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Abstract have beendevelopedfor solutionof the time-dependentEuler
and Navier-Stokesequationsand thengivesselectedresults

The currentstatusof the developmentof unstructuredgrid whichdemonstratevariousfeaturesof thecapability.Theflow
methodsintheUnsteadyAerodynamicsBranchat NASALangley solvers that are described are either of the central-
ResearchCenter is described. These methodsare being difference-typewith explicit artificialdissipationor of the
developedfor steadyandunsteadyaerodynamicapplications, upwind-typewhich are naturallydissipative. Both implicit
The paper first highlightsthe flow solversthat have been and explicit temporaldiscretizationsare discussedfor the
developedfor the solutionof the unsteadyEulerand Navier- time-integrationof the governingfluid flow equations. Details
Stokes equations and then gives selected results which on the adaptive mesh refinement proceduresare also given.
demonstratevarious features of the capability. The results The selected results that are presenteddemonstratetwo- and
demonstratetwo- and three-dimensionalapplications for both three-dimensionalapplications for both steady and unsteady
steady and unsteadyflows. Comparisonsare also made with flows. Comparisons are also made with solutionsobtained
solutions obtained using a structured grid code and with using a structured grid code and with experimental data to
experimental data to determine the accuracy of the determinethe accuracyof the unstructuredgrid methodology.
unstructuredgrid methodology. Thesecomparisonsshowgood
agreementwhich thus verifies the accuracy.

CentraI-Difference-TvoeFlow Solver

Introduction The unsteady Euler equations in integral form are solved
using a finite-volumealgorithmthat was developedfor use on

Considerableprogresshas been made over the past two unstructured grids of triangles in 2D or tetrahedra in
decades on developing computational fluid dynamics (CFD) 3D.10-13 The algorithm reduces conceptually to central
methodsfor aerodynamicanalysis.l,2 Recentwork in CFD has differencingon a rectangularmeshand thus is referredto as a
focusedprimarily on developingalgorithms for the solution of central-difference-type flow solver. With this solver,
the Euler and Navier-Stokes equations. For unsteady artificial dissipation is added explicitly to prevent oscillations
aerodynamicand aeroelastioanalysis,thesemethodsgenerally near shockwaves and to damphigh-frequencyuncouplederror
require that the mesh move to conformto the instantaneous modes. Specifically, an adaptive blend of harmonic and
positionof the movingor deformingbody under consideration, biharmoniooperators is used, correspondingto second and
Manyof the methodsthat are currentlybeingdevelopedassume fourth difference dissipation, respectively. The biharmonic
that the mesh moves rigidly or that the mesh shears as the operator provides a background dissipation to damp high
body deforms. These assumptions consequently limit the frequency errors and the harmonic operator prevents
applicability of the procedures to rigid-body motions or oscillationsnear shockwaves.
small-amplitude deformations. Furthermore, these methods
of solutiontypicallyassumethat the computationalgrid has an The Euler equations are integrated in time using a
underlying geometrical structure. As an alternative, standard, explicit, four-stage, Runge-Kutta time-stepping
algorithms have been developedrecentlywhich make use of scheme. In this schemethe convectiveoperatoris evaluatedat
unstructured grids.3-16 In two dimensionsthese grids are each stage and, for computationalefficiency, the dissipative
typically made up of triangles and in three dimensionsthey operator is evaluatedonly at the first stage. The scheme is
consistof an assemblageof tetrahedra. The unstructuredgrid second-order-accuratein time and includes the necessary
methodshave severaldistinct advantagesover structuredgrid termsto accountfor changesin cellvolumesdueto a movingor
methodswhich make themattractivefor unsteadyaerodynamic deformingmesh. Furthermore,this explicit schemehasa step
and aeroelastic analyses. For example, the primary size that is limited by the Courant-Friedricks-Lewy (CFL)
advantageof the unstructuredgrid methodologyis the abilityto conditioncorrespondingto a CFL numberof 2"_t-2". To accelerate
easily model very complicated three-dimensional convergenceto steady-state,the CFLnumbermaybe increased
configurations with virtually unlimited geometrical by averaging implicitly the residual with values at
complexity. A secondadvantageis that the methodologyallows neighboringgrid points. These implicit equationsare solved
for a general way to move the mesh to treat realisticmotions approximatelyusingseveralJacobi iterations. Convergenceto
and structural deformations of complete aircraft steady-stateis furtheracceleratedusing enthalpydampingand
configurations. The deforminggrid capabilitydoesnot involve local time stepping. The local time steppinguses a maximum
any assumptions which limit applications to small allowablestep size at each grid point as determinedby a local
deformations,such as simplegrid shearingswhich are done in stability analysis. For unsteady applications, however, a
somestructuredgrid codes. A third advantageis that it enables global time step is usuallyused becauseof the time-accuracy
in a natural way for adaptive mesh refinement to more requirement. The maximumallowableglobal time step may be
accurately predict the physicsof the flow. Highly accurate increasedto a value that is larger than thatdictatedby the CFL
solutionsmay thus be obtainedby using far fewer grid points condition, by using a time accurate version of the residual
than if a globallyfine meshwas used. smoothing.

The purposeof the paper is to describethe currentstatus If Interest is restricted to supersonic flow past conical
of the development of unstructured grid methodswithin the bodies, then the conical flow assumptioncan be made. This
UnsteadyAerodynamics Branch at NASA Langley Research reducesthe problemfrom threedimensionsto two dimensions,
Center.10-16 The paper first highlightsthe flow solversthat which significantlydecreasesthe computationalresourcesthat

are required to investigate such flows. The conical flow
*Senior ResearchScientist,UnsteadyAerodynamics assumptionis exact for invisoidsupersonicflow and is used to
Branch, Structural Dynamics Division efficiently investigate vortex-dominated flows. For viscous

t- //u,



flow, however, a length dependence remains in the Reynolds A refinement indicator is used to determine if an element
number (Re), although the flow may be considered to be in the mesh is to be refined or subdivided into smaller
locally conical. The Reynolds number therefore determines elements. Typically, the absolute change in density along an
the location of the plane at which the solution is determined, edge is used as an indicator for flows with shock waves and
Conical Euler and Navier-Stokes solvers have been developed total pressure loss is used for flows with vortices. The
based on a central-difference-type spatial discretization, 13 refinement indicator is compared with a preset tolerance to
similar to the two- and three-dimensional Euler solvers determine whether a given element should be refined. If the
described above. The viscous fluxes in the conical Navier- tolerance is exceeded, a new node is created at the midpoint of
Stokes solver are evaluated by first computing derivatives of the edge and the element is divided. Each time the mesh is
the velocity components required by the shear stresses and refined, an element may be divided in one of several different
heat flux terms using Green's theorem. Once evaluated, these ways. The coordinates of the new node are determined by
fluxes are averaged across edges in the same manner as the averaging the coordinates of the endpoints that make up the
inviscid fluxes. Also, the viscous fluxes are computed only at bisected edge. Special care must be taken, however, when an
the first stage of the Runge-Kutta time-marching scheme for edge that is to be divided lies on a boundary of the grid, since
computational efficiency. This effectively reduces the the midpoint of the edge does not generally lie on the boundary.
computational work to evaluate the viscous fluxes by a factor In this case, the location of the new node is determined
of four. generally by using a spline of the boundary coordinates.

UPwind-TyDe Flow Solver Deformina Mesh Alaorithm

The unsteady Euler equations may be solved alternatively For problems where the aircraft moves or deforms, the
by using upwind differencing and either flux-vector or flux- mesh must move so that it continuously conforms to the
difference splitting similar to upwind schemes developed for instantaneous shape or position of the vehicle. This is
use on structured meshes.10,14-16 The present accomplished by using a spring network to model the original
unstructured grid algorithm is thus referred to as an upwind- mesh such that each edge of the triangle or tetrahedron is
type flow solver. The spatial discretization of this solver represented by a sprihg. 12 The spring stiffness for a given
involves a so-called flux-split approach based on either the edge is taken to be inversely proportional to the length of the
flux-vector splitting of van Leer 17 or the flux-difference edge. Grid points on the outer boundary of the mesh are held
splitting of Roe. 18 These flux-split discretizations account fixed and the instantaneous locations of the points on the inner
for the local wave-propagation characteristics 6f the flow and boundary (aircraft) are given by the prescribed surface
they capture shock waves sharply with at most one grid point motion. At each time step, the static equilibrium equations in
within the shock structure. A further advantage is that these the x, y, and z directions, which result from a summation of
discretizations are naturally dissipative and consequently do forces, are solved iteratively at each interior node of the grid
not require additional artificial dissipation terms or the for the displacements. This is accomplished by using a
adjustment of free parameters to control the dissipation, predictor-corrector procedure, which first predicts the
However, in calculations involving higher-order upwind displacements of the nodes by extrapolation from grids at
schemes such as these, oscillations in the solution near shock previous time levels and then corrects these displacements
waves are expected to occur. To eliminate these oscillations using several Jacobi iterations of the static equilibrium
flux limiting is usually required. In the present study, a equations. The predictor-corrector procedure has been found

to be more efficient than simply performing Jacobi iterations
continuously differentiable flux limiter was employed. 14"16 because far fewer iterations are required to achieve acceptable

convergence. In practice, it has been found that only one or
The Euler equations are integrated in time using either an two iterations are sufficient to accurately move the mesh.

explicit Runge-Kutta method (described in the previous
section) or an implicit time-integration scheme involving a
Gauss-Seidel relaxation procedure. 14 The procedure is Results and Discussion
implemented by re-ordering the elements that make up the
unstructured mesh from upstream to downstream. The Selected results from the unstructured grid methods of
solution is obtained by sweeping two times through the mesh as Refs. 10-16 are presented for two- and three-dimensional
dictated by stability considerations. The first sweep is
performed in 1he direction from upsteam to downstream and
the second sweep is from downstream to upstream. For purely
supersonic flows the second sweep is unnecessary. This
relaxation scheme is stable for large time steps and thus
allows the selection of the step size based on the temporal
accuracy of the problem being considered, rather than on the
numerical stability of the algorithm. Consequently, very large
time steps may be used for rapid convergence to steady state,
and an appropriate step size may be selected for unsteady
cases, independent of numerical stability issues.

_;oatialAdaDtion Procedure

Spatial adaption is employed with the unstructured _]rid
flow solvers to enrich the mesh locally in regions of high
spatial flow gradients to more accurately and efficiently
resolve the physics of the flow. 13 Equally attractive are
coarsening techniques that remove elements from regions
where relatively small changes in the flow variables occur.
Both enrichment and coarsening procedures are currently
being developed. However, only the enrichment procedure is Fig. 1 Partial view of unstructured grid of triangles about
described as follows, the NACA 0012 airfoil.



geometries for both steady and unsteady flows. Comparisons Mach number of M_ = 0.8 and zero degrees angle of attack.
are made with solutions obtained using a structured grid code Comparisons are made with parallel computations performed
and with experimental data to determine, the accuracy of the using the CFL3D19 code, run in a 2-D mode. The CFL3D code
methodology, is an Euler/Navier-Stokes code based on cell-centered

upwind-difference discretizations of the governing flow
Two-Dimensign{_l Euler Results equations based on structured meshes. The CFL3D Euler

results that were used in the present study were obtained from
To assess the two dimensional central-difference and Ref. 20. Generalized aerodynamic forces for the NACA 0012

upwind-type Euler solvers, calculations were performed for airfoil are presented in Fig. 2, computed using the so-called
the NACA 0012 airfoil. These results were obtained by using pulse analysis within the unstructured grid Euler code, the
the unstructured grid shown in Fig. 1 which was generated unstructured grid Euler harmonic analysis, and the CFL3D
using the advancing front method. 6,7 The grid has 3300 harmonic analysis. The results are plotted as real and

nodes, 6466 triangles, and extends 20 chordlengths from the imaginary components of the unsteady forces, A_,j , as a
airfoil with a circular outer boundary. Also there are 110
points that lie on the airfoil surface. This is the same mesh function of reduced frequency k. Plunge and pitch-about-the-
that was used to obtain the results that were presented in Refs. quarter-chord motions are defined as modes 1 and 2,
10, 11, and 14. respectively. Thus, for example, A_2is the lift coefficient due

to pitching. Both sets of harmonic results were obtained at six
Generalized aerodynamic forces were obtained using the values of reduced frequency: k = 0.0, 0.125, 0.25, 0.5, 0.75,

central-difference-type Euler solver for the NACA 0012 and 1.0. As shown in Fig. 2, the forces from the unstructured
airfoil oscillating in either plunge or pitch-about-the- grid Euler pulse analysis agree well with the forces from the
quarter-chord to determine the accuracy of the unstructured harmonic analysis. The harmonic analysis, however, is
grid method for unsteady aerodynamic applications, considered to be the more accurate of the two sets of
Calculations were performed for the airfoil at a freestream calculations, since the local linearity assumption in the pulse
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Fig. 2 Comparisons of generalized aerodynamic forces Fig. 3. Comparisons of steady-state results for the NACA

for the NACA 0012 airfoil at M = 0.8 and O_o=0° 0012 airfoil at M.= 0.8 and (_,,= 1.25° computed
computed using CFL3D and the unstructured-grid using the upwind-type Euler flow solver with flux-
central-difference-type Euler flow solver, vector splitting.



analysis may be questionable for transonic flow cases. As jacobians. This increase in CPU time is far out-weighed by
further shown in Fig. 2, the harmonic forces from the the faster convergence to steady state in that a converged
unstructured grid Euler code are in very good agreement with solution is obtained with the implicit relaxation scheme with
the CFL3D (Euler) harmonic forces, for both plunge and pitch an order or magnitude less CPU time than the explicit scheme•
motions, for all values of reduced frequency that were The resulting steady pressure distribution is shown in Fig.
considered. 3(b). For this case there is a relatively strong shock wave on

the upper surface of the airfoil near 62% chord and a
To test the more-recently-developed upwind-type Euler relatively weak shock wave on the lower surface near 30%

flow solver, steady flow results were obtained for the NACA chord. The pressure distributions indicate that there is only
one grid point within the shock structure, on either the upper

0012 airfoil at M= = 0.8 and (zo = 1.25 °, using both or lower surface of the airfoil, due to the sharp shock
implicit and explicit time-marching. The explicit time- capturing ability of the upwind-type flow solver.
marching results were obtained using a CFL number of 2.5
(since the CFL limit is approximately 2.8) and the implicit Unsteady calculations with the upwind-type Euler solver
time-marching results were obtained using a CFL number of were performed for the airfoil pitching harmonically about
100,000. Such a large value was used for the implicit results
since the relaxation scheme has maximum damping and hence the quarter chord with an amplitude of (zz = 2.51 ° and a
fastest convergence for very large time steps. This is in reduced frequency based on semichord of k = 0.0814 at M==
contrast with implicit approximate factorization schemes
which have maximum damping for CFL numbers on the order 0•755 and O_o= 0.016 °. These calculations are compared
of 10. A comparison of the convergence histories between with the experimental data of Ref. 21. Instantaneous pressure
explicit and implicit time-marching is shown in Fig. 3(a)• distributions at eight points in time during the third cycle of
The "error" in the solution was taken to be the L2-norm of the motion using 2500 steps per cycle are shown in Fig. 4 for
density residual. As shown in Fig• 3(a), the explicit solution comparison with the experimental data. In each pressure plot
is very slow to converge. This solution takes approximately the instantaneous pitch angle c+('c)and the angular position in
10,000 time steps to become converged to engineering the cycle k'c ere noted. During the first part of the cycle there
accuracy, which is taken to be a four order of magnitude is a shock wave on the upper surface of the airfoil, and the
reduction in solution error. In contrast, the implicit solution flow over the lower surface is predominately subcritical.
is converged to four orders of magnitude in only approximately During the latter part of the cycle, the flow about the upper
500 steps and is converged to machine zero is less than 2000 surface is subcritical, and a shock forms along the lower
steps. The implicit solution costs approximately 75% more surface. The pressure distributions indicate that the shock
per time step than the explicit solution because of the position oscillates over approximately 25% of the chord along
increased number of operations required to evaluate the flux each surface, and in general, that the two sets of calculated
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Fig. 4. Comparisonof instantaneouspressure distributionsfor the NACA0012 airfoil
pitching at M. = 0•755, ao = 0.016°, _ = 2.51°, and k = 0.0814 computed
using the upwind-type Euler flow solver with flux-vector splitting.
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results compare well with the experimentaldata. Similar to Concial Euler/Navier-StokesResults
the steady flow results, the shock waves are capturedsharply
with at most one grid point within the shock structure. The To demonstrate the central-difference-type conical
calculatedresultsshowthe expectedsymmetryinthe flow, in Euler/Navier-Stokes flow solver and the adaptive mesh
that the upper surfacepressuredistributionduringthe first refinement procedures, calculationswere performed for
half of the cycleis very similarto the lowersurfacepressure highly-sweptdeltawing andcircularconecasesat highangle
distributionduringthe secondhalf of the cycle. A lack of of attackand at supersonicfreestreamflow conditions.13 In
similar symmetryin the experimentalresultssuggeststhat thesecalculationsthreecases were considered. In the first
the data may havebeenobtainedat a slightlyhighereffective twocases, the conicalEulerequationswere solvedfor a 75°
steady-stateangle of attack than that reportedin Ref. 21. sweptflat-platedelta wing at a freestreamMach numberof
Furthermore,the unstructuredgrid resultsof Fig. 4 are of 1.4. In the firstcase, steadyresultswere obtainedat (z = 20°
comparableaccuracyin comparisonwith publishedresults angleof attackand _ = 10° yawangle. In the secondcase,
obtainedusingstructuredgrid methodsfor thiscase, suchas unsteadyresults were obtained for the wing undergoinga
thosereportedin Ref. 22. forcedharmonicrollingat (z = 20° and_ = 0°. For thethird

-512 nodes
/

512 nodes

71 _./_

- 807 nodes
/,

807 nodes

-1363 nodes
/

1363 nodes

- 2801 nodes
/

2801 nodes

Fig.5. Effectsof adaptivemeshrefinementonthetotalpressurelosscontoursfor a
75° sweptflat-platedeltawingat M, = 1.4,c== 20°, and13= 10°; computed
usingthe central-difference-typeconicalEuler flow solver.



case, the conical Navier-Stokes equations were solved for an run for a total of 4,000 iterations and the mesh was adapted at
85 ° swept circular cone at M=, = 1.4, (z = 20°, _ = 0o, and iterations 500, 1000, and 1500. Adapting the mesh every
Re= 0.5x 106. 500 iterations produces intermediate results that are

converged to plotting accuracy, although this is not a
Case 1. - The first case was selected to demonstrate requirement for the adaption procedure to be numerically

stable or to produce accurate final results. A summary of theapplications of the adaptive mesh refinement procedures to a
wing that is yawed. The calculations were performed by meshes and the corresponding total pressure loss contours is
starting with a coarse mesh that has 32 nodes around the wing shown in Fig. 5. For this case there is a strong flat vortex
and 16 nodes in the outward direction for a total of 512 nodes, produced by the separated flow from the windward (left)
A partial view of this mesh is shown in the upper left part of leading edge with a crossfiow shock wave beneath the vortex.
Fig. 5. Results were obtained using adaptive mesh refinement There is also a weaker more-circular vortex produced by the
by starting with the coarse mesh containing 512 nodes and separated flow from the leeward (right) leading edge. With
adapting to the total pressure losses of the instantaneous the coarse grids containing 512 (original mesh) and 807 (one
solution to determine a locally fine mesh. The flow solver was enrichment) nodes, the shock wave beneath the windward

k_ : 45 ° k: : 360 °

k: : 90° kl: : 315°

<5>
k_: = 180° k'_ : 225°

Fig. 6. Instantaneoustotalpressurelosscontoursduringa cycleof harmonicroiling
for a75 ° sweptflat-platedeltawingat M = 1.4,c== 20°, 13=0%,_= 30%
and k = 0.3; computedusingthe central-difference-typeconicalEulerflow
solver.
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vortexis notdetectedin the totalpressurelosscontours.Upon Case2. - The secondcasewasselectedto demonstratethe
further enrichmentto a grid containing 1363 nodes, the time-accuratecapability of the conical Euler flow solver
shockbeginsto appear,andwiththe finalgridof 2801 nodes althoughthe resultsare actuallyonly locallyconical. The
the shockis shownto be sharplycaptured.The totalpressure unsteadyresults were obtained for the rolling delta wing
loss contoursof Fig.5 indicatethat the vorticalflow features oscillatingharmonicallywith an amplitudeof 30° at k - 0.3
are moreclearlydefinedwhenthe meshis adaptivelyrefined, using2400 stepsper cycleof motion. In thesecalculations
A solutionof comparableaccuracyon a globallyfine mesh thegridwas firstadaptedto thesteadysolutionto createa fine
would require 32768 nodes (256 x 128). A spatially embeddedmeshlocallywhichwas thenusedin the unsteady
accuratesolutionis thusobtainedfor thiscase withadaptive calculation.The fine embeddedregionwasmadelargeenough
mesh refinement, using an order of magnitudefewer grid so that the movingvorticesand shock waves are always
points(2801 nodes), containedwithinthisregionand the totalgridcontained5152

nodes. It is recognized, however, that for unsteady
applicationsa de-refinementprocedurecan be usedin addition

r

r _ 2048 nodes; /

i
3733 nodes

8508 nodes

8508 nodes

Fig.7. Effectsof adaptivemeshrefinementon thetotalpressurelosscontoursfor an
85" sweptcircularconeat M. -, 1.4, ,',- 20", andRe - 0.5 x 106; computed
using the central-difference-typeconicalNavier-Stokesflow solver.



to therefinementprocedure,to removeaswellas to addnodes Case 3. - The third case was selected to further
andelementsduringthecalculation.Also,duringthe unsteady demonstratethe adaptivemesh refinementproceduresfor a
calculationthegridwasmovedas a rigidbodyto.conformtothe viscousflow about a circularcone. The calculationswere
instantaneouspositionof the wing. Three cyclesof motion performedby startingwith a coarse 64 x 32 mesh (2048
were computedto obtaina periodicsolution. Instantaneous nodes)andadaptivelyrefiningthe meshtwice. The flowsolver
totalpressurelosscontoursat eightpointsin time duringthe was run for a total of 4000 iterationsand the mesh was
thirdcycleof motionare shownin Fig.6. In eachpartof the adapted at iterations1000 and 2000. A summaryof the
figure, the instantaneousangularpositionin the cycle k.=is meshesandthe correspondingtotalpressurelosscontoursis
notedwhere._is time normalizedby one-halfof the reference shown in Fig. 7. For this case, there are two large,
lengthand the streamwisefreestreamspeed, symmetric, primary vortices that are produced by the

separatedflow from the left and right sidesof the cone. With
During the first half of the cycle as the wing rolls the coarse mesh containing2048 nodes, the primary vortices

clockwiseto the maximumamplitudeand then back to straight are very diffuse, the secondary vortical flow features are
and level, the crossflow shock wave beneath the left vortex absent,and the boundarylayer appearsthick. When the grid
disappears, the left vortex weakens, and the right vortex
grows in strength. During the second half of the cycle, the
oppositesituationoccurs. The shockwave beneaththe right _ Experiment
vortex disappears,the right vortex weakens, and the left O Euler
vortexgrowsin strength. It is easyto see thatthe solutionis
periodicin the thirdcycle of motionby comparingthe total
pressurelosscontoursat any twopointsin time that are 180° _J"
out of phase in the cycle. The two sets of total pressureloss
contours, 180° out of phase, are antisymmetricas shown Jn
Fig. 6.
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Fig. 9. Comparisonof lift coefficientversusangleof attack
for the Langleyfighter at M. = 2.0 computedus,ng
the central-difference-type Euler flow solver.
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Fig. 10. Effectsof angleofattackandreducedfrequencyon
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Fig. 8. Surfacegrid for the Langleysupersonicfighter fighterconfigurationat M.= 2.0 computedusingthe

configuration, central-difference-typeEuler flow solver.



is refined to 3733 nodesand thento 8508 nodes,the primary calculated and experimental lift coefficient versus angle of
vorticesbecomesmallerand moresharplydefined,secondary attackfor the Langleyfighteris shownin Fig. 9. In general,
and tertiary vorticesbecomeapparentin the flow, and the the calculated lift coefficient agrees well with the
boundarylayer appears to be muchthinnerIn comparison experimentaldata, especiallyat the loweranglesof attackof
with the coarsegrid results. An accuratesolutionis thus 0° and4°. At the higheranglesof attackof 8° and 12°, the
obtainedfor thiscase withadaptivemeshrefinement,usinga calculatedlift is slightlyunderpredictedin comparisonwith
factor of approximatelyfour fewer grid points(8508 nodes) the measuredvalues,whichispossiblydueto thecoarsenessof
in comparisonwith a globallyfine mesh(32768nodes), the grid.

Three-DimensionalEuler Results Unsteadyflowresultswereobtainedfor the Langleyfighter
configurationoscillatingharmonicallyin the complete-vehicle

To assessthe three-dimensionalversionof the central- bendingmode. The calculationswere performedfor k =
difference-type Euler solver and dynamicmesh algorithm, 0.025, 0.05, and 0.1 using 1440, 720, and 360 steps per
calculations were performed for a supersonic fighter cycle of motion,respectively,for five cycles. Calculated
configurationthat was tested at NASA Langley Research instantaneouspressurecontoursat the maximum(bend-up)
Center.12 The fighter will hereafterbe referredto as the and minimum(bend-down)amplitudesof oscillation,during
Langleyfighter.23 The Langleyfighteris an aircraftdesigned the fifth cycle, were presentedin Ref. 12. Lift coefficient
to cruiseat supersonicMachnumbersandalso to manuever responses for the fighter oscillating at Moo= 2.0 are
efficiently at transonicspeeds. The aircraft has a high presentedin Fig.10. To quantifythe effectsof angleof attack
fineness-ratiofuselagewith an underslungsweptinletand a andreducedfrequency,fivecyclesof motionwereconsidered
flow-throughduct. Other componentswhich make up the as plotted. In eachcase,the meanvalueof theoscillatinglift
configurationincludea crankedwingwitha leadingedgesweep wassubtractedoff to allowfor a direct comparisonbetween
of 70° inboardand 20° outboard,a 55° sweptcanard,anda resultsobtainedat (z = 0° and c[ = 12°. As shownin Fig.10,
60° swept verticaltail. All of the liftingsurfaceshave thin the effectsof angleof attackarevery smallfor k = 0.025. As
circular-arcairfoil sections. Resultswere obtainedfor the the reducedfrequencyis increased,however,themagnitudesof
Langley fighter using a grid which has 13,832 nodes and the responseof the aircraft increaseand there is a small
70,125 tetrahedra. The surfacetriangulationof the aircraft changein phaseof approximately35°. Also,an effect dueto
is shownin Fig.8(a). Becauseof symmetry,the calculations angleof attackbecomesevident,in thatthe responsesat (z =
were performedfor only half of the aircraft.whichcontained 12° are of largermagnitudethanthoseat (z = 0°. Thiseffect
4581 triangleson the surfaceof the vehicle. Steady-state is possiblyattributableto a smallamountof vorticalflow that
resultswere obtainedfor the Langleyfighterat a freestream is presentalongthe uppersurfaceof the wingsin the inboard
Mach numberof 2.0 and foLJranglesof attackincludingcc= regionat (z = 12°.
0°, 4°, 8°, and12°. Unsteadyresultswereobtainedat (z = 0°
and 12° for the aircraft oscillating harmonically in an
assumedpolynomialcomplete-vehiclebendingmodewhichis
shownin Fig. 8(b). Threevaluesof reducedfrequencybased
on wing tip semi-chordwere consideredincludingk= 0.025,
0.05, and 0.1. The amplitudeof thedeformationwastakento
be one-fifthof the modeshapeshownin the figure. So, for
example, the wing tip deflection in the calculationwas _-"_approximately20% of the tipchord. _ Euler 11-0.95 -_

o Experiment

Steady flow resultswere obtainedfor the Langleyfighter
configuration using 1500 iterations starting from freestream t% q , .
flow conditions. Convergenceto steady-statewas accelerated
using local time-stepping, implicit residual smoothing, and
enthalpydamping. In each case, the error in the solution,as
definedby the L2-normof the densityresidual,was reducedby
approximately four orders of magnitude. Detailed color- n-0.65 "_I_
contourplotsof the pressurecoefficientsonthe surfaceof the
vehicle were presented in Ref. 12. A comparison between

!.2 11= 0.44 "__/
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Fig. 12. Comparisonsof steadypressuredistributionsfor the

ONERAM6wingatM.= 0.84 andao= 3.06°
computedusingthe upwind-typeEulerflowsolver

Fig. 11. Uppersurfacegridforthe ONERAM6 wing. with flux-vector splitting.



To test the more-recently-developedupwind-typeEuler resultsare given by the solidcurveswhereplus signshave
flow solver,calculationswere performedfor the ONERA M6 beenincludedto indicatethe actualgridpointvalueswhichare
wing.24 The M6 winghas a leadingedgesweepangleof 30°, connectedwithstraightlinesegments.The experimentaldata
an aspectratioof 3.8, and a taperratioof 0.562. The airfoil is representedby the circles. For11= 0.2 thereare twoshock
sectionof the wing is the ONERA"D" airfoilwhichis a 10% waves along the chord. The forward shockwave is well
maximumthickness-to-chordratio conventionalsection. The predictedincludingthesuctionpeak. Thesecondshockwave is
resultswere obtainedusinga gridwhichhas 154,314 nodes predicted slightly downstreamof the experimentalshock
and 869,056 tetrahedra. The surface triangulationfor the locationwhich is typicalof inviscidmethodsfor this case.
uppersurfaceof the wing is shownin Fig. 11. Resultswere Also,the lowersurfacepressurecoefficientsagreewell with
obtainedfor the M6 wingat a freestreamMachnumberof 0.84 the data. At'q - 0.44 the shocklocationshave begunto
and3.06° angleof attack. Theseconditionswere chosenfor coalesce.The leadingedgesuctionpeakis wellpredictedand
comparisonwith the experimentalpressuredata of Ref. 24. both shockwaves are capturedsharply. At "q= 0.65 the
The resultswere obtainedusingthe explicittime-marching forwardshockwave is near20% chordand the secondshock
schemesince it requireshalf of the memoryof the implicit wave is near midchord. All of the pressurelevelsare well
scheme. The code was run for 6000 time steps at a CFL predictedandbothshocksare capturedsharplywithonlyone
numberof 5.0, which produceda four orderof magnitude grid point within the shock structure. There are also no
reductioninthe L2-normof the densityresidual, overshootsorundershootsnear the shocksdueto the flux

limiting. Furthermore, the lower surface pressure
Figure12 showssurfacepressurecoefficientcomparisons coefficientsare predictedaccurately. At 11= 0.9 the two

withthe experimentaldata at five spanstationsincluding"q= shockshave mergedto forma single,relativelystrong,shock
0.2, 0.44, 0.65, 0.9, and 0.95. In these plots the Euler wave near 25% chord. Here the shock is very sharply

capturedandthe calculatedpressuresagainagreewellwiththe
experimentaldata. Finally at _ = 0.95, the shock waveis
slightly stronger than the previous span station. Here, the
calculatedshockagainhas only one interiorpoint.

Figure 13 showspressurecontour lines on the surface of
the wing plotted using an incrementof _p = 0.02. Pressure
contours on the upper surface are shown in Fig. 13(a);
Pressure contours on the lower surface are shown in Fig.
13(b). The upper surface contours (Fig. 13(a)) clearly show
the lambda-typeshock wavepattern formedby the two inboard
shockwaveswhichmergetogethernear80% semispanto form
the single strong shock wave in the outboard region of the
wing. The lower surface contours (Fig. 13(b)) indicate that
there is very little spanwisevariation in pressure.

ConcludinaRemarks

The currentstatusof the developmentof unstructuredgrid
methodsin theUnsteadyAerodynamicsBranchatNASALangley
ResearchCenter was described. These methodsare being

(a) uppersurface, developedfor steadyandunsteadyaerodynamicapplications.
The paper highlightedthe flow solvers that have been
developedfor the solutionof the unsteadyEulerand Navier-
Stokesequationsandgaveselectedresultswhichdemonstrated
variousfeaturesof the capability. The resultsdemonstrated
two- and three-dimensionalapplicationsfor both steadyand
unsteadyflows. Comparisonswere also made withsolutions
obtainedusinga structuredgridcode and withexperimental
data to determine the accuracy of the unstructuredgrid
methodology.Thesecomparisonsshowedgoodagreementwhich
thusverifiedthe accuracy.
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