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SUMMARY

The flexible parallel link mechanism is designed for increased rigidity to sus-
tain the buckling when it carries a heavy payload. Compared to a one link flexible
manipulator, a two link flexible manipulator. especially the flexible parallel mecha-
nism. has more complicated characteristics in dynamics and control. The objective
of this research is the theoretical analysis and the experimental verification of dy-
namics and control of a two link flexible manipulator with a flexible parallel link
mechanism.

Nonlinear equations of motion of the lightweight manipulator are derived by
the Lagrangian method in symbolic form to better understand the structure of the
dynamic model. The resulting equations of motion have a structure which is useful
to reduce the number of terms calculated. to check correctness. or to extend the
model to higher order. A manipulator with a flexible parallel link mechanism is a
constrained dynamic system whose equations are sensitive to numerical integration
error. This constrained system is solved using singular value decomposition of the
constraint Jacobian matrix. Singular value decomposition is a stable algorithm for
the dynamic analysis of a constrained system. Elastic motion is expressed by the
assumed mode method. Mode shape functions of each link are chosen using the load
interfaced component mode synthesis. The discrepancies between the analytical
model and the experiment are explained using a simplified and a detailed finite
element model. The step response of the analytical model and the TREETOPS
model match each other well. The nonlinear dynamics is studied using a sinusoidal
excitation. The nonlinear dynamics due to the flexibility is significant. However,
the nonlinearity of RALF (Robotic Arm, Large and Flexible) is not fully studied

experimentally due to the speed limitation of the hydraulic cylinder. The actuator



xvii

dynamic effect on a flexible robot was investigated. The effects are explained by
the root loci and the Bode plot theoretically and experimentally. For the base

performance for the advanced control scheme, a simple decoupled feedback scheme

is applied.



CHAPTER 1

Introduction

1.1 Motivation

A large two degree of freedom flexible manipulator designated RALF (Robotic
Arm, Large and Flexible) as shown Fig. 1.1 has been constructed in the Flexible
Automation Laboratory at Georgia Tech. The structure consists of two ten foot long
links made of aluminum tubing actuated by hydraulic cylinders. The upper link is
driven by a parallel link mechanism. This large manipulator can reach farther than
a traditional robot. Such a configuration would be useful for material handling,
for welding, or for ultrasonic inspection of a large structure such as an airframe .
Using a lightweight material, it is possible to construct a large manipulator with
low power consumption and high speed operation. However, the control law must
take into account the reduction of the structural vibrations due to the distributed
flexibilities of links.

In a conventional serial link mechanism, the upper link is driven by a motor
attached at the tip of the lower link. The weight of the second motor must be
carried by the first motor which increases the torque and power the first motor
must provide. Especially in lightweight arms, the weight and reaction torque of the
second motor increases the structural vibration of the lower link. The structural
vibration makes the lower link fatigue more quickly. To reduce these effects, the

rigidity of the lower link should be increased. One possible remedy is to include



Figure 1.1: RALF (Robotic Arm, Large and Flexible)
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a parallel drive mechanism. The advantages of parallel dnive mechanisms are high
rigidity, high loading capacities, and lower interaction between joints.

Although a variety of research on serial link mechanisms can be found in the
robotics literature, the studies of closed-loop chains such as the parallel mechanism
are rare and mostly concerned with rigid manipulators. In a parallel mechanism
with rigid links, there is a simple relationship between generalized coordinates.
However, in a parallel mechanism with flexible links, this relationship is expressed
in the form of a complicated nonlinear algebraic constraint equation. To solve the
dynamics of a flexible parallel link mechanism, a mixed set of differential equations
of motion and nonlinear algebraic equations must be solved simultaneously. Because
the numerical integration of these equations is sensitive to numerical error, a stable
integration algorithm is required.

One link flexible manipulators have been studied in both theoretical and ex-
perimental aspects recently. However, a different approach is needed in dynamic
analvsis and control of two link flexible manipulators.

First, two link flexible manipulators have highly nonlinear interaction terms be-
tween links. Furthermore, dynamic equations of motion of flexible manipulators are
more complicated than those of rigid manipulators. The number of equations of
motion increases as the number of modes to be included increases. It is difficult to
understand the effect of flexible motion on rigid motion via recursive forms of the
equations of motion for 2 multi-link arm even if it were efficient to derive a inverse
dynamics. On the other hand, a closed form of the equations of motion is useful in
understanding the characteristics of model parameters. However, the equations re-
sulting from existing closed forms are too complex to serve this purpose. Therefore,
a method which is structurally well organized and computationally efficient must

be developed.



Secondly, mode shape functions of each link are not simple to derive due to
coupling between links. The common approach to determine modes has been the
finite element method. Even though the finite element method is a systematic
modeling technique for complex mechamsms, computational efficiency is lost due
to the fact that a large number of elements are needed to obtain appropriate and
accurate results. Because of its use in control design, the resulting model should be
simple enough to render the analysis at hand tractable while retaining the significant
features of the original structure. For simple structural shapes, a continuous system
approach using assumed modes seems to be an easier way. Using appropriate modes,
a lower order model can be obtained.

Third, the control of a flexible manipulator has different characteristics com-
pared to the control of a rigid manipulator. Even though control inputs are applied
only at the joint, rigid body motion and elastic body motion have to be controlled
simultaneously. The control law constructed on the basis of a reduced order model
must have robustness for truncation error and for uncertainty of its parameters.
The control bandwidth with joint feedback alone is below the lowest vibration fre-
quency. Low control bandwidth means a long settling time and poor disturbance
rejection to external forces. Increased control bandwidth can be obtained by feed-
back of additional states such as strain and tip position which provide information
on the elastic motion of the manipulator. The approximate mode shapes are neces-
sary to get these additional states. Whereas the one link arm is essentially linear,
the two link arm is strongly nonlinear and its dynamics change according to its

configuration.



1.2 Review of Previous Work

This review consists of several topics which are mentioned in the previous section

on motivation.

1.2.1 Derivation of Equations of Motion

One of the primary concerns in manipulator dynamics is computational effi-
ciency. For the efficient form of the manipulator dynamic equations, various re-
cursive formulations for rigid manipulators using Lagrangian [26], Newton - Euler
[42], or Kane’s method [34], have been proposed. For flexible manipulators, Book
used the method of homogeneous transformation matrices. He first considered small
linear motions of a massless elastic chain [7] and later considered distributed mass
and elasticity [10]. When the recursive formulation is used, the structure of the dy-
namic model which is quite useful in providing insight for designing the controller
is destroyed. To overcome this problem, several programs for rigid manipulators
have been developed to derive the equations of motion in symbolic form [13,52].
Symbolic formulation has the advantage of allowing the identification of the dis-
tinct components of the model. For flexible manipulators, Maizza-Neto [45] derived
symbolically the equations of motion of a two link flexible manipulator by hand.
A systematic method to symbolically derive the nonlinez;lr dynamic equations of
multi-link flexible manipulators was presented by Cetinkunt (14]. However, he did
not explore the structure of the terms in the flexible manipulator model. The con-
ceptual framework leads to guidelines for simplifying robot dynamics. The physical
interpretations and structural characteristics of the Lagrangian dynamic model for
rigid robots were derived by Tourassis and Neuman [71.72]. The inertia matrix is

induced by the masses and center of mass of links. In turn. the centrifugal and Cori-



olis coefficients are derived from an inertia matrix through the Christoffel symbol.
But, the method of dériving mass matrices is not efficient for a flexible manipula-
tor. Asada [2] presented a method which uses the Jacobian matrix to derive the
mass and gravity matrices. His method is found in this thesis to be very efficient in
modelling a flexible manipulator. Low [41] used the Jacobian matrix in deriving the
equations of motion of a flexible manipulator. However, the structure of centrifugal

and Coriolis force is still complicated and hard to understand.

1.2.2 Mode Shape Function

A flexible manipulator that undergoes large rigid body rotation can be modelled
in terms of either an unconstrained modes method where the entire body vibrates, or
a constrained modes method where the joint is held motionless. The unconstrained
modes approach is more rigorous. However, the calculation of the natural frequen-
cies and the mode shapes is relatively complicated and it is difficult to extend this
approach to multi-link arms. On the other hand, the constrained modes method is
an approximate solution of the unconstrained modes method when the beam to hub
inertia is small enough. Because with the constrained modes method it is simple to
derive the natural frequencies and the mode shapes, it can be applied to multi-link
arms. The unconstrained modes and constrained modes methods were compared
by Ba.rbieri- [3]. Hughes [29] and Hablani (23] compared the accuracy of these two
methods by modal identities and completeness indexes respectively. Schmitz [62]
and Hastings [25] experimentally verified their model with unconstrained modes
method and constrained modes method respectively. In the case of multi-link arms,
the boundary conditions at the joint are not clear because there is coupling between
links. In most studies of multi-link flexible arms, the boundary conditions of each

link are assumed to be clamped -free. The accuracy of this assumption has not been



yet experimentally confirmed.

The reduced order model for design of controllers can be obtained by truncating
the modes with frequencies higher than the actuator bandwidth. This is reasonable
because high frequency modes generally have small amplitudes and can be regarded
as disturbances. Furthermore. actuators which are not excited by the high frequency
modes act as lowpass filters . Hughes [30] and Skelton [68] investigated the criteria
of model order reduction. Hastings [25] and Schmitz [62] got good experimental
results using only two or three modes. Tsujisawa [74] derived a reduced order
model for RALF by the modal cost analysis method. He suggested that using the
first two modes of each link is optimal from the control point of view.

The elastic deformation of links can be expressed by a set of admissible functions.
The selection of admissible function sets is not unique. The finite element method
(FEM) uses simple admissible functions. FEM can easily deal with complicated
structures with complex boundary conditions. However, a large number of elements
are required to obtain accurate modes and frequencies. To reduce the dimension of
the model, a component mode synthesis (or substructure modal synthesis) has been
developed. A complete structure can be regarded as an assembly of substructures.
The lower frequencies and corresponding mode shape functions of the complete
structure can be obtained by synthesizing a truncated set of modal properties of
the substructure. Three basic methods have been developed depending on whether
its interface is held fixed [19], free [27], or loaded [6]. Sunada [70] and Shabana [66)
obtained a nonlinear finite element model of a flexible structure for a large rigid
body motion by using the component mode synthesis. However, these programs

still execute too slow for a real time control.



1.2.3 Constrained Dynamic System Analysis

The dynamics of robot manipulators containing general closed chains in their
structures has been studied very little. The parallelogram, a special case of the
closed chain, has been well studied by Asada [1]. Chung [18] derived the equations
of motion of RALF, but he assumed that the actuating link and the lower link
had the same mode shapes so that the constraints did not need to be considered.
Megahed [48] and Luh [43] derived the equations of motion of rigid robots with
closed chains by Lagrangian and Newton-Euler methods respectively. However,
a computationally stable algorithm is required because the model is sensitive to
numerical error.

There are two conceptual approaches to solve the constrained equations of mo-
tion. One approach solves the equations of motion simultaneously with the con-
straint equations. The other approach uses a reduction method that eliminates the
constraint forces explicitly from the equations of motion. It is difficult to solve a
mixed set of differential equations of motion (dimension n) and nonlinear algebraic
equations of kinematic constraint (dimension m). For this purpose, Nikravesh [54]
reviewed three integration algorithms. These are the direct integration method, the
constraint violation stabilization method and the generalized coordinate partition-
ing method. The direct integration method [48,43] converts the algebraic equations
to second order differential equations, then solves these equationé with equations
of motion. This method results in constraint violations because, as time progress,
the integration numerical error accumulates. The constraint violation stabilization
method [4] introduces constraint violations as a feedback term to correct the vio-
lations in the next integration step. One difficulty of this method is the selection

of proper feedback gains. These two methods are sensitive to initial conditions on



the system. In the third method [76], the generalized coordinates are partitioned
into independent (dim-ension n - m ) and dependent (dimension m) sets. Numer-
ical integration is solves for the independent generalized coordinates. The choice
of the correct initial condition is not critical and the dimension of the equations of
motion is minimum. When generalized coordinates are partitioned. an important
consideration is the choice of independent generalized coordinates. An arbitrary
selection of independent generalized coordinates often results in ill - conditioned
matrices. Wehage [76] identified independent generalized coordinates by using LU
partitioning of the constraint Jacobian matrix. Mani [46] and Singh [67] used sin-
gular value decomposition. and Kim [37] used QR decomposition. A unique and
accurate independent set of generalized coordinates can be obtained from the last
two methods. Singular value decomposition is a more robust algorithm than the

QR method and has a variety of applications in linear control systems.

1.2.4 Motion Control of a Flexible Robot

A colocated control scheme, in which sensors are colocated with actuators, has
been used for most flexible manipulator control. With a PD control for each joint
(Independent Joint Control), Book [7] showed that the maximum closed loop band-
width of rigid body motion is a half of the system first natural frequency. If inter-
joint feedback terms are included between actuators (Generalized Rigid Control),
the closed loop bandwidth can be increased up to the system first natural frequency.
Golla et al. [21] showed that IJC also provided control as good as GRC.

A noncolocated control, where the tip position was measured by an optical sen-
sor, was implemented by Schmitz [62]. Because tip position feedback alone creates
a nonminimum phase system, the achievable gain is limited. However, improved re-

sponse. two times faster than the first natural cantilever frequency. was obtained by
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the combined feedback of tip position, link strain, and hub rate. Better disturbance
rejection to end position external forces than with joint feedback alone was also
obtained . However, the response time is limited by the inherent wave propagation
delay for the beam. A precise dynamic model and a sophisticated control law are
required for satisfactory response.

Control of flexible robots is characterized by control concepts similar to those
being used in the control of rigid body robots. Four major methods have been devel-
oped: linear feedback control, computed torque control. adaptive control, singular
perturbation control.

For a one link flexible manipulator, Hastings [25] implemented a Linear Quadratic
Regulator with full state feedback. The time varying modal amplitudes were re-
constructed from strain measurements. A reduced order obs‘erver was utilized to
obtain estimates of the modal velocities from the reconstructed modal amplitudes.
Sakawa [61] also used LQR. Schmitz [62] used a Linear Quadratic Gaussian regu-
lator and its reduced order compensator. These compensators were experimentally
verified regarding robustness and disturbance rejection. Krishnan and Vidyasagar
[40] experimentally showed that the performance obtained using the bounded input
H, optimal controller was better than that obtained using a discrete time LQG con-
troller. For a two link flexible manipulator, Maizza-Neto {45] discussed the use of
a pole place-ment algorithm to obtain full state feedback gains. Full state feedback
showed high sensitivities to parameter perturbations and higher torque require-
ments. Ower and Van De Vegte [56] applied a classical design technique using Bode
plots to a transfer function model of a two link flexible manipulator. The last two
methods were not experimentally verified.

Unlike one link fexible manipulators, the two link flexible manipulatoris strongly

nonlinear due to interactions between links. Bayo [3] used a computed torque
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method for trajectory control. The torque at each joint can be found in the fre-
quency domain by means of an iteration procedure. However, the iteration aspect
prevents this method from being used in real time. Pfeiffer et al. [58] developed a
multistage control scheme. First, the rigid body motion is controlled by a conven-
tional computed torque method. Second. the elastic deviations from the reference
path are quasi-statically corrected by modifying the reference path. Third, the
remaining elastic vibrations are actively damped by strain feedback for each link.
Schutter et al. [63] presented a nonlinear feedback which linearized the rigid body
dynamics, followed by linear feedback of the full state. The last two methods, like
other computed torque methods, lead to a computationally intensive controller,
sensitive to model parameters.

Various adaptive concepts are categorized into two types; MRAC(Model Ref-
erence Adaptive Control) and self-tuning control. Siciliano, Yuan and Book [63]
proposed a full state type MRAC for one link flexible arm. Meldrum and Balas [47]
used direct adaptive type MRAC, in which the controller parameters are adjusted
with only the plant output and input signals. Yuh [83] and Yang and Gibson (80]
presented an indirect adaptive control approach based on an identified linear predic-
tion model of the plant. Rovner [60] developed an adaptive algorithm based on the
self- tuning regulator concept for the noncolocated control case and experimentally
proved its p;erformance. Nelson and Mitra [53] and Yurkovich and Pacheco (84] pre-
sented load estimation and load adaptive control. Most researches and experiments
of adaptive control are performed for one link flexible arms because an assumption
that during the adaptation process the elements of the linearized system remains
constant is well satisfied for one link flexible arms. However, in multi-link flexible
arms, the controller has to be applicable to rapidly time varying nonlinear cou-

plings. Cetinkunt [15] applied Adaptive Model Following Control (AMFC) based



on the generalized inertia matrix for a two link flexible robot. This controller relaxes
some of the restrictiverassumptions made by previous AMFC design procedures so
that the use of the AMFC techniques in high speed manipulators becomes possible.
Yuan [82] applied a robust controller based on MRAC for RALF.

Under the assumption that only small elastic deviation from rigid body motion
occurs, the decoupled control of rigid and elastic coordinates can be considered.
Such a concept leads to a two stage control scheme, a slow control for the rigid
body motion and a fast control for the elastic motion. Siciliano and Book (64]

applied a singular perturbation method to a one link flexible arm.

1.3 Thesis Outline

In chapter 2, nonlinear equations of motion of RALF are derived by the La-
grangian method in symbolic form. The derivation procedures for the equations of
motion are described in detail.

In chapter 3, the nonlinear algebraic constraint equations of RALF are derived.
A mixed set of differential equations and algebraic equations are solved using sin-
gular value decomposition. The main concept of this method is explained using a
simple example.

In chapter 4, the method for determining mode shape functions of each link
is described. The loaded interface component mode synthesis is used to find the
proper mode shape functions. The discrepancies between the predicted frequencies
and the measured frequencies are explained by the finite element models.

In chapter 5, first, the time response of the analytical model is compared to that
of the TREETOPS model for the model verification. Secondly, the nonlinear dy-

namics of RALF are studied by sinusoidal excitation. Third, the effect of hydraulic
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actuator dynamics on flexible arm dynamics is discussed.
In chapter 6. a decentralized control scheme using cylinder position and strain
of each link is applied to check the characteristics of the control of a two link flexible

robot.

1.4 Contributions

The major contribution of this thesis is the theoretical analysis and the experi-
mental verification of dynamics and control of two link flexible robots with flexible
parallel link mechanisms.

Detailed descriptions of contributions are as follows:

First, nonlinear equations of motion of RALF are derived in symbolic form
systematically and efficiently. The resulting equations of motion have a structure
which is useful to reduce the number of terms calculated, to check correctness, or
to extend the model to higher order.

Secondly, the dynamics of a closed kinematic chain system with a flexible parallel
link mechanism is solved without any significant constraint violation.

Third, the proper mode shape functions of each link of RALF are determined
using component mode synthesis. It is verified that component mode synthesis
provides rigorous boundary conditions for modal data of components.

Fouth, nonlinear dynamics of RALF is verified using a sinusoidal excitation.
The degree of nonlinearity of RALF is observed from the power spectra of the tip
acceleration.

Fifth. the effect of actuator dynamics on the flexible robot dynamics is studied.
The hydraulic actuator dynamics is modeled and compared with the dynamics of

the electric D.C. motor. The difference in velocity feedback for the two actuators
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is shown to result in significantly different joint behavior for a flexible structure.
Sixth. a decentralized control algorithm using cylinder position and beam strain
has been demonstrated for the control of RALF. It is shown through experiments
that position feedback through a lag compensator and strain feedback through an
nonminimum allpass filter yield a good trajectory following and beam vibration

suppression respectively.
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CHAPTER 11

Derivation of Equations of Motion

2.1 Introduction

In this chapter, a Lagrangian method is used to derive the equations of motion
for a flexible manipulator with parallel link mechanisms. Because flexible manipu-
lator dynamics is more complicated than rigid manipulator dynamics, the amount
of computation increases and there is a possibility of ending up with incorrect
equations. Therefore, an efficient and systematic derivation method is required to
reduce these problems. Furthermore, it is desirable to simplify elements of the mass

matrices and the centrifugal and Coriolis forces for a real time control.

2.2 Description of Structure

The structure as shown in Fig. 2.1 consists of lower, upper, connecting, and
actuating links. Each link is connected to another by a pin. The upper link is driven
by a parallel link mechanism. Motion is restricted to the vertical plane. The joint
parts of the lower and the upper link are stiffened by increasing the cross sectional
area. Detailed structural data are given in Wilson [79]. In deriving equations of
motion using the Lagrangian method, the coordinates involved in a closed kinematic
chain are not independent. In the flexible parallel link mechanism, the relationship

among coordinates are described by nonlinear algebraic equations. Therefore, a
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constraint dynamic analysis is required to solve nonlinear algebraic equations and
differential equations of motion simultaneously. To derive the equations of motion
of this closed kinematic chain system. one joint of the parallel link mechanism is
virtually cut to form an open tree structure as shown in Fig 2.2. The unknown

constraint force is applied at the virtually cut joint.

2.3 Equations of Motion

The open tree structure is regarded as an assembly of two serial link manipu-
lators - the lower and upper link part plus the connecting and actuating link part.
The equations of motion of each part can be written symbolically.

n n n n
Z Mg+ Kiygi+ 3 Coe()4;qx + Gig = 7 (2.1)
5=1 i=1 s=1 k=1
where ¢; is an element of the generalized coordinate vector, M;; is an element of
the generalized mass matrix, A}; is an element of the elastic stiffness matrix, Cj(z)
is an element of the velocity coupling matrix which is the coefficient matrix of
Coriolis and centrifugal force, G; is an element of the gravity force matrix, g is the
gravitational acceleration vector, 7; is an element of the generalized force vector.

The mass matrix and the gravity force matrix can be derived using the Jacobian

matrix as shown in Appendix A.

19
V]
SN’

b ip
My=3% /0 T Jyppdpdz, (2.
p=1

where b is the number of links. Jp,. pp, Ap, and [, are the Jacobian matrix. the

density, the area, and the length of link p respectively.

b Iy
G, = Z‘/ T pyApd, (2.3)
p=1 0
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Figure 2.1: Structural data of RALF
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Figure 2.2: Open tree structure of RALF
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where J;‘) is the ¢ th column of Jacobian matrix J,. The velocity coupling matrix

can be derived from the mass matrix.
1.0M,;;  OMy OMjy

+ - 2.4
( Oqxk dq; 9 ) (2:4)

The stiffness matrix is related to the mode shape function uy;.

CJk(i) =

(7]

- b azl;‘,’] 2 5 =
]\,‘j = EiL‘(—"T) dl’,‘ (...O)
0 dq;
Next, equations of motion of two parts are combined using unknown constraint
force for the complete equations of motion. Equations of motion of the closed

kinematic chain system can be written symbolically as follows.

o Midi + D Kijgi + 2 Y Cir(1)d5 s
J=1 i=1 J=1k=1
+Gig+ Y (B LA =7 (2.6)

k=1
where m is the number of the constraint equations, A is element of the unknown

constraint force vector, (®,); is element of the constraint Jacobian matrix which is

derived by differentiating the constraint equations (2.7) with respect to time.

®(q) =0 (2.7)
0%(q) _0%(q)0q _ .
5t 0q 5t ®,(9)g=0 (2.8)

In the following sections 2.4 and 2.5, the derivation procedure of the equations
of motion of each part is described in detail. The constrained dynamic analysis will

be described in Chapter III.

2.4 Lower and Upper Link

2.4.1 Mass Matrices and Gravity Force Vectors

Deformed position vectors of each link in Fig. 2.3a and 2.3b are described as

follows:



Figure 2.3.a: Position vector of the lower link

X2

N

Figure 2.3.b: Position vector of the upper link
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-~

| = (z,c080, — uysinby )i + (z,5inby + uicosby)j (2.9)
7y = [l1c088) — uyesindy + z2c0s(61 + 62) — uzsin(6y + G))i
+ [1157:71.91 -+ U1¢C0591 + IzSin(Gl + 92) + U2COS(91 + 02)]_] (210)

where i and j are unit vectors along the inertial frame, X, and Y;. The elastic
deformation, u;, can be expressed by finite series of mode shape functions which
satisfy assumed boundary conditions multiplied by time dependent modal coordi-
nates. Suppose that the amplitude of the higher modes is relatively small compared

with the first mode, two modes per link are considered in this model.
ur(z1,t) = Yu(z1)n(t) + v12(z1)12(2) (2.11)
uz(T2,t) = ¥21(22)€n(t) + Y22(z2)E22(2) (2.12)

The elastic displacement of the end point is

ure = wi(h,t) (2.13)
Velocity vectors are related to generalized coordinates by the Jacobian matrices (2]:
A = N2 (2.14)
72 = Jadn (2.15)

where the generalized coordinates are

Q12 = {61, 62,601,612, €, €22} (2.16)

and the Jacobian matrices are

7, = -yl -5 0 —yuS; —vCy 00 (2.17)
-uSi+5C 0 vnGy vCGy 00



[S%]
(3]

LS — u . Cr = u2Ciz2 — 22512 —uaCiz — 23512

+4C1 = u1S1 — uaS12 + 22012 —uaS12 + z2Ch2
—Y11eS1 —¥12:51 —¥n Sz —v2Si2

V1161 Y1281 ¥aCiz ¥2Chrz

where cos(6; +6;) and sin(6; + 6;) are expressed as C; and S;; for convenience. The

(2.18)

Jacobian matrices, J; and J,, can be easily derived from the position vector using
_ the MJac function of SMP (Symbolic Manipulation Program) [69]. Using these
Jacobian matrices, mass matrices and gravity force matrices are calculated by the

following equations:
b LY. .
M = /0 JT T prAude, + /O JT Jap Apdes (2.19)

5 - Iz
G1 =‘/0 J1[2,l]p1.41d:z:1 +[) Jz[?,l]pz.—@.'zd.’:z
i3
Gy = /0 J2[2, 2 pr Agdi (2.20)

J,[2,1] is the second row and the ith column of J,, selected since the gravity is acting
in the negative direction of Y;. The gravitational potential energy change due to
the link deformation is assumed to be negligible.

Elements of mass matrices and gravity forces are:
O
- My = /0 (23 + ul)prArdz,
+ (M@t rad e
+ 2(hz7Cy = huaSa + 16202 + U122 52)) p2 A2dzy

I
My = /‘; (22 + ul + h72C2 = hugSs + u1eu2Cs + 1122 52) p2.42d 22

{2

{
M3 = /01 ¥ pddzy + Ibue/o (ly + 2207 — ©257)pr42dz2



iz

l
My = /l Y1201 A1dz) + ¢12=/0 (lh + 2202 — u252)p2A2dz,
o T
i
Ms = /2 Yn(ze + LhC2 + U152)p242dT2
0

{
My = /2 (22 + 11C2 + u1S2)p2d2dz:
0

i
A’Izz = /02(13:2: + U%)pg.‘igdl’z

I

Maz = Y11e /oz(xzcz — upS3)p2Aadz;
i

My = Y12e _/02(1‘202 — u957)p2Aadr2

Iz
Mss =/0 Iz¢21P2A2d$2

I
My = /02 ToY2p2A2dT2 (2.21)

h "2
Ma3 =/ ¢'f1P1A1d$1 +l/’31,/(; p2A2dz,

0

! Iz

M, =/l YnvzprAdids, +1/)11e1/’12e/0 p2A2dT,
0
Iz
Majs = 1/)11:02/; ¢21P2A2d22

iz
My = 11’11:02/0 Y20242dT2

{ 14!
My = / l i,pArdz, 'H/)fze_/o p2A2dz,
0
iz
My = lbneCz/O Yo p2A2dT2

{2
M = dJueCz/o Yo2p2A2dT:

2
Mss =/0 Wi p2A2dz,
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Iz
M;se = /0 Ya1tPa2p2A2dz;

Iz
Mes = /0 @L’gszAzdxz

h L
G = /0 (2:C1 — w1 S1)pr41dny +/0 (1,Cy — uy Sy + 22C12 — u2S12)p242d7,

G, = /0 ? (22Ciz = u2S12)p2Aadz (2.22)
where
Yije = ¥i; (L)
SMP files of equations (2.9 - 2.22) are included in Appendix D.

The integral in the above elements are defined as follows.

l;
m; =/ p.-A,-da:,- (223)
0
8
Tn.'l,'c =/ :t,'p.'A.'d:L‘.' (2.24)
0
A
D; =/(; x?PiA.'d:L',- (2.25)
8
LM.'J' =-/0 ¢,-,-(:c.-)p,-A.-da:,- (2.26)
{
- AJW,'J' =/ I,‘lb,'j(l‘,’)p.'A,'dI,' (2.27)
0
I
NM, = /o 2 (2:)pi Aida (2.28)

where [;. is center of mass of link i. The first three terms are parameters which are
related to a rigid motion. These are called zeroth, first, and second moments of
inertia respectively. On the other hand, the last three terms are parameters which
are related to a flexible motion. LM;; and AM;; are called the modal momentum

coefficients and the modal angular momentum coefficients respectively [29,30]. The



physical meaning of these terms is not easy

following properties {29.30].

to explain. However, these have the

Z L.\IZ =m;

=1

Z LA’L']‘.-LM[,‘J‘ = milic

1=1

f:lAJVI?J- = D;
J=

N M;; is used for the normalization of mode shape functions.

Using these six inertia parameters and the orthogonality of modes and linearizing

about zero deflection, the linearized mass matrices and gravity vectors are rewritten

as follows:

My, = Dy 4 Dy + mali(lh + 202.C2)

My2 = Dy + mali 12.C

My = AMy; + $uema(l + 12cC2)

My, = AMy; + ¥izema(ly + 1.C2)

Mys = AMy + LM LC,

Mg = AMyy + LM 1,Cy

My =D,

My = wuemalzccz

My, = 'l’ucmzlzccz

A/[25 = Al\/fgl

.7\/[26 = AJ\’I 22

(2.32)
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Mz = NM; + mzwfle
.‘1{34 = 0
-‘\-'[35 = wlleL*\’121C2

Mss = Y11 LM Co

4\/.[44 = .‘\rﬂ/[n “+ my wfh
A/I45 = w12eL1\/I2102

Mg = Y12 LM72C,

AM55 = JVIVIzl

Mss =0

Megs = N M2

G1 = m1.Cy + ma(1hCr + 12.Ch2)

Gy = malyCr2 (2-33)

Finally, the elastic stiffness matrix,K;;, can be derived by the partial differenti-

ation of the elastic potential energy, V :

1 rh 0%uy 1 th &us.,
=z = 2
v=s; /0 ELloTdm + 5 /0 Ebl 2 des (2.34)
» h azwij 2 ..
K= /0 BLi3fdn (=12 (2.35)

where E is Young’s modulus of elasticity, and I; is the area moment of inertia of

link 1.



2.4.2 Payload

When masses are loaded at the end of the lower link and the upper link, position
vectors of the payload are derived from (2.9) and (2.10) by substituting z; into [;

and u; into u,..
Fle = (11c0691 - ulesinel )1 + (llsin91 + ulecosal )J (236)

e = [l1cos8) — uyesinbdy + lycos(6y + 62) — uqesin(6y + 62)}i

+ [lysin; + uyecosty + lrsin(8, + 62) + ugecos(6y + 62)}j (2.37)

where
uye = uy(l1,t) (2.38)
Uze = ux(lz, t) (2.39)

Velocity vectors are expressed by Jacobian matrnices:

e = Jiedrz (2.40)
rae = JacGra (2.41)

where

jo | TGS 0 —bueSi —bali 00 (2.42)

—eS1 +4C 0 Y1 Ci $12Cr 0 0

- 7 "‘1151 — u.C) - uzeclz - 12512 -uzeclz - 12512
2e &=
+1LC1 — U181 — u2S12 + 12Cr2 —u2S12 + [,Cha

—Y11eS1 —¥1251 —VneS1z —¥22512
¥11.C1 %1201 ¥21.Cr12 ¥22.Chr2

Mass matrices and gravity force vectors due to the payload, my, and my,, are

(2.43)

expressed by Jacobian matrices.

M? = my,JEJie + mapJiJze (2.44)

1Y
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G? = mllee[‘.’, 1] + mg,,Jge[Q, 1] (245)
G§ = m2PJ2¢[2, 2]
Following the procedure of the previous section. the linearized mass matrices and
gravity force vectors are written as follows:

l\/[fl = m1p1¥ + mgplg + mgpll(h + 21202)

M?, = my,l2 + maplhi12Co
M?y = miphie + mop(h + 12C2)Yne
M, = miphpize + map(ly + 12C2) 12
MJ = map(ly + 1C2 )Y

M = mop(ly + LC2)¥22e

M%, = m2pl§
M}, = maplap1Co
ML = m2p12¢12e02

M5 = maplhpne

Mg = maplapae. (2.46)

MZy = (m, + m2p)¢?1c
ME, = (myp + map)¥11e¥r2e
M = mapr1e¥p21Ce

M}y = map¥nie¥22.C2



P 2
My = (myp + Ma2p)¥12¢
My = moypi2e¥21.Ca

|
Ml = mapizett22.Ca

P _ 2
Mgy = map¥y,

.M;’G = m2p¢21e¢22e

P . 2
Mgs = map¥i,,

Gh = mypliCy + myp(LhiCy + 12C12)
G = myplyCiz (2.47)

Comparing (2.46 - 47) with (2.32 - 33), six inertia parameters of mass matrices and
gravity vectors have an analogy as shown in Table 2.1.

Therefore, when payloads are added, six inertia parameters are changed as fol-

lows:
- m; — m; + M ‘ (2.48)
milic = milic + mipl; (2.49)
D; — Di + my,l? (2.50)
LMi; = LM;; + mip¥ije (2.51)
AM;; — AM;; + milivise (2.52)

N.’M,‘j -+ NA/[,']' + m,-pd:?je (253)
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Table 2.1: Analogy of six inertia parameters

without payload with payload

m; Mip
m;lic mipli

D; mipl?
LM;; MipWije
AM;; mislivije
NM;; mipthl.

2.4.3 Centrifugal and Coriolis Force

The velocity coupling matrix can be derived from the mass matrix using the

Christoffel symbol (2.4).

o _l oM;; OMi oM 0 =
CJk(l)—2{ ale + aq;,' - aQi } (_.04)

C;i(?) characterizes the effects on link i which are caused by the coupled velocities
of link j and k. The diagonal elements for j = k are the coefficients of the centrifugal
force. The offdiagonal elements for j # k are the coefficients of the Coriolis force.

In equation (2.1), the states can be partitioned into the ngld body state § and the

flexible body state &.

2 . 6 - 2 2 .. 2 8 ..
S A6+ 3 Biti+ 2 S P(i)68: + 3 3 Qin(i)856k

=1 1=3 j=1 k=1 j=1 k=3
6 6 - -
+ Y Y Rp()i&+Gi=7 (i=1,2) (2.55)
7=3 k=3

2 6

2 6 » ~ « .
Y B+ 3 D&+ 33 Biu(i)0;6x + 3 D Qik()0;6x

7=3 j=1k=1 j=1 k=3
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6 6 2
+ 3 S Ru(i)Eibe+ Y K6 =0 (i=3,6) (2.56)
1=3 k=3 =1
Therefore, the partitioned velocity coupling matrices can be written as follows:

) 1,04;; 04 04, .
ij(l) = -2-{ aqu + aq: - aq’:k} (2.01)

ey 1 8.—1,', 0Bk BBjk
Quli) =3 5 |~ 0q;  0a
1 0B;; " 0Bk _ 9Dy

} (2.58)

Rl =350 * oy, o) (2:39)
Pi(i) = l{aB‘i + OBik _ ‘9‘4“‘} (2.60)

2 qu qu aq,'
A ey l anj BD,-k 6B,-;, 9
Qik(1) = 2{ % + 34, P } (2.61)

. .. 108Dy 08Dyg 8D
Ruli) = 5{2 + 5= -

ik
2.62
0gx dg; 0q; J ( )

Because mass submatrix D;; are not the function of the flexible body state, the
terms related to D;; in Q;i(7) and R;i(i) are eliminated. The number of independent
elements of velocity coupling matrices also can be reduced using the symmetry, the

non-interacting, and the reflective coupling properties [71,72].

Cix(?) = Cij(2) (2.63)
Cii(1)=0 for ;<1 (2.64)
Cjk(i) = —-Cj.'(k) fO‘P ] < i, k (265)

However, the reflective coupling property that Tourassis and Neuman find is not
always valid in the flexible case. T herefore, even though the symbolic manipulation
program can be used as the computational tool, the simplication procedure must
be accomplished under the supervision of the analyst. The symbolic programs are

described in Appendix D.



32

Using those properties, the following independent elements of the velocity coupling

matrix are derived.

{
dy = /0 {(42:Cs = 1,S7)72 — (1S3 + [1C2)uzprAzdas)

i2

1
dy = /0 "p%lqnpl-'ildzl + d’ue[/o (S2z2 + Cauq + ule)P'zAzd-Tz]

i {
dyy = ‘/‘;‘ ‘d)fqugplAldIl + ¢12¢[(A2(5212 + Cyup + ule)P2A2dx2]

I2
dn = ¢11e/0 (S222 + Cauz)p2A2dz:

Iz
dy = 1/)12e/° (Syz2 + CauzprA2dzs)

iz
dg = /o Y2 (Yaga + Y22q22)p2 A2dT:

{2
de = /0 a2(Va1921 + W22422)p2 A2dT2 (2.66)

l
ds; = /02-1521{(%14121 + 192¢22) + (u1.C2 — 1,52)} p2Azdz;

I2
ds; = /(; P2 {(¥21921 + ¥22922) + (41C2 — [152)} p2A2dz,

iz
dey = ¢ue52/0 Y p24adz;

{2
de; = '1’11:52/0 YP22p2A2dT;

i
dn = '/’12:52‘[J Va1 p2A2dT2

2
dr = ¢’12e52/0 Y2p2A2dT,
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After evaluating the integral,

dy = (u1.Ca — 11 S2)malae — (w1eS2 + L C)( LMy € + LMaaéar)

day = 11e[malacSz + (LMaén + LMpp622)Ca + urema) + N Mnén

day = W12¢[malz2cS2 + (LM €21 + LM2p622)Ca + uyemna] + N Mi26r2

d31 = Yr1elmalacSe + (LMaén + LM32622)Co)

dap = P12¢[malacSs + (LM én + LM2:622)C3)

dy = NMy &y + (41C2 — 1 S2) LM

dyg = NMypbys + (41.C2 — 1,52) LM (2.67)

ds; = NMnén

d52 = N-‘M22£22

d61 = ¢11e52LM21

d62 = d’lleS?Liwﬂ

d71 = zf)lzeszL-sz

dn = ¢12e52 LM
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Using these elements, the velocity coupling matrices can be simplified as follows:

0 dy du dz dar daz

di 0 0 dy de

0 0 0 O

Cc(l) =
0 0 O
0 O
L 0 p
[ 7
—d; 0 da da ds ds2
0 0 0 ds; ds2
0(2) _ 0 0 —d51/2 —d52/2
0 —dn/2 —dn/2
0 0
I 0]
—dy —dy 0 0 —de1 —dg2
—d31 00 —d61 /2 —deg/..
00 0 0
C@3)=

0 0 0
- 0 0
0

(2.69)

(2.70)



o
C(4) =
- B
C(5) =
L
-
c(6) =
- L

—ds2
'-d32

_d51
—dSI

—ds;
—ds;

00 —dn
0 0 —dn/2
00 0
0 0
0

de  dn
der/2 dni/2
0 0

0

d62 d7‘2
de2/2 dr2/2
0 0

0

2.5 Connecting and Actuating Link

2.5.1 Mass Matrices and Gravity Force Vectors

—d-

—dz/2

o O o

o

o O o O

0
0

o o o < (o] o
L

o o o o o o

Derivation of equations of motion of the connecting and actuating link is similar

to those of the lower and upper link. Position vectors are shown in Fig. 2.4.a and

2.4.b.
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Figure 2.4.a: Position vector of the connecting link

Figure 2.4.b: Position vector of the actuating link
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73 = [l1,cos0; + zacos(8y + 83)]i + [Lirsinby + z35in(6; + 63)}j (2.74)
7y = [liyrcosby + la,cos(6y + 63) + zacos(br + 63 + 8,) — ugsin(6y + 63 + 8,)]i
+ [lrsinby + l3,sin(6 + 63) + z451n(6) + 63 + 64) + uscos(Oy + 63 +64)]j (2.75)

where

wa(z4,t) = ar(za)€ar(t) + Yar(z4)6a2(2) (2.76)

Suppose generalized coordinates are defined as

Q34 = {91,93,94,5417542}T (2-77)

Velocity vectors are expressed by the Jacobian matrices:

7y = Jadaa (2.78)
7 = Judae (2.79)
where
7= 1,51 — 23513 —z353 0 0 O (2.80)
1,,Ci+23Ci3 z3Ci3 0 0 0
Ji= —1,,5; — I3,513 — u4Cias — 24S13¢  —l3-S13 — aCras — TuS134

I1,C1 + 13,513 — u4S134 + T4Ci34 l3,C13 — u4S13¢ + 74C134

- —uyCis — TaS1 —EnS1aa  —€a2S134 (2.81)

—ueS13¢ + 4Ci3¢  €uCizaa  £2Ciaa

Mass matrices and gravity force vectors are derived from the Jacobian matrices.
B ly T A T
M =/O J3 J3paAadzs +/0 Ji JapaAdz, (2.82)

{ ly
Gf = /03 J3(2,1)p3Asdzs +/0 J4[2,1)psdadzy

{3 l(
G3B =‘/° Jj[2,2lp3A3d.’t3+/; J4[2,2]P4A4d1'4 (283)
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ly
G4B = /0 J4[2, 3]p4.44d14
Elements of mass matrices and gravity force vectors are:

I3
0

ly
0

1

A/Iﬁ (1':23 + l?r + 2[1,$3C3)p3.43d.’1,‘3
(B, + 13, +ul + 23
+ 21 r(ISrCB + I4C34 - u4534)

+ 213,(.’24C4 - U4S4))p4A4dl‘4

I

i3
ME /‘; (23 + l1,23C3)p3Asdzs
{4
+ /(; (2, +ul+ z?
+ hy(l3,C3 + 24C34 — u4S34)

+ 23 (24C4 — 14S4))padadz,

ls
ME = [(&3 4} + h(24Cas = uaSad) + lor(24Ca = weS)pudhedzs

N
Mfa = _/0 a1 (za + 1 Cas + 13:Ci)padaday

Iy
MIBS = /; Ya2(T4 + 11, C34 + 13:Cy) paAsdzy (2.84)

15} {
M282 = _/0 $§p3A3d$3 + /;‘(lg, + uz + .’L'Z + 213,-(1'404 -_— 13rU4S4))p4A4dI4

la
ME = [(8h+ +ul+ n(@eCa = uaSi)pedudes

ly
Mﬁ = /; Yar(zy + 13:Cq)padadz,y



39

ls
M235 = /(; Wiz(za + [3:Ca) paAadzs

I
ME = /0 (22 + u)peAades
B W
4\/[34 =](; w411:4p4.44d:r4

L
B
A’ISS = /(; w42$4p4‘44d1‘4

l4
ME = /0 03 padedzy

{a
-Mfs =/(; 1/)41%204-44(1174

N
ME = /0 2 paAadza

i3
G? = [)(11rC1+Iacls)P3A3d$3

A
+ /0 (IyCy + l3rCi3 — #aS134 + 4C130)paAedzs

{a N
GZB =A z3C13p3A3dz3 +A (13,013 — ugSia + chly)pp‘hdl“g (285)
{y
G = [ (~usSiou + 24Craa)pecdedey
After the integral are defined using (2.23 - 28), the mass matrices and gravity vectors

of linearized equations are :

ME = mal}, + D3 + OmalirlscCs + Do + ma(l, + 2)

+2my(h,15.C3 + lacl3rCo + l1rl4cC34)

l\’Ig = D3 + m3li,13.C3 + m4l§r + Dy
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+my(l1-13.C3 + 2Uselsr Cy + 14cl1:Ca4)
ME = Dy + mylac(13,Ca + 11:C4)
NIﬁ =AMy + LMa(13,Cs + 1:C34)

MB = AMy + LM(15:Ca + 1,Ca4) (2.86)

.”VIZBZ = D3 + m4l§r -+ D4 -+ 2m4l4c13,C4
ME = Dy + malyls.Cy
MEB = AMy + LMyl Cy

M235 = Aﬂf{n -+ LIM4213TC4

ME = D,
MB = AM,
ME = AM,,
MEB = NMgy

n
M455 =/o ¢41¢42P4A4d154
M585 = le.u

Gf = m3(,,C1 + I3.C13) + my(LirC1 + I3,C13 + 14C134)
GE = myl3.C13 + my(larCia + [4Cra4) (2.87)

Gf = myliCia
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The stiffness matrices are:

" ) 8211’;,-1- 2 C 5 5
K;; _/0 EL{z 3Pds (i=4.j=12) (2.88)

2.5.2 Centrifugal and Coriolis force

The velocity coupling terms are obtained from the mass matrix using the Christof-

fel symbol. These terms are also simplified by several structural properties.

13 14
ey = 11,[/0 z3S53p3A3dz;3 +/0 (I3:S3 + 74534 + u4C34)padadzy)

'
ey = /(; {lir(24S34 + u4Caq) + l3.(2454 + u4Cy)} paAsdzy
ly
s = lsy[ [ (2454 + usCa)pacdadd]

Iy
eq = /0 va{=(Yala + vate) + (hrSss — 13:54)} paAadzs

la
e = ,[; Yar{=(Yaka + Yarbaz) + (11rS34 — 13- Sa) } paAadzy (2.89)

Iy
es1 = /; Yar {—(Yar€a + Ya2az) + 13,54} paAgdzy

. la
€52 = /0 VYaz{—(Ya1€a1 + Ya2ba2) + 3,54} paAadz,

Iy
€1 = /o Yar(Yaréa + Yazba2)paAddzy

"
€62 = ,/o V(Y€ + Va2és2)paAadzy

After evaluating the integral,

e1 = hi[(malsc + myls,)Ss + mylscSas + (LM + LM2£42)C4)



czv= Lie[malacSaa + (LM + LMp€)Co]

+l3,.[m4l4c54 + (L.M41£41 + LA’[42£42)C4]
e3 = la,[malyeSs + (LMuéa + LM 3642)C4]

eqy = =N Mula + (11:S34 + 13, Sa) LMayma (2.90)

€4y = —-1V."\/[42£42 + (11,-534 + 13754)1.4.’\/142"7.4

es1 = —NMula + I3, SaLMaumy

esp = —NMybia + 13, SaL M2y

ee1 = —NMaua
esz = =N Ma2fa2
Using these coefficients, the velocity coupling matrix can be expressed as follows:

0 —e —e; —egy "6421

—e; —€; —€41 —C42

C(1)?

—€1 —€41 €42 (2‘91)

0 0

0



€1 0 —€3
0 —€3
C(Q)B = —€3
e; ez 0
€3 0
C(3)P = 0
€41 €51
€51
C4)f =
€42 €52
) €52
C(5)2 =

2.6 Conclusion

—€51
—€s51

—€s51

—€61
—€p1

—E€s1

€61 0
€61 0

€61 0

€s2
€62

€62

o o o o

—€52

—€s52

—€52

—€62

—€62

—€62

o o o o o

o O o o o
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(2.93)

(2.94)

(2.95)

Mass matrices and gravity vectors are directly derived from the Jacobian matni-

ces which are easily calculated from position vectors by SMP. Because the deriving
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procedure is simple, it reduces the possibility of producing incorrect equations. Fur-
thermore, this form can easily be used to expand a series of mode shape functions
describing elastic deformation. Six inertia parameters are defined and analogous
terms exist for the cases with and without payload. The velocity coupling matri-
ces. which are the coefficients of centrifugal and Coriolis force terms. are derived
from the mass matrices using the Christoffel symbol and are simplified using sev-
eral structural properties. The resulting velocity coupling matrices have a structure
which is useful to reduce the number of terms calculated, to check correctness. or

to extend the mode! to higher order.
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CHAPTER III

Constrained Dynamic Analysis

3.1 Introduction

In this chapter, a numerical method is presented for dynamic analysis of closed
kinematic chain systems such as parallel link mechanisms. Dynamic solution of a
closed kinematic chain system requires solution of a mixed set of differential equa-
tions of motion and algebraic constraint equations. Singular Value Decomposition
(SVD) is used for reducing the equations by eliminating the unknown constraint
force. The nonlinear constraint equations of RALF are derived. Natural frequencies
and eigenvectors of a closed kinematic chain system are derived and verified by a

simple example.

3.2 Singular Value Decomposition

As merntioned in chapter II, the equations of motion of a flexible arm with
a parallel link mechanism are expressed by the mixed set of differential equations
(2.6) and nonlinear algebraic equations (2.7). The Lagrange multiplier A is included
in differential equations to describe the unknown constraint force by the constraint

Jacobian matrix.

Mi+RKq+F+@Ir=Q (3.1)



46

where F is the nonlinear force vector which includes Coriolis and centrifugal forces
and the gravity force. Nonlinear algebraic constraint equations describe the rela-

tionship among the angles within the closed kinematic chain.
®(q) =0. (3.2)

Differentiating the constraint equation (3.2) with respect to time yields the velocity

form of constraint equations.

$,4=0 (3.3)

For solving this mixed set of differential and algebraic equations, the unknown
constraint force vector, ), has to be eliminated from the differential equations. The
constraint Jacobian matrix ®,, with rank m, can be decomposed into the following

form using Singular Value Decomposition (SVD).
¢, =UTVT (3.4)

With proper partitioning [38], it can be expressed as

VIT
8, = [U: Us)[Sm O (3.5)

VZT
where U; and V; are orthonormal bases for four fundamental subspaces as shown in
Fig 3.1. The columns of U; are the orthonormal eigenvectors of the matrix <I>q<I>g'.
The columns of V; are the orthonormal eigenvectors of the matrix $7®,. T, is equal
to diag(o;, a2, ...,0m) ordered oy > 07 > ... > 0. The o; are called singular values

which are the nonnegative square roots of the corresponding eigenvalues. Notice

that V; is the null space of ®, which satisfies the following relationship.

8,V,=0 (3.6)



Figure 3.1: Four fundamental subspaces of &,

47
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Also, @;, called the pseudo inverse of @,, is defined as follows:

-1 UT
—m 1
&7 = [V Vil (3.7)
o || vz
Premultiplying (3.1) by V,7 and using the orthogonality of (3.6) gives
VIMi+VIKg+VIF =V]Q (3.8)

The unknown constraint forces are thus eliminated from the equations of motion.
However, because VT M is the (n - m) x n rectangular matrix, additional equations
are needed to get a solution. Let us define a new variable z which is an independent

coordinate with dimension (n - m) x 1. The homogeneous solution to (3.3) is V2z.
¢ ="Vs2 (3.9)

Geometrically, it is the projection of the velocity vector ¢ onto the tangent hyper-

plane of the constraint surface. Moreover, the time derivative of (3.3) gives

@, = “‘i)q‘j
= —¢7(24)ed (3.10)
Then, § is represented as
§=—27 ¢ (Be)ed + Vai (3.11)

The first and second term in the right hand side of (3.11) are the particular solution
and the homogeneous solution to equation (3.10) respectively. Physically, they are
the normal accelerations and the tangential accelerations of the constraint surface,

respectively. Finally, by integrating (3.9), position vectors are expressed as

g=Vyz+C (3.12)
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where C, a constant, is here chosen to be zero to satisfy initial conditions.

Substituting (3.9),(3.11), and (3.12) into (3.8), the equations of motion become:
VIMV;E + VIR Vaz = VI Q+ VI F (3.13)

where

F=Me " (®,),4-F (3.14)

Equation (3.13) is a set of n - m equations in terms of the independent generalized
coordinate z. As a result, the n equations (3.1) and m constraint equations (3.3)
are reduced to n - m equations in (3.13) by the coordinate transformation matrix V;
[67]. Because the independent generalized coordinate lies on the tangential plane
of the constraint surface instantaneously, the changes in generalized coordinates
due to the integration of # during a small time interval do not result in significant
constraint violation [37]. Therefore, the reduced equations of motion (3.13) are free

from constraints and stable for numerical integration error.

3.3 Constraint Eqﬁations

To apply the SVD method to RALF, the constraint equations must be described
first. Suppose the elastic deformation is small compared to the length of the link,
the deformed parallel link mechanism is depicted as in Fig 3.3. For the virtually

cut joint C’, the constraint equations are expressed by two vectors.
AB + BB' 4+ B'C' = AD + DC’ (3.15)

or

(1yC1 — u151 + 1:Cr2)i + (L1151 + u1Cy + 12, 512))

= (13C13 + 1iCras)i + (13513 + 14S134)) (3.16)



50

YO

- XO

Figure 3.2: Rigid parallel link mechanism

Figure 3.3: Flexible parallel link mechanism
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When this equation is expressed in the form of equations (3.2) and (3.3), the position

form of constraint equations are

&/ — IhyCy — u1eS1 + 12rCrz — [3C13 — [,Chay _ 0 (3.17)
[14S) + u1Cr + 12:S12 — 13513 = 145134

or, in the velocity form of constraint equations, the elements of the constraint

Jacobian matrix are:

LS+ u1Cy + 15,512 — 13513 — 145134

&/ =
9
IUCI e u,,Sl + lg,Cn - I3C13 — 140134

20512 13513 — lsS1sa —14S1a
12rcl2 —13013 - 140134 —140134

Y11eS1 Y1225 0 0 0 O
¥11eC1 ¥12,C1 0 0 0 O

In the rigid parallel link mechanism as shown in Fig 3.2, the elastic deformation

(3.18)

is not included in the constraint equations. The coordinates transformation matrix

V2, which is derived from ] by SVD, is

11,51 + 12,512 — 13513 — 45134
LyCi+ 13,C12 — 13C13 — 14C134

I2r512 _13513 - 145134 —145134

(3.19)
121'012 _'13013 - 140134 —'140134
1 0 1 0
0 1/V3 0 0.577
V, = = (3.20)
0 1/V3 0 0.577
0 -1/V3 0 —0.577




where

qr = {917921 63q94}T (321)

V; is independent of angles and the ratio of the link length. The independent coor-
dinates of the rigid case are §; and 715(93 + 63 — 6,) for all configurations. However.
if an independent generalized coordinate is selected by Gaussian elimination. it may
change frequently [37]. On the other hand, in the flexible parallel link mechanism as
shown in Fig 3.3, V2 depends on the elastic deflection and its configuration, unlike
the rigid parallel link mechanism, as shown in equations (3.22 - 3.24).

For ule/llf = 0, 02 =135 dcg

= 0 0 0000 0]

0 0583 0.169 —0.010 0 0 0 0

0 0.583 0.169 —0.010 0 0 0 0

0 —0.566 0.388 —0.023 0 0 0 O

Vo 0 0026 0.8%0 0.006 0 0 0 O 5.22)

0 0.002 0.006 0999 0 0 0 0

0 0 0 00000

0 0 0 00000

0 o 0 00000

' 0 0 0 00000]




For ule/l'u = 001, 02 =135 deg.

Va

For u,./l1y = 0.0,

where

Vs =

af = {617 927 93’ 947 Ella 6127 621’ 6221 5411 E42}T

-1 0

0 0.580
0.580

0 -0.572

0 0.012

0 0.001

0 0

0 0

0 ]

0 0

- 8, = 60 deg.
[ -1 0

0.584
0.584
-0.572
0.035

0
0
0
0
0 0.002
0
0
0
0

o O o o©

0.184
0.173
0.381
0.890
0.006

== -}

0.163
0.163
0.394
0.890
0.006

0

o o o

-0.011
-0.011
—0.022
0.006
0.999

o O

-0.010
—-0.010
-0.023
0.006
0.999

0

(oo BRI e BN =

o

oo o o o o o o o o©

o O O O o o o o o o

o o o o o

o O O o o o o o o o

o o o oo o o o o o o

o o O o o o o o o o

o

o O o o o o o©o

o o
v

o o o o o o o o o o
v
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(3.23)

(3.24)

(3.25)



The angle 8, is mainly changed by the deformation of the lower link. Because the
links are vibrating during motion, V; is also changing. Therefore, the constraint
Jacobian matrix must be decomposed at every step to preserve the direction conti-
nuity of the basis of V. However, performing SVD at each integration step would
result in a tremendous increase in computing time. Furthermore, performing rede-
composition and recomputing the initial conditions on z at each time step requires
numerical integration algorithms which use information only from the current time
step even though this eliminates the need for null space continuity. Therefore. Mam
introduced the velocity norm as the criterion for redecomposition [46]. V3 is held
constant until the specified criteria are violated. In order to circumvent the rede-
composition, updating algorithm using QR decomposition was developed [37]. For
more accurate and stable solution, several algorithms have been developed recently

[39,32,57]. But, those methods are not applied in this thesis.

3.4 Computational Algorithm

An algorithm for solving the equation (3.13) is summarized as follows:

1) The constraint Jacobian matrix @, is decomposed by the singular value de-
composition subroutine LSVDF of IMSL (33]. Then, the initial condition for inde-
pendent coordinate z; at time step 1 1s defined by the following transformation.

2 =VIg (3.26)
L=V§ (3.27)
Initial conditions for first-order differential equations are

do
Y{to)=1| 2 (3.28)



2) Integrate (g;, %;, %) of equations (3.9) and (3.13) simultaneously from ¢, to
tiv1 to get (Gi+iy Zit1s -é,»_,,l) using the subroutine DGEAR of IMSL which is based
on Adams predictor - corrector method.

3) Solve the original velocity vector ¢i4+; from 24, using the transformation of
equation (3.9).

4) Check the velocity norm. If || £ ||; is less than a predetermined fraction of
|l ¢ |l2, the constraint Jacobian matrix &, needs to be redecomposed [37,46] and
step 1) is repeated. Otherwise, step 2) is executed next.

5)repeat the above steps until the final time is reached.

Application of this algorithm to RALF will be explained in Chapter V.

3.5 Natural Frequencies and Mode Shapes

Natural frequencies and mode shapes can be derived from the linearized equa-
tions of motion. Eigenvalues and eigenvectors of the constrained equations can be

obtained from the reduced equations (3.13) linearized about zero velocity.
VIMV;2 + VIKVaz =0 (3.29)

Eigenvalues of the constrained equations, (3.1) and (3.3), are the same as those of
the reduced equations (3.13). Eigenvectors of the constrained equations are derived

by transforming those of the reduced equations as follows.
g=V; z (3.30)

The validity of the above theory is demonstrated by the following simple example.
Now, the flexible parallel link mechanism is somewhat analogous to two masses
connected to one another by springs as shown in Fig 3.4. This system can be fully

described by the two coordinates r, and z,. Equations of motion of this system
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Figure 3.4: Constrained system
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Figure 3.5: Unconstrained system
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8

A/Il +'A’Ig ‘Mg .'.1:'1 Kl 0
+

M. 2 .’Wz I, 0 K 2

If the values of mass and spring are arbitrarily assumed as
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(3.31)

(3.32)

(3.33)

(3.34)

(3.35)

(3.36)

The system can be also expressed by three coordinates z;, z;, 3 and a constraint

equation as shown in Fig 3.5. The redundant coordinate z3 describes the relative

motion of the two masses. Equations of motion in the new coordinates system, q =

{Ila z2, 33}1 are
M] 0 0 5?1 I\’l 0 0 I

0 A/Iz ‘Mz .’i’g + 0 Kz 0 I

0 M M, I3 0 0 0 z3

o

+@TA=0

(3.37)



and the constraint equation is

T3=1I)+d
The velocity form of constraint equation is
I3 =1

and it can be expressed as follows.
qu=[1 0 —1] iy (=0

The constraint Jacobian matrix, ®,, is decomposed by SVD.
V20 0l| 1/vV2 -1/V20
¢=10 00 0 01
0 00{|-1/V2 -1/v2 0
Here, the null space, V3, is
-1/V2 0
V= 0 1
-1/vV2 0
The orthogonality of ¢, and V; is chécked as follows :
) -1/V2 0
e=[10 -1]| o
-1/vV2 0

—
It
=)

0]

(3.38)

(3.39)

(3.40)

(3.41)

(3.42)

(3.43)

Then, the reduced mass and stiffness matrix are used to find the eigenvalues and

the eigenvectors.

1 22

(VIMV,) T (V] KVy) =
1/vV2 3

(3.44)



The characteristic equation 1s

M —4)+1=0 (3.43)
and the eigenvectors are
1 1.0353
I, = (3.46)
—0.2588 1

The eigenvectors of the constrained system can be derived using V5.

-1/V2 =1/V? 1 —0.7321
F,=WI, =] —0.2588 0.9639 | = | 0.3660 1 (3.47)
—“1/V2 =1/V2 1 —-0.7321

The first and second row are the eigenvector of z, and z;

1 ~0.7321
T, = (3.48)

0.3660 1

Therefore, the characteristic equation (3.35) and eigenvectors (3.36) of the second
order system are the same as those equations (3.45) and (3.48) of the reduced system

respectively.

3.6 Conclusion

Parallel link mechanisms with rigid links have a simple relationship between the
angles of the closed kinematic chain. However, the parallel link mechanism with
flexible links requires nonlinear constraint equations to describe the relationship
between angles because the link deflection gives a perturbation to the relationship.
Therefore, a mixed set of differential and algebraic equations must be solved si-

multaneously. The transformation matrix V3, which is derived from the constraint
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Jacobian matrix by SVD, is used to obtain the reduced set of equations of motion
which have no additio-na.l constraint equations. The reduced equations have been
solved without any significant constraint violation. Therefore, SVD is a stable and
efficient numerical method for the closed kinematic chain system. The simple ex-
ample shows that natural frequencies and eigenvectors of the reduced equations are

the same as those of the constrained equations.
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CHAPTER IV

Mode Shape Functions of RALF

4.1 Introduction

Mode shape functions are employed to describe the elastic deformation of the
flexible manipulator. In the assumed mode method, mode shape functions need
only to be admissible functions which satisfy the geometric boundary conditions
and form a basis set. However, a large number of modes are required to obtain ac-
curate frequencies. The number of modes to be included can be reduced by choosing
appropriate functions which satisfy static equilibrium at the interface between links.
These functions can be derived systematically by using the component mode synthe-
sis. Various component mode synthesis approaches have been developed depending
on the assumed bougdiry conditions. Different boundary condition assumptions
require different coordinate systems to describe the elastic deformation. Therefore,
the method which fits with the current coordinate system is chosen. In order to
explain component mode synthesis, an L - shaped beam is analyzed first. Secondly,
mode shape functions of RALF are derived. Natural frequencies and mode shape
functions of the analytical model of RALF are compared to the results of a finite
element method, component mode synthesis and experiment results for validation

of the proposed mode shape functions.
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4.2 Component Mode Synthesis

A complete structure can be regarded as an assembly of component structures.
The dynamic behavior of each component can be represented by a reduced number
of component modes. Modes of the complete structure are formed from the compo-
nent modes by enforcing equilibrium and compatibility along component interfaces.
Generally, the constraint modes are introduced to provide shear and moment com-
patibility when the structure is assembled. Therefore, component mode synthesis is
useful for predicting accurately the lower modes and frequencies of a structure us-
ing a small number of component modes. Numerous methods for component mode
synthesis have been presented. Fixed, free, or loaded boundary conditions are used
to determine the component modes. An L - shaped beam as shown in Fig. 4.2.a 1s
used to explain the difference between these methods.

In a fixed interface method {19}, modes of each component are expressed by a
constraint mode and a normal mode. The constraint mode is defined as a static
mode of internal nodes resulting from an imposed unit displacement at the interface
node. The normal mode is defined as a dynamic mode of internal nodes when the
boundary condition is in effect on the external nodes. In Fig. 4.1.a, link deflections
of the lower beam can be expressed by rigid body rotations and clamped - clamped
modes. Here the rigid body rotation is the constraint mode and the clamped -
clamped modes are the normal modes. The boundary conditions of the lower beam

and the upper beam are clamped - clamped and clamped - free, respectively.

In a free interface method [27], modes of each component are expressed by
normal modes only. Modes of the upper beam are defined from the mass center. In
Fig.4.1.b, the boundary conditions of each beam are clamped - free and free - free.

In a loaded interface method [6], modes of the lower beam are modified by
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Figure 4.1.a: Coordinate system of a fixed interface method
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Figure 4.1.b: Coordinate system of a free interface method
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Figure ¢.1.c: Coordinate system of a loaded interface method
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added inertia and stiffness which are the effects of the upper beam. In Fig. 4.1.c,
the boundary conditions of each beam are clamped - mass - spring and clamped -
free.

Even though all methods give the same result in the limiting case. the coordi-
nates which are used to describe the elastic deformation are different. Coordinates
of the loaded interface method match closely with the coordinate system of RALF
as seen in Fig. 2.3. The z; axis is aligned with the tangent of the respective link at
the origin O;. Therefore, the mode shape functions of each link are derived using

the loaded interface method.

4.3 Loaded Interface Method

In this section, a loaded interface method [6] is summarized. An L-shaped beam
as shown Fig. 4.2.a is an example configuration of a two serial link manipulator and
the typical example of component mode synthesis {31]. In this section, component
mode synthesis is explained using the L - shaped beam. In Fig. 4.2.b, the complete
structure can be sepa.fated into two components - the main component and the
branch component. Each component’s modes are expressed in terms of internal (i)

coordinates and junction (j) coordinates.

A constraint mode is defined by statically imposing a unit displacement at the

junction node and zero displacement at the internal node [19].

Ki Ky ||| |0 W
I\’J,' I":J‘J' I R

where R is the reaction at the junction. Thus, the constraint mode is obtained from

the top row partition.

o = -K7'K,; (4.2)



Figure 4.2.a: L - shaped beam

Figure 4.2.b: Components of L - shaped beam

Ty

Figure 4.2.c: Boundary conditions of each component
of L - shaped beam
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A normal mode is obtained from the internal coordinates only.
(I = wM;)ed =0 (4.3)

The normal mode set & is truncated to a set of normal modes ¢%’. Therefore,
the internal node displacements of the branch component B can be expressed by
superpositions of constraint modes ¢S and normal modes .
uj = d5up + 95 €3 (4:4)
The total node displacements of branch component B are
ul I 0 na
up s5 oF 3:

The total potential energy for uncoupled components A and B can be written

ug = (4.5)

PE = éuﬁmm + —;-u:ng"BuB (4.6)
Components A and B are coupled together by constraining the interface coordinates.
This constraint is expressed as

uly =, (4.7)
Equation (4.7) assumes that the same reference coordinate system is used for both
components. Different coordinate reference systems will require a rotational coor-

dinate transformation using directional cosines. Therefore, the coordinate transfor-

mation that couples components A and B together becomes

: [ |
up I :
ug = = up
w) |8
I :
= W,
| o5
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u
= | frerg ?
o5 uy
= Tz [73KY (48)
Therefore, equation (4.6) can be rewritten as
1 Tr1rA
PE = E‘U.AI\ Ug (49)
where
KA =K.+ TTKsT (4.10)
In similar way, the kinetic energy is
. 11,4,
KE = 3“.4M uas (411)
where
M4 = My + TTMsT, (4.12)

As shown in Fig. 4.2.c, the mass matrix M, and the stiffness matrix I 4 of compo-
nent A are modified by the static influence of the branch component B.

Using these modified matrices, equations of motion of main component A are

MAi + K*uy =0 (4.13)

The eigenvector of (4.13) yields
ug = 44 (4.14)

Eigenvectors ®4 are also truncated to a set of normal modes ¢4.

w={ A4 ¢’_‘ £ (4.15)
u ¢4

2=

3_&,
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Both components are coupled using compatibility of junctions.

So,
a

u

s

mN.

3}

I 0
=1¢, 0
0 I

(4.16)

(4.17)

Therefore, using equations (4.15), (4.5), and (4.17), node displacements of each

component can be expressed in terms of reduced order modal coordinates.

o o
¢ 0 0
0 I 0
| 0 6§ ¢F
6, 0
¢ 0

& 0 |
| o504 o8

€a
3}

T,

§a

3}

€a
-

(4.18)

The reduced order of the mass and stiffness matrices are derived by the trans-

formation matrix T,.

]

| x

-

_ 7T My O
0 Mp

_ 7T Ky 0O
0 Apg

T, (4.19)

T, (4.20)
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Natural frequencies and modes of the complete system are calculated from eigen-

values and eigenvectofs of the following equations.

¢ I3
oA . 54
ARG + [IV]

J:]

= {0} (4.21)

Al

B

The node displacements of each component are derived from eigenvectors of Eq.

(4.21) using transformation matrix T of Eq. (4.18).

4.4 Component Modes of RALF

For the validity of modes which are derived using component mode synthe-
sis, system natural frequencies of finite element model, component mode synthesis
model, and the analytical model are compared.

The finite element model of RALF is modeled as shown in Fig. 4.3.2. Note that
for this model the lower link is assumed to be supported where the connecting link
attaches. This is a simplification over the physical system. The support sleeves
of the lower link and the upper link and the connecting link are assumed as rigid
elements by setting Young’s modulus of these elements 1000 times bigger than that
of the other elements. Because the hydraulic actuators are also assumed rigid, the
boundary conditions of node A and C are assumed to be simply supported as well

as node O. The finite element model is simulated by MSC/PAL2 program [51].

Component mode synthesis can predict the lower modes and natural frequencies
of RALF using a small number of component modes. The derivation procedure is
similar to Sec. 4.3. However. a little modification is required because RALF has a
parallel link mechanism with components connected by pins.

RALF can be partitioned into three components as shown in Fig. 4.3.b. First,

the boundary condition at node D’ of the actuator link is assumed as simply sup-
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Figure 4.3.a: Schematic diagram of RALF
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Figure 4.3.c: Boundary conditions of each component

of RALF



ported imposing a fixed boundary condition on the pin joint. The reaction force

or torque can be expressed by adding the stiffness and the mass at node D’ of the

upper link using (4.10) and (4.12). Next, the boundary condition at node B of the

upper link is also assumed as simply supported. Furthermore, the stiffness and the

mass are also added at the node B of the lower link. Using these boundary condi-

tions as shown in Fig. 4.3.c, the node displacements of each link can be obtained by

the finite element method. Node displacements of each component of the uncoupled

system are expressed as follows.

] e 0 0
ui 6 0 0
] 0 I 0
uj 0 4 &Y
ui 0 0 0
W) [0 0 o0

o O O

I

(1C
Pc

0 ] N
£a
0 ,
U
0
& (T
0 ,
u’
0
s \ 6‘: y,
¢::N

Ly &

The upper link has two interface nodes with the actuating link and the lower link.

¢'i2N§b + éicuil
o1 ey + 6)C 9ika

Pl + ik,

(4.23)

(4.24)

Using (4.23) and (4.24), uncoupled generalized coordinates can be described in



terms of generalized modal coordinates.

(e.) [1 o o]

u g 0 0|} & &

¢ & =10 I 0 & =120 & (4.25)
ul wowl 0| & £

| & | 0 0 I

Relationships between node displacements and generalized modal coordinates are

derived from (4.22) and (4.25).

i ] & 0 0
uj ¢, 0 0
| € | £
uj # 0 0
_ b =TT, & = o & (426)
uj #iCel &Y 0
| & . | &
ul vi Y 0
=y KA A

In the pin joint connection, equations (4.23) and (4.24) are modified as follows.

u' =ul = T¢i6 =6k (427)
] wl =ul? = T ("6 + ¢ Toul
= T, (4N & + 61 Td16a)
= i+ ¥it (4.28)
where
1 00
Tp= 01 0 (4.29)

000



because each node is defined in three coordinates - 9 translational and 1 rotational.

Therefore, equation (4.26) is also modified as follows.

ul o', 0 0
u’ o 0 0
£ ¢
- Sa Sa
uj @ 0 0
{ (= . £y =T,{ & (4.30)
uy el oY 0
| o 2 2
ug v ¥ 0
L ut ) [ olwl o e

Using this coordinate transformation matrix T, the reduced order of mass and
stiffness matrices are derived using (4.19) and (4.20). Natural frequencies and the
node displacements of RALF can be derived from this reduced order mass matrix
and stiffness matrix.

In chapter 2, the following modal data of each component are required for the

equations of motion.

NM = / $*dm

KW = / (%”5)2@ (4.31)
LM = f wdm
AM = / rvdm

where dm is the mass of the small segment. These data can be obtained by several
methods.

First, if the values of the interface mass and spring are known, these data can be
obtained from the analytical solution. However, it is not easy and it is a time
consuming job to get an analytical solution.

In a second method, the mode shape functions can be derived from node displace-

ments of the finite element model using a polynomial. However, this method has



a problem in calculating the stiffness matrix because the second derivative of the
estimated polynomial Vhas some difference from the true value. That is, it is not
practical to find a polynomial to satisfy the displacement and slope of every node
point at the same time.

By the third method used here, modal data can be expressed by summation instead

of integration. Therefore, modal data can be obtained from node displacements of

lumped mass model of each component.
NM =UT MY
KW =9TKv (4.32)

N
LM = Z m]-zj),-(:cj)

=1

N
AM = Z .’L']‘mj‘l,/),'(l'j)

=1

where

M = unloaded mass matrix

K = stiffness matrix

¥ = mode shape matrix

m; = mass of the j* finite element node

i(z;) = mode shape of the i** mode at the 3t node

z; = vector locating j** node with respect to the local frame
Mode shape matrices of the lumped mass model are less reliable than those of
the consistent mass model. Therefore, it was observed during a simulation that
the mass matrix is not positive definite for a model with small number of nodes.
However, modal data can be readily and inexpensively computed from the lumped

mass model which has a large enough number of nodes.
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Table 4.1: Comparison of Natural frequencies

Modes No. FEM CMS3 CMS2 AM3  AM2  AMI
1 8.38 8.30 8.43 8.41 8.45 §.46

1540 13.35 15.72 1561 15.98 16.20

[S%]

3 30.51 30.32 30.534 30.33 30.54 30.56
4 02.40 94.10 101.81 08.62 106.58 108.61
) 117.60 119.06 123.67 110.88 121.85 122.65
6 120.80 120.84 121.12 120.89 121.22 121.33

The first six natural frequencies of three models - a finite element model, a
component mode synthesis model, and an analytical model - are compared as shown
in Table 4.1. In this table, component mode sets of the component mode synthesis
(CMS) model and the analytical model (AM) are truncated at two mode (CMS2,
AM?2) and three mode (CMS3, AM3) per link. If three modes are included, all six
natural frequencies match each other quite well. On the other hand, if two modes
are included, only the first three natural frequencies match each other to within
10 %. However, because we are interested in the lower frequencies, two modes are
enough for the reduced order analytical model. Furthermore, AM1 is the model
which uses clamped - mass, clamped -free, and pin - pin boundary conditions for
the lower, the upper, and the actuator link. This model is more different from
the FE model than AM2. Therefore, component mode synthesis is the systematic

method which can derive proper mode shape function.

4.5 Discussion of Experiment

In fact, there are discrepancies between the analytical model and the real system

because the real system has a complex structure which is difficult to analyze by the



Table 4.2: Comparison of natural frequencies of the modified model

Modes No. FEM CMS3 CMS2 AM3  AM2Z  AMI

1 6.03 6.04 6.08 6.06 6.09 6.11

2 15.24 1530 1549 1537 15.74 15.99
3 30.74 30.74 30.75 30.75 30.76 30.79
4 75.63 7721 8491 81.73 89.70 91.73
b) 98.25 99.70 101.3 100.3 1025 103.3
6 120.28 120.32 120.59 120.37 120.70 120.81

analytical method. The sectional areas of beams are not uniform. The links are
connected with offset brackets. The connecting joint axis between the hydraulic
actuator and the lower link is not colinear with the axis joining the connecting
link to the lower link as shown in Fig. C.1 of Appendix C. Therefore, the flexible
part of the lower link increases. Table 4.2 shows the natural frequencies of each
model of the modified structure. The finite element models are used to explain the
discrepancies between the analytical model and the real system. Two types of finite
element models are created. One is a simplified model using beam elements with
seven different EI (modulus of elasticity times area moment of inertia) values and
one lumped mass element at the end of the lower link. The simplified model assumes
support slee-ves and connecting link as rigid similar to those used in the analytical
model. The other finite element model is a detailed model using beam elements in
which thirteen different EI values and three kinds of lumped mass elements were
used. The detailed model used makes no assumptions about the rigidity of any of
the links. In experiments, an electromechanical shaker was attached to the structure

at the end point of the lower link (Point B in Fig. 4.3.a). Because turnbuckles were

used in place of the hydraulic cylinders, the boundary condition can be assumed



b |

fixed. The detailed procedures of the experiment are described by Huggins [28].
Figure 4.4 shows the mode shapes of RALF and the associated system natural
frequencies. The first system mode is dominated by the bending of the lower link.
The frequencies of the first mode are nearly equal each other. The second system
mode is dominated by the bending of ihe upper link. However. there is a discrep-
ancy between the frequencies of the second mode of the simplified model and the
detailed model. The boundary condition of the upper link is more complicated in
the real system. Therefore, a more accurate model is required to predict the true
frequency. The third system mode is dominated by the pinned - pinned bending
mode of the actuator link. However, there is a discrepancy between the predicted
and the measured natural frequencies. A large amount of friction in the pin joint
causes the joint to exhibit some characteristics of a clamped end condition. This
frequency is measured when the structure was excited by a shaker and the joints are
fixed by a turnbuckle with no bearing. However, if the structure is excited by the
hydraulic cylinder, the frequency of the actuator link decreases. Therefore, the rea-
son for the frequency difference in the third mode appears to be friction at the joint
which 1s reduced by actuator motion. The higher frequencies and mode shapes have
discrepancies between the analytical models and the finite element models because
the analytical model included only two modes per link for describing link deflec-
tions. The higher modes and frequencies of the experiment also have discrepancies
because of their small signal to noise ratio, out of plane motion, and the closeness
of the frequencies as shown in Fig. 4.5. Even in the finite element model, the higher

modes are sensitive to modeling.
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4.6 Conclusion

In the assumed mode method, there are numerous possible choices of admissible
functions. However, a large number of modes are required for the completeness of
the set of admissible functions. In order to speed up the convergence, mode shape
functions which satisfy the static equilibrium are used in component mode synthesis.
Among several component mode synthesis approaches, the loaded interface method
fits with the current coordinates system. Proper mode shape functions for a reduced
order model are obtained using the loaded interface component mode synthesis.
Comparison between the finite element model, the component mode synthesis model
and the analytical model show that mode shape functions which are determined by
component mode synthesis improve the convergence. Because the real system has
a complex structure which does not match certain simplification necessary in the
analytical model, there are some discrepancies between the analytic model and the
experiment. These discrepancies are explained using a simplified and a detailed

finite element model.



CHAPTER V

Verification of Analytical Model

5.1 Introduction

The experimental verification of nonlinear dynamics is a difficult job which has
not been extensively studied compared to linear dynamics. Possible verification
methods include a time domain and a frequency domain methods. However, the
time response with nonlinear dynamics depends on initial conditions and input am-
plitudes. Therefore, an accurate dynamic model is required. As mentioned in the
previous chapter, the real system has unmodelled dynamics and parameter uncer-
tainties hard to describe analytically. Hence, direct comparison between the analyt-
ical model and the real system was difficult. In this chapter, several techniques are
tried to verify the nonlinear dynamics of RALF. First, as an alternative method for
a time domain verification, a TREETOPS model is used for the verification of the
analytical model. Secondly, as one of the frequency domain methods, the nonlinear
dynamics of RALF is studied by a sinusoidal excitation. Finally, actuator dynamics
has a significant interaction with flexible body dynamics. The effect of hydraulic

cylinder dynamics on flexible body dynamics is discussed.
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5.2 Analytical Model Verification using TREETOPS

TREETOPS is a computer simulator of the dynamics of a flexible multibody
structure with loop closures. TREETOPS is being developed by DYNACS Inc.
under contract to NASA’s Marshall Space Flight Center (MSFC). The program
was obtained from Dr. Henry B. Waites of MSFC. The name TREETOPS refers to
the class of structures which may be simulated by the program, that is those having
a tree topology. A tree topology is one in which multiple bodies are connected
by rotational and translational joints. TREETOPS can also handle the structure
with loop closures by constraining the position or velocity of connecting joints. The
primary output of the program is a time history of flexible body motion in response
to an active control system consisting of actuators, sensors, and controllers. The
equations of motion are derived using Kane’s method. The TREETOPS model is
described in Appendix E.

The step responses of the analytical model and the TREETOPS model are
compared as shown in Fig. 5.1. The time responses of the two models match each
other fairly well even though they use different methods for deriving the equations
of motion. The constraint error measured at the connection joint is stable as shown
in Fig. 5.2. The analytical model used the SVD algorithm to generate the matrix V;
while TREETOPS model used the QR algorithm. SVD aigorithm updates the V;
matrix based on the given criterion. On the other hand, the QR algorithm updates
the V; matrix at every time step [37]. Even though the constraint error history
using the SVD algorithm is a little different from the constraint error history using
the QR algorithm as shown in Fig. 5.2, time responsss of other variables are not
different as shown in Fig. 5.1 . The constraint error also depends on the integration

method. Because the flexible body dynamics produces a stiff system which has
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several widely spaced frequencies in one system, Adam’s method is used. The
Runge-Kutta method allows the constraint error to increase as shown in Fig. 5.3.
The simulation time of analvtical model is shorter than that of the TREETOPS
model. For example, the CPU time of analytical model is about 6 minutes in
VAX /750 for 1 second time response and 1 millisecond time step. On the other hand,
the CPU time of the TREETOPS model is about 35 minutes. The expected reason
for this difference is that TREETOPS is a general program which can handle a 3
dimensional motion of a multi body. Furthermore, the dynamic equations of motion
are calculated recursively by matrix manipulation. Whereas, the analytical model
is expressed in symbolic form explicitly. In both models. the system frequencies
which are related to the upper link are high compared to the experiment results.
This difference comes from the actuator dynamics effects on the system dynamics.

The hydraulic actuator dynamics will be discussed in the section 5.4.

5.3 Verification of Nonlinear Dynamics

5.3.1 Analysis of Nonlinear Dynamics

In order to verify the nonlinearity, the following questions are expected. Where
does the nonlinearity come from ? Which excitation method is adequate to test the
nonlinear dynamics ? Which sensor is adequate to measure the nonlinear effect ?

First, nonlinear dynamics of a flexible manipulator comes from configuration
change, Coriolis and centrifugal force, and the coupling between rigid body motion
and flexible body motion as shown in the equations of motion. Secondly, a step time
response has been the common method for model verification. However, even though
the step input can excite many modes at one time, the time response is susceptible

to the unknown dynamics. such as the signal noise and the friction. Furthermore, it
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is difficult to detect the amount of nonlinearity from the step response. On the other
hand, the frequency spéctrum of the response to a sinusoidal excitation is a method
which can detect the nonlinearity. The response of a nonlinear system is dependent
on the amplitude of the excitation. One advantage of a sinusoidal excitation is that
the input force can be precisely controlled. Furthermore. large amounts of energy
can be input to the structure at each particular frequency. Therefore, it results in
relatively high signal-to- noise ratios and allows the study of structural nonlinearities
at any specific frequency. Third, the time response can be measured by several
sensors. The possible sensor types are accelerometer, encoder, tachometer, and
strain gauge.

Before the experimental verification, the simulation result can show the general
characteristics of the noniinear dynamics. The flexibility effect can be verified by
comparing the rigid body dynamics and the flexible body dynamics. The config-
uration change effect and Coriolis and centrifugal force effect can be verified by
changing the amplitude and the frequency of a sinusoidal excitation. In the simula-
tions, a RALF model is tested with 30 LB payload in order to magnify the effects
of the nonlinearity. In Fig. 5.4 and 5.5, several time responses of the rigid RALF
model are compared by changing the amplitude (0.05 rad. 0.1 rad, 0.5 rad) with
the fixed frequency (1.3 Hz) and the frequency (1.5 Hz, 4 Hz, 7 Hz) with the fixed
amplitude (0.05 rad) of a sinusoidal excitation. Time responses are measured by
several sensors - encoder, tachometer, and accelerometer. The TREETOPS model
is used because the tip acceleration is easily measured using the given sensor option.
The differences between each case are not clear in the time response. However, the
phase plots in Fig. 5.6, 5.7 and 3.8 are another method to detect the nonlinearity.
The ellipse of harmonic excitation is distorted by the nonlinearity as shown in Fig.

5.7 where the sinusoidal responses of different amplitude are drawn in the same
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plot. The acceleration at the tip shows the difference even in the time response
as shown in Fig. 5.4. FFT of the tip acceleration is another method to check the
nonlinearity. Fig. 5.9 shows the power spectral density of the tip acceleration in
response to the different amplitudes and frequencies of the sinusoidal excitation.
To obtain the sharp peak, 4096 data points between 0.9 second and 5.0 second are
used. In order to reduce leakage, the Hanning window is used. The relative differ-
ence between the first harmonic peak and the second harmonic peak decreases (a
factor of more than S0) as the amplitude of sinusoidal excitation increases as shown
in Table 5.1.a. However, the relative difference between the first harmonic peak and
the second harmonic peak does not change significantly (a factor of less than 3) by

changing the frequency of the sinusoidal excitation as shown in Table 5.1.b.

Similar analysis has been done for the flexible body. Fig. 5.10 and Fig. 5.11 show
the time responses of 6,, 8,, and acceleration at the tip by changing the amplitude
and the frequency of the sinusoidal excitation. In these figures, the distortion of the
sinusoidal response can be detected even in the time response. Fig. 5.12 and Fig.
5.13 show the phase plot of rotation angles and modal coordinates. Compared to
the rigid body case, the effect of nonlinear dynamics is more significant as observed
by changing either the amplitude or the frequency of the sinusoidal excitation.
For instance, the circle of harmonic excitation with 0.5 rad amplitude and 7 Hz
frequency is distorted as shown in Fig. 5.14. Fig. 5.15 shows the power spectral
density of the acceleration at the tip. By increasing the amplitude of sinusoidal
excitation, the broad range harmonic peaks including system natural frequencies
are observable as shown in Fig. 5.15.a. By increasing the frequency of the sinusoidal
excitation, the nonharmonic peaks occur between the harmonic peaks as shown in
Fig. 5.15.b. Table 5.2.2 and 5.2.b shows the first several harmonic peak values and

their relative difference for different excitation amplitude and frequency respectively.
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Table 5.1.a: Peaks of power spectrum density
of rigid RALF model
for different excitation amplitudes

st 2nd 1st/2nd
harmonic harmonic harmonic
0.05 rad 1.46E5 6.40E1 22.7E2
0.1rad  5.90E3 1.09E3 3.41E2
0.5rad  1.99E7 6.97E5 0.28E2

Table 5.1.b: Peaks of power spectrum density
of rigid RALF model
for different excitation frequencies

1st 2nd 1st/2nd
harmonic harmonic harmonic
1.5 Hz 1.46E5 6.40E1 2.27E3
4.0 Hz  3.40E6 2.70E3 1.26E3
7.0 Hz 2.00E7 6.97E5 0.88E3
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Table 3.2.a: Peaks of power density spectrum
of flexible RALF model
for different excitation amplitudes

1st 2nd 3rd 1st/2nd

harmonic harmonic harmonic harmonic

0.05rad 1.73E5 1.33E2 3.36E2 1.13E3
0.1rad  7.00E3 2.33E3 1.22E3 2.74E2
0.5rad  247ET 1.50E6 2.96E5 1.65E1

Table 5.2.b: Peaks of power density spectrum
flexible RALF model

for different excitation frequencies

1st 2nd 3rd 1st/2nd

harmonic harmonic harmonic harmonic

- 15Hz 1.73E5 1.533E2 3.36E2 1.13E3
40Hz T7.23E6 2.18E5 2.40E3 3.33E1
7.0 Hz 1.88ES6 2.38E5 1.76E4 0.79E1
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The significance of the harmonics grows dramatically in both cases (factor of about
70 and 140) Therefore, the flexibility has a significant effect on the system dynamics

as shown by comparison of Fig. 5.9 and Fig. 5.15.

5.3.2 Experiment of Nonlinear Dynamics

To test the nonlinear dynamics, fast motion of each link is required. The flow
rate of the current hydraulic servovalve is 5 gpm. The effective piston area is
different for each cylinder (See Appendix C.2). Therefore, the maximum linear
speeds of the lower link actuator are 6.127 in/sec and 8.170 in/sec for extension and
retraction, respectively [28]. The maximum linear speeds of the upper link actuator
are 2.320 in/sec and 3.268 in/sec for extension and retractiomn, respectively. The
transformation of the hydraulic cylinder’s displacement to the joint angle rotation
results in 18.8 deg/sec, 24.4 deg/sec for the lower link and 7.34 deg/sec, 10.29
deg/sec for the upper link at the nominal joint angles of the experiment. The

maximum displacement of the cylinder is calculated as follows.
§ = ASinwt (5.1)
A
6 = = Sinwt (5.2)
w

Therefore, the maximum displacement of the lower link with 1.5 Hz frequency is
0.65 in (1.99- deg or 0.035 rad) and 0.87 in (2.59 deg or 0.045 rad) for extension and
retraction. The maximum displacement of the upper link with 1.5 Hz frequency is
0.25 in (0.78 deg or 0.014 rad) and 0.35 in (1.09 deg or 0.019 rad) for extension
and retraction. As we can see from comparison with simulation, the speed is too
small for testing the nonlinear dynamics. Within the current maximum speed, the
power spectral density is measured for different amplitudes and frequencies. Fig.

5.16.a is the power spectral density by increasing the amplitude from 2 in, to 4
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in. to 6.5 in of the lower link and 2.5 in of the upper link with 0.15 Hz frequency.
The relative peaks decrease. Fig. 5.16.b is the power spectral density obtained by
increasing the frequency from 0.36 Hz, to 0.59 Hz. to 0.82 Hz with 1 in amplitude of
both actuators. Fig. 5.16.c is the power spectral density obtained by increasing the
frequency from 3.6 Hz. to 5.5 Hz, to 7.9 Hz with 0.11n amplitude of both actuators.
As shown in these figures. the harmonic peaks grow slightly in the wide range with
increasing excitation amplitude and frequency. A slight nonlinearity is observed

under the current hydraulic cylinder’s speed.

5.4 Hydraulic Actuator Dynamics

In this section, the hydraulic actuator dynamics are modelled and compared
with dynamics of the more commonly used electric D.C. motor. The difference in
velocity feedback for the two actuators is shown to result in significantly different
joint behavior for the two cases for a flexible structure. A simple single link system
is used to illustrate this point.

Dynamics of an asymmetric or a single - rod hydraulic cylinder is more compli-
cated than that of a symmetric or a double - rod hydraulic cylinder. Because the
area of each chamber of the cylinder is different, the retraction and extension speed
is different. Therefore, the dynamics of the asymmetric hydraulic cylinder is non-
linear. As shown in many studies on an asymmetric hydraulic cylinder [24,75,36],
the exact dynamics of a real actuator is high order and therefore hard to apply in
real time control. Therefore, in this thesis, a linear time invariant model is used
by assuming the actuator is a symmetric hydraulic motor. Furthermore, in a crank
mechanism. the relationship between the link rotation angle and the hydraulic pis-

ton displacement is nonlinear so that the dynamics change depend on the operating
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point.

As shown in Appendix B, the governing equations of an electric armature con-

trolled servomotor and a hydraulic motor are similar each other. In the electric

armature controlled servomotor, the dynamic equations are

T=NLi,=Jb
di, . .
La_d? + Rui, =e, — W6

In the hydraulic motor, the dynamic equations are

T=D,P=Jf

V dP

Bgt_ + K. P = qu.Xu - D8

Equations (3.3) and (5.4) are similar to equations (3.5) and (5.6), respectively. The

block diagram of the two models also show the similarity as shown in Fig. 5.17.a

and 5.17.b. The actuator dynamics can be embedded into the plant dynamics. The

linearized state equations of the plant are
z, = App + Byuy

y = Cpzp

The state e?;uation of the actuator is
x.a = 44axg + Baua

up = CaZa

If the loop is closed, the input vector is

ug = Goz, — Cpzp

(5.9)

(5.10)

(5.11)
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Fig. 5.17.a: The block diagram of the electric armature controlled servomotor
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Fig. 5.17.b: The block diagram of the hydraulic motor



Fig. 5.18 clarifies the interconnection of the plant and the controller.

sponding augmented state equations are

I, 4, B,C, T, 0
I, -B,C, A, T, B.G,

y = Cpzyp

114

The corre-

This general form of augmented equation can apply to a flexible robot. The state

equations of a flexible robot are

¢ . ) r v ¢ 3 3
8 0 0 10 8 0
' 0 0 01 0
{ 5 Yy = < 6 +J Lup
8 a1 aiz 00 0 b1
ké) 'a21 02200_‘5 \b2‘
where
M, M,
M=
]V[f,. ./\/Iff
0 0
0 Ky
) MK = a1 G2
i az az
D, b
M y =
0 J bg

(5.14)

(5.15)

M,,, M;s, and M,; are the generalized inertia matrices which are related to the

rigid body, the flexible body, and the coupling between the rigid body and the

flexible body respectively. RL’;; is the generalized stiffness matrix. 6 and { are



115

+ + +
— G T Bu 1/8 Cl Bp 1IIS Cp

A, LA

Fig. 5.18: The block diagram interconnection between the plant and the actuator
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the generalized coordinates of the rigid body motion and the flexible body motion
respectively.
Using the actuator equations, the state equations of the flexible robot augmented

with the electric armature controlled servomotor and the hydraulic motor are as

follows.

4 0o 0 1 0 0 8 0
£ o 0 0 1 0 £ 0
6 ¢=1ay a2 0 0 Kb 6 ¢+ 0 |e (5.16)
3 an an 0 0 Kb £ 0
) |0 0 B o -&|lu] |z
6] [o o 1 o0 o {6 0 |
£ 0o 0 0 1 0 £ 0
8 (=|an az 0 0 Dmb 6 ¢+| 0 | X (5.17)
3 an az 0 0 Dpb ¢ 0
2 o o -Bmoo-EllA) [k

The only difference in the models is the values of each parameter as shown in
Table 5.3 [3,59]. As shown in the block diagrams of Fig. 5.17, the velocity is fed
back when the actuator dynamics is included. If the velocity feedback terms, -’Ef
and VD—/%, are not included, the system poles are determined by the eigenvalues of
(sI — A,)(sI — Ac) as shown in Eq. 5.12. The poles of the combined system are
the combination of those of 4, and A,. However, if the velocity feedback terms
are included, the system poles are changed. Fig. 5.19 shows the root locus of a

single flexible link when the velocity feedback terms of the electric motor and the

hydraulic motor are changed from zero to the values shown in Table 5.3. When



117

Table 5.3: Comparison of system parameters between

a electrical motor and a hydraulic motor

Electric Motor Hyvdraulic Motor
I, 30E3 H £ 26E12 %
K, 0326 < D, 152E4 m’
K 173082 % B3 5S46ES %
B 1367E3 & s 2083E0 o
L 0333E3  §  F5 05TER2 g

the electric motor is added, the closed loop system poles move a little bit from the
open loop system poles. On the other hand. when the hyvdraulic motor is added,
the closed loop system poles move almost to the open loop system zeros. This 1s

due to the large value of T,Qﬁﬁ compared to %:

This phenomenon also can be observed in the Bode plot. Fig. 5.20 and 5.21 show
the Bode plot for the angular position of the single flexible link with the electric
motor and the hydraulic motor respectively. The several peaks observed in Fig. 5.20
can not be found in Fig. 5.21 because the system pole is located near the system
zero. The closer a pole is to a zero, the less that modé appears in the output.
In the experiments, Fig. 5.22.a is the Bode plot for the angular velocity of the
single flexible link when it is excited by the electric motor. Because of the encoder
resolution, the angular velocity is measured. Fig. 5.22.b shows the Bode plots for
the positions of two hydraulic cylinders of RALF. The peaks of corresponding to the
system frequencies are not found as predicted in Fig. 5.21. Note that the different

size actuators are compared because of the hardware limitations. Therefore, only
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the qualitative characteristic can be compared. From the above discussion, the
actuator dynamics has a significant effect on the flexible dvnamics. The pole-zero
cancellation observed for joint variables as the output s not observed for other
outputs, of course. Tip position or strain will continue to show the resonances of
the arm. In addition. it should be noted that high velocity feedback gains in the
control will also increase the coupling term and thus make the actuator stiff with

respect to the disturbances caused by arm dynamics.

5.5 Conclusion

The TREETOPS model of RALF is used for the verification of the analytical
model. The step responses of both models match each other very well. It is verified
that SVD is a stable algorithm for a constrained dynamic system simulation. For
verification of the nonlinear dvnamics of RALF, a sinusoidal excitation method is
used with various amplitudes and frequencies. The response is measured at the tip
acceleration. As shown in the phase plots and the power spectra, the nonlinear
dynamics of a flexible robot is significant compared to that of a rigid robot. The
differences the amplitude of between harmonic peaks as shown in the power spectra
can be used to check the degree of nonlinearity. However, because of the speed
limitation of the current hydraulic cylinder, the nonlinear dynamics of RALF is not
fully checked experimentally.

The actuator dynamics effect on the flexible robot is also investigated. Even
though the electric motor and the hydraulic motor have the same form of dynamic
equations, the effect on the flexible robot can be different due to the difference of
their system parameters. The differences are analyzed by the root locus and the

Bode plot, both theoretically and experimentally.



CHAPTER VI

Control of RALF

6.1 Introduction

The current RALF structure has some complicated components and geometries
which are hard to describe analytically. As mentioned in the previous chapter, the
actuator dynamics is an important component in the flexible arm dynamics. The
dynamics of an asymmetric hydraulic cylinder is nonlinear. In a large and fast mo-
tion, the nonlinear effect of the asymmetric hydraulic cylinder might be significant.
The crank mechanism of the hydraulic cylinder and the offsets ( See Appendix Fig.
C.1) make the symbolic modelling difficult. Therefore, before implementing a mod-
ern control algorithm which requires an accurate dynamic model, a single input
multi output controller is implemented using cylinder position and beam strain at
each link independently. The performance of the classical controller can be used as
the base performance for implementation of a more adva.nced control algorithm in

the future.

6.2 Controller Design and Experiment

The position of each hydraulic cylinder is fed back using an LVDT sensor for the
rigid body motion control. Because the hydraulic actuator has a velocity feedback

loop internally, the position feedback with lag compensator has been generally used
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for the position control of the hydraulic system [49].
for 1=1,2 (6.1)

The lag compensator Eq. (6.1) is used to compensate the steady state error due
to the friction. However, because the gravitational torque is much larger than the
dynamic error correction torque, the compensation speed is slow. Therefore, the
addtional constant torque is included to compensate the external torque due to
gravity force. Gains and coefficients of the lag compensator are adjusted to obtain
the underdamped step response. The parameters of the lag compensator are shown
in Table 6.1. A cycloid curve is used for the trajectory profile. The reference tra-
jectories used consist of the combination of the extension and retraction motion of
two joints as shown in Table 6.2. The controller is digitized using a bilinear trans-
formation method, s = —Tz—’-:—i and implemented in a Micro-Vax II computer. The
sampling frequency used, T, is 8 ms. The controller implementation is described
in Appendix C. The control loop of the upper link is closed first and followed by
the lower link. Fig. 6.1 and 6.2 are experimentally measured time histories of each
cylinder position in cases of small motion and large motion respectively. In the two
cases, the system follows the reference trajectories well. Fig. 6.3 shows measured
time history of each cylinder position when a 30 Ib payload is added at the tip. The
system still follows the reference trajectories well.

The strain is fed back to suppress the beam vibration. The strain feedback
controller can be designed by root locus. The direct strain feedback pushes system
poles into the right half plane as shown in Fig. 6.4. Therefore, the strain rate
feedback is required to give flexible mode damping. The strain rate can be obtained

by numerical differentiation of the measured strain. However, a low pass filter is

additionally needed to reduce the noise effect. The strain rate also can be obtained
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Table 6.1: Parameters of a lag compensator

" 3 K
Lower Link 0.5 Hz 2.0 35000.
Upper Link 2.0 Hz 4.0 3000.

Table 6.2.a: Reference trajectory I (small motion)

1st 2nd 3rd 4th
Lower Link [in]* 2.0 2.0 4.0 2.0

Upper Link [in]® 2.0 4.0 4.0 2.0

o
o

Moving Time [sec] 2.0 20 20

Pause Time [sec] 10. 10. 10. 10.

Table 6.2.b: Reference trajectory II (large motion)

1st 2nd 3rd 4th

X
o

Lower Link [in]” 20 80 20

Upper Link [in]* 2.0 4.0 4.0 2.0

o
o

Moving Time [sec] 1.0 1.0 1.0

Pause Time [sec] 10. 15. 15. 13.
* absolute displacement of the cylinder
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from a filter. The generalized structural filter presented by Wie [78] is an extension
of the phase -lead, -lag, bandpass, and notch filter. This approach for controlling
flexible systems has been proposed for control of large space structures. We will
explore its use for flexible arm control. The concept is based on various pole-zero
patterns that can be realized from a second order filter presented as follows.

(s?/w? + 2,5 /w: +1)
(32/“’3 +2(ps/wp + 1)

(6.2)

By different choices of the coefficients of the above second order filter, several fre-
quency shaping filters such as phase lead and lag, notch, bandpass can be easily
realized. In addition to these minimum-phase filters, various nonminimum-phase
filters can also be realized from this second order filter. For stabilization of flexible
modes, a phase stabilization technique and a gain stabilization technique using the
phase lead or the notch filter have been used in practice [77,17,81]. Phase stabi-
lization provides the proper gain and phase characteristics at the desired frequency
to obtain a closed loop damping. Gain stabilization provides attenuation of the
control loop gain at the desired frequency to ensure stability. In the system whose
parameters are not known precisely, phase stabilization is more desirable. High loop
gain can be realized if the desired mode does not cross the -180 deg. + n+*360 deg.

The first approach for vibration suppression is to change the phase by the phase
lead filter. 'i‘he phase lead filter can be obtained by setting wp, > w; and (, = (- = (.
as shown in Fig. 6.5.a. As shownin Fig. 6.5.b, the gain increase at higher frequency
can be approximated as 40 * log(22). Ratio 22 greater than 2 should be avoided
because a large ratio amplifies measurement noise. The filter coeflicients are chosen
by setting w, and w. on either side of the mode to be stabilized. The damping ratio
of the filter can be changed arbitrarily. For (. = 1, the conventional phase lead filter

with poles and zeros on the real axis can be realized. Fig. 6.6 and 6.7 show the



root locus when the phase lead filter is used. The filter gain is varied. The phase
lead filter can stabilize the modes of the upper link and the lower link conditionally.
The effect of filter damping (. is not significant.

The second approach is to employ the nonminimum phase allpass filter which
maintains the control loop gain and provides the proper phase lag to the flexible
mode as shown in Fig. 6.8.b. As shown in Fig. 6.8.a, the nonminimum phase
allpass filter can be obtained by setting w, = w; = w, and { = —=(,. In Fig. 6.9,
several filter frequencies, w, and w;, are tried for the stabilization of the upper link
mode. 30 filter gains which are logarithmically equally spaced between 1 and 1000
are chosen. If the filter frequency is higher than that of the upper link mode to
be stabilized as shown in Fig. 6.9.c, it is hard to stabilize the upper link mode by
the filter. However, if filter frequency is lower than that of the upper link mode,
the filter can stabilize the upper link mode. As shown in Fig. 6.9.a and 6.9.b,
the system poles move more slowly by the lower filter frequency for the same gain.
Therefore, the lower filter frequency of Fig. 6.9.a is more desirable. In Fig. 6.10,
the same technique is applied to the lower link mode. In this case, if the filter
frequency is lower than that of the lower link mode to be stabilized, it is hard to
stabilize the lower link mode by the filter as shown in Fig. 6.10.a. However, if the
filter frequency is higher than that of the lower link mode, the filter can stabilize the
lower link mode conditionally. As shown in Fig. 6.10.b and 6.10.c, the system poles
also move more slowly by the lower filter frequency for the same gain. Therefore,
the filter whose frequency is close to the lower link mode is more desirable. Fig. 6.11
and 6.12 are simulated time responses of an analytical model to verify the results
observed in Fig. 6.9 and 6.10 respectively. As shown in Fig. 6.9 and Fig. 6.10, the
system response is dominated by the lower link mode because the lower link mode

is close to the imaginary axis. As expected in the previous discussion. Fig. 6.11.a
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and Fig. 6.12.b show the best response for the same filter gain (K; = 10).

In experiment, the strain is detected near the connecting points of the hydraulic
cylinder and the link (Appendix Fig. 6.11). Fig. 6.1.b, 6.2.b, and 6.3.b show
the strain histories of the previous three cases. The beam does not vibrate much
except when starting the motion because of current speed limit and smooth cycloid
trajectory. In order to magnify the vibration, a faster reference trajectory is chosen.
New reference trajectory is 2 in move of the lower beam and 1 in move of the upper
link during 0.1 sec. The controller is also digitized using a bilinear transformation
method.

First, the strain is fed back through the phase lead filter. Fig. 6.13.a shows the
strain history of the upper link strain when no strain is fed back. As shown in Fig.
6.13.b, the frequency spectrum has two peaks corresponding to the lower and the
upper link frequency respectively. Fig. 6.14.a shows the strain history of the upper
link when the strain is fed back by the phase lead filter. As shown in Fig. 6.14.b,
the peak corresponding to the upper link is significantly reduced. Fig. 6.15.a shows
the strain history of the lower link strain when no strain is fed back. As shown in
Fig. 6.13.b, frequency spectrum has two peaks corresponding to the lower and the
upper link frequency respectively. Fig. 6.16.a shows the strain history of the lower
link when the strain is fed back by the phase lead filter. As shown in Fig. 6.16.b,
the peak corresponding to the lower link is also reduced. However, a higher gain
makes the system unstable. Because the phase lead filter excites higher modes while
changing the phase, high gain may excite the unmodelled dynamics. Furthermore,
the restriction on Ef limits the selection of filter parameters.

Secondly, the strain is fed back through the nonminimum-phase allpass filter to
give a proper phase margin without changing the gain. Because this filter does not

change the loop gain, it is easy to adjust the filter coefficients and high feedback
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gain is possible. Based on the root locus analysis, the filter frequency for the upper
link is chosen as 3.0 Hz which is below the upper link frequency (9.8 Hz). The filter
frequency for the lower link is chosen as 3.4 Hz which is the same as the lower link
frequency (3.4 Hz). The filter damping ratio is chosen as 0.7. Therefore, coefficients
of the nonminimum phase allpass filter used are shown in Table 6.3.

Fig. 6.17 and 6.18 show the strain histories and frequency spectrum of the
upper link and the lower link when the strain is fed back through the nonminimum
phase allpass filter. The filter is designed for each link using the information of
the corresponding strain. The vibration is significantly reduced. However, the
frequency corresponding to the other link still remains in the time response as
shown in Fig. 6.17.a and 6.18.a. Suppression of both frequencies at the same time
is difficult because it requires a higher order filter. Furthermore, because the two
frequencies have different phase, the phase adjustment for one frequency makes the
other frequency unstable.

Until now, each controller is designed independently when only the correspond-
ing link is moved. Next, the responses are measured when the both joints are moved
at the same time. Fig. 6.19.a shows the time response of the upper link when no
strain is fed back. Fig. 6.19.b shows the corresponding frequency spectrum. How-
ever, when the strain is fed back through the nonminimum phase allpass filter, the
vibration is-signiﬁca.ntly reduced as shown in Fig. 6.20. Similarly, the vibration of
the lower link also reduced as shown in Fig. 6.21 and Fig. 6.22. Compared to Fig.
6.11.a and Fig. 6.12.b, time responses of each link have more damping because of
the structural damping. Furthermore, measured strain has offset due to the gravity
effect.

In order to check the robustness to frequency change, the 30 Ib payload is at-

tached at the tip. The same type test as above has been performed. Fig. 6.23 and
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6.24 show the strain histories of the upper and the lower link respectively when no
strain is fed back. Byr attaching the payload, the frequency of the upper link be-
comes the fundamental frequency. That frequency is dominant as shown in the both
frequency spectra. Fig. 6.25 and 6.26 show the strain histories of the two links when
the strain is fed back through the nonminimum phase allpass filter. The original
filter makes the system unstable. Even though the gain is reduced to one fourth of
filter gain, the strain feedback cannot reduce the vibration. However, by changing
the filter frequencies of the upper link slightly, the vibrations are reduced as shown
in Fig. 6.27 and 6.28. The filter coefficients of the upper link are changed as shown
in Table 6.4. However. the better response is hard to obtain just by the filtering
technique because the two system frequencies are close together when the payload
is attached. Fig. 6.29, 6.30. and 6.31 show the strain histories when strain is fed
back through the nonminimum phase allpass filter. These use the same trajectory

as Fig. 6.1, 6.2, and 6.3.

6.3 Conclusion

The independent control scheme using position and strain is applied for the
control of RALF. Position feedback with a lag compensator is successfully imple-
mented for the rigid body motion control. However, the direct strain feedback does
not reduce the vibration. For the vibration suppression, a phase lead and a non-
minimum phase allpass filter are used. In experiment, a nonminimum phase allpass
filter is easier to implement than a phase lead filter. As shown in strain histories
of an analytical model and experiment, the proper filter frequencies can be selected
using root locus. Therefore, even though there is a limitation in using these filters

for a system with changing frequencies, the beam vibration is reduced significantly



Table 6.3: Nonminimum phase allpass filter coefficients

Lower Upper

W, 9.4 3
Cp 0.7 0.7
¢, -0.7 -0.7

Table 6.4: Nonminimum phase allpass filter coefficients
when the payload is attached

Lower Upper

Gain  12. 20.
Wwp 5.4 1
W 5.4 1

¢, 07 -07

by the nonminimum phase allpass filter. The sensitivity to payload variation is

pronounced, however and is a deterrent to using the allpass filter in manipulator

control.
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CHAPTER VII

Summary and Future Work

7.1 Summary

For the purpose of exploring possible industrial applications, a large lightweight
manipulator was previously constructed at the Flexible Automation Laboratory
of the Georgia Institute of Technology. For added payload capacity, the flexible
parallel mechanism is added to sustain the load without increasing weight very
much. If RALF is assumed as rigid, the dynamics of RALF can be easily analyzed
using the theories which have been developed for rigid robots. However, in a flexible
robot, there are several problems which are not observed in a rigid robot. In this
thesis, solutions of these problems are evaluated. This section briefly summarizes
the important observations and results of the previous sections.

First, the dynamic equations of motion of flexible robots are complicated because
of the link c}eformation which is expressed by the summation of admissible functions.
The existing symbolic method generates complicated equations of motion. This
thesis develops a structurally well organized and computationally efficient form of
the equations of motion using the Jacobian matrix. The Jacobian matrices are
derived from the position vectors directly using the MJac function of SMP. Using
this Jacobian matrix, the mass matrices and the gravity force vectors are derived.
The velocity coupling terms are derived from the mass matrices using the Christoffel

symbol. One problem of this method is that the velocity coupling terms comprise
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many elements. However. using some structural properties. such as symmetry and
reflective coupling, these elements can be expressed by a few parameters. The
resulting equations of motion have a structure which is useful to reduce the number
of terms to be calculated, to check correctness. or to extend the model to higher
order.

Secondly, the parallel link mechamism with fexible links requires nonlinear al-
gebraic constraint equations to describe the relationship between angles within the
closed loop chain. Therefore, a mixed set of differential equations and algebraic
equations must be solved simultaneously for the constrained system dynamics. Be-
cause the integration of these equations 1s sensitive to numerical error, the conven-
tional numerical methods are not adequate to solve these equations. Among several
methods available to solve these numerical difficulties, a coordinate partitioning
method is used in this thesis. The generalized coordinates are transformed to a
set of independent coordinates on the tangent hyperplane of the constraint surface.
The transformation matrix used is the null space matrix of the constraint Jacobian
matrix which can be derived by the singular value decomposition. Because the La-
grange multiplier is eliminated from the equations of motion by the transformation,
the constraint forces do not affect the motion on the constraint surface and only
maintain the system on the constraint surface. Therefore, numerical integration
on the tang.ent hyperplane does not result in significant constraint violation. This
thesis applies this constrained system analysis technique to a flexible parallel link
mechanism. It is numerically verified that the SVD method is a stable algorithm
to solve a constrained system.

Third, mode shape functions are employed to describe the elastic deformation of
the flexible manipulator. In the assumed mode method. mode shape functions need

only to be admissible functions which satisfy the geometric boundary conditions.
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However, a large number of modes are required to obtain accurate frequencies. The
number of modes to ber included can be reduced by choosing appropriate functions
which satisfy static equilibrium at the interface between the links. These functions
can be derived systematically using component mode synthesis. Various component
mode synthesis approaches have been developed depending on the assumed bound-
ary condition. Different boundary condition assumptions require different coordi-
nate systems to describe the elastic deformation. Therefore. the method which fits
with the current coordinate system was chosen. In this thesis. proper mode shape
functions for a reduced order model of RALF are obtained using the loaded interface
component mode synthesis method. Comparison between the finite element model,
the component mode synthesis model, and the analytical model of RALF show that
the mode shape functions which are determined by component mode synthesis im-
prove the convergence. However, there are some discrepancies between the analytic
model and the experiment because the real system has a complex structure which
is difficult to analyze with the analytical method. For example, the upper link
requires a detailed model to predict the better approximate boundary condition.
These discrepancies are explained using a simplified and a detailed finite element
model in this thesis.

Fourth, a direct comparison between the analytical model' and the real system
was difﬁcult. because of the unmodelled dynamics and the parameter uncertainty of
the real system. Therefore, as an intermediate step. a general multibody flexible
dynamics code - TREETOPS - was used for the verification. The step response of
the models match each other very well.

Fifth, it is an important job for control to detect the degree of the nonlinearity in
the dynamics. In this thesis, the nonlinearity of RALF is studied using a sinusoidal

excitation. As shown in the phase plot and power spectra, the flexibility effect in
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nonlinear dynamics is significant. However, the nonlinearity of RALF is not fully
excited due to the speéd limitation of the hydraulic cylinder.

Sixth, the actuator dynamic effect on the flexible robot was investigated. Even
though the electric motor and the hydraulic motor have the same form of dynamic
equations, their effect on the flexible robot is different due to the difference of
their system parameters. In this thesis. the effects of an actuator dynamics on
a fexible robot are analyzed by root loci and Bode plots, both theoretically and
experimentally.

Seventh, in order to show the base performance for an advanced control, this
thesis uses a decentralized control scheme using cylinder position and beam strain
for trajectory following and vibration suppression. The rigid body motion is con-
trolled by the position feedback using a lag compensator. The beam vibration is
reduced significantly by strain feedback using the nonminimum phase allpass filter.

Using these simple controllers, a good result is obtained.

7.2 Future Work

First, the proposed derivation method of equations of motion using Jacobian
matrix has been applied only to a two joint planar system, RALF. Furthermore,
some procedures for deriving the velocity coupling terms are not computerized. In
the future, an even more computerized derivation method is required for multi-link
flexible body dynamics.

Secondly, one problem of a coordinate partitioning method is the preservation
of continuity in the basis of the nullspace. Since the constraint Jacobian matrix
is time-varying, the basis of the nullspace which forms a basis orthogonal to the

tangent plane of the constraint surface is also time-varying. However, performing



169

singular value decomposition at each integration step would result in a tremendous
increase in computing time and requires numerical integration algorithms which use
information only from the current step. To overcome this problem, Liang and Lance
[39] proposed a differentiable null space method. This method generates a set of
independent coordinates that are on the constraint surface rather than only on the
tangent hyperplane. Another solution is the modification of the constraint violation
method. Chang and Nikravesh [16] applied an adaptive algorithm to stabilize the
violation. Park and Haug [57) developed a hybrid numerical method which combines
a constraint stabilization method and a generalized coordinate partitioning method.
As we can see here, the subject of numerical methods for solving a mixed set of
algebraic and differential equations is still an open research area.

Third, mode shape functions of RALF were derived by hand calculation using
component mode synthesis method from the output of MSC/PAL. An computer-
ized program is required for different configurations of the structure. Furthermore,
natural frequencies and modes of the system can be varied due to several effects -
payloads, contact with the environment, joint position and velocity feedback gains
[11]. The study of these uncertainties will require much work in the future.

Fourth, nonlinear dynamics verification 1s a difficult job and has not been fully
studied. Ch_aotic vibration theory might be useful to study the nonlinear vibration
[50]. |

Fifth, as mentioned before, there are some uncertainties in the dynamic model
of the flexible robot under the current theories. Furthermore, the system dynamics
has a strong interaction with the controller output because it changes the boundary
condition of the beam. Therefore, control schemes which are sensitive to the model
uncertainty are difficult to apply. Furthermore. even the characteristics of the linear

control of the multi-link flexible robot have not fully been studied. Root loci help us
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to understand the control characteristics of the flexible robot [7]. The combination
of state space and freqﬁency domain techniques through a model update procedure
has been shown effective in determining the feedback gains of the flexible robot [9].
Recently, a frequency domain analysis of a multi input and multi output system has
been studied [44,20] in many areas. Especially, the Multivariable Frequency Domain
Toolbox of Matlab [12] implements several frequency domain design techniques such
as the Nyquist Array method, the Characteristic Locus method, the Quasi- Classical
Design method, and the Multivariable Root Locus method. Using these computer
aided design techniques, better studies on the linear control of the multi -link flexible

robot can be expected.
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APPENDIX A

Derivation of Equations of Motion using Jacobian Matrix

In this appendix, a Lagrangian method is used to derive the equations of motion
for a flexible robot. The Jacobian matrices are used to derive the mass matrices and
gravity force vectors. The coefficients of centrifugal and Coriolis force are derived
from the mass matrices.

The total kinetic energy of an elastic link can be written as

18 e r.
=3 Z/o rgr,p,A,,dxp (A.1)
25

where b is the number of links, , is the velocity vector of any point on the elastic link
p, and pp, Ap, I, are the density, the area, and the length of link p respectively. The

velocity vector can be expressed by the J acobian matrix and generalized velocity

vectors gp-
Ty = Jpdp (A.2)
Substitute (A.2) into (A.1),
1 .. :
T = '2";/0 (Jp‘Zp)T(Jp‘IP)PpApdzp
1.1 [ .
= 324 [ I Jrppodzs)is (4.3)

Equation (A.3) can be written in a scalar form as

b

i(Z Dijp)dids (A.4)

15=1 p=1

T=

ol —

n
=
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where n is the number of the generalized coordinates, D;jp is i} element of the mass

matrices Jo° JI JoppApdz, for the pth link. If )M;; is defined as
Mi; =3 Dip (A.3)

Equation (A.4) can be written as follows

1 n n o
T= § z; Zl ]Vf,'jq,'q]' (AG)
1= J:
The potential energy due to gravity is
U, = Z/ gTroppdpdzy, (A.T)
p=1
where ¢ is the 3 x 1 gravity acceleration vector. The potential energy due to elastic

deformation is

= -Z/ o A -~ ’)%ix,, (A.8)

p=1

where E is Young’s modulus of elasticity, and I is the area moment of inertia. u is

the elastic deflection which can be expressed by m modes and modal coordinates.

upl(:1) = 30 Yuk(@)ne() (A.9)
k=1

Therefore, the elastic energy can be rewritten as (A.11)

1 b m a »
U==§ZZ/0 E (55 Wk)(fp )2dz,

p=1 k=1
1 b m )
= 3 Z Z kaépk (A']‘O)
=~ p=1lk=1
where
K. = / E I,,(a Vo 2 i, (A.11)

If the generalized coordinate is expressed as

{g;} = {65, En}", j=1,.n (A.12)
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where n (= b + m) is the number of the generalized coordinates, 8, is the rigid
body motion coordinates of link p. &k is the k th modal coordinates of link p, the

elastic energy can be rewritten by the generalized coordinates as follows.

n n

%ZZI{U‘]’ (A.13)

1=1 =1

Using the kinetic energy and the potential energy, each term of Lagrange’s equa-

tion
i(?z)_?z+8(Ug+Ue)
dt " 0g; 0q; aqi
can be written as follows. If the kinetic energy (A.6) is substituted into (A.13),

dBT

=Q; (A.14)

dt a ) = dt(z 7\'[‘JqJ) = ZM']qJ + Z (A'ls)
where
dM.J r 61\/!,, dq;, o
= A.16
2 8qk dt ‘Z__: 8qk ( )
the first term becomes
d oT
Ei(a_<;'.~ = JZ_:} M;;d; + ; LX_: ———fmk
1 aM
= M;.q;, + ]
Z i) JE_:HZI (= 6Qk QJ‘Ik
and the second term becomes
oT 1
) 'a'a = 3q,(-z=:l§MquJQk)
- : aM (A.17)
=1 k_l

Next, if the potential energy (A.7) and (A.11) are substituted into (A.13), the third

term becomes

avu,

o
il Z / PgT—r’ippA dz,

= }: /0 ¢TI0 p,Aydz, (A.18)
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where J},") is the i th column of Jacobian matrix J,. The third term can be written
by a scalar because the gravity is acting in one direction. Therefore, if the gravity

vector has nonzero term in r th row,

where
b Ip
Gi=Y / Tolr, il ppdpdzy (A.20)
p=1"0

where J,[r,1] is r th row and i th column of J,. The fourth term becomes

=3 Kig; (A.21)

Therefore, the Lagrangian equations of motion can be written symbolically as fol-

lows.

> Mig; + 3 Kijgi+ (A.22)

j=1 y==1

" o1 0M; | OMy _ My
+Gig=m
;u;x ( 3<1k 9g; g ik 9=
or
> Mg+ 3 Kijgi + 2 Y Cie(1)gigr + Gig = 7i (A.23)

j=1 j=1 1=1 k=1

where q is the vector of generalized coordinates, M is the generalized mass matrix,
K is the elastic stiffness matrix, C is the coefficient matrix of Coriolis and centrifugal

forces, G is the gravity force vector, 7 is the generalized force vector.
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APPENDIX B

ACTUATOR DYNAMICS

The dynamics of a hydraulic motor is similar to that of an armature-controlled
servomotor. In this appendix, the dynamics of the electric motor and the hydraulic
motor are summarized and compared.

B.1 Armature Controlled Servomotor

Consider the armature-controlled dc motor shown in Fig. B.1 [55]. In this
system, For a constant field current, the flux becomes constant, and the torque

becomes directly proportional to the armature current.
T = K1, (B.1)

where I(; is a motor-torque constant. For a constant flux, the induced voltage e; is

directly proportional to the angular velocity 9.
. ey = K,8 ‘ (B.2)

where K, is a back emf constant. The differential equation for the armature circuit

is

. or

di, ,
L,-—-;t 4 Ry, 4+ =¢a (B.3)
di, . :
La—= + Rgis = €a — Ki8 (B.4)
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R, = armature-winding resistance, ohms
L, = armature-winding inductance, henrys
ia = armature-winding current, amperes
iy = field current, amperes

e, = applied armature voltage, volts

es = back emf, volts

= angle of the motor, radians
T = torque delivered by the motor, N - m
= equivalent moment of inertia of the motor and load

referred to the motor shaft, Kg — m?

The armature current produces the torque which is applied to the inertia.

T =Kii,=J8 (B.5)

B.2 Hydraulic Actuator

Consider the servovalve controlled hydraulic motor shown in Fig. B.2 [49]. In

this system, The linearized servovalve flow equations are
QL= I\’q-rv - K.PL (B6)

where
QL = 9-1%‘21 = load flow, m3/sec
P, = P, — P, = load pressure difference, N/ m?
From the continuity equation of each motor chamber, the continuity equation

for all hydraulic actuators 1s

. V. .
QL = Db + CemPr + E;PL (B.7)



Q:, Q; = forward and return flows, m3/sec

P,, P, = forward and return pressures, N/m?

I, = valve displacement from neutral, m

K, = valve flow gain, m®/sec/m

K. = valve flow-pressure coefficient, mi.sec/Kg
D, = volumetric displacement of motor, m3/rad
Cim = total leakage coefficient of motor, mi.sec/Kg
Vi — total contained volume of both chamber, m
8 = effective bulk modulus, N/m?

= torque generated by motor, N —m
= total moment of inertia of motor and load

referred to motor shaft, Kg — m?

I{ce = K, ¢+ Ctm

total flow-pressure coefficient, mi.sec/Kg
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Thus the load flow Qr is consumed by flow to displace the actuator, leakage, and

fow stored due to compressibility. The leakage is usually neglected. From (B.6)

and (B.7), _
.V
Dn6 + Zép,, = K,z, — K. PL
or
Vi o .
Z—B-PL + K.PL = qu,, — D0
where

The torque balance equation 1s

T = P,D,, = Jb

(B.8)

(B.9)

(B.10)
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Equations (B.4) and (B.5) resemble equations (B.9) and (B.10), respectively.
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Figure B.1: Schematic diagram of an armature-controlled DC motor
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Figure B.2: Schematic diagram of a hydraulic motor
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APPENDIX C

Controller Implementation

C.1 Software Implementation

This section gives some comment on data acquisition, transducer voltage conver-
sion, and the computer implementation of path planning of the current controller.
The detailed descriptions of controller implementation were explained in J.D. Hug-
gins’s thesis [28].

1) A set of assembly language subroutines that could be called from Fortran
or C programs are used to derive a programmable clock and the A/D and D/A
board. The data is read into the buffer using the subroutine DTSBR and DTSBWB.
DTSBR reads the A/D channels. DTSBWB causes the computer to wait until the
buffer is full before processing. After initialization, the DTSBR and DTSBWB
subroutines can be called repeatedly to transfer the data.

2) Calculate the length of the actuators from read data. The minimum and
maximum values of each cylinder length and its digital numbers are measured as
in Table C.1. Therefore, the relation between the cylinder length y; and its digital

numbers z; can be described as equation (C.1).

yi=miz;+b (1=12) (C.1)



The coefficient m; and b; can be calculated as follows

28.750 — 34.406
= = —1.4141x 1073
™= 77080 + 1041 X

by = 28.750 + 1.41444 x 107> x 1080 = 31.566

o 29.625 — 35.375
27 71080 + 1941

bs = 29.625 + 1.003343 x 107 x 1080 = 31.6806

= —1.903343 x 1073
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3) As shown in Fig. C.1, the attachment points of actuators are offset from the

as shown in Fig. C.2.

910 = 911 - 912 + 913 = 365750

920 = 921 - 92'2 + 023 = 703340

connecting link and the upper link.

Table C.1: Cylinder length and its digital number

Cylinder Length  Number
1 Min 28.750in + 1991

Max 34.406in - 2008

(V]

Min 29.625m + 1080
Max 35.370in - 1041

centerline of the beams. The initial angles of each link are calculated from geometry

(C.6)

(C.7)

where the connecting link and the upper link are not parallel each other due to the ‘

bracket offset of the upper link. Therefore, 6.5 is the angle difference between the



4) The path planning algorithm needs the initial position, final position, and
the time for the move.‘ The flow chart of path planning and controller is depicted
in Fig. C.3.

5) The cylinder position is inversely proportional to the cylinder bore size. Be-
cause the two cylinder bore diameters are different, the gains of two amplifiers are

different from each other.

C.2 Equipment List

COMPUTER
Model . Microvax II (vector of VS21W - A2)
Company : Digital Equipment Co.

ADDITIONAL BOARDS for Micro Vax
Model : DT2769 - Real Time Clock Board
Model : DT2785 - Analog I/O system
8 channels A/D multiplexed
2 channels D/A
12 bit resolution

Compadny : Data Translation

SIGNAL ANALYZER and DISK STORAGE UNIT
Model . 3562A - Digital Signal Analyzer
Model : 9122 - Disk Storage Unit
Company : Hewlett - Packard Co.
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YO

Figure C.1: Attachment points of actuators and bracket offsets of links
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Figure C.2.a: Initial angle of the lower link

Figure C.2.b: Initial angle of the upper link
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Figure C.3: Flow chart of path planning
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STRAIN GAUGE
Model . A - 13 -250MQ - 350

Company . Measurements Group Inc, Micro Measurement Div.

STRAIN GAUGE AMPLIFIER
Model - 3B18 - Wide band

Company : Analog Devices

HYDRAULIC COMPONENTS

Servo Valves
Model . 73 - 102A Two Stage Servovalves - 5 gpm
Company : Moog, Inc

Cylinder of Lower Link

Model : H - PB - 2 Cylinder
Bore : 2.0 1n.
Stroke : 20 in.

Rod Diameter : 1.00 in.

Seals : Teflon
Weight : 35 lbs.
Company : Atlas Cylinder Corp.

Cylinders of Upper Link
Model : N2C - 3.25 x 40 Cylinder



Bore : 3.25 in.
Stroke . 40 in. (modified to 17 in.)

Rod Diameter : 1.75 in.

Seals : Buna - N
Weight : 52 lbs.
Company . Hydroline Mfg. Co.
POWER AMPLIFIER
Model : BOP15 - 20M
Spec. . 20amp, 15 volt, 300kHz crossover

Company : KEPCO

187
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APPENDIX D

SMP Code

In this appendix. SMP codes for the derivation of symbolic equations of motion
of the lower and the upper links are described. Figure D.1 is the flow chart of SMP
code. In these codes, program is separated into several files because one program
depletes computer memory. First, Jacobian matrices are derived from the position
vectors using MJac function of SMP as shown in Fig. D.2. Several simplication
procedures are required to generate a compact form of output. Secondly, elements
of the mass matrices and the gravity force vectors are obtained using Jacobian
matrices as shown in Fig. D.3. Third, the symmetric elements and the reflective
coupling elements of Christoffel symbol are generated as shown in Fig. D.4 and
D.5, respectively. Properties which are unique in flexible body dynamics are also
included in Fig. D.4. For obtaining more reduced elements of velocity coupling
matrices, additional simplications of the output are required by the supervision of
the ana.lyst:.. Finally, velocity coupling matrices are derived as shown in Fig. D.6.

using the Christoffel symbol and the matrices are simplified from Fig. D.4 an D.5.
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READ GENERATE
POSITION VECTOR CHRISTOFFEL
SYMBOL
CALCULATE USING USING
JACOBIAN MATRIX SYMMETRIC REFLECTIVE
PROPERTIES PROPERTIES
CALCULATE SIMPUFY
MASS MATRICES CHRISTOFFEL
SYMBCL
CALCULATE
VELOCITY COUPLING
MATRIES

Figure D.1: Flow chart of symbolic program
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/* Symbolic Program of Lower and Upper Link */

cl:Cos{thl]
sl:Sin[thl]
cl2:Cos[thl+th2]
sl2:Sin{thl+th2]

/* Position vectors */
/* 2 modes per each link #*/

rl:{xl cl - pll gqll sl - pl2 gl2 sl\
;X1 sl + pll gll cl + pl2 gl2 cl}
r2:{(11 cl-plle gll sl-pl2e gl2 sl \
+ x2 cl2-p2l g2l sl1l2-p22 g22 sl2 \
;11 sl+plle gll cl+pl2e gl2 cl \
+ x2 s12+p21 g21 cl2+p22 g22 cl2})

/* generalized coordinates */
q:{thl,th2,q9ll1,q12,921,922)}
/* Substitutions */
sb0:Sin($x]~2->1-Cos[$x]"2

sbl:cl ¢cl2->c2-s51 s12
sb2:cl sl2=->s2+cl2 sl

sb5:pl1l1 gql1 + pl2 gql2 =->ul
sbé6:plle gll + pl2e ql2 =->ule
sb7:p21 q21 + p22 22 ->u2

/* Find Jacobian matrices */

<XMJac

jel:Cb[MTac(rl,q],(=cl,=-sl}] /* Ch: Combine */
jec2:Chb[(MJac(r2,q),(=-cl,~-cl2,-81,-812}]

jvl:S[{jcl, (sb5,sb6,sb7}] /* S: Substitute */
jv2:S[jc2, {sb5,sb6,sb7}]

jvit:Trans(jvl] /* Trans: Transpose */
jv2t:Trans(jv2]

Figure D.2: Symbolic program of Jacobian matrices



/*

m: (al jvit.jvl + a2 jv2t.jv2 )

mll:
ml2:
ml3:
mlé4
mlS
mlé

m22
m23
m24
m25
m26:

m33
m34
m35
m36

m44
m45
m46:

m55:
m56

méé

/*

Find Mass Matrices */

Ex[S[Ex[m[l,l]],{st,sbl,st}
Ex[S[Ex[m[l,Z]],{st,sbl,st}
Ex[S[Ex(m[l,s]],(st,sbl,st}
:Ex[S[Ex[m[l,4]],{sbo,sbl,st}
:Ex[S[Ex[m[l,S]],(st,sbl,st}
:Ex(S[Ex[m[l,s]],(sbo,sbl,st)

:Ex(S(Ex[m(2,2]],{sb0}]]
:Ex[S[Ex[m[2,3]],{st,sbl,st}]]
:Ex[S[Ex{m[2,4]],(sbo,sbl,sbz}]]
:Ex[S[Ex[m(2,5]],{sb0}]]

Ex({S[Ex(m(2,6]],(sb0}]]

:Ex[S[Ex(m(3,3]],(sb0}]]
:Ex[S({Ex(m[3,4]],(sb0}]]
Ex(S{Ex(m(3,5]],(sb0,sbl,sb2}]]
:Ex(S[Ex[m(3,6]],(sb0,sbl,sb2}]]

:Ex[S[Ex(m(4,4]],{sb0}]]
:Ex[S[Ex[m(4,5]],{st,sbl,sbz)]]

1]
1]
1]
1]
1]
1]

Ex(S[(Ex[m(4,6]],{sb0,sbl,sb2}]]

Ex({S[Ex(m(5,5]],(sb0}]]

:Ex[S[Ex[m[5,6]1],(sb0}]]

:EX[S[EX[E[S,G]]' {sb0}]]

Find Gravity Vectors */

gl:al jvi[2,1] + a2 jv2(z,1]
g2:a2 jv2(2,2]
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/* Ex @ Expension */

Figure D.3: Symbolic program of mass matrices and gravity vectors



/* Symmetric Property of Christoffel Symbol */
sym::Put[c[j,k,i]a(m[i,j,k] + m(i,k,J] - m(j, k,i])/2, "cl.out"]
/* Simplication */

m{S$x,8y,1]:0 /* independent of theta 1 */
n({$x,$y,$z] - m(Sy,$x,$2]:0 /* symmetry */

/* flexible mass matrix is not »/
/* function of flexible coordinates */

Do[i,B,n,Do[j,3,n,m[i,j,$z]:0]]

Do[i,z,Do[j,z,Do[k,j,z,sym]]]
Do[i,z,Do(j,Z,Do[k,s,n,sym]]]
Do(i,z,Do[j,3,n,Do[k,j,n,syn]
Do[i,3,n,Do[j,2,Do[k,j,2,sym]
Do[i,J,n,Do(j,2,Do[k,3,n,sym]

Figure D.4: Symbolic program of symmetric Christoffel symbol

/* Reflective Coupling Property of christoffel Symbol*/
raf::If[i>=] & o=y, Put[c[j,i,k]--c[j,k,i],"cz.out']]

DO[i,zlnotjlzrnockljlzlr.flll
DO[i,ZpDo[j '2'D°[k73lt}'r°£]ll
no[i,z,no[j,z,n,Do[k,J,n.rtflll
DO[i,3,n,D°[jlzrno(k:jrzlreflll
no[i,s,n,no[j,2,Dotk,3,n.r-£111

Figure D.53: Symbolic program of reflective Christoffel symbol
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/* cutput of Mass matrices Symbolic Program 4

c2
s2
ul

: Cos(th2]

ule :
: p21 q21 + p22 q22

u2

sin(ta2]
pll qll + pl2 qi2
plie qll + pl2e gl2

/* Mass matrices */

al+*ul~2 + al#x1l~2 + a2*l1~2 + a2*ule~2 + a2va2+2 \

mll :
+ az#*x2~2 + 2(a2rc2*ll¥*x2) + 2(32*c2*ule*u2) \
+ =2(a2=ll*s2*u2) + 2 (a2*s2*ule*x2)

ml2 : a2*u2~2 + a2*x2"2 + a2wc2*ll*x2 + a2wrc2*ula*u2 \
+ =(a2wll¥*s2wu2) + a2*s2*ularx2

ml3 : al*pll*xl + a2wll*plle + a2*c2*pllerx2 + -(a2+*plle*s2*ul)

mlé : alrpl2*xl + a2*ll*pl2e + a2*c2*plle*x2 + -(aZ*plZe*sz*uZ)

ml5 : a2+*p2l*x2 + a2=c2*llwp2l + a2#p2l*s2*ule

mlé : a2*p2*x2 + a2wc2*ll*p22 + a2#p22*s2*ule

m22 : a2*u2"2 + a2*x2~2

m23 : a2x*c2¥*plle*x2 + -(a2*plle*s2*u2)

m24 : a2r*c2*pl2erx2 + -(az*pJLzQ*sz*uZ)

m25 : a2*p2l*x2

m26 : a2*p22*x2

m33 : al*pll~2 + a2wplle~2

m34 : al*pll¥*pl2 + a2*plle*plie

m3S : a2*c2*plle*p2l

m36 : a2*c2w¥pllewp22

mé4 : alr*pl272 + a2w*pl2e~2

m4sS : a2*c2*plle*p2l

mé6 : a2*c2*pl2e*p22

m55 : a2*p2l~2

m56 : a2*p2l¥p22

m66 : a2*p22°2

m21l:ml2

m31l:ml13; m32:m23

mal:mls; m42:m24; m43:m34

251:ml15; m52:m25; m53:m35; m54:m45
mél:m16; m62:m26; m63:m36; mé4:m46; m65:m56

Figure D.G: Symbolic program of velocity coupling matrices
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/* Blements of Velocity Coupling Matrices */
/* Using Simplified christoffal Symbol */

c121 : Ex(1/2+D(mll,th2] ]
€221 : D(ml2,th2]
c131 : Ex[1/2+D(mll,qll] ]
c14l : Ex([1/2+D(mll,ql2] ]
cl51 : Ex[1/2+*D(mll,q2l] ]
cl6l : Ex[l/2+*D(mll,qg22] ]
c231 : 1/2(D{ml2,qll] + D(ml3,th2])
c241 : 1/2(D(ml2,ql2] + D(ml4,th2])
c251 : Ex(1/2(D{ml2,q21l] + D(ml5,th2]) ]
c261 : Ex({1/2(D(ml2,q22] + D(ml6,th2]) ]
cl4l 1/2(D(m13,ql2] + D(m14,qll})
c3s1 : 1/2(D(m1l,q21l] + D(ml5,qll])
c361 : 1/2(D(ml3,gq22] + D(=m16,qil])
c451 : 1/2(D(ml4,q2l] + D(m15,q121)
-
<+

c461 : l/2(Dfmls,q22] + D(m16,q12])
c561 : 1/2(D(mlS,g22] + D(mi6,q21])

€222 : 1/2*D(m22,th2]

c132 : Ex(1/2(-D(ml3,th2] + D[(m21,qlll)]
cl42 : Ex([1/2(-D(ml4,thz] + D(m21,qi2])]
c152 : 1/2(-D(ml5,th2] + D(m21,q21l])
c162 : 1/2(-D(ml6,th2] + D(m21,922])
c232 : 1/2*D(m22,q11l]

c242 : 1/2*D(m22,ql2]

c252 : 1/2+*D[m22,q21)

c262 : 1/2*D[m22,422]

c342 : 1/2(D(m23,q12] + D(m24,qll])
c3s2 : 1/2(D(m23,921] + D(m25,qll])
e362 : 1/2(D(m23,q22] + D(m26,4q11l])
c4%2 : 1/2(D(m24,q21] + D(m2S,ql2])
c462 : 1/2(D(m24,922] + D({m26,9q12])
cS62 : 1/2(D(m25,922] + D(m26,4q21])
223 : Ex(1/2(-D(m22,qll] + 2D({m32,th2])]
cl43 : 1/2(-D(ml4,qll] + D(m31,ql2])
c183 : 1/2(-0(mls,qll] + D(m31,q21])
@163 : 1/2(-D(ml6,qll] + D(m31,q22])
c243 : 1/2(-D(m24,4ll] + D(m32,ql2])
c2%3 : 1/2(-D(m25,qll] + D(m32,921])
c263 : 1/2(-D(m26,91l] + D(m32,922])

| e224 : Ex(1/2(-D(m22,gq12] + 2D(m42,th2])]
c154 : 1/3(-D(m1S,ql2] + D(m4l,q2l}])
c164 : 1/2(-D[m16,ql2] + D(mél,q22])
c2854 : 1/2(-D[m25,ql2] + D(mé2,q21])

c264 : 1/2(-D(m26,ql12] + D(m42,q22])

c165 : 1/2(-D(ml6,q21] + D(mS1,q22])
c265 : 1/2(-D(m26,921] + D(m52,922))
c225 1/2(-D(m22,421] + 2D(m52,th2])

226 : 1/2(-D[m22,q22] + 2D(mé2,th2])

Figure D.6: (Continued)
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APPENDIX E

Modeling of RALF using TREETOPS

In this appendix, the modeling procedures of RALF using TREETOPS are

described.
TREETOPS requires several model definition data as follows:

e Bodies

e Modal Data

e Hinges

e Sensors

e Actuators

e Controllers

e Function Generators

¢ Interconnects

o Devices (Spring/Damper)
e Gravity

¢ Constraints
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The USER’S MANUAL for TREETOPS (73] is recommended reading for more
detailed information. |

RALF can be expressed by six bodies which are connected by six hinges as
shown in Fig. 3.1. Bodies 1, 3, and 5 are assumed as rigid while bodies 2, 4.
and 6 are assumed as flexible. The modal data which must be supplied for each

of the individual flexible bodies are defined in Table 5.1. These modal data can

Table E.1: Modal data

Modal Mass ¥ITNY

Modal Stiffness VTKT

Modal Damping (Optional) ¥TD¥
Mode Shape of End Point v(l)
Mode Slope of End Point ¥' (1)

Modal Linear Momentum  [ydm

Modal Angular Momentum [ z¢dm

be obtained from a NASTRAN output file. However, a NASTRAN/TREETOPS
interface program is not available now. The MSC/PAL program can also provide
the modal data. The mass properties and center of mass (C.0.M) of rigid bodies
and the modal data of the first and the second mode of flexible bodies are shown
in Table 5.2. TREETOPS uses MKS units.

Note that the nodal mass matrix, N, is the unaugmented nodal masses and
the mode shape matrix, ¥, is based on the augmented mode shapes. From the
loaded interface component mode synthesis, only the augmented masses are ob-
tained. Therefore, the modal mass cannot be obtained from MSC/PAL directly.

The modal linear momentum and the modal angular momentum also cannot be
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B4
B;: i th Body
H;:1th Hinge
H6
B6 H4
BS B
HE B1 H5 B2 "

H2

Fig. E.1: Schematic diagram of RALF



Table E.2: Body input data and modal data of RALF

Body Number 1

Type Rigid
Mass|[ K q] 9.9577
Inertia [N-m-s?] 2.3323
C.o.M [m] 0.4191

VTN T, [K g]

TN, [ g]
¥TK¥, [N/m]

VTK ¥, [N/m]

N

= Yami/mr

N Yiami/mr

:lx zam; [Kg-m]

N

1==1

Yu(l)
P12(1)
Yu(l)
Y12(1)
Notes:

1) \I’l, \Ijg :

2) ¥, Yz -

ziym; [Kg-m]

2
Flexible
8.3534
13.5980
1.1049

7.224

o -

0.762

2.2136E4

43.0465E4

0.2365
-0.2886
2.9148
2.6581
0.6054
-0.0459
-0.4043
0.7854

3 4 5
Rigid  Flexible Rigid
5.9544  8.3470 0.963
0.7377 18.944 0.1193
0.3048  1.3208  0.3048
0.3052
0.7879
0.77T93E4
28.9837E4
0.2640
-0.1408
3.8867
-0.5129
0.6282
0.6154
-0.3262
-1.1028

the node displacement vectors of 1st and 2nd mode.

the node displacement of node i of 1st and 2nd mode.

198

6
Flexible
5.4465
8.8665
1.1049
0.4304
0.6187
1.6711E4
34.4127E4
0.300
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calculated by MSC/PAL directly. Therefore, a post processing program is required.
The modal linear momentum and the modal angular momentum are computed from
the lumped mass method. In TREETOPS data, the modal linear momentum is di-
vided by the total mass mr. The modal angular momentum terms are obtained
from the cross product of the beam length axis and the link deflection. Therefore,
the direction of the modal angular momentum is perpendicular to the plane defined
by the x axis and the link deflection. Tachometer, position sensors, and torque mo-
tors are located at the hinge 1 and 3. The decentralized PD controllers which are
composed of the feedback of angular positions and angular velocities are added at
the hinge 1 and 3. Interconnection between sensors, function generator, controller,
and actuator are shown in Fig. E.2. The constraint is imposed between the body 3
and 6.

There are two basic steps to running the program. TREESET is an interactive
preprocessor to define model data. It generates the PROBLEM.INT file. TREE-
TOPS is a batch processor to run the PROBLEM.INT file. Time response is saved
in the PROBLEM.PLT file. Mass, stiffness, and damping matrices are saved in the
PROBLEM.AUX file. The linear coefficients in matrix form (A,B,C,D) are saved
in PROBLEM.MAT.
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ACTH
ACT2

Fig. E.2: Interconnection between sensors, controllers, and actuators
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