling matrix which is the coefficient matrix of

Coriolis and centrifugal force, Gi is an element of the gravity force matrix, g is the

gravitational acceleration vector, ri is an element of the generalized force vector.

The mass matrix and the gravity force matrix can be derived using the Jacobian

matrix as shown in Appendix A.

b _01pM,,= d/d,p,.4,dz, (2.2)
p=l

where b is the number of links. Jp, pp, Ap, and I_ are the Jacobian matrix, the

density, the area. and the length of link p respectively.

b j_01pG, _ _'I •= :_ p,,.-k,,_x,, ('_.3)
p=l
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UPPER LINK

HYDRAULIC

CYLINDER # 2

ACTUA_NG UNK

CONNECTING LINK

HYDRAULIC
CYLINDER # 1

LOWER LINK

Figure 2.1: Structural data of tL_.LF
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Figure 2.2: Open tree structure of RALF
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where J j i )  is the i th column of Jacobian matrix J,,. The velocity coupling matrix 

can be derived from the mass matrix. 

The stiffness matrix is related to the mode shape function u,,. 

Next, equations of motion of two parts are combined using unknown constraint 

force for the complete equations of motion. Equations of motion of the closed 

kinematic chain system can be written symbolicrtlly as follo~vs. 

where m is the number of the constraint equations, X k  is element of the unknown 

constraint force vector. ( @ q ) k i  is element of the constraint Jacobian matrix which is 

derived by differentiating the constraint equations ( 2 . 7 )  with respect to time. 

In the following sections 2.4 and 2.5, the derivation procedure of the equations 

of motion ot each part is described in detail. The constrained dynamic analysis will 

be described in Chapter 111. 

2.4 Lower and Upper Link 

2.4.1 Mass Matrices and Gravity Force Vectors 

Deformed position vectors of each link in Fig. ?.3a and ?.3b are described as 

follows: 



2O

Y0

X1

Y1

Figure 2.3.a: Position vector of the lower link

)62

Y0

Y1
Ule ×1

¥2
×0

Figure 2.3.b: Position vector of the upper link



where i and j are unit vectors along the inertial frame, Xo  and Yo. The elastic 

deformation, u;, can be expressed by finite series of mode shape functions which 

satisfy assumed boundaq conditions multiplied by time dependent modal coordi- 

' nates. Suppose that the amplitude of the higher modes is relatively small compared 

with the first mode, two modes per link are considered in this model. 

u 2 ( ~ 2 ,  t )  = + 2 1 ( ~ 2 ) t 2 1 ( t )  + $ 2 2 ( ~ 2 ) ( 2 2 ( t )  ( 3 .13)  

The elastic displacement of the end point is 

Velocity vectors are related to generalized coordinates by the Jacobian matrices [a ] :  

where the generalized coordinates are 

and the Jacobian matrices are 

-u1c* - x1S1 0 -$11S1 -d12C1 0 0 I (2.17) 
- u 1 s ,  + xlCl 0 lltllCl d712C1 0 0 
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+(ICI - ul,Sl - u2Sp. + z:Cn

-u:C_: - z2S12

-u:Sl: + z2Cl:

¢22 012

(2.18)

where co._(Si + 8i) and sin(Si + %) are ex"pressed as C,j and S_i for convenience. The

Jacobian matrices, Ji and .I2, can be easily derived from the position vector using

the MJac function of SMP (Symbolic Manipulation Program) [69]. Using these

Jacobiaa matrices, mass matrices and gavity force matrices are calculated by the

following equations:

(2.19)

G1- :1[2,1]plAids1+ Z:['_,1]p:A:d_

f0"

Jj,[2, i] is the second row and the ith column of Jp selected since the gravity is acting

in the negative direction of _. The gravitational potential energy change due to

the link deformation is assumed to be negligible.

Elements of mass matrices and gravity forces are:

fo"(_ +Mn ---- u_)pl A1 dzl

fo'"+ (z_+ ,4.+_,_+=I

+ 2(Ilx2C2 - llu2S2 + ul,u2C2 + ul,x2S2))mA2dz2

fo"MI_ = (=_+ _ + l,_:C_ - I_S_ + _,,_C: + _,_S_)_A,d_

fo'_ i"-_fla -- zld)nplAldXl + _,i, (I1 + z:C2 - u2S:)p:A_dz2
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j_OIt 9_0J_M14 = xltl'12piA_dxl + _'l_ (It + x_C_ - u2S2)p2A_dz:

fo"Mr5 = Cn(x2 + llC_ + ul_S_)p_.4_dz2

M16 = _2_(z_ + 11C2 + ul¢S:)p_A2dx_

_0012 "

12

M23 = _n_ fo (x2C_ - u_S2)p2A_dz2

M'24 = t/'12e f_(z2C2 - u_S2)p2A_dx2
Jo

fo"M2s = x2¢'2102A2dx_

M26 = fo t2 z2_l'2_p2A2dz2 (',.21)

fo"

fo''M3s = Cn.C_ ¢_p_A_dx_

M44 foh tb_:p_A_dx_ + ¢_2_ fo _= p:A_dx:

M,t_ = _l,_C_ fo _ ¢_p:A_dx_

M46 = ¢12_C2 fO _t,_p_A_dx_

Mss = fo _ (v_p=A2dx_
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12]Yls8 -- _'21_22p2A2dz2

j_O 12Mss = ¢g2P2A2dz2

G: = (xxCx - uiS_)px.41dzl + (lxCx - uiSl

fo"G_ = (z2C12 - u2S12)p_A2dx2

where

SMP files of equations (2.9 - 2.22) are included in Appendix D.

The integral in the above elements are defined as follows.

+ x2C12 -- u2312)p2A2dx2

(2.22)

mi -- piAidxi (2.23)

milic -- xiPiAidxi (2.24)

D_ -" fo l' z_piAidx_ (2.25)

fo"LM 0 = _l,,j(zi)p,A, dz, (2.26)

AMii _t,= xi¢ij(xi)piAidzi (2.27)

li

= fo ¢_(xi)piA, dzi (2.28)NM, j

where lic is center of mass of link i. The first three terms are parameters which are

related to a rigid motion. These are called zeroth, first, and second moments of

inertia respectively. On the other hand, the last three terms are parameters which

are related to a flexible motion. LMi_ and AMij are called the modal momentum

coefficients and the modal angular momentum coefficients respectively [29,30]. The
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physical meaning of these terms is not easy to explain.

following properties [29.30].
_o

LM_ = rni

LM, jAI_I,j = mil,¢

However, these have the

(2.29)

(2.30)

AM,_ = D, (2.31)
j=l

N_/f,j is used for the normalization of mode shape functions.

Using these six inertia parameters and the orthogonality of modes and linearizing

about zero deflection, the linearized mass matrices and gravity vectors are rewritten

as follows:

Mn = D1 + D2 + rnfll(ll + 212cC2)

M12 = D2 + rn2l112cC2

M13 = AMn + _,n,rn2(lt + 12cC2)

M14 = AMx2 + ¢12_rn2(11 + 12,C2)

Mls = AM2x + LM2x 11C2

M16 = A2"¢_22 + LIVe22 llC2

M22 = 3 2

_i23 = Cn,rnfl2cC2

_I24 "- _12,rn212cC2

M_s = AM2I

._I26= AM22 (2.32)
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M33 = NM11 + m:_'_l_

M34 = 0

"_'f3s "- _11eL,'_!"21C2

:'vi36 = W11.L.'tI_2C_

.M44 = NM12 + m2 _P_2,,

3.'I4s = _12,,L.M2x C2

•M46 = _12.,LM22C",

M_ = N M22

G1 = m111cC1 + m_(IxC1 + 12cC12)

G2 = m212cCI_ (2.33)

Finally, the elastic stiffness matrix,K_j, can be derived by the partial differenti-

ation of the elastic potential energy, V :

1 _,. rO2Ul.,2. 1 l_ ....- _0_u2.,2.

Kij = EIi[ ]2dxi (i,j = 1,2) (2.35)

where E is Young's modulus of elasticity, and Ii is the area moment of inertia of

link i.



2.4.2 Payload 

When masses are loaded at the end of the lower link and the upper l i d ,  position 

vectors of the payload are derived from (2.8) and (2.10) by substituting xi into 1, 

and u; into u,,. 

r',, = (llcos81 - ~ ~ , s i n 6 ~ ) i  + ( l l ~ i n 8 ~  + ~ ~ , c o s 8 ~ ) j  (2.36) 

where 

Velocity vectors are expressed by Jacobian matrices: 

- 
rle = J1eQl2 

- 
r2e = J~eQl2 

where 

-$lleSl -$'12eSl -$'21eS12 -$22eS12 I (2.43) 

$lleCl $12cC1 $21eC12 $22eC12 

Mass matrices and gravity force vectors due to the payload, mb and m?,, are 

expressed by Jacobian matrices. 
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G_ = ml,Jl.[2, l] + m2,J2_[2, 11 (2.45)

G_ = m2,J2_[2,21

Following the procedure of the previous section, the linearized mass matrices and

gravity force vectors are written as follows:

M[2 = m2fl_ + m2fll12C2

M'lP4 = mlpll¢12_ + m2p(/1 + 12C2)e_2o

M'I_s= rn2p(12 + 11C2)¢21.

M_s = m2p(12 + IIC2)(v22_

M_3 = m2pl_@n. C2

M_4 = m21,12@12.C_

M_2s= rn2_,12_2:.

M_6 = m21,129222, (2.46)

M_ = (m,, + m2,)¢_1.

M_4 = (mlp + m2_)¢n,_12,

._I_ s "- m2._lle¢21,C 2
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_vI_5= m2p_,2_21_C2

G_ = m1_,11C1 + m2p(IlC1 + 12C12)

G_ = m2pl2C12 (2.47)

Comparing (2.46 - 47) with (2.32 - 33), six inertia parameters of mass matrices and

gravity vectors have an analogy as shown in Table 2.1.

Therefore, when payloads are added, six inertia parameters are changed as fol-

lows:

mi _ mi + rely

Di -* Di + mlvl_

LMij -_ LMq + mi_,¢ij_

.4Mij _ AMq + mi_,li¢ij,

N-'VIij "+ N-'_'lij + mi_V.'/2_,

(2.48)

(2.49)

(2.50)

(2.51)

(2.52)

(2.53)
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Table 2.1: Analogy of six inertia parameters

without payload with payload

ry_ i r/zip

m,.li_ rnifli

Di m,pI_

LMO mip¢O,

Aitiij rnifli_l,O,

2.4.3 Centrifugal and Coriolis Force

The velocity coupling matrix can be derived from the mass matrix using the

Christoffel symbol (2.4).

1. OM_j
i) = t-.aTq 

OM_k OMjk
+ Oqi Oqi } (2.54)

Cj_,(i) characterizes the effects on link i which axe caused by the coupled velocities

of link j and k. The diagonal elements for j = k are the coefficients of the centrifugal

force.The offdiagonal elements forj # k are the coefficientsof the Coriolisforce.

In equation (2.1), the states can be partitioned into the rigid body state 0 and the

flexible body state _.

2 6 2 2 2 6

Y_ Aij6j + __, B,i6" j + _., __, Pjk(i)OjOk + _., _ Qi_(i)Oj_k
i----I j----3 j_l k=l j_-I k-_3

6 6

+ _ _7, Rik(i)djdk + G, = _ (i = 1,2)
j=3k=3

2 6 2 2 2 6

E B,i§_ + E D#_; + y_ Z PJ_(i)OiOk + Z Y_ O,ik(i)Oi(k
i=l j=3 j=lk=l j=lk=3

(2.55)
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6 6 2

+ _ E &k(i)_j_ + _ K,A, = 0 (i = a,61 (2.56)
2:3 k=3 i---1

Therefore, the partitioned velocity coupling matrices can be written as follows:

10A 0 OA_k cgA_k
5_(i) = _{--_--uq_+ oq, oq, } (2.57)

l { OAi: OB_ OBj,,
Qjk(i) =20qk + Oqi Oq_ } (2.58)

10B 0 OBik ODjk
&_(i) = _{-E-q[q_+ Oq, Oq,} (2.59)

10Bii OBik OAjk

Pjk(i) = 2{'_qk + Oqj Oqi } (2.60)

10Bij ODik OBik
Qj_(i) = _{--_q_ + Oqj Oqi } (2.61)

I.ODij ODik ODjk
Rjk(i) - _{-_q k + cOqj Oqi } (2.62)

Because mass submatrix Dis axe not the function of the flexible body state, the

terms related to Dis in Q.jk(i) and f_jk(i) are eliminated. The number of independent

elements of velocity coupling matrices also can be reduced using the symmetry, the

non-interacting, and the reflective coupling properties [71,72].

C_k(i) = Cki(i) (2.63)

Ci,(i )=0 for j < i (2.64)

Cjk(i)=-Cai(k ) for j<i,k (2.65)

However, the reflective coupling property that Tourassis and Neuman find is not

always valid in the flexible case. Therefore, even though the symbolic manipulation

program can be used as the computational tool, the simplication procedure must

be accomplished under the supervision of the analyst. The symbolic programs are

described in Appendix D.
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Using thoseproperties, the following independent elements of the velocity coupling

matrix axe derived.

dl = fo_2((u_,C2 - l_S2)z2 - (u1,$2 + llC2)u2p2A2dz2}

t_ S :c

/0" £'d22 = _l'_2q,2p,-4,dzt + _/',2,[( (S, x2 + C2u2 + u..)p2A2d=2]

d31 -- erie r/ot2( S2x2 + C2u2)p2A2dx2

d32- ¢_ (S,x2+ C2u2p2A2dz_)

¢21(¢21q21 + g'2_q2_)p2A2dz2

_22(¢21q21 + _l,22q22)p_ A _dz 2 (2.86)

/2

dsl - Cn,S_ d22_p_A2dz2

j_O12drl -" _'12e32 ¢21p2A2d22

d72 = _D12eS2/12 _22#2A2dx2

./0



After evaluating the integral,
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d=_ = _Pn,[m_12,S2 + (LM2,(2_ + LM22_22)C2 + u_,m2] + Y.l/In_n

d22 = _12_[m212cS2 + (LiV/21_21 4- L._,'ir22_22)C2 q-- ulem;] nt" N2_r12_12

d.n = NM2,_21 + (ul.C2 - llS2)LM21

d_2 = NM22_2 + (u_.C_ - hS2)LM_ (2.67)
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Using theseelements,the velocity couplingmatricescanbe simplified asfollows:

0 dl d_x d_2 d41 d42

dl 0 0 d41 d42

0 0 0 0

C(1) =
0 0 0

0 0

0

(2.68)

c(2) =

-dr 0 d31 d32 dsl ds2

0 0 0 dsl d52

0 0 -d61/2 -d62/2

0 -dn/2 -d72/2

0 0

0

(2.69)

c(3) =

-d=l -d31 0 0 -dsl -d62

-d31 0 0 -d61/2 -ds2/2

0 0 0 0

0 0 0

0 0

0

(2.70)
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C(4) =

-d22 -d32 0 0 -dn -dr2

-d32 0 0 -dr1�2 -dr2�2

0 0 0 0

0 0 0

0 0

0

(2.71)

c(5) =

-d41 -dsl dsl dn 0 0

-dsl dsl/2 dn/2 0 0

0 000

000

0 0

0

(2.72)

c(6) =

-d42 -d52 ds2 dr: 0 0

-d52 ds2/2 dr2�2 0 0

0 000

000

0 0

0

(2.73)

2.5 Connecting and Actuating Link

2.5.1 Mass Matrices and Gravity Force Vectors

Derivation of equations of motion of the connecting and actuating link is similar

to those of the lower and upper link. Position vectors are shown in Fig. 2.4.a and

2.4.b.
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 lY°l
Y3 _ XO

Figure 2.4.a: Position vector of" the connecting link

Y0

Y1 Y4

X3
X4

Y3
XO

Figure 2.4.b: Position vector of the actuating link
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c3 = [ll.cos01 + _3cos(0, + 03)]i+ [l,._inol + _3_in(ol + 03)lj (2.74)

7, = [h._o_o, + Iz.¢o_(O,+ 03)+ x,_o4O, + o3+ o,) - u,sin(o_ + o3+ 0,)]i

+ [z,_i_o, + z3_i_(o_ + 03) + x,_i,_(o, + o3+ o,) + ,_,_o_(O,+ o_+ o,)]j (2.75)

where

Suppose generalized coordinates are defined as

q34 "- {01,03, 04, _41, _42} T

Velocity vectors are expressed by the Jacobian matrices:

_4 "-- J4q34

-11,$1-z3S13 -z3S13 0 0
J3=

/lrCl "-_ z3C13 z3C13 0 0

-11,.Si - I3_S13 - u4C,34 - z4S,_

11,.C1 + la,.S13 - u4S1_ + x4C1_

-u,Cl:_ - z,Sl_ -61S1_

-u_Sl:_ + z4C1:_ (41C1:_

where

(2.76)

(2.77)

(2.78)

(2.79)

0

0
(2.80)

-h,S_3 - u4C1:_ - z4S1_

13rC13 - u4_134 _- x4C134

_42C_
(2.81)

Mass matrices and gravity force vectors are derived from the Jacobian matrices.

Mi _] = foh J; J3p3A3dxa + foo'* J_ J4p, A4dz4 (2.82)

cf = foos [2, + fo"s,[2,
G_ = ['_ Jj[2,2lp3A3dz3 + [" J,[2,2lp, A4dz, (2.83)

JO JO
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G_ - --/o" J412, 3]p4A4dx4

Elements of mass matrices and gravity force vectors are:

fo

l'(l_, 2+ + t_, + ,,_+ _

+ 211_(13,.C3 + x4C34 - u4S3.1)

+ 2la_(=4C4 - u4S4))p4A4dx4

_'l/I_ = "/n_3(x23+ ll,.x3O3)p3A3dx3

+ llr(13rC3 + x4C34 --u4S34)

+ 213,(z4C4 - u4S4))p4A4dz4

M_ = (z I + u_ + l,,.(x4Ca4 - u4S_) + 13,.(z4C, - u,S,))p, A4dz4

M_ = fj' ¢.,(=4 + l_,C:_+ 13,C4)p4.44d=_

M_ = f' ¢4_(z._+ I_,C34+ h,C_)p4A_d=4
JO

(2.84)

z]p3A3dx3 + + u,, + z_ + 2t3,.(z,C, 13,.u,,S4))p, A4dz,

ft4 2
M_ = Jo (z4 + +u_ + 13,.(z4C4- u4S4))p4A4dx4

M_ =/z, _b.u(z4 + 13,.C,l)p4A, dz4
JO
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M B - _014 tb42(x4 + 13rC4)p4A4dx4

f14 2

iVf_ = _o_ W41x4p4.44dx4

= _42x4P4A4dx4

2"V[B -. _0 l'_;242p4A4dx 4

JO
14

+ _0 (llrCl +/3,C13 -- u4Sl_ + x4C134)p4A4dx4

/o i'GB2 = b z3Cl3P3A3dx3 + (/3rC13 -- u4S134 q- x4C134)p4A4dx4 (2.85)

G3s = _oh(-u4Sl_ + x4C134)p4.44dx,

After the integral are defined using (2.23 - 28), the mass matrices and gravity vectors

of linearized equations are :

M_ = mfl_, + D3 + 2m31,,h, C3 + D4 + m,(l_, + l_,)

+2m4(11,13,C3 + 14cl3,C4 + 11,14cC34)

M_ = D3 + m311,13_C3 + m4123r "b D4
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+m4(ll,.13_C3 + 214¢13_C4 + 14¢I1_C34)

,_l B = D4 + m414c(13_.C4 -F /1rC34)

:v.r_ - AM41 + LM4_(13,C4 + I_,C34)

M_ -- .42142 + LM4:(13_C4 + 11_C34) (2.86)

M_ = D3 + m41_, + D4 + 2rn414cl3rC4

;vI_ = D4 + m414cl3,C_

M_ = AM41 + LM41 t3,C4

M_ = AM42 + LM4213,C4

M_B ---- D4

M_ = AM_I

M_ = AM,_

M_ -.- N M41

M4B5 -- fo 14_)41¢42p4A4dx4

G_ = m3(zl,c, + hoc,3)+ m,(h,C_+ h,C,3 + z,,C,_)

G_ = m313,C_3 + m4(13,C_3 + 14_Ci_) (2.87)
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The sti_ness matrices are:

K1J = fol' EIi[_]_dx, (i = 4,j = 1, 2) (2.88)

2.5.2 Centrifugal and Coriolis force

The velocity coupling terms are obtained from the mass matrix using the Christof-

fel symbol. These terms are also simplified by several structural properties.

_0 h _ot' (13,$3el -" llr[ x3S3p3A3dx3 "3k "4" X4S34 "_ u4C34)p4A4dx4]

j_014

fro"(e3 "- 13, X4S4 + u4C4)p4A4dx4]

e41 0I' _41 {--(ff241_41 "_"1fi42_42) "3:(11,_34 -- 13rS4)}p4A4dx4

e42 = _42{__(_,_41_41 3¢ ff)42_42) + (/lr834 -- 13rS4)}p4A4dx4 (2.89)

/014e$1 -- ¢41{--(¢41_41 + ¢42_42) + 13_,S4}p4A4dx4

After evaluating the integral,

el = _lr[(_/-$3hc + m4_3,)$3 .3¢.rT-Z414cS34 .3c- (L2_f41_41 + L._/f42_42)C34]
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e3 = G.[m4z,cs4 + (L.vs4,_41+ z:M_(_)c4

e41 "- -N:'vi41_41 + I1,.$34 4-13_S4)L_V/'41rn4

e42 -" -N,'v/42_42 + (/lrS34 + ls, S4)L.¥142m4

(2.90)

esl = -NAAl_41 + 13_S4LM41m4

es2 = -NM42_42 + 13r_4L_fa2m4

e61 = -N,'v-[41_41

e62 -" -NZ1//42_42

Using these coei_icients, the velocity coupling matrix can be expressed as follows:

0 _e 1 _2 _e41 _e42

_e 2 --e 1 _e41 _e42

_e 1 _e4l _e42

0 0

0

C(1) B = (2.91)
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c(2) B =

e I 0 --e3 --e51 --e52

0 _e3 --e51 --e52

--e3 --esl --e52

0 0

0

(2.92)

C(3) s =

e2 e3 0 _e61 _e62

e 3 0 _e61 _e62

0 _e61 --e62

0 0

0

(2.93)

C(4) B =

c(5) s =

e41 e51 e61 0 0

e51 e61 0 0

e_ 0 0

0 0

0

e42 e52 es2 0 0

e52 e62 0 0

e62 0 0

0 0

0

(2.94)

(2.95)

2.6 Conclusion

Mass matrices and gravity vectors are directly derived from the Jacobian matri-

ces which axe easily calculated from position vectors by SMP. Because the deriving
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procedure is simple, it reduces the possibility of producing incorrect equations. Fur-

thermore, this form can easily be used to expand a series of mode shape functions

describing elastic deformation. Six inertia parameters are defined and analogous

terms exist for the cases with and withou_ payload. The velocity coupling matri-

ces. which are the coefficients of centrifugal and Coriolis force terms, are derived

from the mass matrices using the Christoffel symbol and are simplified using sev-

eral structural properties. The resulting velocity coupling matrices have a structure

which is useful to reduce the number of terms calculated, to check correctness, or

to extend the model to higher order.
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CHAPTER III

Constrained Dynamic Analysis

3.1 Introduction

In this chapter, a numerical method is presented for dynamic analysis of closed

kinematic chain systems such as parallel link mechanisms. Dynamic solution of a

closed kinematic chain system requires solution of a mixed set of differential equa-

tions of motion and algebraic constraint equations. Singular Value Decomposition

(SVD) is used for reducing the equations by eliminating the unknown constraint

force. The nonlinear constraint equations of RALF are derived. Natural frequencies

and eigenvectors of a closed kinematic chain system are derived and verified by a

simple example.

3.2 Singular Value Decomposition

As mefftioned in chapter II, the equations of motion of a flexible arm with

a parallel link mechanism are expressed by the mixed set of differential equations

(2.6) and nonlinear algebraic equations (2.7). The Lagrange multiplier )_ is included

in differential equations to describe the unknown constraint force by the constraint

Jacobian matrix.

._fq" + Kq + F + _,r_ = Q (3.1)
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where F is the nonlinear force vector which includes Coriolis and centrifugal forces

and the gravity force. Nonlinear algebraicconstraint equations describe the rela-

tionship among the angleswithin the closedkinematic chain.

_(q) = 0. (3.2)

Differentiating the constraint equation (3.2) with respect to time yields the velocity

form of constraint equations.

• qq = 0 (3.3)

For solving this mixed set of differential and algebraic equations, the unknown

constraint force vector, A, has to be eliminated from the differential equations. The

constraint Jacobian matrix Cq, with rank m, can be decomposed into the foUowing

form using Singular Value Decomposition (SVD).

Cq = U2V T (3.4)

With proper partitioning [38], it can be expressed as

_q -" [Vl V2l[_m 01 V1T (3.5)

where Ui and V_ are orthonormal bases for four fundamental subspaces as shown in

Fig 3.1. Tl_e columns of Ui are the orthonormal eigenvectors of the matrix _q_T.

T
The columns of V_ are the orthonormal eigenvectors of the matrix _q Cq. E,_ is equal

to diag(al, a2, .... a,,,) ordered al _> a2 > ... > 0. The ai are called singular values

which are the nonnegative square roots of the corresponding eigenvalues. Notice

that V2 is the null space of ¢q which satisfies the following relationship.

• qV2 =0 (3.6)
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0

Figure 3.1: Four fundamental subspaces of _,
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Also, ¢+, called the pseudoinverseof Oq,is definedasfollows:

0

Premultiplying (3.1) by _/_Tand using the orthogonality of (3.6) gives

+ + =

(3.7)

(3.8)

The unknown constraint forces are thus eliminated from the equations of motion.

However, because VTM is the (n - m) x n rectangular matrix, additional equations

are needed to get a solution. Let us define a new variable z which is an independent

coordinate with dimension (n - m) x 1. The homogeneous solution to (3.3) is V2_.

= V27. (3.9)

Geometrically, it is the projection of the velocity vector _ onto the tangent hyper-

plane of the constraint surface. Moreover, the time derivative of (3.3) gives

(3.10)

Then, _ is represented as

(3.11)

The first and second term in the right hand side of (3.11) are the particular solution

and the homogeneous solution to equation (3.10) respectively. Physically, they are

the normal accelerations and the tangential accelerations of the constraint surface,

respectively. Finally, by integrating (3.9), position vectors are expressed as

q --- V_z + C (3.12)
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whereC, a constant, is herechosento be zero to satisfy initial conditions.

Substituting (3.9),(3.11),and (3.12) into (3.8), the equationsof motion become:

(3.13)

where

P = Mq_+0r(@_)qq- F (3.14)

Equation (3.13) is a set of n - m equations in terms of the independent generalized

coordinate z. As a result, the n equations (3.1) and m constraint equations (3.3)

are reduced to n - m equations in (3.13) by the coordinate transformation matrix V2

[67]. Because the independent generalized coordinate lies on the tangential plane

of the constraint surface instantaneously, the changes in generalized coordinates

due to the integration of ,; during a small time interval do not result in significant

constraint violation [37]. Therefore, the reduced equations of motion (3.13) are free

from constraints and stable for numerical integration error.

3.3 Constraint Equations

To apply the SVD method to RALF, the constraint equations must be described

first. Suppose the elastic deformation is small compared to the length of the link,

the deformed parallel link mechanism is depicted as in Fig 3.3. For the virtually

cut joint C", the constraint equations are expressed by two vectors.

.,(B + B_B ' + B;"C' = .,(D + DC' (3.15)

or

(ll/C1 - ul,S1 + 12rC12)i + (111S1 + ul,C1 + 12_$12)j

= (/3613 +/4C134)i "_-(/3S13 -t- I4S134)j (3.16)
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Y0

A

Figure 3.2: Rigid parallel link mechanism

XO

X1

Y0

A XO

/
/

X1

Figure 3.3: Flexible parallel link mechanism



When this equation is expressed in the form of equations (3.2) and (3.3), the position 

form of constraint equations are 

or, in the velocity form of constraint equations, the elements of the constraint 

Jacobian matrix are: 

rl11eC1 $12ec1 0 0 0 0 J 
In the rigid parallel link mechanism as shown in Fig 3.2, the elastic deformation 

is not included in the constraint equations. The coordinates transformation matrix 

&, which is derived from Oi by SVD, is 

C 
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where

qr = {81,82, 83, 84} r (3.21)

V_ is independent of angles and the ratio of the link length. The independent coor-

dinates of the rigid case are 81 and :_-3(82 + 83 - 84) for all configurations. However.

if an independent generalized coordinate is selected by Gaussian elimination, it may

change frequently [37]. On the other hand, in the flexible parallel link mechanism as

shown in Fig 3.3, V2 depends on the elastic deflection and its configuration, unlike

the rigid parallel link mechanism, as shown in equations (3.22 - 3.24).

V2 "-

For ul,/ll.r = O, 82 = 135 deg.

-1 0 0 0 0 0 0 0

0 0.583 0.169 -0.010 0 0 0 0

0 0.583 0.169 -0.010 0 0 0 0

0 -0.568 0.388 -0.023 0 0 0 0

0 0.026 0.890 0.006 0 0 0 0

0 0.002 0.006 0.999 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(3.22)
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For ul,/ll! = 0.01,

Y_

For u1_/11: = 0.0,

where

02 = 135 deg.

0 0 0 0 0 0 0

0.580 0.184 -0.011 0 0 0 0

0 0.580 0.173 -0.011 0 0 0 0

0 -0.572 0.381 -0.022 0 0 0 0

0 0.012 0.890

0 0.001 0.006

0 0 0

0 0 0

0 0 0

0 0 0

02 = 60 deg.

0.0060000

0.9990000

00000

00000

00000

00000

0 0 0 0 0 0 0

0.584 0.163 -0.010 0 0 0 0

0 0.584 0.163 -0.010 0 0 0 0

0 -0.572 0.394 -0.023 0 0 0 0

0 0.035 0.890 0.006 0 0 0 0

0 0.002 0.006 0.999 0 0 0 0

0 0 0 00000

0 0 0 00000

0 0 0 00000

0 0 0 00000

(3.23)

(3.24)

q/= {01,02, 03, 04, _n, _,2, _2_, _22, _,, _2} r (3.25)
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The angle 84 is mainly changed by the deformation of the lower link. Because the

links are vibrating during motion. V2 is also changing. Therefore, the constraint

Jacobian matrix must be decomposed at every step to preserve the direction conti-

nuity of the basis of TV_. However, performing SVD at each integration step would

result in a tremendous increase in computing time. Furthermore, performing rede-

composition and recomputing the initial conditions on z at each time step requires

numerical integration algorithms which use information only from the current time

step even though this eliminates the need for null space continuity. Therefore. Ivlani

introduced the velocity norm as the criterion for redecomposition [46]. V2 is held

constant until the specified criteria are violated. In order to circumvent the rede-

composition, updating algorithm using QR decomposition was developed [37]. For

more accurate and stable solution, several algorithms have been developed recently

[39,32,57]. But, those methods are not applied in this thesis.

3.4 Computational Algorithm

An algorithm for solving the equation (3.13) is summarized as follows:

1) The constraint Jacobian matrix _q is decomposed by the singular value de-

composition subroutine LSVDF of IMSL [33]. Then, the initial condition for inde-

pendent coordinate z_ at time step i is defined by the following transformation.

..o= yfq° (3.26)

_o = _rq0 (3.2?)

Initial conditions for first-order differential equations are

Iq°]Y(to) = zo

Z:o

(3.28)



2 )  Integrate ( q i ,  f,, 2, )  of equations (3.9) and (3.13) simultaneously from t ,  to 

ti+l to get (qi+1,  = ; + I ,  using the subroutine DGEXR of IMSL which is based 

on Adams predictor - corrector method. 

3) Solve the original velocity vector qicl from ti+1 using the transformation of 

equation (3.9). 

4)  Checli the velocity norm. If I (  i (Iz is less than a predetermined fraction of 

11 q (I2, the constraint Jacobian matrix 4, needs to be redecomposed [37,46] and 

step 1) is repeated. Otherwise, step 3) is esecuted next. 

5)repeat the above steps until the final time is reached. 

Application of this algorithm to RALF will be explained in Chapter V. 

3.5 Natural frequencies and Mode Shapes 

Natural frequencies and mode shapes can be derived from the linearized equa- 

tions of motion. Eigenvalues and eigenvectors of the constrained equations can be 

obtained from the reduced equations (3.13) linearized about zero velocity. 

Eigenvalues of the constrained equations, (3.1) and (3.3), are the same as those of 

the reduced equations (3.13). Eigenvectors of the constrained equations are derived 

by transforming those of the reduced equations as follows. 

The validity of the above theory is demonstrated by the following simple example. 

Now, the flexible parallel link mechanism is somewhat analogous to two masses 

connected to one another by springs as shown in Fig 3.4. This system can be fully 

described by the two coordinates x1 and x2. Equations of motion of this system 
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K1

X1

M1

[ x2 H
K2

M2

Figure 3.4: Constrained system

K1

X3

Xl

-I
_! X2

[--_VV_ . M2
! /() ()

© (3

Figure 3.5: Unconstrained system
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ale:

/."_I: iV/': _: 0 K: z:

If the values of mass and spring are arbitrarily assumed as

= 0 (3.31)

M1 = 1 /_.'1 = 1

M2=2 K2=2

the equations of motion are

3 2

2

and

/::}÷

M:_ IC:=

The characteristic equation is

1 0

0 2

(3.32)

: 0 (3.33)

(3.34)

A= - 4A -F 1 = 0 (3.35)

and the natural modes axe

1 -0.7321
rz : (3.36)

0.3660 1

The sys_m can be also expressed by three coordinates zl, z2, z3 and a constraint

equation as shown in Fig 3.5. The redundant coordinate x3 describes the relative

motion of the two masses. Equations of motion in the new coordinates system, q =

{XI_ 2:2, .T.3}_ are

°°If,.I}°°]Ixl}0 M2 M: _2 + 0 K= 0 z: +eTA=0

0 M2 M2 _3 0 0 0 z3

(3.37)
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and the constraint equation is

z3 = zl + d

The velocity form of constraint equation is

(3.38)

z3 = -_1 (3.39)

and it can be expressed as follows.

/'/ "- 0 (3.40)

_3

The constraint Jacobian matrix, Cq, is decomposed by SVD.

_. 0 0 1/_ -1/_ 0

¢q=1 0 0 0 0 0 1

o o o -1/_ -1/_ o

Here, the null space, V2, is

-11_ 0

V2= 0 1

- 11v'_2 0

The orthogonality of 'I'qand V2 is checked as follows :

" - 1/v_2 0

-1/_ o

Then, the reduced mass and stiffness matrix are used to find the eigenvalues and

the eigenvectors.

1 2v_2
(V2rMV2)-i(VTICV2) = (3.44)

1/_ 3

(3.41)

(3.42)
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The characteristic equation is

A2-4A+I-O (3.45)

and the eigenvectors are

1 1.0353

-0.2588 1

The eigenvectors of the constrained system can be derived using I_.

rq= v2r_=

-1/_ -1/_

-0.2588 0.9659

-1/_ -1/W

1

= 0.3660

1

The first and second row are the eigenvector of zl and x2

-0.7321

1

-0.7321

Fq

I

0.3660

-0.7321

1

(3.46)

(3.47)

(3.48)

Therefore, the characteristic equation (3.35) and eigenvectors (3.36) of the second

order system are the same as those equations (3.45) and (3.48) of the reduced system

respectively.

3.6 Conclusion

Parallel link mechanisms with rigid links have a simple relationship between the

angles of the closed kinematic chain. However, the parallel link mechanism with

flexible links requires nonlinear constraint equations to describe the relationship

between angles because the link deflection gives a perturbation to the relationship.

Therefore, a mixed set of differential and algebraic equations must be solved si-

multaneously. The transformation matrix V2, which is derived from the constraint
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Jacobian matrix by SVD, is usedto obtain the reducedset of equations of motion

which have no additional constraint equations. The reducedequations havebeen

solvedwithout any significant constraint violation. Therefore,SVD is a stable and

efficient numerical method for the closedkinematic chain system. The simple ex-

ample showsthat natural frequenciesand eigenvectorsof the reducedequationsare

the sameas thoseof the constrainedequations.



61

CHAPTER IV

Mode Shape Functions of RALF

4.1 Introduction

Mode shape functions are employed to describe the elastic deformation of the

flexible manipulator. In the assumed mode method, mode shape functions need

only to be admissible functions which satisfy the geometric boundary conditions

and form a basis set. However, a large number of modes are required to obtain ac-

curate frequencies. The number of modes to be included can be reduced by choosing

appropriate functions which satisfy static equilibrium at the interface between links.

These functions can be derived systematically by using the component mode synthe-

sis. Various component mode synthesis approaches have been developed depending

on the assumed boundary conditions. Different boundary condition assumptions

require different coordinate systems to describe the elastic deformation. Therefore,

the method which fits with the current coordinate system is chosen. In order to

explain component mode synthesis, an L - shaped beam is analyzed first. Secondly,

mode shape functions of RALF are derived. Natural frequencies and mode shape

functions of the analytical model of RALF are compared to the results of a finite

element method, component mode synthesis and experiment results for validation

of the proposed mode shape functions.
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4.2 Component Mode Synthesis

A complete structure can be regarded as an assembly of component structures.

The dynamic behavior of each component can be represented by a reduced number

of component modes. Modes of the complete structure are formed from the compo-

nent modes by enforcing equilibrium and compatibility along component interfaces.

Generally, the constraint modes are introduced to provide shear and moment com-

patibility when the structure is assembled. Therefore, component mode synthesis is

useful for predicting accurately the lower modes and frequencies of a structure us-

ing a small number of component modes. Numerous methods for component mode

synthesis have been presented. Fixed, free, or loaded boundary conditions are used

to determine the component modes. An L - shaped beam as shown in Fig. 4.2.a is

used to explain the difference between these methods.

In a fixed interface method [19], modes of each component are expressed by a

constraint mode and a normal mode. The constraint mode is defined as a static

mode of internal nodes resulting from an imposed unit displacement at the interface

node. The normal mode is defined as a dynamic mode of internal nodes when the

boundary condition is in effect on the external nodes. In Fig. 4.1.a, link deflections

of the lower beam can be expressed by rigid body rotations and clamped - clamped

modes. Here the rigid body rotation is the constraint mode and the clamped -

clamped modes are the normal modes. The boundary conditions of the lower beam

and the upper beam are clamped - clamped and clamped - free, respectively.

In a free interface method [27], modes of each component are expressed by

normal modes only. Modes of the upper beam are defined from the mass center. In

Fig.4.1.b, the boundary conditions of each beam are clamped - free and free - free.

In a loaded interface method [6], modes of the lower beam are modified by



63

I

Figure 4.1.a: Coordinate system of a fixed interface method

Figure 4.1.b: Coordinate system of a free interface method

o

Figure 4.1.c: Coordinate system of a loaded interface method
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added inertia and stiffness which are the effects of the upper beam. In Fig. 4.1.c,

the boundary conditions of each beam are clamped - mass - spring and clamped -

free.

Even though all methods give the same result in the limiting case, tile coordi-

nates which are used to describe the elastic deformation are different. Coordinates

of the loaded interface method match closely with the coordinate system of RALF

as seen in Fig. 2.3. The xi axis is aligned with the tangent of the respective link at

the origin Oi. Therefore, the mode shape functions of each link are derived using

the loaded interface method.

4.3 Loaded Interface Method

In this section, a loaded interface method [6] is summarized. An L-shaped beam

as shown Fig. 4.2.a is an example configuration of a two serial link manipulator and

the typical example of component mode synthesis [31]. In this section, component

mode synthesis is explained using the L - shaped beam. In Fig. 4.2.b, the complete

structure can be separated into two components - the main component and the

branch component. Each component's modes axe expressed in terms of internal (i)

coordinates and junction (j) coordinates.

A constraint mode is defined by statically imposing a unit displacement at the

junction node and zero displacement at the internal node [19].

(4.1)

where R is the reaction at the junction. Thus, the constraint mode is obtained from

the top row partition.

= _i<1i<j (4.2)
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Figure 4.2.a: L - shaped beam

A

O
J

B

Figure 4.2.b: Components of L - shaped beam

Figure 4.2.c: Boundary conditions of each component

of L - shaped beam
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A normal mode is obtained from the internal coordinatesonly.

(I(,_-w2M,,)@_ N =0 (4.3)

The normal mode set @_v is truncated to a set of normal modes ¢_N. Therefore,

the internal node displacements of the branch component B can be expressed by

superpositions of constraint modes ¢_ and normal modes ¢_N.

i --iC 2_s = _su,+ _N_B (4.4)

The total node displacements of branch component B are

() {}u_ I 0 u_
us = = (4.5)

The total potential energy for uncoupled components A and B can be written

as

1 T-. 1 T -

PE = _uaI_aua + _usI_sus (4.6)

Components A and B are coupled together by constraining the interface coordinates.

This constraint is expressed as

u_ =uC, (4.7)

Equation (4.7) assumes that the same reference coordinate system is used for both

component@. Differentcoordinate referencesystems wiU require a rotational coor-

dinate transformation using directional cosines. Therefore, the coordinate transfor-

mation that couples components A and B together becomes

/'/
= I uja
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I u A
= [0I]

= T_ua (4.s)

Therefore, equation (4.6) can be rewritten as

1 uTrpA_
PE- _ M_ a

where

K A = KA + TFKBZ

In similar way, the kinetic energy is

1.T_. A •

KE = _u.4_Vl UA

(4.9)

(4.10)

(4.11)

where

M a = MA + TFMBTt (4.12)

As shown in Fig. 4.2.c, the mass matrix MA and the stiffness matrix KA of compo-

nent A axe modified by the static influence of the branch component B.

Using these modified matrices, equations of motion of main component A axe

Mafia + KAUA = 0 (4.13)

The eigenvector of (4.13) yields

ua = CA_A (4.14)

Eigenvectors CA axe also truncated to a set of normal modes Ca.

UA --" = . (4.15)
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Both components are coupled using compatibility of junctions.

(4.16)

So_

/ }u_ =

_B

Therefore, using equations (4.15),

I

0

_A
0

_B
f

(4.17)

4.5), and (4.17), node displacements of each

component can be expressed in terms of reduced order modal coordinates.

u:4

u_

u_

¢_ 0 0

¢_ 0 0

0 I 0

_B

¢'A o

_ o

¢_ o

Cs ma

= T,{ _a_A} (4.18)

The reduced order of the mass and sti_ness matrices are derived by the trans-

formation matrix T,.

r q

IM =T r,
MA 0

0 MB
T, (4.19)

K]=T r,
KA 0

0 KB

T, (4.20)
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Natural frequencies and modes of the complete system are calculated from eigen-

values and eigenvectors of the following equations.

/ l/+ = {o}

Tile node displacements of each component are derived from eigenvectors of Eq.

(4.21) using transformation matrix Ts of Eq. (4.18).

4.4 Component Modes of RALF

For the validity of modes which are derived using component mode synthe-

sis, system natural frequencies of finite element model, component mode synthesis

model, and the analytical model are compared.

The finite element model of RALF is modeled as shown in Fig. 4.a.a. Note that

for this model the lower link is assumed to be supported where the connecting link

attaches. This is a simplification over the physical system. The support sleeves

of the lower link and the upper link and the connecting link are assumed as rigid

elements by setting Young's modulus of these elements 1000 times bigger than that

of the other elements. Because the hydraulic actuators are also assumed rigid, the

boundary conditions of node A and C are assumed to be simply supported as well

as node O.'The finite element model is simulated by MSC/PAL2 program [51].

Component mode synthesis can predict the lower modes and natural frequencies

of RALF using a small number of component modes. The derivation procedure is

similar to Sec. 4.3. However. a little modification is required because RALF has a

parallel link mechaxfism with components connected by pins.

RALF can be partitioned into three components as shown in Fig. 4.3.b. First,

the boundary, condition at node D' of the actuator link is assumed as simply sup-
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Figure 4.3.a: Schematic diagram of RALF
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Figure 4.3.b: Components of RALF

C D

• . •

Figure 4.3.c: Boundary conditions of each component
of RALF
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ported imposing a fixed boundary condition on the pin joint. The reaction force

or torque can be expressed by adding the sti_ness and the mass at node D' of the

upper link using (4.10) and (4.12). Next, the boundary condition at node B of the

upper link is also assumed as simply supported. Furthermore, the stiffness and the

mass are also added at the node B of _he lower link. Using these boundary condi-

tions as shown in Fig. 4.3.c, the node displacements of each link can be obtained by

the finite element method. Node displacements of each component of the uncoupled

system are expressed as follows.

The upper

l

tL a

1

U b

|

Ca

¢I

0
.--.

0

0

0

0 0 0 0

0 0 0 0

I 0 0 0

_;c ¢_N o o

0 0 I 0

0 0 Cf ¢.v

_a

_3
C.

¢

,4

= T1 5

u_

L

(4.22)

link has two interface nodes with the actuating link and the lower link.

J J, (4.23)u_ 1 :u: = ¢_,,=

j 72 " ,AjC jluc = ub = ¢_2_5 + _'b %

(4.-94)

Using (4.23) and (4.24), uncoupled generalized coordinates can be described in
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terms of generalized modal coordinates.

_b

_c

= 0

0

I 0

¢_ o
I

0

0

0 _b

0 _

I

I }= T2 _b (4.25)

Relationships between node displacements and generalized modal coordinates are

derived from (4.22) and (4.25).

|

_t a

/ &
' . '=TxT2' _b =

"b• ! &
u_

I

U c

¢_ o o

¢_ o o

¢I o o
¢,c.,j

_,i cf o

_b

&

(4.26)

In the pin joint connection, equations (4.23) and (4.24) are modified as follows.

jl uj : j= T._o& _& (4.2z)U b ---

= T.(¢_N_b+ _b -.-b J

• jc j= T_(¢_N_ + CbT_¢_&)

(4.28)

where

1 0 0

0 1 0

0 0 0

(4.29)
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because each node is defined in three coordinates - 2 translational and 1 rotational.

Therefore, equation (4.26) is a/so modified as follows.

,_: o

O_ 0 0

_,_ o o
,_c_;_:¢i,v o
;_ ;i o

C "ra C b

t_ a

u_

u_

|

It c

0

6 / }= 7. _b (4.30)

Using this coordinate transformation matrix T,, the reduced order of mass and

stiffness matrices are derived using (4.19) and (4.20). Natural frequencies and the

node displacements of RALF can be derived from this reduced order mass matrix

and stiffness matrix.

In chapter 2, the following modal data of each component axe required for the

equations of motion.

NM = f _,2drn

,0__,
KW =/[-_-_z2 )2dx (4.31)

LM = / $dm

AM = f xOdrn

where drn is the mass of the small segment. These data can be obtained by several

methods.

First, if the values of the interface mass and spring are known, these data can be

obtained from the analytical solution. However, it is not easy and it is a time

consuming job to get an analytical solution.

In a second method, the mode shape functions can be derived from node displace-

ments of the finite element model using a polynomial. However, this method has
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a problem in calculatingthe stiffnessmatrix because the second derivativeof the

estimated polynomial has some differencefrom the true value. That is,it is not

practicalto find a polynomial to satisfythe displacement and slope of every node

point at the same time.

By the third method used here, modal data can be expressed by summation instead

of integration. Therefore, modal data can be obtained from node displacements of

lumped mass model of each component.

NM = _T.u_

where

KIll" = _2T K_

N

LM = mje (z )
1=1

N

AM = _ zy rnj 0i(x.i )
j=l

(4.32)

M = unloaded mass matrix

K = stiffness matrix

ff2 = mode shape matrix

rn i = mass of the jta finite element node

¢i(zi) -_ mode shape of the i _h mode at the jth node

xj = vector locating j_h node with respect to the local frame

Mode shape matrices of the lumped mass model are less reliable than those of

the consistent mass model. Therefore, it was observed during a simulation that

the mass matrix is not positive definite for a model with small number of nodes.

However, modal data can be readily and inexpensively computed from the lumped

mass model which has a large enough number of nodes.
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Table 4.1: Comparison of Natural frequencies

Modes No. FE_I CMS3 CMS2 AM3 AM2 AMI

1 S.38 8.39 8.43 8.41 8.45 S.46

2 15.49 15.55 15.72 15.61 15.98 16.20

3 30.51 30.52 30.54 30.53 30.54 30.56

4 92.49 94.10 101.$1 98.62 106.5S 108.61

5 117.60 119.06 123.67 119.88 121.85 122.65

6 120.S0 120.$4 121.12 120.$9 121.22 121.33

The first six natural frequencies of three models - a finite element model, a

component mode synthesis model, and an analytical model - are compared as shown

in Table 4.1. In this table, component mode sets of the component mode synthesis

(CMS) model and the analytical model (AM) are truncated at two mode (CMS2,

AM2) and three mode (CMS3, AM3) per link. If three modes are included, all six

natural frequencies match each other quite well. On the other hand, if two modes

are included, only the first three natural frequencies match each other to within

10 %. However, because we are interested in the lower frequencies, two modes are

enough for the reduced order analytical model. Furthermore, AM1 is the model

which uses clamped - mass, clamped -free, and pin - pin boundary conditions for

the lower, the upper, and the actuator link. This model is more different from

the FE model than AM2. Therefore, component mode synthesis is the systematic

method which can derive proper mode shape function.

4.5 Discussion of Experiment

In fact, there are discrepancies between the analytical model and the real system

because the real system has a complex structure which is difficult to analyze by the
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Table 4.2: Comparison of natural frequenciesof the modified model

Modes No. FEM CMS3 CMS2 AM3 AM2 AM1

1 6.03 6.04 6.08 6.06 6.09 6.11

2 15.24 15.30 !5.49 15.37 15.74 15.99

3 30.74 30.74 30.75 30.75 30.76 30.79

4 75.63 77.21 84.91 81.73 $9.70 91.73

5 98.25 99.70 101.3 100.5 102.5 103.3

6 120.28 120.32 120.59 120.37 120.70 120.81

analytical method. The sectional areas of beams are not uniform. The links are

connected with offset brackets. The connecting joint axis between the hydraulic

actuator and the lower link is not colinear with the axis joining the connecting

link to the lower link as shown in Fig. C.1 of Appendix C. Therefore, the flexible

part of the lower link increases. Table 4.2 shows the natural frequencies of each

model of the modified structure. The finite element models are used to explain the

discrepancies between the analytical model and the real system. Two types of finite

element models are created. One is a simplified model using beam elements with

seven different EI (modulus of elasticity times area moment of inertia) values and

one lumped mass element at the end of the lower link. The simplified model assumes

support sleeves and connecting link as rigid similar to those used in the analytical

model. The other finite element model is a detailed model using beam elements in

which thirteen different EI values and three kinds of lumped mass elements were

used. The detailed model used makes no assumptions about the rigidity of any of

the links. In experiments, an electromechanical shaker was attached to the structure

at the end point of the lower link (Point B in Fig. 4.3.a). Because turnbuckles were

used in place of the hydraulic cylinders, the boundary condition can be assumed
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fixed. The detailed proceduresof the experiment are describedby Huggins [28].

Figure 4.4 showsthe modeshapes of RALF and the associated system natural

frequencies. The first system mode is dominated by the bending of the lower link.

The frequencies of the first mode are nearly equal each other. The second system

mode is dominated by the bending of the upper link. However. there is a discrep-

ancy between the frequencies of the second mode of the simplified model and the

detailed model. The boundary condition of the upper link is more complicated in

the real system. Therefore, a more accurate model is required to predict the true

frequency. The third system mode is dominated by the pinned - pinned bending

mode of the actuator link. However, there is a discrepancy between the predicted

and the measured natural frequencies. A large amount of friction in the pin joint

causes the joint to exhibit some characteristics of a clamped end condition. This

frequency is measured when the structure was excited by a shaker and the joints are

fixed by a turnbuckle with no bearing. However, if the structure is excited by the

hydraulic cylinder, the frequency of the actuator link decreases. Therefore, the rea-

son for the frequency difference in the third mode appears to be friction at the joint

which is reduced by actuator motion. The higher frequencies and mode shapes have

discrepancies between the analytical models and the finite element models because

the analytical model included only two modes per link for describing link deflec-

tions. The higher modes and frequencies of the experiment also have discrepancies

because of their small signal to noise ratio, out of plane motion, and the closeness

of the frequencies as shown in Fig. 4.5. Even in the finite element model, the higher

modes are sensitive to modeling.
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4.6 Conclusion

In the assumed mode method, there are numerous possible choices of admissible

functions. However, a large number of modes are required for the completeness of

the set of admissible functions. In order to speed up the convergence, mode shape

functions which satisfy the static equilibrium are used in component mode synthesis.

Among several component mode synthesis approaches, the loaded interface method

fits with the current coordinates system. Proper mode shape functions for a reduced

order model are obtained using the loaded interface component mode synthesis.

Comparison between the finite element model, the component mode synthesis model

and the analytical model show that mode shape functions which are determined by

component mode synthesis improve the convergence. Because the real system has

a complex structure which does not match certain simplification necessary in the

analytical model, there are some discrepancies between the analytic model and the

experiment. These discrepancies are explained using a simplified and a detailed

finite element model.
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CHAPTER V

Verification of Analytical Model

5.1 Introduction

The experimental verification of nonlinear dynamics is a difficult job which has

not been extensively studied compared to linear dynamics. Possible verification

methods include a time domain and a frequency domain methods. However, the

time response with nonlinear dynamics depends on initial conditions and input am-

plitudes. Therefore, an accurate dynamic model is required. As mentioned in the

previous chapter, the real system has unmodelled dynamics and parameter uncer-

tainties hard to describe analytically. Hence, direct comparison between the analyt-

ical model and the real system was difficult. In this chapter, several techniques are

tried to verify the nonlinear dynamics of RALF. First, as an alternative method for

a time domain verification, a TREETOPS model is used for the verification of the

analytical model. Secondly, as one of the frequency domain methods, the nonlinear

dynamics of RALF is studied by a sinusoidal excitation. Finally, actuator dynamics

has a significant interaction with flexible body dynamics. The effect of hydraulic

cylinder dynamics on flexible body dynamics is discussed.
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5.2 Analytical Model Verification using TREETOPS

TREETOPS is a computer simulator of the dynamics of a flexible multibody

structure with loop closures. TREETOPS is being developed by DYNACS Inc.

under contract to NASA's Marshall Space Flight Center (MSFC). The program

was obtained from Dr. Henry B. Waites of MSFC. The name TREETOPS refers to

the class of structures which may be simulated by the program, that is those having

a tree topology. A tree topology is one in which multiple bodies are connected

by rotational and translational joints. TREETOPS can also handle the structure

with loop closures by constraining the position or velocity of connecting joints. The

primary output of the program is a time history of flexible body motion in response

to an active control system consisting of actuators, sensors, and controllers. The

equations of motion are derived using Kane's method. The TREETOPS model is

described in Appendix E.

The step responses of the analytical model and the TREETOPS model are

compared as shown in Fig. 5.1. The time responses of the two models match each

other fairly well even though they use different methods for deriving the equations

of motion. The constraint error measured at the connection joint is stable as shown

in Fig. 5.2. The analytical model used the SVD algorithm to generate the matrix V2

while TREETOPS model used the QR algorithm. SVD algorithm updates the V2

matrix based on the given criterion. On the other hand, the QR algorithm updates

the V2 matrix at every time step [37]. Even though the constraint error history

using the SVD algorithm is a little different from the constraint error history using

the QR algorithm as shown in Fig. 5.2, time responses of other variables are not

different as shown in Fig. 5.1. The constraint error also depends on the inte_ation

method. Because the flexible body dynamics produces a stiff system which has
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several widely spaced frequencies in one system, Adam's method is used. The

Runge-I(utta method allows the constraint error to increase as shown in Fig. 5.3.

The simulation time of analytical model is shorter than that of the TREETOPS

model. For example, the CPU time of analytical model is about 6 minutes in

VAX/750 for 1 second time response and ! millisecond time step. On the other hand,

the CPU time of the TREETOPS model is about 35 minutes. The expected reason

for this difference is that TREETOPS is a general program which can handle a 3

dimensional motion of a multi body. Furthermore, the dynamic equations of motion

are calculated recursively by matrix manipulation. Whereas, the analytical model

is expressed in symbolic form explicitly. In both models, the system frequencies

which are related to the upper link are high compared to the experiment results.

This difference comes from the actuator dynamics effects on the system dynamics.

The hydraulic actuator dynamics will be discussed in the section 5.4.

5.3 Verification of Nonlinear Dynamics

5.3.1 Analysis of Nonlinear Dynamics

In order to verify the nonlinearity, the following questions are expected. ]'Vhere

does the nonlinearity come from ? lcVhich excitation method is adequate to test the

nonlinear dynamics ? Which sensor is adequate to measure the nonlinear effect ?

First, nonlinear dynamics of a flexible manipulator comes from configuration

change, Coriolis and centrifugal force, and the coupling between rigid body motion

and flexible body motion as shown in the equations of motion. Secondly, a step time

response has been the common method for model verification. However, even though

the step input can excite many modes at one time, the time response is susceptible

to the unknown dynamics, such as the signal noise and the friction. Furthermore, it
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is difficult to detect the amount of nonlinearity from the step response. On the other

hand, the frequency spectrum of the response to a sinusoidal excitation is a method

which can detect tile nonlinearity. The response of a nonlinear system is dependent

on the amplitude of the excitation. One advantage of a sinusoidal excitation is that

the input force can be precisely controlled. Furthermore, large amounts of energy

can be input to the structure at each particular frequency. Therefore, it results in

relatively high signal-to- noise ratios and allows the study of structural nonlinearities

at any specific frequency. Third, the time response can be measured by several

sensors. The possible sensor types are accelerometer, encoder, tachometer, and

strain gauge.

Before the experimental verification, the simulation result can show the general

characteristics of the nonlinear dynamics. The flexibility effect can be verified by

comparing the rigid body dynamics and the flexible body dynamics. The config-

uration change effect and Coriolis and centrifugal force effect can be verified by

changing the amplitude and the frequency of a sinusoidal excitation. In the simula-

tions, a R.ALF model is tested with 30 LB payload in order to magnify the effects

of the nonlinearity. In Fig. 5.4 and 5.5, several time responses of the rigid RALF

model are compared by changing the amplitude (0.05 rad, 0.1 rad, 0.5 rad) with

the fixed frequency (I.5 Hz) and the frequency (I.5 Hz, 4 Hz, 7 Hz) with the fixed

amplitude (0.05 rad) of a sinusoidal excitation. Time responses are measured by

several sensors - encoder, tachometer, and accelerometer. The TREETOPS model

is used because the tip acceleration is easily measured using the given sensor option.

The differences between each case are not clear in the time response. However, the

phase plots in Fig. 5.6, 5.7 and 5.8 are another method to detect the nonlinearity.

The ellipse of harmonic excitation is distorted by the nonlinearity as shown in Fig.

5.7 where the sinusoidal responses of different amplitude are drawn in the same
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plot. The acceleration at the tip shows the difference even in the time response

as shown in Fig. 5.4. FFT of the tip acceleration is another method to check the

nonlinearity. Fig. 5.9 shows the power spectral density of the tip acceleration in

response to the different amplitudes and frequencies of the sinusoidal excitation.

To obtain the sharp peak, 4096 data points between 0.9 second and 5.0 second are

used. In order to reduce leakage, the Harming window is used. The relative differ-

ence between the first harmonic peak and the second harmonic peak decreases (a

factor of more than 80) as the amplitude of sinusoidal excitation increases as shown

in Table 5.1.a. However, the relative difference between the first harmonic peak and

the second harmonic peak does not change significantly (a factor of less than 3) by

changing the frequency of the sinusoidal excitation as shown in Table 5.1.b.

Similar analysis has been done for the flexible body. Fig. 5.10 and Fig. 5.11 show

the time responses of 81, 82, and acceleration at the tip by changing the amplitude

and the frequency of the sinusoidal excitation. In these figures, the distortion of the

sinusoidal response can be detected even in the time response. Fig. 5.12 and Fig.

5.13 show the phase plot of rotation angles and modal coordinates. Compared to

the rigid body case, theeffect of nonlinear dynamics is more significant as observed

by changing either the amplitude or the frequency of the sinusoidal excitation.

For instance, the circle of harmonic excitation with 0.5 tad amplitude and 7 Hz

frequency is distorted as shown in Fig. 5.14. Fig. 5.15 shows the power spectral

density of the acceleration at the tip. By increasing the amplitude of sinusoidal

excitation, the broad range harmonic peaks including system natural frequencies

are observable as shown in Fig. 5.15.a. By increasing the frequency of the sinusoidal

excitation, the nonhazznonic peaks occur between the harmonic peaks as shown in

Fig. 5.15.b. Table 5.2.a and 5.2.b shows the first several harmonic peak values and

their relative difference for different excitation amplitude and frequency respectively.
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Table 5.1.a: Peaks of power spectrum density

of rigid RALF model
for different excitation amplitudes

0.05 tad

0.! rad

0.5 rad

1st 2nd lst/2nd

harmonic harmonic harmonic

1.46E5 6.40E1 22.7E2

5.90E5 1.09E3 5.41E2

1.99E7 6.97E5 0.28E2

Table 5.1.b: Peaks of power spectrum density

of rigid RALF model
for different excitation frequencies

1.5 Hz

4.0 Hz

7.0 Hz

1st 2nd lst/2nd

harmonic harmonic harmonic

1.46E5 6.40E1 2.27E3

3.40E6 2.70E3 1.26E3

2.00E7 6.97E5 0.88E3
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Table 5.2.a: Peaksof power density spectrum
of flexible RALF model
for different excitation amplitudes

0.05 rad

0.I rad

0.5 rad

1st 2nd 3rd lst/2nd

harmonic harmonic harmonic harmonic

1.73E5 1.53E2 3.36E2 1.13E3

7.00E5 2.55E3 1.22E3 2.74E2

2.47E7 1.50E6 2.96E5 1.65E1

Table 5.2.b: Peaks of power density spectrum
flexible RALF model

for different excitation frequencies

1.5 Hz

4.0 Hz

7.0 Hz

1st 2nd 3rd lst/2nd

harmonic harmonic harmonic harmonic

1.73E5 1.53E2 3.36E2 1.13E3

7.25E6 2.18E5 2.40E3 3.33E1

1.88E6 2.38E5 1.76E4 0.79E1
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The significance of the harmonics grows dramatically in both cases (factor of about

70 and 140) Therefore, the flexibility has a significant effect on the system dynamics

as shown by comparison of Fig. 5.9 and Fig. 5.15.

5.3.2 Experiment of .Nonlinear Dynamics

To test the nonlinear dynamics, fast motion of each link is required. The flow

rate of the current hydraulic ser_,ovalve is 5 gpm. The effective piston area is

different for each cylinder (See Appendix C.2). Therefore, the maximum linear

speeds of the lower link actuator are 6.127 in/sec and 8.170 in/sec for extension and

retraction, respectively [28]. The maximum linear speeds of the upper link actuator

are 2.320 in/sec and 3.268 in/sec for extension and retraction, respectively. The

transformation of the hydraulic cylinder's displacement to the joint angle rotation

results in 18.8 deg/sec, 24.4 deg/sec for the lower link and 7.34 deg/sec, 10.29

deg/sec for the upper link at the nominal joint angles of the experiment. The

maximum displacement of the cylinder is calculated as follows.

= aSin t (5.1)

e = A (5.2)
_d

Therefore, the maximum displacement of the lower link with 1.5 Hz frequency is

0.65 in (1.99 deg or 0.035 rad) and 0.87 in (2.59 deg or 0.045 rad) for extension and

retraction. The maximum displacement of the upper link with 1.5 Hz frequency is

0.25 in (0.78 deg or 0.014 rad) and 0.35 in (1.09 deg or 0.019 rad) for extension

and retraction. As we can see from comparison with simulation, the speed is too

small for testing the nonlinear dynamics. Within the current maximum speed, the

power spectral density is measured for different amplitudes and frequencies. Fig.

5.16.a is the power spectral density by increasing the amplitude from 2 in, to 4
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in, to 6.5 in of the lower link and 2.5 in of the upper link with 0.15 Hz frequency.

The relative peaks decrease. Fig. 5.16.b is the power spectral density obtained by

increasing the frequency from 0.36 Hz, to 0.59 Hz. to 0.$2 Hz with 1 in amplitude of

both actuators. Fig. 5.16.c is the power spectral density obtained by increasing the

frequency from 3.6 Hz, to 5.5 Hz, to T.9 Hz with 0.1 in amplitude of both actuators.

As shown in these figures, the harmonic peaks grow slightly in the wide range with

increasing excitation amplitude and frequency. A slight nonlinearity is observed

under the current hydraulic cylinder's speed.

5.4 Hydraulic Actuator Dynamics

In this section, the hydraulic actuator dynamics are modelled and compared

with dynamics of the more commonly used electric D.C. motor. The difference in

velocity feedback for the two actuators is shown to result in significantly different

joint behavior for the two cases for a flexible structure. A simple single link system

is used to illustrate this point.

Dynamics of an asymmetric or a single - rod hydraulic cylinder is more compli-

cated than that of a symmetric or a double - rod hydraulic cylinder. Because the

area of each chamber of the cylinder is different, the retraction and extension speed

is different. Therefore, the dynamics of the asymmetric hydraulic cylinder is non-

linear. As shown in many studies on an asymmetric hydraulic cylinder [24,75,36],

the exact dynamics of a real actuator is high order and therefore hard to apply in

real time control. Therefore, in this thesis, a linear time invariant model is used

by assuming the actuator is a symmetric hydraulic motor. Furthermore, in a crank

mechanism, the relationship between the link rotation angle and the hydraulic pis-

ton displacement is nonlinear so that the dynamics change depend on the operating
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point.

As shown in Appendix B, the governing equations of an electric armature con-

trolled servomotor and a hydraulic motor are similar each other. In the electric

armature controlled servomotor, the dynamic equations are

T = K,i_ = J_

In the hydraulic motor, the dynamic equations are

V dPt

4_ dt

(s.3)

(5.4)

T = D_P_ = J8 (5.5)

--_ + I6_P_ = I6qX. - D_ (5.6)

Equations (5.3) and (5.4) are similar to equations (5.5) and (5.6), respectively. The

block diagram of the two models also show the similarity as shown in Fig. 5.17.a

and 5.17.b. The actuator dynamics can be embedded into the plant dynamics. The

linearized state equations of the plant are

_p = Apzp + Bpup (5.7)

y --" Cpxp

The state equation of the actuator is

(5.s)

_= = A=x= + B=u= (5.9)

Up --" CaT, a

If the loop is closed, the input vector is

(5.10)

u= = G_x, - Cpxp (5.11)
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Fig. 5.18 clarifies the interconnection of the plant and the controller. The corre-

sponding augmented state equations are

¢
J

J zp

/xo

0
,+

B_G_
x_ (5.12)

Y = Cpx_ (5.13)

This general form of augmented equation can apply to a flexible robot. The state

equations of a flexible robot are

0 0 1 0

0 0 0 1

an a12 0 0

a21 a22 0 0

,+

0

0

ZLp

bl

b2

(5.14)

where

M

0 0
K=

0 Kss

_M-1K=
all a12

a21 a22

(5.15)

/ }r/M -1 D., =_ bt

0 b2

Mrs, MII, and ,_/I,.! are the generalized inertia matrices which are related to the

rigid body, the flexible body, and the coupling between the rigid body and the

flexible body respectively. I(I1 is the generalized stiffness matrix. 8 and _ are
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Fig. 5.18: The block diagram interconnectionbetweenthe plant and the actuator
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the generalized coordinates of the rigid body motion and the flexible body motion

respectively.

Using the actuator equations, the state equations of the flexible robot augmented

with the electric armature controlled servomotor and the hydraulic motor are as

follows.

#

(

#

°

_a

0

0

(211

a21

0

0 0 I 0

0 0 0 I

an a12 0 0

a2_ a== 0 0

0 0 _m_.q_ 0
v/4_

0 1 0 0

0 0 1 0

a_: 0 0 I(ibl

a=2 0 0 I_ib=

0 -_-_ 0 -_
L_ Lo

0

0

D=bl

D,,, b=

_ K._g._
v/4_

( 8

r

8

C

+

Pl

+

0

0

0

0

1

0

0

0

0

v/4_

e (5.16)

X_ (5.17)

The only difference in the models is the values of each parameter as shown in

Table 5.3 [3,59]. As shown in the block diagrams of Fig. 5.17, the velocity is fed

back when the actuator dynamics is included. If the velocity feedback terms,

and _ are not included, the system poles are determined by the eigenvalues of
V/4_ '

(sI - Ap)(sl - Ac) as shown in Eq. 5.12. The poles of the combined system are

the combination of those of A_ and Ao. However, if the velocity feedback terms

are included, the system poles are changed. Fig. 5.19 shows the root locus of a

single flexible link when the velocity feedback terms of the electric motor and the

hydraulic motor are changed from zero to the values shown in Table 5.3. When
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Table 5.3: Comparison of system parameters between

a electrical motor and a hydraulic motor

LI1

Lo

La

!
Lo

Electric Motor Hydraulic Motor

3.0E-3 H v 2.6E-12 _--i_
4d N

0.5296 .Y_m_ D,, 15.2E-4 m _"A

v _ 5.$46E8 ,v1.750E2 _ v/_ ,-,.,"_

I.i67E3 -_ A'___._. 2.053E0 .v
H V/43 m.3ec 2

0.333E3 ± _ 0.573E12 Y
ft V/4j m 3 .sec

the electric motor is added, the closed loop system poles move a little bit from the

open loop system poles. On the other hand. when the hydraulic motor is added,

the closed loop system poles move almost to the open loop system zeros. This is

due to the large value of _ compared to
Vl_ L° "

This phenomenon also can be observed in the Bode plot. Fig. 5.20 and 5.21 show

the Bode plot for the angular position of the single flexible link with the electric

motor and the hydraulic motor respectively. The several peaks observed in Fig. 5.20

can not be found in Fig. 5.21 because the system pole is located near the system

zero. The closer a pole is to a zero, the less that mode appears in the output.

In the experiments, Fig. 5.22.a is the Bode plot for the angular velocity of the

single flexible link when it is excited by the electric motor. Because of the encoder

resolution, the angular velocity is measured. Fig. 5.22.b shows the Bode plots for

the positions of two hydraulic cylinders of RALF. The peaks of corresponding to the

system frequencies are not found as predicted in Fig. 5.21. Note that the different

size actuators are compared because of the hardware limitations. Therefore, only
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the qualitative characteristic can be compared. From the above discussion, the

actuator dynamics has a significanteffecton the flexibledynamics. The pole-zero

cancellation observed for joint variablesas the output is not observed for other

outputs, of course. Tip position or strainwillcontinue to show the resonances of

the arm. In addition, itshould be noted that high velocity feedback gains in the

control willalso increase the coupling term and thus make the actuator stiffwith

respect to the disturbances caused by arm dynamics.

5.5 Conclusion

The TREETOPS model of RALF is used for the verification of the analytical

model. The step responses of both models match each other very well. It is verified

that SVD is a stable algorithm for a constrained dynamic system simulation, For

verification of the nonlinear dynamics of RALF, a sinusoidal excitation method is

used with various aznplitudes and frequencies. The response is measured at the tip

acceleration. As shown in the phase plots and the power spectra, the nonlinear

dynamics of a flexible robot is significant compared to that of a rigid robot. The

differences the amplitude of between harmonic peaks as shown in the power spectra

can be used to check the degree of nonlinearity. However, because of the speed

limitation of the current hydraulic cylinder, the nonlinear dynamics of RALF is not

fully checked experimentally.

The actuator dynamics effect on the flexible robot is also investigated. Even

though the electric motor and the hydraulic motor have the s,xme form of dynamic

equations, the effect on the flexible robot can be different due to the difference of

their system parameters. The differences are analyzed by the root locus and the

Bode plot, both theoretically and experimentally.
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CHAPTER VI

Control of RALF

6.1 Introduction

The current RALF structure has some complicated components and geometries

which are hard to describe analytically. As mentioned in the previous chapter, the

actuator dynamics is an important component in the flexible arm dynamics. The

dynamics of an asymmetric hydraulic cylinder is nonlinear. In a large and fast mo-

tion, the nonlinear effect of the asymmetric hydraulic cylinder might be significant.

The crank mechanism of the hydraulic cylinder and the offsets ( See Appendix Fig.

C. 1) make the symbolic modelling difficult. Therefore, before implementing a mod-

em control algorithm which requires an accurate dynamic model, a single input

multi output controller is implemented using cylinder position and beam strain at

each link independently. The performance of the classical controller can be used as

the base performance for implementation of a more advanced control algorithm in

the future.

6.2 Controller Design and Experiment

The position of each hydraulic cylinder is fed back using an LVDT sensor for the

rigid body motion control. Because the hydraulic actuator has a velocity feedback

loop internally, the position feedback with lag compensator has been generally used
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for the position control of the hydraulic system [49].

- = K, {=1,2 (6.1)
e{ ,s _- _.,'i/'3{

The lag compensator Eq. (6.1) is used to compensate the steady state error due

to the friction. However, because the gravitational torque is much larger than the

dynamic error correction torque, the compensation speed is slow. Therefore, the

addtional constant torque is included to compensate the external torque due to

gravity force. Gains and coei_cients of the lag compensator are adjusted to obtain

the underdamped step response. The parameters of the lag compensator are shown

in Table 6.1. A cycloid curve is used for the trajectory profile. The reference tra-

jectories used consist of the combination of the extension and retraction motion of

two joints as shown in Table 6.2. The controller is digitized using a bilinear trans-

! ,-_.! and implemented in a Micro-Va.x II computer. Theformation method, s = T,--+1,

sampling frequency used, T,, is S ms. The controller implementation is described

in Appendix C. The control loop of the upper link is closed first and followed by

the lower link. Fig. 6.1 and 6.2 are experimentally measured time histories of each

cylinder position in cases of small motion and large motion respectively. In the two

cases, the system follows the reference trajectories well. Fig. 6.3 shows measured

time history of each cylinder position when a 30 ib payload is added at the tip. The

system still'follows the reference trajectories well.

The strain is fed back to suppress the beam vibration. The strain feedback

controller can be designed by root locus. The direct strain feedback pushes system

poles into the right half plane as shown in Fig. 6.4. Therefore, the strain rate

feedback is required to give flexible mode damping. The strain rate can be obtained

by numerical differentiation of the measured strain. However, a low pass filter is

additionally needed to reduce the noise effect. The strain rate also can be obtained
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Table 6.1: parameters of a lag compensator

._ _ K

Lower Link 0.5 Hz 2.0 5000.

Upper Lir_k 2.0 Hz 4.0 5000.

Table 6.2.a: Reference trajectory I (small motion)

Lower Link [in]"

Upper Link [in]"

Moving Time [sec]

Pause Time [sec]

1st 2nd 3rd 4th

2.0 2.0 4.0 2.0

2.0 4.0 4.0 2.0

2.0 2.0 2.0 2.0

I0. i0. I0. I0.

Table 6.2.b: Reference trajectory II (large motion)

1st 2rid 3rd 4th

Lower Link [in]" 2.0 2.0 8.0 2.0

Upper Link [in]" 2.0 4.0 4.0 2.0

Moving Time [sec] 2.0 1.0 1.0 1.0

Pause Time [sec] 10. 15. 15. 15.

" absolute displacement of the cylinder
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from a filter. The generalized structural filter presented bv Wie [78] is an extension

of the phase -lead, -lag, bandpass, and notch filter. This approach for controlling

flexible systems has been proposed for control of large space structures. We will

explore its use for flexible arm control. The concept is based on various pole-zero

patterns that can be realized from a second order filter presented as follows.

+ 2Cps/ .+ i) (6.2)

By different choices of the coefficients of the above second order filter, several fre-

quency shaping filters such as phase lead and lag, notch, baz_dpass can be easily

realized. In addition to these minimum-phase filters, various nonminimum-phase

filters can also be realized from this second order filter. For stabilization of flexible

modes, a phase stabilization technique and a gain stabilization technique using the

phase lead or the notch filter have been used in practice [77,17,81]. Phase stabi-

lization provides the proper gain and phase characteristics at the desired frequency

to obtain a closed loop damping. Gain stabilization provides attenuation of the

control loop gain at the desired frequency to ensure stability. In the system whose

parameters are not "known precisely, phase stabilization is more desirable. High loop

gain can be realized if the desired mode does not cross the -180 deg. 4" n.360 deg.

The first approach for vibration suppression is to change the phase by the phase

lead Biter. The phase lead filter can be obtained by setting _p > w, and _p - _z = _c

as shown in Fig. 6.5.a. As shown in Fig. 6.5.b, the gain increase at higher frequency

can be approximated as 40 • log(_). Ratio _ greater than 2 should be avoidedw,

because a large ratio amplifies me_urement noise. The filter coe_cients are chosen

by setting w_, and w. on either side of the mode to be stabilized. The damping ratio

of the filter can be changed arbitrarily. For C'¢= I, the conventional phase lead filter

with poles and zeros on the real axis can be realized. Fig. (3.6 and 6.7 show the
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root locus when the phase lead filter is used. The filter gain is varied. The phase

lead filter can stabilize the modes of the upper link and the lower link conditionally.

The effect of filter damping ¢c is not significant.

The second approach is to employ the non_minimum phase allpass filter which

maintains the control loop gain and provides the proper phase lag to the flexible

mode as shown in Fig. 6.$.b. As shown in Fig. 6.8.a, the nonminimum phase

allpass filter can be obtained by setting _p = _', = wc and _'p = -_',. In Fig. 6.9,

several filter frequencies, _.,p and _,., are tried for the stabilization of the upper link

mode. 30 filter gains which are logarithmically equally spaced between 1 and 1000

are chosen. If the filter frequency is higher than that of the upper link mode to

be stabilized as shown in Fig. 6.9.c, it is hard to stabilize the upper link mode by

the filter. However, if filter frequency is lower than that of the upper link mode,

the filter can stabilize the upper link mode. As shown in Fig. 6.9.a and 6.9.b,

the system poles move more slowly by the lower filter frequency for the same gain.

Therefore, the lower filter frequency of Fig. 6.9.a is more desirable. In Fig. 6.10,

the same technique is applied to the lower link mode. In this case, if the filter

frequency is lower than that of the lower link mode to be stabilized, it is hard to

stabilize the lower link mode by the filter as shown in Fig. 6.10.a. However, if the

filter frequency is higher than that of the lower link mode, .the filter can stabilize the

lower link mode conditionally. As shown in Fig. 6.10.b and 6.10.c, the system poles

also move more slowly by the lower filter frequency for the same gain. Therefore,

the filter whose frequency is close to the lower link mode is more desirable. Fig. 6.11

and 6.12 are simulated time responses of an analytical model to verify the results

observed in Fig. 6.9 and 6.10 respectively. As shown in Fig. 6.9 and Fig. 6.10, the

system response is dominated by the lower link mode because the lower link mode

is close to the imaginary axis. As expected in the previous discussion. Fig. 6.11.a
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and Fig. 6.12.b show the best response for the same filter gain (KI = 10).

In experiment, the strain is detected near the connecting points of the hydraulic

cylinder and the link (Appendix Fig. 6.11). Fig. 6.1.b, 6.2.b, and 6.3.b show

the strain histories of the previous three cases. The beam does not vibrate much

except when star:ing the motion because of current speed lir.0.it and smooth cycloid

trajectory. In order to magnify the vibration, a faster reference trajectoo- is chosen.

New reference trajectory, is 2 in move of the lower beam and 1 fn move of the upper

link during 0.1 sec. The controller is also di_tized using a bilinear transformation

method.

First, the strain is fed back through the phase lead filter. Fig. 6.13.a shows the

strain history of the upper link strain when no strain is fed back. As shown in Fig.

6.13.b, the frequency spectrum has two peaks corresponding to the lower and the

upper link frequency respectively. Fig. 6.14.a shows the strain history of the upper

link when the strain is fed back by the phase lead filter. As shown in Fig. 6.14.b,

the peak corresponding to the upper link is significantly reduced. Fig. 6.15.a shows

the strain history of the lower link strain when no strain is fed back. As shown in

Fig. 6.15.b, frequency spectrum has two peaks corresponding to the lower and the

upper link frequency respectively. Fig. 6.16.a shows the strain history of the lower

link when the strain is fed back by the phase lead filter. As shown in Fig. 6.16.b,

the peak corresponding to the lower link is also reduced. However, a higher gmn

makes the system unstable. Because the phase lead filter excites higher modes while

changing the phase, high gain may excite the unmodelled dyna.mics. Furthermore,

the restrictionon _ Limitsthe selectionof f,Ater parameters.
Wl

Secondly, the strainisfed back through the nonminimum-phase allpassfilterto

give a proper phase margin without changing the gain. Because thisfilterdoes not

change the loop gain, itis easy to adjust the filtercoe_cients and high feedback
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gain is possible. Based on the root locus analysis, the filter frequency for the upper

link is chosen as 3.0 Hz which is below the upper link frequency (9.8 Hz). The filter

frequency for the lower link is chosen as 5.4 Hz which is the same as the lower link

frequency (5.4 Hz). The filter damping ratio is chosen as 0.7. Therefore, coefficients

of the nonminimum phase allpass filter used are shown in Table 6.3.

Fig. 6.17 and 6.1S show the strain histories and frequency spectrum of the

upper tink and the lower link when the strain is fed back through the nonminimum

phase allpass filter. The filter is designed for each link using the information of

the corresponding strain. The vibration is significantly reduced. However, the

frequency corresponding to the other link still remains in the time response as

shown in Fig. 6.17.a and 6.18.a. Suppression of both frequencies at the same time

is difficult because it requires a higher order filter. Furthermore, because the two

frequencies have different phase, the phase adjustment for one frequency makes the

other frequency unstable.

Until now, each controller is designed independently when only the correspond-

ing link is moved. Next, the responses axe measured when the both joints axe moved

at the same time. Fig. 6.19.a shows the time response of the upper link when no

strain is fed back. Fig. 6.19.b shows the corresponding frequency spectrum. How-

ever, when the strain is fed back through the nonminimum phase allpass filter, the

vibration is significantly reduced as shown in Fig. 6.20. Similarly, the vibration of

the lower link also reduced as shown in Fig. 6.21 and Fig. 6.22. Compared to Fig.

6.11.a and Fig. 6.12.b, time responses of each link have more damping because of

the structural damping. Furthermore, measured strain has offset due to the gravity

effect.

In order to check the robustness to frequency change, the 30 lb payload is at-

tached at the tip. The same type test as above has been performed. Fig. 6.23 and
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6.24 show the strain histories of the upper and the lower link respectively when no

strain is fed back. By attaching the payload, the frequency of the upper link be-

comes the fundamental frequency. That frequency is dominant as shown in the both

frequency spectra. Fig. 6.:25 and 6.26 show the strain histories of the two links when

the strain is fed back through the nonminimum phase allpass filter. The original

filter makes the system unstable. Even though the gain is reduced to one fourth of

filter gain, the strain feedback cannot reduce the vibration. However, by changing

the filter frequencies of the upper link slightly, the vib,'ations are reduced as shown

in Fig. 6.27 and 6.28. The filter coefficients of the upper link are changed as shown

in Table 6.4. However, the better response is hard to obtain just by the filtering

technique because the two system frequencies are close together when the payload

is attached. Fig. 6.29, 6.30, and 6.31 show the strain histories when strain is fed

back through the nonminimum phase allpass filter. These use the same trajectory

as Fig. 6.1, 6.2, and 6.3.

6.3 Conclusion

The independent control scheme using position and strain is applied for the

control of RALF. Position feedback with a lag compensator is successfully imple-

mented for the rigid body motion control. However, the direct strain feedback does

not reduce the vibration. For the vibration suppression, a phase lead and a non-

minimum phase allpass filter are used. In experiment, a nonminimum phase allpass

filter is easier to implement than a phase tead filter. As shown in strain histories

of an analytical model and experiment, the proper filter frequencies can be selected

using root locus. Therefore, even though there is a limitation in using these filters

for a system with changing frequencies, the beam vibration is reduced significantly
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Table 6.3: Nonminimum phase allpass filter coefficients

Lower Upper

Gain 50. SO.

_,,p 5.4 3.

w_. 5.4 3.

¢p 0.7 0.7

_z -0.7 -0.7

Table 6.4: Nonminimum phase allpass filter coefficients

when the payload is attached

Lower Upper

Gain 12. 20.

wp 5.4 I.

Wz 5.4 I.

_,, 0.7 0.7

G -0.7 -0.7

by the nonminimum phase allpass filter. The sensitivity to payload variation is

pronounced, however and is a deterrent to using the allpass filter in manipulator

control.

. . : ; .¢.
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CHAPTER VII

Summary and Future Work

7.1 Summary

For the purpose of exploring possible industrial applications, a large lightweight

manipulator was previously constructed at the Flexible Automation Laboratory

of the Georgia Institute of Technology. For added payload capacity, the flexible

parallel mechanism is added to sustain the load without increasing weight very

much. If RALF is assumed as rigid, the dynamics of RALF can be easily analyzed

using the theories which have been developed for rigid robots. However, in a flexible

robot, there are several problems which are not observed in a rigid robot. In this

thesis, solutions of these problems axe evaluated. This section briefly summarizes

the important observations and results of the previous sections.

First, the dynamic equations of motion of flexible robots are complicated because

of the link deformation which is expressed by the summation of admissible functions.
°

The existing symbolic method generates complicated equations of motion. This

thesis develops a structurally well organized and computationally efficient form of

the equations of motion using the Jacobian matrix. The Jacobian matrices are

derived from the position vectors directly using the MJac function of SMP. Using

this Jacobian matrix, the mass matrices and the gravity force vectors are derived.

The velocity coupling terms are derived from the mass matrices using the Christoffel

symbol. One problem of this method is that the velocity coupling terms comprise
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many elements. However, using some structuralproperties,such as symmetry and

reflectivecoupling, these elements can be expressed by a few parameters. The

resultingequations of motion have a structurewhich isusefulto reduce the number

of terms to be calculated,to check correctness,or to extend the model to higher

order.

Secondly, the parallei link mechanism with flexible links requires nonlinear al-

gebraic constraint equations to describe the relationship between angles within the

dosed loop chain. Therefore, a mixed set of differential equations and algebraic

equations must be solved simultaneously for the constrained system dynamics. Be-

cause the integration of these equations is sensitive to numerical error, the conven-

tional numerical methods are not adequate to solve these equations. Among several

methods available to solve these numerical difficulties, a coordinate partitioning

method is used in this thesis. The generalized coordinates are transformed to a

set of independent coordinates on the tangent hyperplane of the constraint surface.

The transformation matrix used is the null space matrix of the constraint Jacobian

matrix which can be derived by the singular value decomposition. Because the La-

grange multiplier is eliminated from the equations of motion by the transformation,

the constraint forces do not affect the motion on the constraint surface and only

maintain the system on the constraint surface. Therefore, numerical integration

on the tangent hyperplane does not result in significant constraint violation. This

thesis applies this constrained system analysis technique to a flexible parallel link

mechanism. It is numerically verified that the SVD method is a stable algorithm

to solve a constrained system.

Third, mode shape functions are employed to describe the elastic deformation of

the flexible manipulator. In the assumed mode method, mode shape functions need

only to be admissible functions which satisfy the geometric boundary conditions.
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However,a large numberof modesarerequired to obtain accuratefrequencies.The

number of modesto be included can be reducedby choosingappropriate functions

which satisfy static equilibrium at the interfacebetween the links. Thesefunctions

canbe derivedsystematically usingcomponentmodesynthesis.Variouscomponent

mode synthesisapproacheshavebeendevelopeddependingon the assumedbound-

ary condition. Different boundary condition assumptionsrequire different coordi-

nate systemsto describethe elastic deformation. Therefore. the method which fits

with the current coordinate systemwaschosen.In this thesis,proper mode shape

functions for a reducedorder modelof RALF areobtained usingthe loadedinterface

componentmode synthesismethod. Comparisonbetweenthe finite elementmodel,

the componentmode synthesismodel, and the analytical modelof RALF showthat

the mode shapefunctions which are determinedby componentmode synthesisim-

prove the convergence.However,thereare somediscrepanciesbetweenthe analytic

model and the experiment becausethe real systemhas a complex structure which

is difl:icult to analyze with the analytical method. For example, the upper link

requires a detailed model to predict the better approximate boundary condition.

Thesediscrepanciesare explained using a simplified and a detailed finite element

model in this thesis.

Fourth, a direct comparisonbetweenthe analytical model and the real system

wasdifficult becauseof the unmodelleddynamicsand the parameteruncertainty of

the real system. Therefore, as an intermediate step, a general multibody flexible

dynamics code - TREETOPS - wasusedfor the verification. The step responseof

the modelsmatch eachother very well.

Fifth, it is an important job for control to detect the degreeof the nonlinearity in

the dynamics. In this thesis, the nonlinearity of RALF is studied using a sinusoidal

excitation. As shownin the phaseplot and power spectra, the flexibility effect in
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nonlinear dynamics is significant. However, the nonlinearity of RALF is not fully

excited due to the speed limitation of the hydraulic cylinder.

Sixth, the actuator dynamic effect on the flexible robot was investigated. Even

though the electric motor and the hydraulic motor have tl,e same form of dynamic

equations, their effect on the flexible robot is different due to the difference of

their system parameters. In this thesis, the effects of an actuator dynamics on

a flexible robot are analyzed by root loci and Bode plots, both theoretically and

experimentally.

Seventh, in order to show the base performance for an advanced control, this

thesis uses a decentralized control scheme using cylinder position and beam strain

for trajectory following and vibration suppression. The rigid body motion is con-

trolled by the position feedback using a lag compensator. The beam vibration is

reduced significantly by strain feedback using the nonminimum phase allpass filter.

Using these simple controllers, a good result is obtained.

7.2 Future Work

First, the proposed derivation method of equations of motion using Jacobian

matrix has been applied only to a two joint planar system, RALF. Furthermore,

some procedures for deriving the velocity coupling terms are not computerized. In

the future, an even more computerized derivation method is required for multi-link

flexible body dynamics.

Secondly, one problem of a coordinate partitioning method is the preservation

of continuity in the basis of the nullspace. Since the constraint Jacobian matrix

is time-varying, the basis of the nullspace which forms a basis orthogonal to the

tangent plane of the constraint surface is also time-varying. However, performing
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singular valuedecompositionat eachinte_ation stepwould result in a tremendous

increasein computing time and requiresnumericalinte_ation algorithmswhich use

information only from the current step. To overcomethis problem, Liang and Lance

[39] proposed a differentiable null spacemethod. This method generatesa set of

independent coordinatesthat areon the constraint surfacerather than only on the

tangent hyperplane. Another solution is the modification of the constraint violation

method. Chang and Nikravesh [16] applied an adaptive algorithm to stabilize the

violation. Park and Haug [57] developed a hybrid numerical method which combines

a constraint stabilization method and a generalized coordinate partitioning method.

As we can see here, the subject of numerical methods for solving a mixed set of

algebraic and differential equations is still an open research area.

Third, mode shape functions of RALF were derived by hand calculation using

component mode synthesis method from the output of MSC/PAL. An computer-

ized program is required for different configurations of the structure. Furthermore,

natural frequencies and modes of the system can be varied due to several effects -

payloads, contact with the environment, joint position and velocity feedback gains

[11]. The study of these uncertainties will require much work in the future.

Fourth, nonlinear dynamics verification is a difficult job and has not been fully

studied. Chaotic vibration theory might be useful to study the nonlinear vibration

[5O].

Fifth, as mentioned before, there are some uncertainties in the dynamic model

of the flexible robot under the current theories. Furthermore, the system dynamics

has a strong interaction with the controller output because it changes the boundary

condition of the beam. Therefore. control schemes which are sensitive to the model

uncertainty are difficult to apply. Furthermore. even the characteristics of the linear

control of the multi-link flexible robot have not fully been studied. Root loci help us
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to understand the control characteristics of the flexible robot [7]. The combination

of state space and frequency domain techniques through a model update procedure

has been shown effective in determining the feedback gains of the flexible robot [9].

Recently, a frequency domain analysis of a multi input and multi output system has

been studied [44,20] in many areas. EspeciMly, the Multivariable Frequency Domain

Toolbox of .'tfatlab [] 2] implements several frequency domain design techniques such

as the Nyquist Array method, the Characteristic Locus method, the Quasi- Classical

Design method, and the Multivariable Root Locus method. Using these computer

aided design techniques, better studies on the linear control of the multi -link flexible

robot can be expected.
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APPENDIX A

Derivation of Equations of Motion using Jacobian Matrix

In this appendix, a Lagrangian method is used to derive the equations of motion

for a flexible robot. The Jacobian matrices are used to derive the mass matrices and

gravity force vectors. The coefficients of centrifugal and Coriolis force are derived

from the mass matrices.

The total kinetic energy of an elastic link can be written as

T = _ rp rppvA_dx p
- pint

(A.1)

where b is the number of links, ÷p is the velocity vector of any point on the elastic link

p, and pp, Ap, Ip are the density, the area, and the length of link p respectively. The

velocity vector can be expressed by the Jacobian matrix and generalized velocity

vectors qp.

Substitute (A.2) into (A.1),

÷p = 44p (A.2)

l _'_ jo" ( 4ilp )r (4(7, )ppApdx p
T = 5,=i

I b _l_= I: 4 4p,A,d=,14,
" p=l

Equation (A.3) can be written in a scalar form as

T = -_
" i----I j=l p=l

(A.3)

(A.4)
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where n is the number of the generalized coordinates, Diip is ij element of the mass

matrices f_ JTjpppApdzp for the pth link. If Mij is defined as

b

M,, = _ D,,, (.a..5)

Equation (A.4) can be written as follows

T=_
-- i=l 3=1

The potential energy due to gravity is

U3 - _ fo"grr, p,.4,dz, (A.7)
p----1

where g is the 3 x 1 gravity acceleration vector. The potential energy due to elastic

deformation is

l_f06 02u,
--- E,I,(.-_x2 )2dx, (A.$)

where E is Young's modulus of elasticity, and I is the area moment of inertia, u is

the elastic deflection which can be expressed by m modes and modal coordinates.

rll

,,.(=,t) = _ ¢.,(=)_',,_(t)
k=l

Therefore, the elastic energy can be rewritten as (A.11)

U, = ; _ =(_,_)2d=,
" p=l k----1 p

where

" p_lk=l

= [ /: ,O_O_ )2.,/G_ 2' Ep p(--_T "=.
Ozp

If the generalized coordinate is expressed as

(A.9)

(A.Z0)

(A.ZZ)

{qj} = {O,,(pk} T, j = 1 ..... n (A.12)
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where n (= b + m) is the number of the generalized coordinates, Op is the rigid

body motion coordinates of link p, _pk is the k th modal coordinates of link p, the

elastic energy can be rewritten by the generalized coordinates as follows.

" z=l j--I

Using the kinetic energy and the potential energy, each term of Lagrange's equa-

tion

d (OT aT O(U_ + U,)
dt Oqi ) - _ + Oq_ = Qi (A.14)

can be written as follows. If the kinetic energy (A.6) is substituted into (A.13),

±d OT) _ --.gi-q, (A.15)d-i(o(t, = d( ,'%0_)= M,_%+
= j=l j=l

where

the first term becomes

dM_j f OMo dqk = f OMo dl_
k----1 k=l

(A.16)

d OT

:=_ J=_}=_ . qiqk

_ f MiiO._ + f _i .OM 0 0M,,.- 5(--NTq_+-NC)om
jml J----.l k=l

and the second term becomes

O2" 0 1

;:I k=l

i=Ik=1 20ql il.iilk (A.17)

Next, if the potential energy (A.7) and (A.11) are substituted into (A.13), the third

term becomes

OU_ b fol, rOrpOq--7: Z 9 _o,A,e_,

: (A.18)
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where dp0) is the i th column of Jacobian matrix J_. The third term can be written

by a scalar because the gravity is acting in one direction. Therefore, if the gravity

vector has nonzero term in r th row,

Ug = G,9 (A.19)

where

b _01_G, = _ J,[r, ilp_,A, dx,
p=l

where JT,[r, i] is r th row and i th column of Jp. The fourth term becomes

(A.20)

0q--7= ,__,j=,

rn

-- _ K, iq j (A.21)
j--1

Therefore, the Lagrangian equations of motion can be written symbolically as fol-

lOWS.

or

j=l j=l

j=i _=l 2 Oq_ + Oqi Oqi )(_j(Tk+ Gig = ri

(A.22)

n _ n n

Miiqi + _ K,iqi + _ _ Cjk(i)(Ti(_k + G,g = r_ (A.23)
j----1 j----I 3----1 kml

where q is the vector of generalized coordinates, M is the generalized mass matrix,

K is the elastic stiffness matrix, C is the coefficient matrix of Coriolis and centrifugal

forces, G is the gravity force vector, v is the generalized force vector.
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APPENDIX B

ACTUATOR DYNAMICS

The dynamics of a hydraulic motor is similar to that of an armature-controlled

servomotor. In this appendix, the dynarrfics of the electric motor and the hydraulic

motor are summarized and compared.

B.1 Armature Controlled Servomotor

Consider the armature-controlled dc motor shown in Fig. B.1 [55]. In this

system, For a constant field current, the flux becomes constant, and the torque

becomes directly proportional to the armature current.

T = K,i. (B._)

where Ki is a motor-torque constant. For a constant flux, the induced voltage eb is

directly proportional to the angular velocity 8.

eb = Kb0 (B.2)

where K6 is a back emf constant. The differential equation for the armature circuit

is

di,,
Lo-_-_- +/Li. + eb = e. (B.3)

or

di_
L°-_ + R.i. = e. - Kb_ (B.4)



176

P_ - armature-winding resistance, ohms

L_ -- axmature-winding inductance, henrys

io - annature-winding current, amperes

if - field current, amperes

e_ - applied armature voltage, volts

eb - back emf, volts

0 -- angle of the motor, radians

T - torque delivered by the motor, N - m

J -- equivalent moment of inertia of the motor and load

referred to the motor shaft, Kg - rn 2

The armature current produces the torque which is applied to the inertia.

T = g_io = J_ (B.5)

B.2 Hydraulic Actuator

Consider the servova/ve controlled hydraulic motor shown in Fig.

this system, The lineaxized servovalve flow equations axe

QL = K,z. - K_PL

B.2 [49]. In

(B.s)

where

QL = _ = load flow, mS/sec

PL = P1 - P2 = load pressure difference, N/m 2

From the continuity equation of each motor chamber, the continuity equation

for all hydraulic actuators is

y,.
QL = D,,,O + C,,,PL + -'_PL (B.7)
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P1, P2

Xv

IG

K_

D_

Ct_

T

J

= forward and return flows, m3/sec

= forward and return pressures, N/m 2

-- valve displacement from neutral, m

-- valve flow gain, rn3/sec/rn

= valve flow-pressure coefficient, rn4.sec/Kg

= volumetric displacement of motor, rn3/rad

= total leakage coefficient of motor, rn4.sec/Kg

- total contained volume of both chamber, rn 3

= effective bulk modulus, N/m _

= torque generated by motor, N - m

--- total moment of inertia of motor and load

referred to motor shaft, Kg - rn 2

Ko, = Kc + C..

-- total flow-pressure coeftlcient, rn4.sec/Kg

Thus the load flow QL is consumed by flow to displace the actuator, leak'age, and

flow stored due to compressibility. The leakage is usually neglected. From (B.6)

and (B.7),.

or

D,,,8 + _ I_L = Kqx, - Kc, PL (B.8)

V$ °

where

The torque balance equation is

(B.9)

T = PLD_ = J8 (B.IO)
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Equations (B.4) and (B.5) resemble equations (B.9) and (B.10), respectively.
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I_,= COnStCJrlt

Figure B.I: Schematic diagram of an az-mature-controlled DC motor

Figure B.2: Schematic diagram of a hydraulic motor
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APPENDIX C

Controller Implementation

C.1 Software Implementation

This section gives some comment on data acquisition, transducer voltage conver-

sion, and the computer implementation of path planning of the current controller.

The detailed descriptions of controller implementation were explained in J.D. Hug-

gins's thesis [28].

1) A set of assembly language subroutines that could be called from Fortran

or C programs are used to derive a programmable clock and the A/D and D/A

board. The data is read into the bmTer using the subroutine DTSBR and DTSBWB.

DTSBR reads the A/D channels. DTSBWB causes the computer to wait until the

buffer is full before processing. After initialization, the DTSBR and DTSBWB

subroutines can be called repeatedly to transfer the data.

2) Calchlate the length of the actuators from read data. The minimum and

maximum values of each cylinder length and its digital numbers are measured as

in Table C.1. Therefore, the relation between the cylinder length y_ and its digital

numbers x_ can be described as equation (C.1).

y_=rn_z_+b_ (i=1,2) (C.1)
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The coefficientm_ and b,can be calculated as follows

28.750 - 34.406
rnl = = -1.4144 x 10.3 (C.2)

1080 + 1941

bl = 28.750 + 1.41444 x 10 .3 x 1080 = 31.566 (C.3

29.625 - 35.375
m2 = = -1.903343 x 10.3 (C.4

1080 + 1941

b2 = 29.625 + 1.903343 x 10.3 x 1080 = 31.6806 (c5)

3) As shown in Fig. C.1, the attachment points of actuators are offset from the

centerline of the beams. The initial angles of each link are calculated from geometry

as shown in Fig. C.2.

810 = 811 - 812 + 813 = 36.575 ° (C.6)

8__0= 821 - 82_, + 8°.3 = 70.334 ° (C.7)

where the connecting link and the upper link are not parallel each other due to the

bracket offset of the upper link. Therefore, 823 is the angle difference between the

connecting link and the upper link.

Table C.I: Cylinder length and its digital number

Cylinder

1

Length Number

Min 28.750 in + 1991

Max 34.406 in - 2008

Min 29.625 in + 1080

Max 35.375 in 1941
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4) The path planning algorithm needs the initial position, final position, and

the time for the move. The flow chart of path planning and controller is depicted

in Fig. C.3.

5) The cylinder position is inversely proportional to the cylinder bore size. Be-

cause the two cylinder bore diameters are different, the gains of two amplifiers are

different from each other.

C.2 Equipment List

COMPUTER

Model

Company

: Microvax II (vector of VS21W - A2)

: Digital Equipment Co.

ADDITIONAL BOARDS for Micro Vax

Model : DT2769 - Real Time Clock Board

Model : DT2785 - Analog I/O system

8 channels A/D multiplexed

2 channels D/A

12 bit resolution

: Data TranslationCompany

SIGNAL ANALYZER and DISK STORAGE UNIT

Model

Model

Company

: 3562A - Digital Signal Analyzer

: 9122 - Disk Storage Unit

: Hewlett - Pac'la_d Co.
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Figure C.I: Attachment points of actuators and bracket offsets of links
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Figure C.2.a: Initial angle of the lower link
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Figure C.2.b: Initial angle of the upper link



IS5

I

Read
finaJ cytinder
position fi'om
keyboard

Conversion [Tom
cylinder position
to rotaJ]on angle

Read
inil_aJcylinder
position from
LV_T

Convert the vaJue$
flrom cylinder
pos_on to
rotation angle

PaIh Planning

IRead lime, T
for the move
from keyboard

CaJcumte
number of
execu_on
steD. N

Read current
cyfinder position
h'om LVOT

Conversion from
cylinder posil_on
to rota_on angle

Corerol Subrou_

D/A

l
Figure C.3: Flow chart of path planning
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STRAIN GAUGE

Model

Company

: A - 13-250MQ - 350

: Measurements Group Inc, Micro Measurement Div.

STtKa.IN GAUGE AMPLIFIER

Model : 3B18 - Wide band

Company : Analog Devices

HYDRAULIC COMPONENTS

Servo Valves

Model

Company

: 73 - 102A Two Stage Servovalves - 5 gpm

: Moog, Inc

Cylinder of Lower Link

Model : H - PB - 2 Cylinder

Bore : 2.0 in.

Stroke : 20 in.

Rod Diameter : 1.00 in.

Seals : Teflon

Weight : 35 lbs.

Company : Atlas Cylinder Corp.

Cylinders of Upper Link

Model : N2C - 3.25 x 40 Cylinder
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Bore : 3.25 in.

Stroke : 40 in. (modified to 17 in.)

Rod Diameter : 1.75 in.

Seals : Buna- N

Weight : 52 ibs.

Company • Hydroline Mfg. Co.

POWER AMPLIFIER

Model

Spec.

Company

: BOP15 - 20M

: 20amp, 15 volt, 300kHz crossover

: KEPCO
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APPENDIX D

SMP Code

In this appendix. SMP codes for the derivation of symbolic equations of motion

of the lower and the upper links are described. Figt,.re D.1 is the flow chart of SMP

code. In these codes, program is separated into several files because one program

depletes computer memory. First, Jacobian matrices are derived from the position

vectors using Milac function of SMP as shown in Fig. D.2. Several simplication

procedures are required to generate a compact form of output. Secondly, elements

of the mass matrices and the gravity force vectors are obtained using .]acobian

matrices as shown in Fig. D.3. Third, the symmetric elements and the reflective

coupling elements of Christoffel symbol are generated as shown in Fig. D.4 and

D.5, respectively. Properties which are unique in flexible body dynamics are also

included in Fig. D.4. For obtain]ng more reduced elements of velocity coupling

matrices, additional simplications of the output are required by the supervision of

the analysE. Finally, velocity coupling matrices are derived as shown in Fig. D.6.

using the Christoffel symbol and the matrices are simplified from Fig. D.4 an D.5.
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POSITION VECTOR

l
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Figure D.I: Flow chart of symbolic program
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/* Symbolic Program of Lower and Upper Link */

cl:Cos[thl]

sl:Sin[thl]

cl2:Cos[thl+th2]

sl2:Sin[thl+th2]

/*

/*
Position vectors */

2 modes per each link */

rl:(xl cl - pll qll sl - p12 q12 sl\

,xl sl + pll qll cl + p12 q12 cl}

r2:(11 cl-plle qll sl-pl2e q12 sl \

+ x2 c12-p21 q21 s12-p22 q22 s12 \

,ii sl+plle qll cl+pl2e q12 cl \

+ x2 s12+p21 q21 c12÷p22 q22 c12)

/* generalized coordinates */

q:(thl,th2,qll,q12,q21,q22}

/* Substitutions */

sb0:Sin[$x]^2->l-Cos[$x]^2
sbl:cl cl2->c2-sl s12

sb2:cl sl2->s2+cl2 sl

sbS:pl! qll + p12 q12 ->ul

sb6:plle qll + pl2e q12 ->ule

sb7:p21 q21 + p22 q22 ->u2

/* Find Jacobian matrices */

<XMJac

jcl:Cb[MJac[rl,q],(-cl,-sl}] /* C.b: Combine */

j c2 :Cb [MJac [r2, q], (-cl, -c12, -sl, -s12 } ]

jvI:S [jcl, {sbS,sb6,sb7} ]

jv2 :S [jc2, (sb5, sb6, sbT} ]

/* S: Substitute *I

jvlt:Trans[jvl]

jv2t:Trans[jv2]

/* Trans: Transpose */

Figure D.2: Symbolic program of Jacobian matrices
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/* Find Mass Matrices */

m: (al jvlt.jvl + a2 jv2t.jv2 )

mll:Ex[S[Ex[m[1,1]],{sb0,sbl,sb2)]]

mZ2:Ex[S[Ex[m[l,2]],{sb0,sbl,sb2)]]
mlZ:Ex[S[Ex[m[l,3]],(sb0,sbl,sb2}]]
ml4:Ex[S[Ex[m[l,4]],{sb0,sbl,sb2}]]

ml5:Ex[S[Ex[m[l,5]],(sb0,sbl,sb2}]]

ml6:Ex[S[Ex[m[l,6]],(sb0,sbl,sb2)]]

m22:Ex[S[Ex[m[2,2]],{sb0)]]
m23:Ex[S[Ex[m[2,3]],{sb0,sbl,sb2)]]
m24:Ex[S[Ex[m[2,4]],(sb0,sbl,sb2}]]

m25:Ex[S[Ex[m[2,5]],{sb0}]]
m26:Ex[S[Ex[m[2,6]],(sb0)]]

m_:Ex[S[Ex[m[3
m34:Ex[S[Ex[m[3
m35:Ex[S[Ex[m[3
m_6:Ex[S[Ex[m[3

,3]],(sbo)]]
,4]],(sbo)]]
,5]],{sb0,sbl,sb2)]]
,6]],{sb0,sbl,sb2)]]

m44:Ex[S[Ex[m[4
m45:Ex[S[Ex[m[4

m46:Ex[S[Ex[m[4

,4]],{sb0)]]
,5]],(sb0,sbl,sb2)]]
,6]],(sb0,sbl,sb2)]]

mSS:Ex[S[Zx[m[S,S]],(sb0)]]
mS6:Ex[S[Ex[m[5,_]],(sb0)]]

m66:Zx[S[Ex[m[_,6]],{sb0)]]

/* Find Gravity Vectors */

gl:al jvl[2,1] + a2 jv212,1]

g2:a2 jv212,2]

/* Ex : Expension */

Figure D.3: Symbolic program of mass matrices and gravityvectors
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"oZ. ou_:" ]

/* Symmetric Propez_:y of Christoffel Symbol */

sym::Put[c[j,k,i]-(m[i,j,k] + mCi,k,j] - mCj,k,i])/2,

/* Simplica_ion */

.,[Sx,Sy,l]:0
,,'CSx,Sy,$:] - ,,,CSy',Sx,$z] :o

/* flexible mass

/* independen_ of _heta 1 */

/* sy=meCry -/

=a_rix is no_ */
/* function of flexible coordinaUes */

DoCi,3,n,DoCj,3,n,mCi,j,$z]:0]]

OoCi, Z,Do Cj ,:,DoCk, j, _-,sy=] ]]
Do[i,2,DoCj,2,DoCk, 3,n, sym] ]]
DoCi,2,DoCj,3,n,DoCk, j,n,sym] ]]
Do[i,3,n, DoCj,2,Do[k,j,2,sym] ]]
DoCi,3,n,DoCj,2,DoCk, 3,n,sym ]]]

Figure D.4: Symbolic program of symmetric Christoffel symbol

/* Reflective Coupling P_oplrt'y of Chris_offel Symbol*/

ref::'rfCi>-j & E>-J, Pu_CcCj,i,k]--cCj,k,i],"c2-ou_"]]

DoCi,2,OoCj,2,DoCk, J,2,ref] ] ]
Do[ i,2, OoCj, 2, Oo[k, 3,n, =-f] I 1
Do Ci, 2, OoCj, _, n,Oo Ck, j, n, z'm:C]] ]
OoCi,3,n,OoCj,2,DoCk, j,2,rlf]]]
DoCi,3,n, DoCj,2,DoCk,3,n,ref]] ]

Figure D.5: Symbolic program of reflective Christoffel symbol
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/* Output of Mass matrices Sym_oli= _rogram -/

¢2 : Cos ['--h2]
s2 : Sin [r.%2 ]

ul : pll q!! + p12 q12

ule : plle qll _ pl2e q12

u2 : p21 q21 _ p22 q22

/* Mass matrices */

roll : a!*ul'2 + al*xl^2 + a2-ii^2 + a2*ule^2 + a2"_2^2 \

÷ a2*x2^2 _ 2(a2*c2*ll*x2) ÷ 2(a2*c2*ule_12) \

+ -2 (a2*ll*s2*_//) + 2(a2*s2*ttle*x2)

m12 : a2*u/^2 + a2*x2^2 ÷ a2-c2*ll*x2 ÷ a2*c2*l%le*%12 \
÷ -(a2*ll*s2*_2) 4. a2*s2_lle_x2

: al*pll*xl _ al*ll*_lle 4. a2-c2*plle*x2 4. -(a_*plZe*s2t_12)
m14 : al*pl2*xl _ a2*ll*pl2e 4. a2*c2_12.e*X2. 4. -(a2_12e*s2*_2)

mlS : a2*p21*x2 _- al*c2*l!*p21 4- a2wp2!*saw_Lle

_16 : a2*p22_2 + a/*c2-!!_p22 + a2*_22*s2_llle
_22 : a2*u/^2 4. a2_x2^2

m/3 : a/*c2_plle*x2 4.-(a2_'_lle*s2_12)

m/4 : a2*c2*pl2e*x2 ÷-(al_12e*s2*u2)

Q25 : a2*p21*X2

m/6 : a2*p22*x2

m_3 : al*pll^2 ÷ a2fplle^2

m_4 : al*pll_12 _-alWplle_12e
•.3S : al*c2_l!e*p21

Q26 : al*c2_,plle*!_22

m44 : al_p12^2 4. a/_pl2e^2

m45 : a2*c2*pl2e*p21

=4_ : al*c2*p12e_22
m55 : a2*p21^2

11156 : a2_p21*p22

m66 : a2*p22^2

=21:m12

M21:_LI3 ; m32 :_3

m41:m.14; m42:m24; m43:_34

m51:3_15;, m52:m2.5; m53:_S; I154:m45

m61:m16; m62:m26; m63:m_6; m64:m46; m65:m56

Figure D.8: Symbolic program of velochy coupling matrices



/* Elements of Velocity Coupling Matrices

/* Usinq Simplified Chriscoffel Symbol ./

c121 : Ex[I/2*O[mll,_h2] ]

•c221 : D[m12,_2]
c131 : Ex[I/2*D[mll,qll] ]
c141 : Ex[I/2_D[mll,q12] ]

c151 : Ex[I/2*O[mll,q21] ]

c161 : ExCl/2*D[mll,q221 ]
c231 : i/2(D[ml2,qll] ÷ D/z13,_2])

c241 : I/2(D[_12,q12] _ D[_14,_12])
c251 : Ex[I/2(D[ml2,q21] + D[mI5,T._2])

c261 : Ex[I/2(D[m12,q22] ÷ D[mI6,_2])

c341 : i/2(D[m13,q12] _ D[m14,q11])
c351 : i/2(D[m13,q21] _ D[mlS,qll])

c361 : I/2(D[m13,q22] ÷ D[ml6,qll])

c451 : i/2(D[m14,q21] + D[ml5,ql2])
c461 : i/2(D[m14,q22] ÷ D[ml6,ql2])

c561 : I/2(D[mlS,q22] _ D[_16,q21])

c222 : I/2-9[m/2,_2]

cI_2 : Ex[I/2(-D[ml3,Uh2] + D[m21,qlI])]
c142 : Ex[I/2(-D[mI4,_.h2] _ D[m21,ql2])]

c152 : I/2(-D[mI5,TJI2] * D[m21,q2!])

c162 : I/2(-D[mlS,_._2] + D[m21,q22])
¢232 : I/2-O[m22,qll]

c242 : I/2*D[m22,q12]

c252 : I/2*D[m22,q21]
c262 : i/2wD[_22,q22]
¢342 : I/2(D[m23,q12] ÷ D[m24,ql!])

c352 : i/2(D[m23,q21] _ D[m25,qll])

C362 : i/2(D[m23,q22] _ D[m26,qll])
c452 : I/2(D[m24,q21] _ D[m25,q12])

0462 : I/2(D[_24,q22] _ D[R26,qI2])

C562 : I/2(D[m25,q22] _ D[m26,q21])

C223 : EX[I/2(-D[m22,qlI] + 2D[m32,T.h2])]

c143 : i/2(-D[ml4,qll] + O[m31,q12])
c153 : i/2(-OCmlS,q11] + DCm31,q21])
c163 : I/2(-O[_16,qll] ÷ D[m31,q22])

c243 : I/2(-D[m24,qll] _ D(m32,q12])

c253 : I/2(-D[m25,qll] _ D[m32,q21])
c263 : i/2(-O[m26,qll] ÷ D[_32,q22])

c224 : F.x[I/2(-O[m22,q12] ÷ 2D[s42,_h2])]

c154 : I/2(-D[m15,q12] ÷ nCm41,q21])
c164 : I/2(-D[m16,¢12] * D[m41,q22]]

c254 : i/2(-O[m25,q12] ÷ D[m42,q21])

c264 : I/2(-0Cm26,_12] ÷ DCm42,_22])

c265 : Z/2(-D[m26,q21] _ D[=.52,q'22])
c225 : I/2(-O[m22,q21] + 2D[=52,C.h2])

c226 : 1/2(-D[m22,q22] + 2D[m62,e.h2.])

./

Figure D.6: (Continued)
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APPENDIX E

Modeling of R_4.LF using TREETOPS

In this appendix, the modeling procedures of R.4.LF using TREETOPS axe

described.

TREETOPS requires several model definition data as follows:

• Bodies

• Modal Data

• Hinges

• Sensors

• Actuators

• Controllers

• Function Generators

• Interconnects

• Devices (Spring/Damper)

• Gravity

• Constraints
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The USER'S MANUAL for TREETOPS [73] is recommended reading for more

detailed information.

RALF can be expressed by six bodies which are connected by six hinges as

shown in Fig. 5.1. Bodies 1, 3, and 5 are assumed as rigid while bodies 2, 4.

and 6 are assumed as flexible. The modal data which must be supplied for each

of the individual flexible bodies are defined in Table 5.1. These modal data can

Table E.I: Modal data

Modal Mass

Modal Stiffness

Modal Damping (Optional)

Mode Shape of End Point

Mode Slope of End Point

Modal Linear Momentum

Modal Angular Momentum

qJr.v_tJ

_IJrK,IJ

,IjrD_

¢'(z)

f v)dm

f x_drn

be obtained from a NASTRAN output file. However, a NASTRAN/TREETOPS

interface program is not available now. The MSC/PAL program can also provide

the modal .data. The mass properties and center of mass (C.o.M) of rigid bodies

and the modal data of the first and the second mode of flexible bodies are shown

in Table 5.2. TREETOPS uses MKS units.

Note that the nodal mass matrix, N, is the unaugmented nodal masses and

the mode shape matrix, _, is based on the augmented mode shapes. From the

loaded interface component mode synthesis, only the augmented masses are ob-

trained. Therefore, the modal mass cannot be obtained from MSC/PAL directly.

The modal linear momentum and the modal ang'ular momentum also cannot be
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Fig. E.I: Schematic diagram of 1%ALF
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Table E.2: Body input data and modal data of RALF

Body Number 1 2 3 4 5 6

Type Rigid Flexible Rind Flexible Rigid Flexible

Mass[Kq] 9.9577 8.3534 5.9544 $.3470 0.963 5.4465

Inertia [N-m-s 2] 2.3323 13.5980 0.7377 18.944 0.1193 8.$665

C.o._I [m] 0.4191 1.1049 0.3048 1.3208 0.3048 1.1049

tI,TN _I'1 [I(g] 7.224 0.8052 0.4804

_PTN_,.[ICg] 0.762 0.7879 0.6187

• TIC_z IN/m] 2.2136E4 0.7793E4 1.6711E4

_IJT/'(_IJ 2 [N/m] 43.0465E4 28.9837E4 34.4127E4

N
_'_,=zg'izmi/mT 0.2365 0.2640 0.300

N
_-,=I_i2mi/mT -0.2886 -0.1408 0

N
_,=z zC_zm_ [Kg-m] 2.9148 3.$867 1.7151

N
_,=z xgz_2m_ [l(g-m] 2.6581 -0.5129 0.7611

_bn(l) 0.6054 0.6282 0

¢12(0 -0.0459 0.6154 0

I

Cn (I) -0.4043 -0.3262 -0.5579

¢'n(1) 0.7854 -1.1028 -I.0134

Notes:

1) _1, tI,= : the node displacement vectors of 1st and 2nd mode.

2) ¢,z, %b,2 : the node displacement of node i of 1st and 2nd mode.
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calculated by MSC/PAL directly. Therefore, a post processing program is required.

The modal linear momentum and the modal angular momentum axe computed from

the lumped mass method. In TREETOPS data, the modal linear momentum is di-

vided by the totalmass roT. The modal angular momentum terms axe obtained

from ghe cross produce of r.hebeam length a.,dsand the linkdeflection.Therefore,

the directionof the modal angular momentum isperpendicular tothe plane defined

by the x axis and the linkdeflection.Tachometer, position sensors,and torque mo-

tors are located at the hinge I and 5. The decentralizedPD controllerswhich are

composed of the feedback of angular positionsand angular velocitiesare added at

the hinge I and 5. Interconnection between sensors,function generator,controller,

and actuator are shown in Fig. E.2. The constraintisimposed between the body 3

and 6.

There axe two basic steps to running the program. TREESET is an interactive

preprocessor to define model data. It generates the PROBLEM.INT file. TREE-

TOPS isa batch processor to run the PROBLEM.INT file. Time response is saved

in the PROBLEM.PLT file. Mass, sti_ess, and damping matrices are saved in the

PROBLEM.AUX file. The linear coefficients in matrix form (A,B,C,D) are saved

in PROBLEM.MAT.
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t'N

Fig. E.2: Interconnection between sensors,controllers,and actuators
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