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1) The seasonal, cycle of planetary waves in the southern stratosphere.

This component of the planned research was completed during this period. Studies
with a linearized hemispheric model of the southern stratosphere have failed to confirm
earlier beta-plane results. Specifically, while the observed late winter amplification of
quasi-stationary planetary waves is reproduced in the model, the early winter
amplification is not. The latter conflict is, at present, a mystery.

This work has been reported in an M. Sc. thesis and in a paper submitted to J.

Atmos. Sci. (see below).

2) Large--scale transport in the southern stratosphere

This component of the research is now under way again. It is intended to perform an

analysis of the observed transport of ozone using general circulation and ozone data. At
this stage, effort is being directed to dynamical analysis, specifically to the diagnosis of
vertical motion using potential vorticity inversion. This is a necessary precursor to
separating the effects of vertical and horizontal transport.

3) Theory of the mean meridional circulation in the stratosphere

Numerical experiments are being run to investigate the upward effects of tropical
tropospheric heating into the stratosphere. Thus far, it has been established in the context
of these experiments that the upward extension into the lower stratosphere, though weak,

is enough to comprise a significant component of the poleward mass flux. This is in apprent
violation of the "downward influence" principle.

4) The impact of tropospheric interannu_ variability on the stratospheric circulation

This component of the research is now complete. It has been shown that the
characteristic patterns of low-frequency variability in the winter troposphere extend well
into the stratosphere; stratospheric structures have been identified. This work has been
reported in an M. Sc. thesis and a paper is in preparation.

Theses produced during this period:

Conzemius, R.J.: Stratospheric behavior during tropospheric persistent anomaly events.
M.Sc. thesis, M.I.T., June 1990.

Wirth, V.: The seasonal cycle of stationary planetary waves in the southern stratosphere: a
numerical study. M.Sc. thesis, M.I.T., June 1990.

Publications during this ueri0d: (copy attached)

Wirth, V.: What causes the seasonal cycle of stationary waves in the southern
stratosphere? d.Atmos.Sci. (to appear).
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Abstract

Stationary planetary waves in the southern stratosphere display a charac-

teristic seasonal cycle. Previous research based on a one-dimensional model

suggests that this behavior is mainly determined by seasonally varying trans-

mission properties of the atmosphere with respect to wave propagation. The

issue is investigated with the help of a hemispheric, linear, quasigeostrophic

model. It reproduces well some of the observed qualitative features and is in-

ternally consistent in the sense that its seasonal wave cycle can be explained

in terms of varying wave transmission properties of the mean circulation.

On the other hand, the model does not yield the observed seasonal cycle.

Despite considerable sensitivity to modifications in the basic state wind and

dissipation parametrization, the model could not be reasonably fit to re-

produce the observed seasonal cycle. Therefore, even though suggestive,

the present study is not entirely conclusive about the degree to which the

observed cycle is determined by wave transmission properties alone.



1 Introduction

Stationary planetary waves in the stratosphere exhibit a characteristic sea-

sonal behavior. For illustration, figure 1 shows the climatological seasonal

cycle of the stationary wave of zonal wave number 1 at two different pres-

sure levels. To first approximation, there is absence of wave activity in

the summer hemisphere, whereas one observes strong wave activity in the

winter hemisphere. As is well known, Charney and Drazin (1961) basically

explained the wave behavior in the stratosphere through wave transmission

properties of the underlying atmosphere, which are determined by the mean

circulation.

More recently, noticeable differences in the circulation between the

two hemispheres have become apparent (Hirota et al. 1983). A closer look at

figure 1 shows for instance that the waves in the southern stratosphere are

considerably weaker than in the northern stratosphere. They also display a

distinct relative wave minimum in mid-wlnter (Randel 1988). Even though

the data w especially in the Southern Hemisphere -- have to be considered

with care, Grose and O'Neill (1989) found that the basic fields like temper-

ature and winds can be qualitatively trusted. They show that zonal mean

winds as derived from LIMS (Limb Infrared Monitor of the Stratosphere)

and from SSU (Stratospheric Sounding Unit), respectively, differ only by a

few m s -1. Therefore, we consider the qualitative features, which we con-

centrate on in this study, as real.

A simple one-dimensional, non-linear model by Plumb (1989) sug-



geststhe hypothesis that the different seasonal wave behavior in the two

hemispheres can essentially be exp!_ed through differences in wave propa-

gation according to the ideas of Charney and Drazin. The interhemispheric

differences in Plumb's model arise from the fact that in his simulation the

southern hemispheric waves stay in a linear regime, while in the Northern

Hemisphere there is substantial wave mean flow interaction, which reduces

the strength of the mean westerlies. Another possible source of stratospheric

seasonal variation is the varying tropospheric forcing. This, however, ap-

pears to be an insufficient explanation for the substantial seasonal variation

in stratospheric wave amplitude (a factor of 4.9 at the 10 mb level for the

time range April through October), since the seasonal variation of the wave

in the troposphere is comparatively moderate (a factor of 1.7 at the 200 mb

level for the same time period).

The above hypothesis of varying transmission properties is based on

a beta-plane model, which allows only for vertical wave propagation. Yet,

since the work of Charney and Drazin (1961), numerous studies (e.g. Mat-

suno 1970, Karoly and ttoskins 1982, Lin 1982, Nigam and Lindzen 1989)

have shown that hemispheric geometry, basic state wind field curvature,

and meridional in addition to vertical wave propagation play an essential

role for the propagation of waves. In these studies, the refractive index is

introduced as a quantity of key importance and as a useful diagnostic for

wave propagation in the meridional plane. If the hypothesis holds true, the

refractive index, too, should display a seasonal cycle corresponding to the

observed wave cycle. The latter proposition, however, is challenged by oh-



servations: even though the mean winds vary substantially, the refractive

indez displays no substantial overall variation throughout the winter season

(Kandel 1988). This behavior is plausible, since the refractive index is es-

sentiaUy the ratio of the quasigeostrophic potential vorticity gradient and

the mean wind. Months with stronger mean winds turn out to have stronger

potential vorticity gradient, and hence the two effects tend to cancel each

other.

The discrepancy between the hypothesis and the observed behavior

of the refractive index motivated us to reexamine planetary wave propa-

gation with special attention to the seasonal cycle of wave propagation in

the Southern Hemisphere. The present note gives a brief overview. A more

detailed description of the model used and its results can be found in Wirth

(1990).



2 The model

To investigate the issue, we use a linear, quasigeostrophic, hemispheric model

for stationary waves, essentially following Matsuno (1970). The model pre-

scribes a zonally symmetric basic state, simulates forcing by specifying the

wave at the lower boundary, and solves for the wave in the whole domain

under consideration. Matsuno and subsequent investigators (Simmons 1974,

Schoeberl and Geller 1977, see also Schoeberl et al. 1979, Lin 1982, Karoly

and ttoskins 1982; part of these studies use primitive equations instead of

quasigeostrophic theory) have shown that this type of model is able to qual-

itatively simulate essential features of northern hemispheric winter-time sta-

tionary waves. On the other hand, a more detailed comparison between such

models and relevant data reveals quantitative discrepancies and further lim-

itations (Austin 1982, 1983). We therefore do not aim for a quantitatively

correct simulation. Yet, we hope to include enough realism such as to re-

produce the essential features of planetary wave propagation, especially the

seasonal cycle. The decisive improvement over Plumb's one-dimensional

model (Plumb 1989) is that we allow for meridional in addition to vertical

wave propagation and include realistic wind shear.

The quasigeostrophic potential vorticity equation is linearized about

a purely zonal basic state flow, for which we use climatological monthly

mean zonal mean winds from P,.andel (1987). Since the stationary waves in

the southern stratosphere are dominated by the lowest wave number (P,zm-

del 1988), we restrict our study to zonal wave number 1. In order to model



the seasonal behavior of the Southern Hemisphere winter, we consider sub-

sequent months, ranging from April through October. For each month, the

problem is treated as stationary. This is a reasonable approximation to the

extent that the basic state varies slowly as compared with the time required

to establish a stationary wave. The latter should be satisfied to a good ap-

proximation in the present situation. Similarly, since the wave amplitudes

are smaller and show less interannual variability in the Southern Hemisphere

as compared with the Northern Hemisphere, the use of a linear model and

the use of climatological monthly mean data is expected to be a fair approx-

imation for a qualitative simulation of the wave propagation behavior. In

particular, interannual variability as a likely error source can be excluded,

since there is no apparent correlation between months with comparatively

large interannual variability (Mechoso et al. 1985) and months which are

reproduced less successfully by our model.

With the above approximations, the model dynamics reduces to one

single elliptic partial differential equation for the wave behavior:

+ = o, (I)

where _ is proportional to the perturbation stream function,/; is an elliptic,

second order differential operator in latitude and altitude (similar to the

operator of Matsuno 1970), and va is the refractive index square (simply

called the "refractive index" in the following). Dissipation is implemented as

1L_yleigh friction and Newtonian cooling, using the same damping coefficient

for both. Guided by estimates for the Newtonlan cooling coefficient (Leovy
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1984), a is chosen to be a = 0.05 day -1 below 48 rob, a = 0.2 day -1

above 0.7 rob, and linear and continuous in between. With this form of

dissipation the refractive index is complex, which prevents the singularity

of the equation at critical levels, i.e. where the basic state velocity vanishes.

The domain under consideration extends in altitude from 200 mb up to 1 mb

and in latitude from the South Pole up to 10° southern latitude (denoted

as 10°S or -10 ° in the following). At the lower boundary, we prescribe the

solution for k_ as derived from Randel's (1987) data. The natural boundary

condition at the South Pole is • = 0. Since the overall propagation of the

waves is upward and equatorward, for the upper and equatorward boundary

some radiation condition would seem to be the best choice. However, in order

to circumvent related technical difficulties, we instead use sponge layers and

zero Dirich]et boundary conditions beyond the sponges. The model results

are both qualitatively and quantitatively insensitive to the precise treatment

of critical levels and boundary conditions (Wkth 1990).

For numerical implementation, the equation is discretized on a 5° by

5 km grid (latitude by altitude) using finite differences. Interpolation of the

data from Randel's data set onto the present grid uses bicubic splines. The

resulting algebraic system of equations is solved with the help of a direct

solver (based on Lindzen and Kuo 1969). To test the sensitivity of the

model results with respect to the numerical resolution, the gridspacing was

considerably increased in both altitude and latitude. The differences in the

results turned out to be negligible.
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3 Model results and interpretation

The model wave amplitude for different months is presented in figure 2, while

the corresponding observed wave amplitude is shown in figure 3. Compari-

son of the two figures indicates that our model simulates well the qualitative

features of the observed wave for the later winter months (August through

October). In both observations and model, the wave amplitude increases

with altitude in the lower and middle stratosphere, and the so-calhd po-

lar night jet descends and shifts poleward. As for the latter feature, the

wave amplitude mimics the basic state zonal wind field (cf. Simmons 1974).

This mimicking behavior turns out to be a rather robust property in the

present model. The phase behavior of the model wave and the direction

of the Eliassen-Palm flux (no figures shown here) indicate overall upward

and equatorward wave propagation, which is in qualitative agreement with

observations.

However, in earlier winter months the agreement between model and

observations is rather poor. For instance, the observed wave amplitude in

April increases with altitude, but it is approximately constant with height in

the model. Similarly, the model wave in June exhibits qualitative differences

in comparison with the observed amplitudes. Correspondingly, the seasonal

cycle of the model wave amplitude (figure 4) is qualitatively different from

the observed cycle (figure 1). The model does not yield the observed relative

minimum in inid-winter. Instead, it shows a continuous increase in wave

amplitude until late winter. Since the simulation is better in late than



in early winter, it appears that the main deficiency of the model is the

"missing" relative wave maximum in early winter.

Despite the discrepancies in early winter, the overall model perfor-

mance encourages a closer analysis to address the questions raised in the

introduction. We find that the model results can be consistently interpreted

on the basis of refractive index diagnostics, i.e. in terms of wave transmis-

sion. For illustration, iigure 5 shows the basic state wind field and the

refractive index for the two months April and October. The main features

of the refractive index are negative values toward the pole and equatorward

beyond the critical lines, a ridge-llke structure in higher latitudes, a local

low altitude minimum in mid.latitudes and an overall increase toward the

equator. In spite of the overall similarity of the refractive index for different

months (as pointed out by l_ndel 1988), the following more detailed struc-

tures turn out to be of key importance: for easy upward wave propagation,

and hence for large stratospheric wave amplitude, the higher latitude ridge

(a_:ting as a wave guide, see Karoly and Hoskins 1982, Lin 1982) should reach

down all the way to the forcing level; the low-level midlatitude minimum

(inhibiting Wavepropagati0n) should be weak and iocated more towards:the

equator; and the refractive index should display a strong poleward gradi-

ent. The importance of the low-level refractive index can be illustrated in

a plot of its seasonal cycle (figure 6). The figure considers only latitudes

between 80°$ and 40 ° S, where the main forcing is located. The similarity

with the seasonal cycle of the model wave amplitude (figure 4) is apparent.

In connection with a sensitivity study (see below), we modified the basic
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states for the different months in such a way that the low-level refractive

index had a two-peaked structure with a minhnum in mid-winter. The re-

salting wave response showed the same qualitative two-peaked structure,

which demonstrates the key importance of the low-level refractive index.

Another feature of presumable importance is the cavity-like structure in

late winter, which is created through the negative values of refractive index

in the higher stratosphere and which might result in resonance and therefore

increased amplitudes (Matsuno 1970).

In summary, accepting the above suggested key features in the re-

fractive index, the seasonal cycle of the model's wave appears plausible in

the light of the observed seasonal cycle of the basic state. On the other

hand, these results draw into question Plumb's explanation of the seasonal

cycle. Note e.g. that, in both April and October, the wind maximum in

the considered domain is about 50 m s-1. The dramatic differences in wave

response between April and October (see figure 2) thus cannot be explained

by a one-dimensional consideration of wave propagation relying only on the

mean wind.

Since there is considerable sensitivity of the model response with re-

spect to variations in the basic state (cf. Schoeberl and GeUer 1977), it

is important to check the robustness of our results with respect to such

variations. We considered a great variety of basic state modifications and

examined the modified response. Particular sensitivity was found with re-

spect to modifications which affect the low-level winds and the jet-structure

11



of the wind field.Modifying the basicstatewind in the middle and up-

per stratosphereresultedin lessdramatic changes,and oftenthe response

could be rationalizedin terms ofthe mimicking tendency mentioned above.

For the low-levelmodifications,weaker winds generallyresultinhigherlow-

levelrefractiveindex and hence,accordingto our consistentinterpretation,

in increasedwave amplitudes.

The sensitivityto low-levelbasicstatewind modificationswas used

for an interestingexperiment. We decreasedthe low-levelwinds in May

and June by 10 m s-I,in April by 5 m s-I, increasedthem in August by

10 m s-I, and leftthem unmodified in July,September and October. As

a result,the wave amplitude in the middle stratosphereshowed a double-

peaked structurewith a minimum in mid-winter,quite similarto the ob-

servedone. However, not a_ qualitativefeaturesof the model wave were in

agreement with observationsafterthesesizableand ratherarbitrarymodifi-

cations;the wave amplitude inApriland May stilldid not show theobserved

growth with height.

To check the sensitivityofour resultswith respectto the exacttreat-

ment of forcing,we replaced our "realistic"lower boundary conditionby

a constant boundary conditionwith no seasonalcycle and with no varia-

tionin latitude.The qualitativewave behaviorturns out to be unchanged.

This means thatthe comparativelyweak seasonalcyclein the originallower

boundary condition(± 25% duringthe periodAprilthrough October) plays

a minor roleindeterminingthe strongseasonalcycleof the model response.

12



Therefore, the seasonal cycle of the model can essentially be attributed to

a corresponding cycle in wave transmission properties. Also the sensitivity

of the model with respect to variation in the damping coefficient was exten-

sively examined. Even though there is some sensitivity (cf. again Schoeberl

and GeUer 1977, and Schoeberl et al. 1979), the seasonal wave cycle always

turns out to have only one peak in late winter.

In summary, the modifications studied here do not suggest that the

discrepancies between model and observations can entirely be explained in

terms of model sensitivity to dissipation parametrization, to the basic zonal

wind, or to the lower boundary condition.
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4 Summary and conclusions

The present work studies the seasonal cycle of stationary planetary waves

in the southern stratosphere, using a linear, hemispheric model for wave

propagation. The model simulates well the qualitative features of the wave

dynamics for late winter months. In the higher stratosphere, the wave am-

plitude displays a strong tendency to mimic the basic state zonal wind field.

The model wave can consistently be interpreted with the help of the re-

fractive index, i.e. in terms of the transmission properties of the underlying

atmosphere. Specific features in the refractive index turn out to be of key

importance, in particular its behavior in the lower stratosphere.

The pronounced seasonal cycle of the model wave is mostly deter-

mined through varying transmission properties; the weak tropospheric cycle

plays hardly any role. The present model draws into question a qualita-

tive explanation for the seasonal cycle which relies on the one-dimensional

Charney-Drazin model.

However, in early winter, there are qualitative discrepancies between

the model results and observations. As a consequence, the observed sea-

sonal cycle is not captured by the model. Since the model assumptions

seem reasonable at least for a qualitative simulation of the wave behavior,

one might question the accuracy of the winds derived from satellite data.

In particular for the latitude band between 40°S and 60°S, there are few

ground-based data. In fact, the model results show considerable sensitivity

to modifications of the lower stratospheric wind in middle latitudes. How-

14



ever,no setofmodified basicstateswas found which was ableto reproduce

the observedqualitativefeaturesofthe waves includingtheirseasonalcycle.

A more systematic,albeitmore cumbersome, approach would be solving

the nonlinear,inverseproblem. Because of the discrepancies,the present

study is not entirelyconclusiveabout the cause of the observed seasonal

cycle,even though it stronglysuggeststhat the variationin transmission

propertiesplaysa major role.
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Figure captions

Figure i: Seasonalcycle(latitude-timesection)ofstationarywave ampli-

tude (inm) forzonal wave number 1 at 10 mb (leftpanel)and 1 mb

(rightpanel).Contour interval:100 m. Data used are climatological

monthly means. The figureistaken from Randel (1987).

Figure 2: Model wave amplitude (in m) for zonal wave number i in

meridionalsectionsfor every other month. Contour interval:60 m.

Note thatthe lower boundary isat 200 rob.

Figure 3" Observed wave amplitude (in m) for zonal wave number 1 in

meridionalsectionsfor every other month. Contour interval:60 m

above 100 mb, 20 m below 100 rob.Note that the lower boundary of

the data isat 1000 rob.The figuresare taken from Randel (1987).

Figure 4: Seasonalcycle(latitude-timesection)of the model stationary

wave 1 amplitude (in m) at 10 mb (left panel) and 1 mb (right panel).

Contour interval: 100 m.

Figure 5: Basic state zonal wind (in m s-I; left row) and refractive index

(dimensionless; right row) for April and October, meridional sections.

Contour interval: 10 m s -1 for the zonal wind, 5 for the refractive

index. For the refractive index only contours between 0 and 60 are

drawn.

Figure 6: Seasonal cycle(latitude-timesection)of the refractiveindex

(dimensionless)at 100 mb in the latituderange between 80°S and

20



40°S. Contour intervaJ: 5. No negative contours are drawn.
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