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Abstract

The current status of the development of unstructured grid
methods in the Unsteady Aerodynamics Branch at NASA Langley
Research Center is described. These methods are being
developed for steady and unsteady aerodynamic applications.
The paper first highlights the flow solvers that have been
developed for the solution of the unsteady Euler and Navier-
Stokes equations and then gives selected results which
demonstrate various features of the capability. The results
demonstrate two- and three-dimensional applications for both
steady and unsteady flows. Comparisons are also made with
solutions obtained using a structured grid code and with
experimental data to determine the accuracy of the
unstructured grid methodology. These comparisons show good
agreement which thus verifies the accuracy.

Introduction

Considerable progress has been made over the past two
decades on developing computational fluid dynamics (CFD)
methods for aerodynamic analysis.!.2 Recent work in CFD has
focused primarily on developing algorithms for the solution of
the Euler and Navier-Stokes equations. For unsteady
aerodynamic and aeroelastic analysis, these methods generally
require that the mesh move to conform to the instantaneous
position of the moving or deforming body under consideration.
Many of the methods that are currently being developed assume
that the mesh moves rigidly or that the mesh shears as the
body deforms. These assumptions consequently limit the
applicability of the procedures to rigid-body motions or
small-amplitude deformations. Furthermore, these methods
of solution typically assume that the computational grid has an
underlying geometrical structure. As an alternative,
algorithms have been developed recently which make use of
unstructured grids.3-16 In two dimensions these grids are
typically made up of triangles and in three dimensions they
consist of an assemblage of tetrahedra. The unstructured grid
methods have several distinct advantages over structured grid
methods which make them attractive for unsteady aerodynamic
and aeroelastic  analyses. For example, the primary
advantage of the unstructured grid methodology is the ability to
easily model very complicated three-dimensional
configurations with virtually unlimited geometrical
complexity. A second advantage is that the methodology allows
for a general way to move the mesh to treat realistic motions
and structural deformations of complete aircraft
configurations. The deforming grid capability does not involve
any assumptions which limit applications to small
deformations, such as simple grid shearings which are done in
some structured grid codes. A third advantage is that it enables
in a natural way for adaptive mesh refinement to more
accurately predict the physics of the flow. Highly accurate
solutions may thus be obtained by using far fewer grid points
than if a globally fine mesh was used.

The purpose of the paper is to describe the current status
of the development of unstructured grid methods within the
Unsteady Aerodynamics Branch at NASA Langley Research

Center.10-16  The paper first highlights the flow solvers that
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have been developed for solution of the time-dependent Euler
and Navier-Stokes equations and then gives selected results
which demonstrate various features of the capability. The flow
solvers that are described are either of the central-
difference-type with explicit artificial dissipation or of the
upwind-type which are naturally dissipative. Both implicit
and explicit temporal discretizations are discussed for the
time-integration of the governing fluid flow equations. Details
on the adaptive mesh refinement procedures are also given.
The selected results that are presented demonstrate two- and
three-dimensional applications for both steady and unsteady
flows. Comparisons are also made with solutions obtained
using a structured grid code and with experimental data to
determine the accuracy of the unstructured grid methodology.

- - \

The unsteady Euler equations in integral form are solved
using a finite-volume algorithm that was developed for use on
unstructured grids of triangles in 2D or tetrahedra in
3D.10-13  The algorithm reduces conceptually to central
differencing on a rectangular mesh and thus is referred to as a
central-difference-type flow solver.  With this solver,
artificial dissipation is added explicitly to prevent oscillations
near shock waves and to damp high-frequency uncoupled error
modes. Specifically, an adaptive blend of harmonic and
biharmonic operators is used, corresponding to-second and
fourth difference dissipation, respectively. The biharmonic
operator provides a background dissipation to damp high
frequency errors and the harmonic operator prevents
oscillations near shock waves.

The Euler equations are integrated in time using a
standard, explicit, four-stage, Runge-Kutta time-stepping
scheme. In this scheme the convective operator is evaluated at
each stage and, for computational efficiency, the dissipative
operator is evaluated only at the first stage. The scheme is
second-order-accurate in time and includes the necessary
terms to account for changes in cell volumes due to a moving or
deforming mesh. Furthermore, this explicit scheme has a step
size that is limited by the Courant-Friedricks-Lewy (CFL)

condition corresponding to a CFL number of 2\/; . To accelerate
convergence to steady-state, the CFL number may be increased
by averaging implicitly the residual with values at
neighboring grid points. These implicit equations are solved
approximately using several Jacobi iterations. Convergence to
steady-state is further accelerated using enthalpy damping and
local time stepping. The local time stepping uses a maximum
allowable step size at each grid point as determined by a local
stability analysis. For unsteady applications, however, a
global time step is usually used because of the time-accuracy
requirement. The maximum allowable global time step may be
increased to a value that is larger than that dictated by the CFL
condition, by using a time accurate version of the residual
smoothing.

It interest is restricted to supersonic flow past conical
bodies, then the conical flow assumption can be made. This
reduces the problem from three dimensions to two dimensions,
which significantly decreases the computational resources that
are required to investigate such flows. The conical flow
assumption is exact for inviscid supersonic flow and is used to
efficiently investigate vortex-dominated flows. For viscous

N[ - 113



flow, however, a length dependence remains in the Reynolds
number (Re), although the flow may be considered to be
locally conical. The Reynolds number therefore determines
the location of the plane at which the solution is determined.
Conical Euler and Navier-Stokes solvers have been developed
based on a central-ditference-type spatial discretization,13
similar to the two- and three-dimensional Euler solvers
described above. The viscous fluxes in the conical Navier-
Stokes solver are evaluated by first computing derivatives of
the velocity components required by the shear stresses and
heat flux terms using Green's theorem. Once evaluated, these
fluxes are averaged across edges in the same manner as the
inviscid fluxes. Also, the viscous fluxes are computed only at
the first stage of the Runge-Kutta time-marching scheme for
computational efficiency. This effectively reduces the
computational work to evaluate the viscous fluxes by a factor
of four.

The unsteady Euler equations may be solved alternatively
by using upwind differencing and either flux-vector or flux-
difference splitting similar to upwind schemes developed for

use on structured meshes.10.14-16  The present
unstructured grid algorithm is thus referred to as an upwind-
type flow solver. The spatial discretization of this solver
involves a so-called flux-split approach based on either the
flux-vector splitting of van Leer!7 or the flux-difference
splitting of Roe.18 These flux-split discretizations account
for the local wave-propagation characteristics of the flow and
they capture shock waves sharply with at most one grid point
within the shock structure. A further advantage is that these
discretizations are naturally dissipative and consequently do
not require additional artificial dissipation terms or the
adjustment of free parameters to control the dissipation.
However, in calculations involving higher-order upwind
schemes such as these, oscillations in the solution near shock
waves are expected to occur. To eliminate these oscillations
flux limiting is usually required. In the present study, a
continuously differentiable flux limiter was employed.14-16

The Euler equations are integrated in time using either an
explicit Runge-Kutta method (described in the previous
section) or an implicit time-integration scheme involving a
Gauss-Seidel relaxation procedure.'4 The procedure is
implemented by re-ordering the elements that make up the
unstructured mesh from upstream to downstream. The
solution is obtained by sweeping two times through the mesh as
dictated by stability considerations. The first sweep is
performed in the direction from upsteam to downstream and
the second sweep is from downstream to upstream. For purely
supersonic flows the second sweep is unnecessary. This
relaxation scheme is stable for large time steps and thus
allows the selection of the step size based on the temporal
accuracy of the problem being considered, rather than on the
numerical stability of the algorithm. Consequently, very large
time steps may be used for rapid convergence to steady state,
and an appropriate step size may be selected for unsteady
cases, independent of numerical stability issues.

Spatial Adaption Proced

Spatial adaption is employed with the unstructured grid
flow solvers to enrich the mesh locally in regions of high
spatial flow gradients to more accurately and efficiently
resolve the physics of the flow.13 Equally attractive are
coarsening techniques that remove elements from regions
where relatively small changes in the flow variables occur.
Both enrichment and coarsening procedures are currently
being developed. However, only the enrichment procedure is
described as follows.

A refinement indicator is used to determine if an element
in the mesh is to be refined or subdivided into smaller
elements. Typically, the absolute change in density along an
edge is used as an indicator for flows with shock waves and
total pressure loss is used for flows with vortices. The
refinement indicator is compared with a preset tolerance to
determine whether a given element should be refined. If the
tolerance is exceeded, a new node is created at the midpoint of
the edge and the element is divided. Each time the mesh is
refined, an element may be divided in one of several different
ways. The coordinates of the new node are determined by
averaging the coordinates of the endpoints that make up the
bisected edge. Special care must be taken, however, when an
edge that is to be divided lies on a boundary of the grid, since
the midpoint of the edge does not generally lie on the boundary.
In this case, the location of the new node is determined
generally by using a spline of the boundary coordinates.

Deforming Mesh Algoritt

For problems where the aircraft moves or deforms, the
mesh must move so that it continuously conforms to the
instantaneous shape or position of the vehicle. This is
accomplished by using a spring network to model the original
mesh such that each edge of the triangle or tetrahedron is
represented by a sprihg.12 The spring stiffness for a given
edge is taken to be inversely proportional to the length of the
edge. Grid points on the outer boundary of the mesh are held
fixed and the instantaneous locations of the points on the inner
boundary (aircraft) are given by the prescribed surface
motion. At each time step, the static equilibrium equations in
the x, y, and z directions, which result from a summation of
forces, are solved iteratively at each interior node of the grid
for the displacements. This is accomplished by using a
predictor-corrector procedure, which first predicts the
displacements of the nodes by extrapolation from grids at
previous time levels and then corrects these displacements
using several Jacobi iterations of the static equilibrium
equations. The predictor-corrector procedure has been found
to be more efficient than simply performing Jacobi iterations
because far fewer iterations are required to achieve acceptable
convergence. In practice, it has been found that only one or
two iterations are sufficient to accurately move the mesh.

Results and Discussion

Selected results from the unstructured grid methods of
Refs. 10-16 are presented for two- and three-dimensional
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Fig. 1  Partial view of unstructured grid of triangles about

the NACA 0012 airfoil.



geometries for both steady and unsteady flows. Comparisons
are made with solutions obtained using a structured grid code
and with experimental data to determine the accuracy of the
methodology.

Two-Dimensional ler R |

To assess the two dimensional central-difference and
upwind-type Euler solvers, calculations were performed for
the NACA 0012 airfoil. These results were obtained by using
the unstructured grid shown in Fig. 1 which was generated
using the advancing front method.6:7 The grid has 3300
nodes, 6466 triangles, and extends 20 chordlengths from the
airfoil with a circular outer boundary. Also there are 110
points that lie on the airfoil surface. This is the same mesh
that was used to obtain the results that were presented in Refs.
10, 11, and 14.

Generalized aerodynamic forces were obtained using the
central-difference-type Euler solver for the NACA 0012
airfoil oscillating in either plunge or pitch-about-the-
quarter-chord to determine the accuracy of the unstructured
grid method for unsteady aerodynamic applications.
Calculations were performed for the airfoil ata freestream
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Fig. 2  Comparisons of generalized aerodynamic forces

for the NACA 0012 airfoil at M_= 0.8 and o, = 0°

computed using CFL3D and the unstructured-grid
central-difference-type Euler flow solver.

Mach number of M_ = 0.8 and zero degrees angle of attack.
Comparisons are made with parallel computations performed
using the CFL3D19 code, run in a 2-D mode. The CFL3D code
is an Euler/Navier-Stokes code based on cell-centered
upwind-difference discretizations of the governing flow
equations based on structured meshes. The CFL3D Euler
results that were used in the present study were obtained from
Ref. 20. Generalized aerodynamic forces for the NACA 0012
airfoil are presented in Fig. 2, computed using the so-called
pulse analysis within the unstructured grid Euler code, the
unstructured grid Euler harmonic analysis, and the CFL3D
harmonic analysis. The results are plotted as real and

imaginary components of the unsteady forces, A,; , as a

function of reduced frequency k. Plunge and pitch-about-the-
quarter-chord motions are defined as modes 1 and 2,
respectively. Thus, for example, A, is the lift coefficient due
to pitching. Both sets of harmonic results were obtained at six
values of reduced frequency: k = 0.0, 0.125, 0.25, 0.5, 0.75,
and 1.0. As shown in Fig. 2, the forces from the unstructured
grid Euler pulse analysis agree well with the forces from the
harmonic analysis. The harmonic analysis, however, is
considered to be the more accurate of the two sets of
calculations, since the local linearity assumption in the pulse
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Fig. 3. Comparisons of steady-state results for the NACA
0012 airfoil atM_= 0.8 and a_ = 1.25” computed
using the upwind-type Euler flow solver with flux-
vector splitting.



analysis may be questionable for transonic flow cases. As
further shown in Fig. 2, the harmonic forces from the
unstructured grid Euler code are in very good agreement with
the CFL3D (Euler) harmonic forces, for both plunge and pitch
motions, for all values of reduced frequency that were
considered.

To test the more-recently-developed upwind-type Euler
flow solver, steady flow results were obtained for the NACA

0012 airfoit at M_, = 0.8 and o, = 1.25°, using both
implicit and explicit time-marching. The explicit time-
marching results were obtained using a CFL number of 2.5
(since the CFL limit is approximately 2.8) and the implicit
time-marching results were obtained using a CFL number of
100,000. Such a large value was used for the implicit results
since the relaxation scheme has maximum damping and hence
fastest convergence for very large time steps. This is in
contrast with implicit approximate factorization schemes
which have maximum damping for CFL numbers on the order
of 10. A comparison of the convergence histories between
explicit and implicit time-marching is shown in Fig. 3(a).
The "error” in the solution was taken to be the Lp-norm of the
density residual. As shown in Fig. 3(a), the explicit solution
is very slow to converge. This solution takes approximately
10,000 time steps to become converged to engineering
accuracy, which is taken to be a four order of magnitude
reduction in solution error. In contrast, the implicit solution
is converged to four orders of magnitude in only approximately
500 steps and is converged to machine zero is less than 2000
steps. The implicit solution costs approximately 75% more
per time step than the explicit solution because of the
increased number of operations required to evaluate the flux
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jacobians. This increase in CPU time is far out-weighed by
the faster convergence to steady state in that a converged
solution is obtained with the implicit relaxation scheme with
an order or magnitude less CPU time than the explicit scheme.
The resulting steady pressure distribution is shown in Fig.
3(b). For this case there is a relatively strong shock wave on
the upper surface of the airfoil near 62% chord and a
relatively weak shock wave on the lower surface near 30%
chord. The pressure distributions indicate that there is only
one grid point within the shock structure, on either the upper
or lower surface of the airfoil, due to the sharp shock
capturing ability of the upwind-type flow solver.

Unsteady calculations with the upwind-type Euler solver
were performed for the airfoil pitching harmonically about

the quarter chord with an amplitude of @, = 2.51° and a
reduced frequency based on semichord of k = 0.0814 atM_=

0.755 and a, = 0.016°. These calculations are compared

with the experimental data of Ref. 21. Instantaneous pressure
distributions at eight points in time during the third cycle of
motion using 2500 steps per cycle are shown in Fig. 4 for
comparison with the experimental data. In each pressure plot
the instantaneous pitch angle a(t) and the angular position in
the cycle kt are noted. During the first part of the cycle there
is a shock wave on the upper surface of the airfoil, and the
flow over the lower surface is predominately subcritical.
During the latter part of the cycle, the flow about the upper
surface is subcritical, and a shock forms along the lower
surface. The pressure distributions indicate that the shock
position oscillates over approximately 25% of the chord along
each surface, and in general, that the two sets of calculated
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Fig. 4. Comparison of instantaneous pressure distributions for the NACA 0012 airfoil

pitching atM_ = 0.755, a, = 0.016°, o, = 2.51°, and k = 0.0814 computed
using the upwind-type Euler flow solver with flux-vector splitting.
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results compare well with the experimental data. Similar to
the steady flow results, the shock waves are captured sharply
with at most one grid point within the shock structure. The
calculated results show the expected symmetry in the flow, in
that the upper surface pressure distribution during the first
half of the cycle is very similar to the lower surface pressure
distribution during the second half of the cycle. A lack of
similar symmetry in the experimental results suggests that
the data may have been obtained at a slightly higher effective
steady-state angle of attack than that reported in Ref. 21.
Furthermore, the unstructured grid results of Fig. 4 are of
comparable accuracy in comparison with published results
obtained using structured grid methods for this case, such as
those reported in Ref. 22.
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To demonstrate the central-difference-type conical
Euler/Navier-Stokes flow solver and the adaptive mesh
refinement procedures, calculations were performed for
highly-swept delta wing and circular cone cases at high angle
of attack and at supersonic freestream flow conditions.13 In
these calculations three cases were considered. In the first
two cases, the conical Euler equations were solved for a 75°
swept flat-plate delta wing at a freestream Mach number of
1.4. In the first case, steady results were obtained at o = 20°
angle of attack and § = 10° yaw angle. In the second case,
unsteady results were obtained for the wing undergoing a
forced harmonic rolling at @ = 20° and B = 0°. For the third
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Fig. 5. Effects of adaptive mesh refinement on the total pressure loss contours for a

75° swept flat-plate delta wing at M_ = 1.4, a = 20°, and B = 10°; computed
using the central-difference-type conical Euler flow solver.



case, the conical Navier-Stokes equations were solved for an
85° swept circular cone at M, = 1.4, & = 20°, B = 0°, and

Re = 0.5 x 106.

Case 1, - The first case was selected to demonstrate
applications of the adaptive mesh refinement procedures to a
wing that is yawed. The calculations were performed by
starting with a coarse mesh that has 32 nodes around the wing
and 16 nodes in the outward direction for a total of 512 nodes.
A partial view of this mesh is shown in the upper left part of
Fig. 5. Results were obtained using adaptive mesh refinement
by starting with the coarse mesh containing 512 nodes and
adapting to the total pressure losses of the instantaneous
solution to determine a locally fine mesh. The flow solver was

run for a total of 4,000 iterations and the mesh was adapted at
iterations 500, 1000, and 1500. Adapting the mesh every
500 iterations produces intermediate results that are
converged to plotting accuracy, although this is not a
requirement for the adaption procedure to be numerically
stable or to produce accurate final results. A summary of the
meshes and the corresponding total pressure loss contours is
shown in Fig. 5. For this case there is a strong flat vortex
produced by the separated flow from the windward (left)
leading edge with a crossflow shock wave beneath the vortex.
There is also a weaker more-circular vortex produced by the
separated flow from the leeward (right) leading edge. With
the coarse grids containing 512 (original mesh) and 807 (one
enrichment) nodes, the shock wave beneath the windward

kt = 360°

kt = 315°

Fig. 6.

kTt = 270°

Instantaneous total pressure loss contours during a cycle of harmonic rolling

for a 75° swept flat-plate delta wing at M_ = 1.4, a = 20° B = 0°, ® = 30°,
and k = 0.3; computed using the central-difference-type conical Euler flow

solver.



vortex is not detected in the total pressure loss contours. Upon

further enrichment to a grid containing
shock begins to appear, and with the final grid of 2801 nodes

the shock is shown to be sharply captured. The total pressure

1363 nodes, the

loss contours of Fig. 5 indicate that the vortical flow features
are more clearly defined when the mesh is adaptively refined.
A solution of comparable accuracy on a globally fine mesh
would require 32768 nodes (256 x 128). A spatially
accurate solution is thus obtained for this case with adaptive
mesh refinement, using an order of magnitude fewer grid

points (2801 nodes).
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Case 2, - The second case was selected to demonstrate the
time-accurate capability of the conical Euler flow solver
although the results are actually only locally conical. The
unsteady results were obtained for the rolling delta wing
oscillating harmonically with an amplitude of 30° at k = 0.3
using 2400 steps per cycle of motion. In these calculations
the grid was first adapted to the steady solution to create a fine
embedded mesh locally which was then used in the unsteady
calculation. The fine embedded region was made large enough
so that the moving vortices and shock waves are always
contained within this region and the total grid contained 5152
nodes. It is recognized, however, that for unsteady
applications a de-refinement procedure can be used in addition

2048 nodes

3733 nodes

J
~
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ement on the total pressure loss contours for an
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to the refinement procedure, to remove as well as to add nodes
and elements during the calculation. Also, during the unsteady
calculation the grid was moved as a rigid body to conform to the
instantaneous position of the wing. Three cycles of motion
were computed to obtain a periodic solution. Instantaneous
total pressure loss contours at eight points in time during the
third cycle of motion are shown in Fig. 6. In each part of the
figure, the instantaneous angular position in the cycle kt is
noted where 1 is time normalized by one-half of the reference
length and the streamwise freestream speed.

During the first half of the cycle as the wing rolls
clockwise to the maximum amplitude and then back to straight
and level, the crossflow shock wave beneath the left vortex
disappears, the left vortex weakens, and the right vortex
grows in strength. During the second half of the cycle, the
opposite situation occurs. The shock wave beneath the right
vortex disappears, the right vortex weakens, and the left
vortex grows in strength. it is easy to see that the solution is
periodic in the third cycle of motion by comparing the total
pressure loss contours at any two points in time that are 180°
out of phase in the cycle. The two sets of total pressure loss
contours, 180° out of phase, are antisymmetric as shown in
Fig. 6.

(a) original surface grid.

bend-down

(b) assumed bending mode.

Fig. 8. Surface grid for the Langley supersonic fighter

configuration.

Case 3, - The third case was selected to further
demonstrate the adaptive mesh refinement procedures for a
viscous flow about a circular cone. The calculations were
performed by starling with a coarse 64 x 32 mesh (2048
nodes) and adaptively refining the mesh twice. The flow solver
was run for a total of 4000 iterations and the mesh was
adapted at iterations 1000 and 2000. A summary of the
meshes and the corresponding total pressure loss contours is
shown in Fig. 7. For this case, there are two large,
symmetric, primary vortices that are produced by the
separated flow from the left and right sides of the cone. With
the coarse mesh containing 2048 nodes, the primary vortices
are very diffuse, the secondary vortical flow features are
absent, and the boundary layer appears thick. When the grid

Experiment
_ ° Euler
CL
0/
i | | | J
-4 0 4 8 12 16

Fig. 9. Comparison of lift coefficient versus angle of attack
for the Langley fighter at M_ = 2.0 computed using

the central-difference-type Euler flow solver.
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Fig. 10. Effects of angle of attack and reduced frequency on
the lift coefficient responses due to the complete
vehicle sinusoidal bending deformation of the Langley
fighter configuration at M_= 2.0 computed using the
central-difference-type Euler flow solver.



is refined to 3733 nodes and then to 8508 nodes, the primary
vortices become smaller and more sharply defined, secondary
and tertiary vortices become apparent in the flow, and the
boundary layer appears to be much thinner.in comparison
with the coarse grid results. An accurate solution is thus
obtained for this case with adaptive mesh refinement, using a
factor of approximately four fewer grid points (8508 nodes)
in comparison with a globally fine mesh (32768 nodes).

Three-Di ional Euler Result

To assess the three-dimensional version of the central-
ditference-type Euler solver and dynamic mesh algorithm,
calculations were performed for a supersonic fighter
configuration that was tested at NASA Langley Research
Center.12 The fighter will hereafter be referred to as the
Langley fighter.23 The Langley fighter is an aircraft designed
to cruise at supersonic Mach numbers and also to manuever
efficiently at transonic speeds. The aircraft has a high
fineness-ratio fuselage with an underslung swept inlet and a
flow-through duct. Other components which make up the
configuration include a cranked wing with a leading edge sweep
of 70° inboard and 20° outboard, a 55° swept canard, and a
60° swept vertical tail. All of the lifting surfaces have thin
circular-arc airfoil sections. Results were obtained for the
Langley fighter using a grid which has 13,832 nodes and
70,125 tetrahedra. The surface triangulation of the aircraft
is shown in Fig. 8(a). Because of symmetry, the calculations
were performed for only half of the aircraft- which contained
4581 triangles on the surface of the vehicle. Steady-state
results were obtained for the Langley fighter at a freestream
Mach number of 2.0 and four angles of attack including o =
0°, 4°, 8°, and 12°. Unsteady results were obtained at o = 0°
and 12° for the aircraft oscillating harmonically in an
assumed polynomial complete-vehicle bending mode which is
shown in Fig. 8(b). Three values of reduced frequency based
on wing tip semi-chord were considered including k= 0.025,
0.05, and 0.1. The amplitude of the deformation was taken to
be one-fifth of the mode shape shown in the figure. So, for
example, the wing tip deflection in the calculation was
approximately 20% of the tip chord.

Steady flow results were obtained for the Langley fighter
configuration using 1500 iterations starting from freestream
flow conditions. Convergence to steady-state was accelerated
using local time-stepping, implicit residual smoothing, and
enthalpy damping. In each case, the error in the solution, as
defined by the Ly-norm of the density residual, was reduced by
approximately four orders of magnitude. Detailed color-
contour plots of the pressure coefficients on the surface of the
vehicle were presented in Ref. 12. A comparison between

Fig. 11. Upper surface grid for the ONERA M6 wing.

calculated and experimental lift coefficient versus angle of
attack for the Langley fighter is shown in Fig. 9. In general,
the calculated lift coefficient agrees well with the
experimental data, especially at the lower angles of attack of
0° and 4°. At the higher angles of attack of 8° and 12°, the
calculated lift is slightly underpredicted in comparison with
the measured valueg, which is possibly due to the coarseness of
the grid.

Unsteady flow results were obtained for the Langley fighter
configuration oscillating harmonically in the complete-vehicle
bending mode. The calculations were performed for k =
0.025, 0.05, and 0.1 using 1440, 720, and 360 steps per
cycle of motion, respectively, for five cycles. Calculated
instantaneous pressure contours at the maximum (bend-up)
and minimum (bend-down) amplitudes of oscillation, during
the fifth cycle, were presented in Ref. 12. Lift coefficient
responses for the fighter oscillating atM, = 2.0 are
presented in Fig. 10. To quantify the effects of angle of attack
and reduced frequency, five cycles of motion were considered
as plotted. In each case, the mean value of the oscillating lift
was subtracted off to allow for a direct comparison between
results obtained at o = 0° and a = 12°. As shown in Fig. 10,
the effects of angle of attack are very small for k = 0.025. As
the reduced frequency is increased, however, the magnitudes of
the response of the aircraft increase and there is a small
change in phase of approximately 35°. Also, an effect due to
angle of attack becomes evident, in that the responses ata =
12° are of larger magnitude than those at o = 0°. This effect
is possibly attributable to a small amount of vortical flow that
is present along the upper surface of the wings in the inboard
region at o = 12°,
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Fig. 12. Comparisons of steady pressure distributions for the

ONERA M6 wing atM_= 0.84 and a,= 3.06°

computed using the upwind-type Euler flow solver
with flux-vector splitting.



To test the more-recently-developed upwind-type Euler
flow solver, calculations were performed for the ONERA M6

wing.24 The M6 wing has a leading edge sweep angle of 30°,
an aspect ratio of 3.8, and a taper ratio of 0.562. The airfoil
section of the wing is the ONERA "D" airfoil which is a 10%
maximum thickness-to-chord ratio conventional section. The
results were obtained using a grid which has 154,314 nodes
and 869,056 tetrahedra. The surface triangulation for the
upper surface of the wing is shown in Fig. 11. Results were
obtained for the M6 wing at a freestream Mach number of 0.84
and 3.06° angle of attack. These conditions were chosen for
comparison with the experimental pressure data of Ref. 24.
The results were obtained using the explicit time-marching
scheme since it requires half of the memory of the implicit
scheme. The code was run for 6000 time steps at a CFL
number of 5.0, which produced a four order of magnitude
reduction in the Ly-norm of the density residual.

Figure 12 shows surface pressure coefficient comparisons
with the experimental data at five span stations including 1} =
0.2, 0.44, 0.65, 0.9, and 0.95. In these plots the Euler

(b) lower surface.

Fig. 13. Surface pressure contour lines (Ap = 0.02) on the
ONERA M6 wing atM_= 0.84 and a, =~ 3.06°

computed using the upwind-type Euler flow solver
with flux-vector splitting.
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results are given by the solid curves where plus signs have
been included to indicate the actual grid point values which are
connected with straight line segments. The experimental data
is represented by the circles. Form = 0.2 there are two shock
waves along the chord. The forward shock wave is well
predicted including the suction peak. The second shock wave is
predicted slightly downstream of the experimental shock
location which is typical of inviscid methods for this case.
Also, the lower surface pressure coefficients agree well with
the data. Atm = 0.44 the shock locations have begun to
coalesce. The leading edge suction peak is well predicted and
both shock waves are captured sharply. At 11 = 0.65 the
forward shock wave is near 20% chord and the second shock
wave is near midchord. All of the pressure levels are well
predicted and both shocks are captured sharply with only one
grid point within the shock structure. There are also no
overshoots or undershoots near the shocks due to the flux
limiting. Furthermore, the lower surface pressure
coefficients are predicted accurately. At T = 0.9 the two
shocks have merged to form a single, relatively strong, shock
wave near 25% chord. Here the shock is very sharply
captured and the calculated pressures again agree well with the
experimental data. Finally at 11 = 0.95, the shock wave is
slightly stronger than the previous span station. Here, the
calculated shock again has only one interior point.

Figure 13 shows pressure contour lines on the surface of
the wing plotted using an increment of Ap = 0.02. Pressure
contours on the upper surface are shown in Fig. 13(a);
Pressure contours on the lower surface are shown in Fig.
13(b). The upper surface contours (Fig. 13(a)) clearly show
the lambda-type shock wave pattern formed by the two inboard
shock waves which merge together near 80% semispan to form
the single strong shock wave in the outboard region of the
wing. The lower surface contours (Fig. 13(b)) indicate that
there is very little spanwise variation in pressure.

Concluding Remarks

The current status of the development of unstructured grid
methods in the Unsteady Aerodynamics Branch at NASA Langley
Research Center was described. These methods are being
developed for steady and unsteady aerodynamic applications.
The paper highlighted the flow solvers that have been
developed for the solution of the unsteady Euler and Navier-
Stokes equations and gave selected results which demonstrated
various features of the capability. The results demonstrated
two- and three-dimensional applications for both steady and
unsteady flows. Comparisons were also made with solutions
obtained using a structured grid code and with experimental
data to determine the accuracy of the unstructured grid
methodology. These comparisons showed good agreement which
thus verified the accuracy.
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