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1.0 Introduction

The ignition and flame spread characteristics of liquid fuel pools are

subjects of considerable scientific interest and are very relevant to fire

safety applications such as aircraft crashes and petroleum spills. In many

accident situations, including those which may occur in a space environment

such as aboard an orbiting spacecraft, a flammable liquid is spilled in the

vicinity of an ignition source such as hot engine parts or exhaust gases.

Pool fires are complicated by multiple energy and mass transport processes,

phase change, and chemical reaction.

In the presence of an ignition source, liquid motion is driven by both

surface-tension gradients and liquid buoyancy . These driving forces

generally support in concert surface fluid motion away from the heat source.

Therefore this motion tends to delay ignition as heat from the source is

convected away rather than concentrated. On the other hand, the motion

supports flame spread as the convection assists the preheating process ahead

of the flame. The role of gravity varies depending on the relative strengths

of buoyancy versus surface tension in driving the convection. If buoyancy

contributes significantly, then a reduction in gravity will lead to more

rapid ignition but slower flame spread. If surface tension gradients

dominate, one might envision a longer ignition delay but a more rapid flame

spread in reduced gravity. Theoretical studies in the literature 1,2,3

often assume that surface tension is the principal mechanism for motion of

the liquid fuel ahead of the flame front for small laboratory scale

experiments. However, Murad et al. 4 added a surfactant to a fuel which

eliminated the temperature dependence of surface tension in the temperature

range of interest. The effect of the surfactant was to reduce the ignition

delay time, but to a much lesser extent than described above for the

viscosity-enhanced fuel. They concluded that both forces, surface tension



and buoyancy, were important to the ignition problem. The authors did not

isolate the effect of buoyancy in their experiments; experiments in reduced

gravity allow such isolation to be accomplished. Recent theoretical studies

5,6 indicate that surface tension dominates only below a Grashof number of

104.

The importance of gas phase processes has not been treated

quantitatively until recently 1,5,6. While providing fresh oxidizer to a

spreading flame, gas phase buoyancy in normal gravity was predicted to be

very strong in the vicinity of the flame front. When the Grashof number was

set equal to zero, the flame position shifted much closer to the liquid

surface. This flame position shift is opposite that observed for solid

surface burning in microgravity experiments 7. In the solid surface case,

the reduction in gravity moved the flame further from the solid surface

presumably due to an inability of oxidizer to diffuse inwards-in the absence

of buoyancy. In the liquid pool burning case, however, liquid motion due to

surface tension provides a possible convective mechanism for oxidizer to be

entrained and brought close to the surface. If the flame resides closer to

the surface, gas conduction, flame radiation, and the vaporization process

differ from the case of normal gravity. Ignition delays will differ as

well.

Before the effects of reduced gravity on liquid pool ignition and flame

spread can be. understood, these processes must first be fully examined in

normal gravity conditions. As a first step, the fluid behavior of a single

phase gas system and a two-phase gas/liquid system in an enclosed circular

cylinder heated suddenly and nonuniformly from above was examined.

Qualitative data on both systems was obtained using flow visualization. This

data was used to define the system behavior in normal gravity conditions and

to aid in the verification of a numerical model of the system 8.



2.0 The Experimental Apparatus

2.1 Single Phase Tests

The experimental setup used to determine the flow patterns is shown in

Figures 1 and 2. The entire apparatus was constructed to be. self-contained

within the confines of a "drop rig" used in reduced gravity drop tower

tests. This allows the identical experimental setup to be used in both

normal and reduced gravity tests. The test cell was constructed from a

cylindrical section of plexiglass and had a 0.4 cm wall thickness and was 10

cm in both height and diameter. In the center of the top surface (or end

plate), a copper water-cooled jacket was employed to prevent this surface

from melting and to simulate a concentrated heat source from above. The

heater itself was fabricated from a thin nichrome wire encased in ceramic

cement. All heaters used had a Type K thermocouple embedded in the center

of the heater adjacent to the exposed heater surface. In this series of

tests, 1.25 and 2.5 cm diameter ceramic heater were used. The radial

temperature distribution of the heaters was checked using an infrared

radiometer. Heaters which displayed a asymmetric temperature distribution

were not used for the tests. In addition, the radial temperature

distribution of a given heater can be deduced from the radiometric

measurements and can be used to accurately model the heater in the numerical

simulation. The flow was visualized by illuminating tracer particles in a

single vertical plane by a light sheet created by a the beam of a 5 mW

Helium-Neon laser through a cylindrical lens. The light sheet was reflected

back across itself by a mirror to double the illumination. A B/W video

camera was used to record the flow patterns on Fuj i HQ VHS video tape. A

heater temperature display and an experiment duration time display were

placed in the field of view of the camera to record this information

simultaneously with the flow field behavior. Tobacco smoke particles were
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used as flow tracers. However, the tar in the tobacco smoke gradually began

to coat the walls and bottom of the container. Over the course of

approximately 20 test runs the walls of the test cell became too heavily

coated to provide good flow visualization. The test cells were periodically

cleaned ultrasonically in a water/alconox solution.

In an attempt to minimize the tar problem, the brand of cigarette used

to produce the smoke was changed from Marlboro 100's to low tar Carlton's.

For each test approximately 120 cc of smoke was injected into the test cell.

This volume of smoke provided for adequate visualization when using the

Marlboros whereas the much less opaque smoke of the Carltbns reduced the

quality of the visual image. The smoke was injected slowly (at a rate of 10

cc every 15 seconds) to reduce the waiting time for the motion of the

injected smoke to damp out. A waiting time of 4 minutes provided the best

results. The test was then initiated by powering the laser and video

camera, followed by the heater and cooling pump. In some runs, the heater

was brought up to its steady state temperature outside the test cell, then

gently put into place, initiating the start the test.

2.2 Two-Phase Tests

The experimental setup used in the two-phase tests was very similar to

the single phase tests. Additional cells fabricated from clear arcylic

blocks and tubing measuring 10 cm high x 5 cm diameter, and 5 cm x 5 cm were

used for the two-phase tests. A square test cell 5 cm high with a 4.2 cm

hole bored through the center was used to provide better observation of the

liquid phase by eliminating the refractive error. In addition to the 1.25

and 2.5 cm heaters used for the single phase tests, a 1.75 cm heater was

also used. Two miniature, high resolution Pulnix B/W video cameras with

macro lenses provided simultaneous views of the entire test cell and the

gas-liquid interface. On several occasions a 35 mm still camera was used for

4



long time-exposure pictures, ranging from 10 sec. to 2 min. , of the liquid

phase to help establish the predominant flow pattern. Most of the two-phase

data was taken for a liquid fill level of 50% of the test cell height'with

10 centistoke silicone oil as the test liquid. Density-matched 12 pm plastic

particles traced the flow in the liquid phase. When a gas phase tracer was

required, tobacco smoke was again used. The major disadvantage of using the

tobacco smoke was the resulting settling of the smoke into the liquid, which

eventually made the liquid too opaque for adequate visualization and could

have potentially caused changes in its surface tension. However, the use of

the tobacco smoke provided additional flow visualization in the liquid

phase. As a test progressed, the smoke particles gradually became entrained

in the liquid and provided a clear outline of the flow pattern.

2.3 Flow Visualization Using Liquid Crystals

With the exception of qualitative flow visualization data, no other

useful data was collected for the two-phase system. The problems encountered

with determining velocity gradients in the liquid phase are discussed below

with the results of the two-phase tests. A problem that is perhaps more

important than resolving the velocity vectors is determining temperature

gradients in the liquid phase. This problem prompted an investigation into

the feasibility of using microencapsulated liquid crystal particles to seed

the flow, thus allowing for the simultaneous collection of both flow pattern

and temperature gradient data. To determine in which manner the liquid

crystals could be used to obtained the desired qualitative and quantitative

information, several variations of the same experimental setup were used.

These variations are shown in Figure 6 and are described with the test

results. The basic experimental setup was as follows. The 5 cm x 5 cm

square test cell was positioned so that a vertical sheet of white light

passed through the center of the test cell. A heater and cooling jacket is
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placed at the top of the test cell. A Nikon F3 35 mm still camera recorded

the position and color of the liquid crystal particles over a given period

of time as they move with the flow.

The most critical part of the experimental setup was the creation of

the light sheet. The ideal light source was one that would not induce any

motion in ,the liquid pool due to radiation from the visible or infrared

range of the spectrum. Thus, the major problem encountered was one of

finding a light source which will provide adequate illumination of the pool

while not disturbing the flow. The two light sources tested were an

incandescent 6 volt, 18 amp oscilliscope bulb, and a xenon arc strobotach.

Each test was performed in the following manner. The test cell was

filled to 50% of its height with a mixture of distilled water and liquid

crystal concentrate (water heavily seeded with liquid crystal particles).

The microencapsulated liquid crystal particles were mostly in the 10-15 /im

diameter range with a red color start of 30 °C and blue start at 42 "C.

Over a period of time the particles would begin to settle to the bottom of

the test cell, therefore, 30 minutes prior to each test the particles are

redistributed in the pool by drawing 30-40 cc of the water in the pool into

a syringe and injecting it back into the pool. This was more effective than

simple stirring. This was done 30 minutes prior to a test so that the

motion induced from the injection was damped out. To minimize any flow

induced by the light sheet, the light source remained off until the start of

the test. The heater is brought to a steady temperature before it was put

in the test cell. The resulting flow patterns and temperature gradients

were recorded on color slide and print film using various exposure times.

Throughout these tests a number of different types and speeds of film were

evaluated. Overall, the film that provided the results was Kodak Kodacolor

400. The high light sensitivity produced adequate pictures in low light

conditions while still having fine enough grain to preserve some of the

details of the flow patterns and temperature gradients. Higher speed films
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such as ASA 1000 and 3200 were also tested but were found to have much too

coarse of a grain for quality pictures under these lighting conditions.

Slide film was also used in some tests. The greatest advantage of

slide film are color preservation and for data analysis as the slides could

be projected onto a large screen or more easily image processed. The two

types of slide film used were Ekatachrome 400 and AFGA 1000. The Ektachrome

gave very poor results, i.e. no color preservation, while the 1000 speed

film did produce some mild improvement.

3.0 Results and Discussion

3.1 Single-Phase Tests

The first series of single phase tests were performed using a 1.25 cm

heater at temperatures between 353 K and 836 K. These temperatures signify

the centerline temperature near the heater surface. The flow patterns that

were observed at various temperatures were ultimately grouped into three

series of flow patterns that correspond to three ranges of heater

temperatures. Regardless of heater temperature, the initial flow behavior
- vv

observed was the formation of a single toroidal vortex in the upper region

of the test cell. Since only a vertical cross section of the test cell is

being viewed, , this toroidal vortex appears essentially as two vortical

"cells", one on either side on the test cell. In all cases this flow pattern

was observed to be very symmetric in nature. For heater temperatures

ranging from 767 K to 836 K, the initial flow pattern evolved into an

asymmetric flow pattern characterized by the formation of "figure-eight"

vortical arrangement in the right hand side of the test cell (w.r.t. its

axis of symmetry) and a single elongated vortex in the left half on the test

cell. The "figure-eight" arrangement is characterized by the formation of

an additional vortical cell in the lower portion of the test cell. This
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secondary vortex is both smaller and weaker than the upper cell. These flow

patterns evolved after approximately 7 minutes of run time.

In the 610 K to 705 K range, fluid behavior was characterized by the

development of the same initial flow pattern followed by, approximately 50%

of the time, the formation of symmetric lower cells having a slower

rotational speed than the upper cells. When observed, these lower cells

formed after approximately 1.5 minutes of run time and did not appear to

evolve from the growth of the upper cells. This flow pattern was attributed

to the radiative heat transfer between the heater and the bottom plate of

the test cell. However, as run time increased the lower cells seem to be

overcome by the upper cells which become increasingly elongated and extend

towards the base of the test cell.

For heater temperatures between 353 K and 550 K the initial flow

pattern remained symmetric and extended downward to a position approximately

one half of the test cell height and appeared to reach a steady state

configuration. This was the only flow pattern observed after 8 minutes of

run time.

The results of this first series of single phase tests led to a

modified experimental test matrix for the next series of tests. The

remaining single phase tests concentrate on defining the flow pattern

behavior at or near heater temperatures of 550 K, 670 K, and 820 K. In this

series of tests a new 1.25 cm heater and a 2.5 cm heater of the same

construction were also used.

This series of tests revealed the set of specific flow patterns,

observed after approximately 8 minutes of run time, for each temperature and

heater size, as shown in Figure 3. Regardless of heater temperature or

size, the progression of the flow pattern development began with the initial

roll up and growth of a symmetric toroidal vortex described above. This

vortex continues to grow and elongate before evolving into another flow

pattern.
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For the 1.25 cm heater at temperatures near 550 K the only flow pattern

observed is shown in Figure 3a. The vortex grew to a point where it

extended approximately three-quarters of the way down in the test cell and

remained at this level for the duration of the run. When the heater

temperature was increased to 670 K, the initial flow pattern reached the

bottom of the test cell. Within the vortex, a saddle point formed

approximately one-third of the way up from the bottom of test cell (see

Figure 3b). It appeared as though a second vortex was about to form in the

lower portion of the test cell, but at this heater temperature the lower

vortex never formed. At a heater temperature near 820 K the flow pattern

development initially progressed much the same as it did for the 670 K

heater temperature. As the run time increased, a lower vortex was generated

near the bottom of the test cell (Figure 3c). This secondary vortex was

considerably smaller and rotated at a much slower rate than the upper,

primary vortex.

Several differences in the steady state flow patterns were observed

when the 1.25 cm heater was replaced with the 2.5 cm heater. At 550 K, the

upper vortex developed in the same manner described above, but extended to

the bottom of the test cell (Figure 3d). For heater 'temperatures near 670K,

a weak, symmetric lower vortex formed as the run progressed (Figure 3e).

This flow pattern was never observed using the smaller heater at this

temperature. At 820 K, the fluid behavior was much the same as with the

small heater at the same temperature, but the lower vortex that developed

was slightly larger and appeared to be rotating at a faster rate (Figure

3f).

In addition to these results, some more general observations were also

made. The symmetry of the radial temperature profile of the heater had a

pronounced effect on the symmetry of the toroidal vortices. When a heater

with an asymmetric temperature profile was used, an asymmetry in the flow



pattern was observed. When this heater was rotated 180°, the flow pattern

asymmetry appeared on the opposite side of the test cell.

Over the course of several runs, the exposed surface of the heater was

gradually covered with the tar from the tobacco smoke. Throughout the

course of this series of tests, both clean and coated heaters were used with

no noticeable differences between the observed flow patterns at any

temperature. Tests with an infrared radiometer also suggested that the

emissivity of the heater surface was near unity even before any exposure to

the tobacco smoke.

3.2 Two-Phase Tests

The first series of tests were performed with the 10 cm x 5 cm cell and

the 1.25 cm heater at temperatures of 340, 550, 670, and 820 K. In these

initial tests it was desired to only observe the motion in the liquid phase,

therefore no gas phase tracer was used.

At a heater temperature of 340 K there was no noticeable change in the

motion of the liquid from the initial conditions. At 550 K, there was flow

at the gas-liquid interface from the center of the pool toward the wall of

the test cell, but the flow down the wall and back toward the center was not

easily observed. The fluid velocity below the liquid surface was too slow

to observe without time lapse photographs. However, as the run progressed,

dark streaks outlining the required toroidal vortex begin to appear. These

dark streaks were regions where the tracer particles were no longer present.

At heater temperatures of 670 and 820 K there was a noticeable increase

in the liquid velocity at the interface and in the velocity of the return

motion. While this increase in the vortex strength was clearly evident, the

magnitude of the velocity vector was still very small. Measuring the

displacement of individual tracer particles over a given period of time to

determine the fluid velocity proved impossible. There was no visually
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detectable difference in the fluid velocities at or below the interface

between the 670 and 820 K runs.

The first . series of tests were repeated with the 2.5 cm and 1.75 cm

heaters. For the 2.5 cm heater, the motion in the liquid phase was nearly

identical to that observed using the 1.25 cm heater with the exception that

there appeared to be a slight increase in fluid velocity at comparable

heater temperatures, based on visual observations.

The fluid velocities observed when using the 1.75 cm heater, while

still relatively slow, were greater those observed at comparable

temperatures using the 2.5 cm heater. This is most likely attributable to

the difference in radial temperature distributions caused by differences in

the physical construction of the heaters. The 1.75 cm heater was constructed

by spiralling the hichrome wire heating element whereas the 2.5 cm heater

had a snowflake shaped wire pattern. The spiral wire design had more heated

wire per unit surface area, most likely resulting in a higher average

surface temperature for the same centerline temperature. Unfortunately, the

radiometer was not available to determine the radial temperature of the 1.75

cm heater, thus the hypotheses could not be confirmed. It should also be

noted that the 1.75 cm heater reaches its steady state, centerline

temperature in approximately 2-3 minutes whereas the other heaters required

around 6 minutes.

Investigation of the gas phase of this system showed three distinct

flow patterns corresponding to the 550, 670, and 820 K heater temperatures.

For a given heater temperature, there was very little difference in the

observed gas phase flow pattern for each heater size. Both the gas and

liquid phase flow patterns are shown in Figure 4a,b,c.

The next series of tests were done with the 5 cm x 5 cm test cell and

the 1.75 cm heater at the same temperatures mentioned above. The other two

heaters were not used since there appeared to be very little dependence on

heater diameter over the tested temperature range. Several runs were done
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with the square test cell described above. This test cell provided

excellent visualization of the liquid phase but the gas phase was very

distorted due to the refractive index mismatch of the cell and the air. With

the round test cell the opposite occurs, therefore both test cell were used

to determine the behavior of the liquid and gas phase.

The flow patterns shown in Figure 4d,e,f are a culmination of test

results from both 5 cm x 5 cm test cells. Surprisingly, in all of the

tests, there were no significant differences in the gas-phase flow patterns

for each heater temperature. Liquid-phase flow patterns differed only

slightly between temperatures, with the visible vorticies extending closer

to the center of the pool with increasing heater temperature, just as they

did in the 10 cm x 5 cm cell tests.

Several tests were conducted using the 10 cm x 10 cm test cell. These

tests showed that at a fill level of 50%, the resulting flow patterns are

identical to those observed for the 5 cm x 5 cm test cell. This is the

expected result for test cells with identical H/D (height/diameter) ratios

and fill levels.

3.3 Liquid Crystal Evaluation Tests

The first set of tests were conducted using the experimental setup

shown in Figures 5a and 5b. In this, setup, the incandescent lamp operating

at 6 volts, 15 amps, and a video camera lens to focus the filament of the

-lamp vertically ~.of.-the-side.-of. the--test-cell -to_pr.ovide._a._light_ sheet It.

became immediately obvious by visual inspection that the radiation from the

lamp induced motion in the pool prior to introducing the heater. In an

attempt to reduce the effect of the lamp, several changes were made during

this first series of tests. Among them were the addition of an infrared

filter and a heat trap in the form of a plastic box filled with water

through which the light passed before reaching the test cell. In order to

12



reduce the thickness of the light sheet, the video lens was removed and a

cylindrical lens and a 3 mm slit were placed on the side of the test cell.

The observations made during these tests were encouraging. The liquid

crystal particles were large enough to make both the flow due to heater and

the light source clearly visible. The fluid temperature was represented by

a color band, blue to red, that started at the center of the pool, spread

out the walls of the test cell then propagated deeper into the pool as the

run progressed. The high degree of the color saturation on the photographs

of these initial runs was due to the high seeding density of the liquid

crystal particles. Unfortunately, none of the adjustments made to the

experimental setup eliminated the effects of the light source. A few more

tests were conducted using the initial configuration with the incandescent

lamp to evaluate the usefulness of intermittently blocking the light while .

exposing the film. It was found that this method did not help to reduce the

effects of the lamp on the flow.

Since the flow induced by the light source was very asymmetric, during

the next series of tests the lamp was placed approximately 6 inches directly

below the test cell, bringing the light sheet in from the bottom (see Figure

5c). By doing this the induced flow was much more symmetric with a single

vortical cell on both sides of,the test cell.

Variations of this setup included the heat trap and a fan to convect

some of the heat away from the lamp. Even with these changes, the light-

induced motion remained. However, immediate reduction in this motion was .

observed when the heater was inserted. While the light-induced motion was

not completely dissipated, the size of the vorticies shrank throughout the

run.

Having realized that the problems encountered with the incandescent

lamp could not be easily resolved, it was decided to try an alternate light

source. A xenon arc strobotach was chosen since the infrared emission was

lower and the variable flash rate could be used to illuminate the test cell
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at a selected frequency. It was hoped that this would reduce the lighting

effects while still providing adequate illumination for flow visualization.

The strobotach was positioned such that the light passed through an infrared

filter and a large slit before reaching the cylindrical lens and a 2mm slit

on the side of the test cell (see Figure 5d). The initial flash rate was

set at 110 flashes/min.

Several runs were conducted using this setup. While there was still

some motion induced by the light, visual inspection seemed to indicate that

it was not as severe as with the incandescent lamp. The flow patterns

observed were similar to those seen in previous runs.

The particle seeding density was then lowered (Ice concentrate mixture)

to where individual particles could be tracked stroboscopically, i.e. the

color play of an individual particle could be observed over time. The major

disadvantage of using a low seeding density is that there was much less

light reflected from the particles, making it more difficult to photograph

them.

A special flat-topped xenon arc bulb was located for the strobotach

that provided for improved illumination by focusing the filament on only the

lower half of the test cell (see Figure 5e). In addition to the new bulb, a

mirror was placed on the opposite side of the test cell to increase the

illumination. Some runs using this configuration were conducted using a

higher seeding^ density, in these runs a 4 cc concentrate mixture was used.

With the exception of some of the very high seeding density tests, the

combination of the 4_ cc mixture and the lighting configuration described

above seemed to produce the best results.

The strobotach was next placed beneath the test cell to determine if

its effectiveness could be improved in this configuration (see Figure 5f).

These tests gave results comparable to the previous strobotach setup. No

improvement was noted when the particle seeding density was increased to a

10 cc concentrate mixture.
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The final experiment configuration involved lighting from beneath the

test cell with the incandescent lamp, but now the lamp was. jiot positioned

directly beneath the test cell rather it was offset .to one side (see figure

5g). The light was reflected up to the test cell with a surface coated

mirror. The purpose of arranging the illumination components in this manner

was to eliminate the effects due to heat convecting up from the lamp.

However, this configuration did not offer any improvements over previous

tests.

One important point to note concerning these tests is that even though

the infrared filter was placed in front of the light source in many tests,

it did not seem to have any effect on reducing the flow induced by the light

source. This supports the theory that the motion is actually caused by the

liquid crystal particles absorbing visible radiation, heating up, and

causing buoyant flow. The most promising idea yet to be evaluated is the

concept of introducing the light sheet downward from above the test cell.

This should help eliminate the effects of the light source since the hottest

particles would be resident on the top and the pool would be stratified.

4.0 Summary

i

The fluid behavior of a single phase gas system and a two-phase

gas/liquid system enclosed in an circular cylinder nonuniformly heated from

above, under normal gravity conditions has been investigated. These studies

were carried out for test cells of various sizes and H/D (height/diameter)

ratios using three different diameter heaters. A direct injection/laser

light sheet flow visualization technique was used to obtain qualitative data

on both systems. The results of the single phase and two-phase tests under

normal gravity conditions can be used to more fully understand the behavior

of such systems in a reduced gravity environment. Single phase system tests

performed with a 10 cm x 10 cm test cell showed that the observed flow
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patterns were a function of both heater size and temperature. Distinct

steps in the progression of the flow patterns from a single toroidal vortex

to a two-cell configuration are observed at heater temperatures near 550 K,

670 K, and 820 K. The transition to the two-cell configuration was observed

to occur at a lower temperature as the diameter of the heater was increased.

The two-phase system was examined for test cells having H/D — 1 and

H/D - 2 which correspond to test cell dimensions of 5 cm x 5 cm and 10 cm x

5 cm respectively. A liquid fill level of 50% of the test cell height was

used for all tests. The observed gas phase and liquid phase flow patterns

appeared to only be a function of heater temperature for each test cell.

An attempt was made to use thermochromatic liquid crystal particles as

flow tracers in the liquid phase of the system. This would have facilitated

the simultaneous gathering of both flow pattern and temperature gradient

data. Several different experimental configurations were used to determine

feasibility of this concept and the most appropriate method of creating a

light sheet which would not disturb the system. From these tests is was

determined that introducing the light sheet from above the test cell would

most likely provide the best results. This approach has yet to be explored

in detail.
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for future use in reduced gravity tests.
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gas —liquid interface
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Figure 4: Two —phase f low patterns as a function of

heater temperature.
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(a)
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Cylindrical lens
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I I

NOTE: Dashed lines indicate that the given apparatus was not
used in all tests performed with that set-up.

Figure 5: Experimental setup for liquid crystal evaluation tests.
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Appendix A.I: Data Summary: Single-Phase Tests

Run Tape Start Heater Heater Order of flow Stop Foot- Comments
# # time Size,cm Temp F pattern devel. time notes

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134

* 6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
6
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
7
8
8
8
8

00:00
06:00
13:15
20:22
27:39
34:18
40:07
46:16
51:59
57:48

1:04:12
1:10:53
1:14:34
1:19:18
1:24:57
1:29:23
1:35:48
1:40:58
1:46:35
1:53:00
00:00
05:52
11:12
16:56

23:06
28:47
34:29
40:01
45:08
48:08
51:52
56:31

1:03:01
1:09:05
1:16:51
1:21:26
1:28:31
1:32:59
1:39:28
1:43:53
1:50:34
1:57:08
00:00
07:08
13:02

1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
-

1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25

379
342
275
326
310
430
512
536
726
725
728
-
-

970
-

978
980
974
968
971
982
979
967
-
-

950
949
950
1019

-
-
-

963
985
1002
1033
1024
1027
731
-

785
767
731
720
312
322
-

B,E
C,E

C

C
C
C
B,H
C,H
C,H
C,H
C,H
C.H.J
c,
C.H.J
C,H,J
C,H,J
C.H.J
C,H,J(?)
C,H,J
C.H.J
C,H,

C,H,J
C,H,J
C,H,J
C,H,J

C,I
c,
c,i
C.H.J
C.H.J
C,H,J
C,H

C,H
C,H
C,H
C,H
c,
C

06:00
13:14
20:21
27:38
34:17
40:06
46:15
51:58
57:47

1:04:11
1:10:52
1:14:33
1:19:17
1:24:56
1:29:22
1:35:47
1:40:57
1:46:34
1:52:59
1:55:52
05:51
11:11
16:55
22:38

28:46
34:28
40:00
45:07
48:07
51:51
56:30

1:03:00
1:09:04
1:16:50
1:21:25
1:28:30
1:32:58
1:39:27
1:43:52
1:50:33
1:57:07
2:00:00
07:07
13:01
19:20

1,3
3,4
2,4
4
2,4
3,4
5
5,6
2,4
5
5,6
3,4
3,4,1
3
1,3
3
5,6
1,5
3
3,4
2,5
3,4
2,5,6
2

5,6
5,6
5
1,4

1,3,4
2,3,4

5,6
5
5
5
1,3
4
4
4

1,3
4

I
I
II
I
I
III
III
II
III
IV
II
IV
II
V
IV
II, V
V
III
IX
I, IV
IV
IV
IV
III
III
III
II, IV
V
11,1V
III, IV
IV
III, IV

VI

V

IX

* Note: Runs 1 through 87 are summarized in "An Investigation into the Flow
Behavior of a Single-Phase Gas System in a Heated Enclosure Under
Normal Gravity Conditions", Summer Faculty Fellow Report by
Dr. Peter J. Disimile, September 1988.
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Run
#

135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180-
181
182
183
184
185
186
187
188
189
190

Tape
#

8
8
8
8
8
8
8
8
8
8
8
8
8
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
9
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
-11-
11
11
11
11
11
11
11
11
11
11

Start
time

25:17
33:35
40:01
48:35
55:39

1:02:36
1:11:05
1:16:42
1:24:32
1:31:24
1:39:51
1:44:55
1:53:12
00:00
06:59
11:06
18:40
31:47
39:46
47:39
57:53

1:07:04
1:09:44
1:13:32
1:21:02
1:31:14
1:38:08
1:44:14
1:50:32
00:00
08:34
15:41
23:44
31:53
38:43
45:18
52:07
58:33

1:06:45
1:13:49
U22:ll
1:29:33
1:35:57
1:43:07
1:49:51
- -00:00

07:32
17:58
25:19
34:22
44:27
50:36

58:40
1:05:01
1:11:30

Heater
Size, cm

1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25

' 1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

Heater
Temp F

985
986
998
1020
1033
992
985
1013
1007
1027
955
1030
1027
1005
1019
1024

1018
987
1010
1006
966
958
1028
984
755
756
1045
1033
1010
915
959
933
1028
1013
998
952
941
-

989
981
740
728
745
944

-- 963
1048
642
701
715
799
768
-

837
695
813

Order of flow
pattern devel

C.K.J
C,J
C,K,J
C.K.J
C,K,
C.K.J
c,
c,
C,K,
c,
C,K,
C,K,
C.K.J
C,K,J

C,K,

C,K,
C.H.J
C.H.J
C.H.J

C.K.H
C.K.J
C,K
C,K
C,K,
C.K.J
C.H.J
C,H
C.H.J
C.H.J
C,K
C,K
C,K
C,H
C,H
C,H
C,H,J
C.H.J
C,H
C,H
C,H
C.H.J

- C-HT
C.H.J
K,
K.H.J
K,

K,

K.H.J
K
C.H.J

Stop
time

33:34
40 : 00
48:34
55:38

1:02:35
1:11:04
1:16:41
1:24:31
1:31:23
1:39:50
1 : 44 : 54
1:53:11
2:00:00
06:58
11:05
18:39
31:46
39:45
47:38
57:52

1:07:03
1:09:43
1:13:31
1:21:01
1:31:13
1:38:07
1:44:13
1:50:31
2:00:00
08:33
15:40
23:43
31:52
38:42
45:17
52:06
58:22

1:06:44
1:13:48
1:22:10
1:29:32
1:35:56
1:43:06
1:49:50
2:00:00
--07:31--

17:57
25:18
34:21
44:26
50:35
58:32

1:05:00
1:11:29
1:21:48

Foot-
notes

5
1,3,4
5
5
4
4
3,4
3,4
5

4
4
1,5
5
3

2
5
5

1,3

5,6
5,6
4,5,6
5,6
4,5
5,6
5,6
2,5,6
4
4
4
4,6
2,4
1,5,6
5,6
4

2
5
4
3,4 ~
2,3,4
4
4
3
1,3,4
4

1,4
4,5
5,6

Comments

IV, VII
- vi, vii

:. IV, VI I
IV, VII
V.VII
IV.V.VII
V.VII
V.VII
VII
VII, VIII
V, VII, VIII
VII, VIII
IV, VII
IV, VII
V, VI, VII
V.VII
III
V.VII
VI, VII
IV, VII

• IV, VII
"'VI, VII
VII
VII

^•IV.VII
1 ^VII
'VII
1,1V

• i, iv
I, IV

- IV, V
IV

'V
V

• II

III
IV
IV
II

-•. _VI
IV, V
V.VII
IV, VII
II, VII
II, VII
II.VII
IX
IV
V
I, IV
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Run
#

191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247

Tape
#

11
11
11
11
12
12
12
12
12
12
12
12
12
12
12
12
12
12
12
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
13
14
14
14
14
14
14
14
14
14
14
.14
14
14
14
14
14
14
14
14
15
15
15

Start
time

1:21:49
1:29:24
1:38:51
1:49:21
00 : 00
10:11
17:24
26:10
28:29
37:18
45:25
53:48

1:00:49
1:10:12
1:18:57
1:26:49
1:35:31
1:42:21
1:59:19
00:00
09:13
12:22
20:27
27:42
35:34
43:01
53:43

1:02:07
1:06:46
1:14:30
1:22:14
1:29:35
1:37:50
1:45:24
1:53:59
00:00
04:52
11:21
19:33
27:11
.31:42
39:22
46; 29
53:51
58:47

1:01:15
1:06:38
1:12:03
1:19:23
1:25:13
1:29:55
1:36:09
1:47:40
1:53:43
00:00
06:01
14:14

Heater
Size, cm

2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5
2.5

Heater
Temp F

863
914
811
827
916
910
906
-
904
911
906
880
903
892
913
334
331
290
330
340
-
340
331
345
344
607
531
-

511
500
661
725
731
737
743
-

848
842
931
850
957
948
946
996
999

• 994
985
975
970
972
973
977 •
953
722
734
1030
1028

Order of flow
pattern devel

C,K,
C.K.H.J
C.H.J
C.K.J
C.K.J
C.K.J
c,

C,J
C.K.J
C.H.J
C.H.J
C.H.J

C
C
C

C
C
C,H,J
C,H

C,H
C,H
C,H,
C.H.J
C.H.J
C,H,
C.H.J

C.H.J
C.H.J
C.H.J
C,H,
C.H.J
C.H.J
C.H.J
C.K.J
C,H,
C.K.J
C.K.J
C.K.J
C.K.J
C,K,
C.H.J
C.K.J
C.K.J
C,H
C,K
C.H.J
C.H.J

Stop
time

1:29:23
1:38:50
1:49:20
2:00:00
10:10
17:23
26:09
28:28
37:17
45:24
53:47

1:00:48
1:10:11
1:18:56
1:26:48
1:35:30
1:42:20
1:59:18
2:00:00
09:12
12:21
20:26
27:41
35:33
43:00
53:42

1:02:06
1:06:45 .
1:14:29
1:22:13
1:29:34
1:37:49
1:45:23
1:53:58
2:00:00
04:51
11:20
19:32
27:10
31:41
39:21
46:28
53:50
58:46

1:01:14
1:06:37
1:12:02
1:19:22
1:25:12
1:29:54
1:36:08
1:47:39
1:53:42
2:00:00
06:00
14:13
22:02

Foot-
notes

4
4

. 4
4
4
4
3,4
6
4
3
3,5
3,4,5
2,5
3
4
4
3,4,6
5,6

3,4

3,5
5
5
1,3,4
3,4
3,5,6
3,5,6
4
4,5
3,5
3,4
5,6
3,4
3,4
3,5
2,3,5
3,4
4
2,4
2,5,6
3,4
3,4
3,5
2,3,5
3,5
3,5
3,4
2,3
3,4
3,4
3,4
3,4,5,
2,6
3,5

Comments

V

i.iv

V
VI
IX
V,VI
II
V
IV
IV
IX
IX
V

VI
VI
VI
VI
VI

IV, VI

II
IV
i.iv

I, IV

II, IV
I, IV
IV
II
IV, V
IV
V
IV, VII
V.VII
IV, VII
IV.VII
IV, VII
IV, VII
V,VII
IV
VII
VII
VII

6 VII
I, IV
I, IV
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Footnotes:

1. Smoke too faint for adequate visualization.
2. Smoke too dense, lost contrast.
3. Some circulation in test cell prior to energizing heater.
4. Flow out of plane of visualization.
5. Good symmetry
6. Good roll-up

Comments:

I. Good clarity.
II. Asymmetric flow patterns.
III. Run stopped early due to too high a heater temperature

or equipment failure.
IV. Lower vortical cell clearly forms.
V. Poor clarity.
VI. Large circulation present at start of run.
VII. Heater near steady state temperature before being placed on

the test cell.
VIII. Experienced problems with heater, power reduced soon after

beginning of run.
IX. Run not recorded or recorded over.
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Appendix A.2: Data Summary: Two-Phase Tests

Run
#

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

Tape
#

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1 ,
1
2
2
2
2
2

* 2
2
2
2
2
2
2
2
2
2
2
2
2
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3
3

Start
count

0
480
1079
1530
1911
2326
2747
3011
3331
3636
3905
4197
4441
4664
4861
5036
5327
5617

0
423
853
1313
1733
3113
3411
3736
4136
4483
3732
4058
4406
4591
4878
5130
5379
5640

0
449
812
1214
1550
1550
1935
1946
2383
2772
2392
2776
3122
3415
3232
3549
3850

Stop
count

479
1078
1529
1910
2325
2746
3010
3330
3635
3904
4196
4440
4663
4860
5035
5326
5616
end
422
852
1312
1732
2220
3410
3735
4135
4482
4751
4057
4405
4590
4877
5129
5378
5639
end
448
811
1213
1549
1945
1934
2379.
2392
2771
3231
2775
3121
3414
3681
3548
3789
4155

Test
size ,

10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
10
5

cell
HxD (cm)

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X
X

X

X

X
X

X

X

X

X

X

X

X

X

X

X

X

5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5
5

Heater
Size ,cm

1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
2
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.25

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5

.5 '

.5

.5

.5

.5

.75

.75 '

.75

.75

.75

.75

.75

.75

.75

.75

.75

.75

.75

.75

.75

.75

.75

.75

.25

.25

.75

Heater
Temp , F

974
994
1000
980
980
980
538
680
785
720
724
578
577
222
202
480
667
1000
820
1015
993
755
760
757
738
745
746
758
756
699
984
770
698
753
757
982
985
988
580
582.
988
580
578
751
739
748
743
748
976
976
991
994
970

Comments

1

2

3
4

5

3

2

6,
6
6,
6,
6,
6,
7,
7,
7,
7,
12

6,
7,
7,
6,
7,
7,
6,
6,
6,
6,
7
7
7,

8

8,9
8,9
9
8 , 9 , 10
9,11
9
9,11
9

8
9
9
9
9
8,9
8
8
8,9
8

13

* Run 24 does not exist.
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Run Tape
#

55
56
56b
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

*

3
3
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
4
5
5
5
5
5
5
5
5
5
5
5
5

Start
count

4156
4401

0
321
641
1483
1901
2267
2565
2875
3201
3499
3775
4059
4302
4530
5141
5782

0
560
907
1318
1673
2033
2386
2816
3333
3875
4400
4790

Stop
count

4400
end
320
640
1482
1900
2266
2564
2874
3200
3498
3774
4058
4301
4529
5140
5781
end
559
906
1317
1672
2032
2385
2815
3332
3874
4399
4789
5229

Test cell Heater
size.HxD (cm) Size, cm

5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
5 x 5
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10
10 x 10

1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.25
1.25
1.25
1.25
1.25
1.75
1.75
1.75
1.75
1.25
1.25
1.25
1.25
1.75
1.75
1.75
1.25
1.25
1.25

Heater Comme
Temp , F

978
750
750
980
750
587
578
970
970
750
580
560
730
979
975
978
972
972
752
581
680
975
770
568
980
760
570.
970
970
730

7,13
7,13
13,14
13,14
13
13
13
13
15
15
15
15
15
15
15
15
8
8
8
8
8
8
8
8
8
8
8

8
8

Comments :

1. Dark streaks in liquid outlining vorticies
2. Vorticies in liquid very clearly defined
3. Little or no noticeable liquid motion at the interface
4. Motion at interface and return motion clearly visible
5. Very slow liquid motion at interface
6. Rig camera only
7. Interface camera only
8. 35 mm camera used for long exposure pictures at interface. See

lab book for details.
9. Gas phase tracer (tobacco smoke) used, smoke particles entrained

in liquid clearly outline vorticies.
10. Silicone oil becoming cloudy from smoke contamination, difficult

to detect liquid m o t i o n . ~
11. Heater inserted after reaching steady state temperature
12. New silicone oil
13. 5 x 5 cm square test cell, inner diameter actually 4.2 cm
14. Single phase test (gas only)
15. 5 x 5 cm round test cell
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Appendix A.3: Data summary: Liquid crystal evaluation tests

Run
#

1
2
3
4
5
6
7
8
9
10
11
12
13
15 **
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48

Roll
#

1
2
3
3
4
5
5
5
5
6
6
7
7
8
8
8
9
9
9
10
10
11
11
12
12
12
13
13
13
14
14
14
15
15
16
16
17.
17
18
18
19
19
20
20
20
21
22

Film
speed

ASA 100
ASA 100
ASA 100
ASA 100
ASA 100
ASA 100
ASA 100
ASA 100
ASA 100
ASA 400
ASA 400
ASA 1000
ASA 1000
ASA 400
ASA 400
ASA 400
ASA 1000
ASA 1000
ASA 1000
ASA 400
ASA 400
ASA 1000
ASA 1000
ASA 400
ASA 400
ASA 400
ASA 400 v.
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 1000
ASA 1000
ASA 1000
ASA 3200
ASA 1000

Heater
size, cm

1.25
1.25
1.25
1.25
1.25
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75
1.75 •
1.75
1.25
1.25
1.75
1:75
1.75
1.75
1.75
1.75
1.75
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25
1.25

Heater
temp. , F

.
910
780
600
580
560
940
570
730
965
965
730
980
940
850
980
-
-
-
920
980
980
980
950
740
980
-
-
-
760
940
940
970
970
750
750
750
945
750
750
970
970
840
915
950
940
980

Lighting
method *

A
B
B
B
B
C
C
C
C
C
C
C
B
B
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
D
B
B
B
E
E
E
E
E
E
E
E
E
E
E
E
E

Comme

2
2,3
2,3
2,3 ,
2,3,4
1,2,4
2

5
5
1,5
6
1,6
4
4
6
6
6,7
4,6,8
4,6,8
4,6,8
6,7,8

' 6,7,8
1,6,8,9
1,6,9
1,6,9
6
6
6
6
6,10
6,10
10,11
11
11,13
11,13
7,11,13
11,13
6,13

* The various lighting methods are shown in Figure 4.

** Run 14 does not exist.
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Run
#

49
49b
50
51
52
53
54
55
56
57
58

Roll
#

22
23
23
24
24
25
26
27
28
29
30

Film
speed

ASA 1000
ASA 1000
ASA 1000
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400
ASA 400

Heater Heater Lighting
size, cm temp., F method

Comments

1.
1.
1.
1.
1.
1.
1.
1.
1.
2.

25
25
25
25
25
25
25
25
25
5

2.5

980
940
940
965
965
975
975
980
980
970
980

E
E
E
F
F
F
F
G
G
G
G

6,7,13
6,13
6,7,13
12
1,12
1,14
1,14
14
14
14
15

Comments :

1. IR filter included
2. Heat trap included
3. Fan included
4. Very poor picture quality
5. Camera malfunction, film not exposed
6. 1 cc TLC concentrate mixture
7. Strobotach flash rate increased to 300-325 rpm range
8. Ektachrome slide film used
9. Series of slits (2 cm, 5mm) placed in front of test cell and cyl.

lens. Attempted to intermittently block lamp to reduce light•
induced motion.

10. Mirror in place
11. 4 cc TLC concentrate mixture
12. 10 cc TLC concentrate mixture
13. AFGA slide film used
14. 10 x 10 test cell with 45 cc concentrate mixture
15. 10 x 10 test cell with 500 m TLC particles
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