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Analyses of retTector antenna surfaces use a computer program based on a discrete

approximation of the radiation integral. The calculation replaces the actual surface

with a triangular facet representation; the physical optics current is assumed to

be constant over each facet. This article describes a method of calculation using

linear-phase approximation of the surface currents of parabolas, ellipses, and shaped

subreltectors and compares results with a previous program that used a constant-

phase approximation of the triangular facets. The results show that the linear-phase

approximation is a signil_cant improvement over the constant-phase approximation,

and enables computation of 100-I,000A reflectors within a reasonable time on a

Cray computer.

I. Introduction

One of the simplest reflector antenna computer pro-

grams is based on a discrete approximation of the radia-

tion integral. This calculation replaces the actual reflec-

tor surface with a triangular facet representation so that

the reflector resembles a geodesic dome. The physical op-

tics (PO) current is assumed to be constant in magnitude

and phase over each facet, so the radiation integral is re-

duced to a simple summation. This program has proven to

be surprisingly robust and useful for the analysis of small

reflectors, particularly when the near-field is desired and

surface derivatives are not known.

It is natural to inquire whether a more sophisticated

approximation of the PO surface current will yield more

accurate results or permit the use of larger facets. In this

article, a linear-phase approximation of the surface cur-

rent is made. Within each triangular region, the resulting

integral is the two-dimensional Fourier transform of the

projected triangle. This triangular-shape function inte-

gral can be computed in closed form [1]. The complete

PO integral is then a summation of these transforms.

Once the current on the triangle is determined, the

linear-phase approximation takes about three times longe["

to compute a field point than does the constant-phase ap-

proximation. Thus the time savings depend on reducing

the number of triangles required to achieve convergence.

Examples are given for scattering from parabolas, el-

lipses, and shaped surfaces. The general trend is similar

for all cases in that, depending upon the size of the tri-

angles, there is an angular limit over which the solution

is valid. This angular limit is significantly larger with the

linear-phase approximation than with the constant-phase

approximation. Thus the linear-phase approximation can

be used to solve larger problems if core limitations are a
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problem, or alternatively, a smaller number of triangles
can be used to solve the same size problem.

II. Analytical Details

The PO radiation integral over the reflector surface E

can be expressed [2]

1 e -jkR

H(r) = -_-_ /_ (Jk + R) " X Js(r')_ds' (i)

in which r designates the field point, r' the source point,
R = Ir- ffl is the distance between them, and R =

(r - r')/R is a unit vector. The PO surface current on
the subreflector surface ,Is is expressed

Js(r') = 2fi x tt,(r') (2)

For the purpose of analysis, the true surface ]G is re-
placed by a contiguous set of N-plane triangular facets.

These facets, denoted Ai, are chosen to be roughly equal
in size with their vertices on the surface E. Figure 1 shows

a typical facet and its projection onto the x-y plane. Let

(xi, yi, zi) represent the cent roid of each triangle where the
subscript i = 1,.--, N is associated with a triangle. Then,

the field obtained by replacing the true surface E by the

triangular facet approximation is

1 jk + 1_ x J(r')----_ds' (3)
H(r) = - 4"_ i=i '

In Eq. (3), J is now the equivalent surface current evalu-

ated on the triangular facets. Since the triangles are small,

it is expected that R and R do not vary appreciably over

tim area of a given facet. Thus, let l'b and Ri be the
value obtained at the centroid (xi, Yi, zi) of each facet and

approximate Eq. (3) by

1 _-_(jk+.__ il) 1_i x Ti(r) (4)
H(r) = --_-_ i=l

e-jkR

Ti(r) = fa, Ji(r')---_i ds'
(5)

Assume that tile necessary transformations have been

performed so that the incident field H, is given in terms
of the reflector coordinate system. Then

Ji(r') = 2fii x Hs(r') (6)

Next, assume that the incident field can be represented by
a function of the form

e-jkr,

Hs = h,(ri) 4rrr,i (7)

where rs is the distance to the source point. Then, Eq. (5)
can be written

Ti(r) - fii x hs(ri)/_ e_.iKR+r.)ds , (8)27r/_rsi

To simplify the form of the integration, the surface Jaco-

bian is introduced within each triangular facet Ai. For a

planar surface zi = fi(z, y), a normal is given by

Ni = -_f_:i - $'fvi + _ (9)

where

Ofi I_ - Oh
f_i - Ox Oy

and a unit normal is given by

N, (10)
fii -- [Ni I

This permits the explicit evaluation of the Jacobian as

] 1/2JA, =l Ni I= f_i + f2i + 1 (11)

Making use of the Jacobian then allows Eq. (8) to be
rewritten as

fii x lb(ri) [
2rrRir, i Ja, JA e-Jk(n+")dx'dy' (12)T_(r)

in which A_ represents the area of the ith triangular facet
projected onto the z = 0 plane. Now, make a Taylor-series

expansion of the exponent in Eq. (12). Retaining only the
first-order terms, one can formally write

1
(13)

in which ai, ui, and vi are constants. This approxima-

tion corresponds to a far-field approximation on the ith

triangle. With this approximation, Eq. (12) reduces to
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_ fii x h,(ri) . [ .
2_rRir, i JA'e-Ja' JA e_(u'_'+v'Y')dz'dy' (14)Ti(r)

It may now be observed that this integral is the two-

dimensional Fourier transform of the ith projected triangle

A_, expressed as

v) -= f eJ(_+OY)dxdy (15)S(u,
JA '

In order to explicitly evaluate the constants in Eq. (13),

note that the equation of a plane can be expressed as

z = (x - x_)f_ + (y - y,)f,_ + z_

This can be used to obtain

ai = kR(xi, yi) + kr, (xi, Yi) + uixi + viyi (16)

T = n(_,u_) + _,(_,u_)

(17)

(18)

Placing the result of Eq. (16) into Eq. (14), and recall-

ing Eqs. (6) and (7), yields

-jkR,

Wi(r) = Ji(ri)ga,e-J(_"'+_'_')S(ui, vl) _ -_-
1Q

(19)

This is the final form of the linear-phase approximation

over each triangular facet. This expression can be used in

Eq. (4) to compute the radiation integral once the Fourier

transform of a triangular shape function S(u, v) is known.
Fortunately, this transform can be computed in closed

form [1] from the expression

3

Pn--1 -- Pn (20)
S(U, "O) = _ e j(ux"+vy') (U Jr- Pn--lY)(U -_- p,a b)

n=l

in which (x,_, y,,) are the coordinates of the triangle ver-
tices numbered in a clockwise direction. The slope of the

nth side (between corners n and n + 1) is given by

pn - y_+l - y. (21)
Xn+ 1 -- X n

Some attention must be given to the following special

cases. First, if u = v = 0, the transform reduces to the

formula for the area of a triangle

s(0, 0) = -_

Next, if u/v ---* -p,, then

Pn+l -- Pn-1

S(u, v) = v2(p,_+l _ P,_)(Pn-1 -- Pn)

x [d(" .... +v'"-') - d('="+'_")]

+ (Xn+l -- Xn,eJ(ux.+vy_)_ (23)
jv

II!. Numerical Results

A FORTRAN subroutine was written to perform the

linear-phase calculations indicated above. Test cases were
run for parabolas, ellipses, and shaped subreflectors, and

the results were compared with the previous program,

which used a constant magnitude and phase approxima-

tion on the triangular facets. A focused parabola is nei-

ther an interesting nor a challenging case for the algo-
rithm, since the phase variation over the facet is small.

As a simple test case, the far-field pattern and gain of a

1,000A-diameter parabolic reflector with a focal length of
F = 400A was calculated. The reflector is illuminated by a

linearly polarized horn with a cos 0 pattern function. Fig-

ure 2 compares the linear- and constant-phase approxima-

tion for a roughly equally spaced 80-by-80 rectangular grid

of points divided into triangles over the reflector surface

(approximately 10,000 triangles). The running time on a
Cray X-MP was less than one minute. It has been previ-

ously demonstrated [3,4,5] that, once sufficient triangles to

converge the solution have been utilized, the results of the

constant-phase algorithm are valid, so only comparisons of
the two techniques are presented.

A more interesting example is the ellipse shown in

Fig. 3. The projected aperture of the ellipse is about 3 m,
illumination function is a cos 42 0 pattern function (22.3-

dB gain), and the frequency is 31.4 Gtlz. The ellipse is

about 350X along the major axis. Figure 4 compares the

constant-phase approximation for different grid densities

of approximately 4,000, 10,000, and 23,000 triangles and
illustrates a general trend of the method, i.e., depending

on the size of the triangles, there is an angular limit over
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which the solution is valid. Figure 5 compares the linear-

phase approximation with the constant-phase approxima-

tion for the 4,000-triangle case and demonstrates that the

angular range is larger with the linear-phase approxima-
tion.

A third example is the shaped subreflector shown in

Fig. 6. The diameter is 3.42 m (135 in.), and it is fed

with a cos2330 pattern function (29.7-dB gain). Fig-

ure 7 compares the results of a 4,000- and 10,000-triangle

grid constant-phase approximation with a 4,000-triangle

linear-phase approximation. The frequency of operation is
2.3 GHz, hence, the subreflector is about 26A in diameter.

The 10,000-triangle constant phase is the converged result,

and the 4,000-triangle linear case gives the same result.

A very good approximation is also obtained with a 1,400-

triangle grid for the linear case, but no meaningful results

are obtained with the constant-phase case. Figure 8 gives

the linear-phase result for 31.4 GItz (360_ subreflector_

using 23,000 triangles. No meaningful result is obtained

for the equivalent constant-phase case.

Most of the examples given are for large reflectors to il-
lustrate the robust character of the technique. For smaller

reflectors (< 100A), meaningful results can be obtained on
a PC in a reasonable time.

IV. Conclusions

The linear-phase approximation is a significant im-

provement over the constant-phase approximation and en-

ables the computation of fairly large (100 to 1,000,_) re-

flectors in a reasonable time (on the order of minutes) on

a Cray computer.
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Fig. 7. Shaped subreflector example for H-plane at 2.3 GHz.

55



ca
"o
z
<
(3

2O

1(]--

0--

-10 --

-20--

-30
-120

I 1 t I I t I I I I I

LINEAR-PHASE APPROXIMATION
23,000 TRIANGLES

I I I _ I I
-40 0 40

ANGLE, deg

Fig. 8. Shaped subreflector, 31.4 GHz.

120

56


