NASA Contractor Report 185303

Materials With Periodic Internal
Structure: Computation Based on
Homogenization and Comparison
With Experiment

S. Jansson, F.A. Leckie, E.T. Onat, and M.P. Ranaweera

University of California
Santa Barbara, California

October 1990

Prepared for
Lewis Research Center
Under Grant NAG3-894

NASA

National Aeronautics and
Space Administration

(NASA-CR-185303) MATERTALS WITH PERIODIC

INTERNAL STRUCTURE: COMPUTATION BASED ON
HOMOGENTZATION AND COMPARISON WITH

EXPERIMENT Final Report ({Catifornia uUniv.)

73 p CSCL 20K G3/39

N91-12117

Unclas
0312067



0 G T A1 01

LRSI




Materials with Periodic Internal Structure:’L
Computation Based on Homogenization and
Comparison with Experiment

S. Jansson, F.A. Leckie, E.T. Onat, and M.P. Ranaweera

Abstract

The combination of thermal and mechanical loading expected in practice means that
constitutive equations of metal matrix composites must be developed which deal with time-
independent and time-dependent irreversible deformation. Also, the internal state of
composites is extremely complicated which underlines the need to formulate macroscopic
constitutive equations with a limited number of state variables which represent the internal
state at the micro level. One available method for calculating the macro properties of
composites in terms of the distribution and properties of the constituent materials is the
method of homogenization whose formulation is based on the periodicity of the
substructure of the composite.

In this study a homogenization procedure has been developed which lends itself to
the use of the finite element procedure. The efficiency of these procedures, to determine
the macroscopic properties of a composite system from its constituent properties, has been
demonstrated utilizing an aluminum plate perforated by directionally oriented slits. The
selection of this problem is based on the fact that, i) extensive experimental results
exist, ii) the macroscopic response is highly anisotropic and iii) that the slits provide very
high stress gradients (more severe than would normally be found in practice) which severly
test the effectiveness of the computational procedures. Furthermore, both elastic and
plastic properties have be investigated so that the application to practical systems with
inelastic deformation should be able to proceed without difficulty. The effectiveness of the
procedures have been rigorously checked against experimental results and with the
predictions of approximate calculations. Using the computational results it is illustrated
how macroscopic constitutive equations can be expressed in forms of the elastic and limit
load behavior.

T Work funded under NASA Grant NAG3-894.
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INTRODUCTION

The combination of thermal and mechanical loading expected in practice means that
constitutive equations of metal matrix composites must be developed which deal with time-
independent and time-dependent irreversible deformations. The so-called unified
constitutive equations are likely to provide a good basis for the description of the matrix
material but the combined effect of the matrix and reinforcing material remains to be
determined. One available method for calculating the macro properties of composites in
terms of the properties and distribution of the constituent materials is the method of
homogenization whose formulation is based on periodicity of the substructure of the
composite. The method can coincide with the classical method of representing the
substructure by a unit cell representation when conditions of syfnmetry are valid. However
the advantages of the method of homogenization are that its formulation allows it to be used
when symmetry no longer applies, offers the possibility of deterinining the stress énd strain
fields at the microscopic level and provides a formal derivation of unit cell representation.
By following this procedure failure criteria can be introduced into the calculations for the
constituents and interfaces which are based on micro-mechanical models. Studies which
establish the macro-mechanical properties of the composite from the properties of the
constituents afford the opportunity of directly designing composite material properties.
When studying component behavior however it is more convenient to use constitutive
equations which describe the macroscopic properties of the material. Such constitutive
éqdétions can be devélopéd from the results of mechanical tests. However it is also
possible to use homogenization procedures to simulate the experimental program and
provide the results from which constitutive equations can be formulated.

In this study a convenient form of this homogenization procedure has been developed
which lends itself to the use of the finite element procedure. The procedure is based on the
assumption that stress fields vary slowly from one homologous point to another. In the
absence of point loads and away from boundaries we expect this assumption to be valid.
However, this expectation is not fulfilled in the vicinity of stress-free boundaries or in the

vicinity of cracks where stress gradients are large. For nonlinear and inelastic problems



localization of deformation is a possibility. If localization takes place in a region of a few
cells then homogenization may not be applicable because macro-strain gradients are large.
However, the procedure may still be valid provided localization occurs over many cells
(twenty say).

To illustrate the application of the procedure a plate system has been selected for
which extensive experimental results exist. The system consists of an aluminum plate
perforated by directionally oriented slits. In addition to providing a basis of comparison for
the predictions of the calculations, the stress concentration factors are high and provide a
severe test on the effectiveness of the computational procedures. Finally the anisotropic
character is pronounced and is difficult to represent at the macroscopic level.

A further study given in a subsequent report is the prediction of the macroscopic
properties of a metal matrix composite using the known properties of the matrix and the
fiber. An experimental program has also been completed so that comparison-with the
computational results can be made. This study is particularly important since if the
predictions of the calculations can be verified then the procedure can replace the difficult

test program which is often limited by the shortage of material.

2. H _ Z N R
2.1 Formulation

Consider a structure composed of a periodically inhomogeneous material (Fig. 2.1).
The material is linear elastic and locally isotropic. For further simplicity assume that the

inhomogeneity is planar so that the the Lamé constants of the material depend only on the

transverse coordinates x and x; as follows:
H(x +degy) = Wx), xe RZ, a=1.2 2.1)
where 1 and ey are the first two unit vectors of the rectangular frame and x lies in their

span (similar equation for the other Lame constant A).

We shall be concerned here with small plane deformations and rotations which



in the present case can take place in the absence of the stress components 033 and 03 and
we shall regard the material as infinite and two dimensional. It is then useful to think of the
structure as a two dimensional sub-set B of the material shown in Fig. 2.1 where the
material is composed of the copies of a unit cell of square cross section which is of size d
and contains, say, a hard fiber of circular cross section.

The elastic structure B is subject to given surface tractions T on ¢Bg and given
displacements U on BBU. It is required to determine the resulting fields u;(x), eij(x), and
cj(x) of dispiacemcnt, strain and stress réspectively (Fig. 2.1).

If the characteristic lengths of this elasticity problem (the diameter D of the body, the
minimum radius of curvature of the concave péns of Vtrhe boundary 9B of the body, the
"wave" lengths Iy and l; associated with surface tractions and displacements, etc.) are
much larger than the cell size d, then one expects that the solution of the above problem of
elasticity would exhibit certain properties. A careful statement of these properties will
require a family of decreasing cell size so that statements can be made about the material
properties as d/D tends to zero. Thus following the French school(1) we will define the
Lame constants of the material with cell size d as u(dXx) = u(D(x/d) where u(1) is a one-
periodic continuous function. _

For a discussion of the anticipated properties of the elasticity problem of Fig. 2.1it s
desirable to consider a generic nine-cell sub-domain within the body (Fig. 2.2a). The
deformed shape of this domain may be as shown in Fig. 2.2b. Due to inhomogeneity of
the material, the stress fields within a cell will exhibit variations so that 6(P1), the stress at
Py, is likely to be quite different from ¢(Q1) and the deformed shape of the boundary of
the cell will exhibit a waviness of size d. However, if one considers three homologous
points P1, Py and P3 within the sub-domain (these points have the same coordinates in

respective cell coordinate frames), then 6(P1), 6(P2) and o(P3) will differ from each other

only a little. More precisely, say

|o(P) - o(Py|/(liall)<<1



In view of the above cited expectations, the deformed state of the nine-cell sub-
domain can be approximated by the one shown in Fig. 2.2c which is macroscopically
homogeneous. Thus, in this figure, the same stress will be obtained in homologous
locations P which now lie on a straight line and, therefore, the new locations A'B'C'C’ of

the cell-corners will define a parallelogram.
Reflection will show that the displacement field Vj(x) associated with the
macroscopically homogeneous field shown in Fig. 2.2c will be of the following form in the

case of small plane deformations and rotations

Vi(x) = Ejj xj + Qijxj 1j= 1,2 (2.2)
where the usual summation convention is used and Ejj and j; are the components of the
constant infinitesimal tensors of strain and rotation that determine the shape and orientation

of the parallelogram A'B'C'D' Here, Vj(x) are the components of a d-periodic and
continuous displacement field,

Vikx +d ej) = Vi(x) (2.3)
The strains created by the field (2.2) are
gij(x) = %(Vi'j + V) +Ej (2.4)
where comma denotes partial differential in the usual way.

It will be noted that on account of the periodicity of Vj the average of gj; over a cell is

equal to Ejj:
(eij), = Eq (2.5)

where the brackets indicate the average, over a cell, of the bracketed quantity.



The stresses created by the above strains will satisfy the equations of equilibrium:

d 1
'é;;{cijkl(x) [5("1(,1 + Vl,k)}} =0 (2.6)

where Cjjk](x) are the d-periodic moduli of elasticity
Cijia (x) = ROOGikdy + 811 Si) + M) -

It is known that, when combined with the periodicity of continuity of V;(x), Eqn.
(2.6) constitutes a well-posed linear problem deﬁned over the inte rigﬂri ;lﬁ)_c'of a cell for the
determination of Vj(x) as functions of the prescribed constant average strain components
Ejj. o '

In view of the linearity of the problem, and with the arbitrary but permissible choice

that Vj(x) = 0 on the corners of cells, (2.6) has the unique solution

Vix) = gijk(0) Ejk 2.7

where the functions gijk(x) follow uniquely from the elastic moduli C(x) of the material.

Note that

Bijk = Bikj

and there are six such d-periodic functions. In this report the functions gijk(x) are

determined by finite element methods.

Combining (2.7) with (2.4) and the Hooke's law, we find the macrostrains and

stresses created by the constant average strain Ei:

£3j(x) = Ejj + 1/2(gik1, j() + &jk1,i(x)) Ekl,

[AIRII]



6ij(x) = Hjjk1(x) Exl (2.8)

where
Hjjk1(®) = [Gijk1(x) + Cijmn(X) gmkl> n()].

From the expression (2.7) it can be deduced that g are of the order d and therefore

gmkl n are of the order "one” [2,3].
Note that Hijjk|(x) are d-periodic. It follows from the equations of equilibrium and

from the fact that Ey| are arbitrary constants that
Hijk1(x),j = [Cjjk1(®) + Cijmn(X) 8mk],n(¥)].j =0 (2.9)

It will be observed that (2.9) could be thought as providing six equations for the

determination of the function gmk](x) and is equivalent to (2.6).

By averaging, we obtain from (2.8)
E,J = Kijkl Eki ‘ (2.10)

where
Eij = <0'ij>c and Kijkl = <Hijk](x)>c (2. 1 1)

and brackets indicate, as before, the average of the bracketed quantity over a cell.

We refer to Eij as the average stress or the macro-stress. Kj;k] are the components of
the constant gffective moduli of the problem. It can be shown by using (2.9) that Kjjk]
inherit the symmetry properties of Cijkl exhibited before. Moreover it can also be shown
that for the family of the materials considered here Ki_j&l are independent of the cell size d!

It is noted that finite element techniques can and have been applied (cf. [1]) to a single

cell to obtain approximations to the functions gjjk(x), Hjjk1(x) and, hence to the effective



moduli Kjjk].

After this initial step which is independent of the body and the loads it carries and
produces the effective moduli and the important relationships (2.7) and (2.8), we are ready
to discuss the remaining steps of the homogenization program which leads to an

approximate solution of the problem of finding the fields of displacement and stress within

the body B.

2.2 Hom

The structure B is now thought of as composed of a homogeneous elastxc matenal

which possesses the effective moduli K obtained in Section 2.1. The distributions Z(x)
and E(x) of the macro- or average-stresses. and strains are then found by solving a class1cal
boundary value problem of elasto-statics over B with the boundary condmons of the
original problem (Fig. (2. l):

Zjj nj = Ti(x)- on dBg

Uj = uj(x) on dBy (2.12)

where Uj(x) are the displacements that give rise to the distribution Ejj(x) of the macro-

strains over the body.
The distribution of the micro strésses and strains within the body can then be

determined in the following way.

4 In view of (2.7) and (2.2) the displacement field §; is offered as an approximation to

the actual field uj(x) of the very first problem of Fig. 2.1):
{1j(x) = Uj(x) + gijk (X)E jk (%) (2.13)

where Uj(x) and Ej Kk(x) are the fields of displacement and strain in the homogenized body

and the functions gjjk(x) were obtained in the first step of the homogenization program.

The above displacement field is kinematically acceptable everywhere except on the

boundary 9By where the second term on the r.h. of the above equation and therefore the



difference (a; — U;) will, in general, not vanish (cf. Fig. (2.2b)).

Let p{ denote the deficit in displacements on dBu:
pi = (%) — uj(x) = g;jx(X)E jx(x) (2.14)

We recall that gjjk is of the order of d and therefore we expect that the steps needed to

be taken to remove this deficit will cause only local changes in the fields introduced above.

Errors shall be discussed later.

The strains created by the displacement field 1;(x) are then
&;j(x) = Ejj(x) + 1/2(gj,j + 8jkt,DExa(x) + V2(gixa Ext j + 8jit Exet,0) (2.15)
which give rise to the stress field
Gij(x) = Cijra(x)Ex (%), xe B (2.16)

In view of the developments which led to (2.8) and (2.11), the abové equation

becomes

Gi(x) = Hijia()Ea(x) + [Cijit(X) gkmn (X Emn,1(X)] (2.17)
where as before

Hijka®)=[Cijk1(x) + Cijmn(X) gmk1,n(x)]-

We note that the first term on the right hand side of (17) is of the "order"” of the
macro-stresses Zij(x) and coincides with the leading term of the asymptotic expansion used

in the work of Duvunt [2] for the stress components. We also observe that the second term

in (2.17) is of the order of d/D.



2.3. Errors in Homogenization

It is a valid question to pose how close are the fields 0;(x) and 6ij(x) obtained by the
homogenization program to those occurring in the heterogeneous medium.

It was shown in [2] that
Zij(x) - Hijkl(x) Exi(x) =0 (2.18)

asd/D — 0.

This important result does not, of course, imply that the above difference tends to
zero everywhere. Indeed, as we shall see, on 0BE the difference is not zero, in general,
and remains so as d/D tends to zero. Moreover when d/D s finite but still small there may
be other parts of the body where the above difference may be unacceptably large (cf. Fig.
2.2d).

The starting point in the construction of the approximate fields was the choice of the
displacements ;(x). It was demonstrated that this field fails to satisfy the b.c. on 0By and
it is now studied whether the stress field 6ij(x) derived from it satisfies the requirements of
equilibrium, , 7 ,

Consider first the equilibrium of the material elements adjacent to the boundar)} dBE

of the body where surface tractions are prescribed. Equilibrium demands that the vector
G;(0n j(x) - Ti(x)

should vanish on 9BE where nj(x) are the components of the unit outward normal to the
boundary. Since 6ij(x) exhibits, in generél,”épra'triarl:\jariations over the cell due the
inhomogeneity of the material and Tj(x) is, by assumption (cf. Fig. 2.1), a function of long
wave length the above difference will not, in general, be zero (cf. Fig. 2.2¢).

This leads us to introduce the vector value function pi(x) which measures the deficit

in equilibrium on dBg:

10
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pi(x) = &;j(x)nj(x) - Ti(x) on 9IBg (2.19)
Note that in view of (2.12) the above equation can be written as
pi(x) = (6;(x) - Z;j())nj(x)) on OBk (2.20)

In the case shown in Fig. 2.3¢e max lpfo_(x)l on the stress free boundary is independent

of d and it is known from the numerical work reported later that it is of the order of the

applied stress Zyx.
Similarly the deficit rj(x) in equilibrium in the interior B of the body is defined by

considering the divergence of the stress field Gij(x):
ri(x) = 6'11’1()() (221)
and using (2.17)

ri(x) = Hjjk1(x),j Exi(x) + Hiji1() Ex1(x),j
+ [Cijk1®) gkmn(®) Emn 100155

The first term on the r.h. of the above vanishes by (2.9) so that
rj(x) = Hijk1(x) Ex1(x),j + [Cijki (%) 8kmn(®) Emn,1(X))]J (2.22)

We observe that each of the two terms on the right hand of (2.22) will be of the order
of Iléij(x)ll/D in the interior of the body B. However near a concave portion of the
boundary 0B the gradient of E|(x) can be large so that a more refined estimation of rj(x)

will be needed in such locations.

It is important to note that the solution of the boundary value problem for the

11



inhomogeneous elastic body B with the boundary conditions

u; = —pl(x) on dBy
T, = —pi(x) on dBE

and subject to the body forces bj (2.23)
bj = - ri(x) inB

would provide the fields of displacement and stress which when added respectively to the
fields ﬁi(X) and 6ij(x) would produce the exact fields u;(x) and cij(x).

Clearly the problem of estimating errors in homogenization is equivalent to that of
estimating the solution of (2.23). This leads us to the study of the deficits listéd on the
right hand of (2.23).

The specific example selected for illustration involves corrections for the deficit in
equilibrium on 0BE. Consider first a reduced version of the elastostatics problem defined
in (2.23). Let u; and b; vanish, but let T; have the values given in (2.23). The question
then arises about the displacements and stresses created in B by the surface tractions -pi(x)
applied on 9Bg? The important result (2.18) of asymptotié analysis suggests that when
d/D is small these correction fields must decay strongly from 0B towards the interior of
the body. The reason fo; :trhis sﬁdng decay is a version of the de Saint Venant principle
when applied to periodically inhomogeneous elastic bodies.

For this purpose consider the following integral

P
f(ppp2) = | Gu(x)—Zjp(x))dxy, x1=pj (2.24)
P2

where the segment of integration which is of length d and parallel to the xp-axis is assumed

to be on the boundary of B.

12



Note that if the point (p;,p,) Where on oBF and if x; were constant on the boundary

then (2.24) would measure the resultant of pit(x) over the side of a cell:

p2+d t
f(pppa)= [ pi(x)dxy, X;=pj (2.25)
P2

Now using (2.17) and (2.10), but neglecting terms of order d/D in (2.17), with the

expansion

Ew(p1,Xx2) = E(pP1,P2) + Ex1,2(P1,P2)(x2 = P2)
+1/21Ey 22(p1, p2)(x2 = P2)2

(2.24) becomes
p2+d
fppp2) = | Hik(prx2) - KitkDExi(P1,P2) + E 2(P1, P2)(X2 = P2)
P2
+1/21Eg 22(P1, P2)(X2 — P2) Jdx, (2.26)

Using (2.9) and (2.11) and the d-periodicity of H(x) gives the result

p2+d
[ Hia(p1-x2) = Kiji)dx2 =0 (2.27)
P2

so that
p2+d
f(p1.p2) = | (Hj(P1x2) = Kijixp[Ex,2(P1,P2)(X2 = P2)
P2
+1/21Ey 22(p1,p2)(x2 ~ P2 ldxy (2.28)

13



This is an important result on various counts. First of all it shows that

£(p1,p2) = KEj 2(p1, P2)O(d?) (2.29)

where X is a constant which has the dimension of stress.

In the case where the boundary has a section parallel to the xy-axis (2.29) and (2.25)
show that the resultant of the deficit pi‘(x) over a length d of the boundary is two orders of
magnitude smaller than the local value of the deficit (which is of the order of the local
macro-stress). Clearly the same result applies to those parts of the boundary that are

parallel to the x{-axis.

Next consider the case when the Boundary may intersect the cells 7"diagonally". Fora

study of this case consider a simply connected domain ¢ in B and let 3c be its boundary.

Now consider the integral
[ (Gj(x) = Zjj(x)n j(x)ds
& ,

where nj (x) denotes the outward unit normal to the boundary.

It will prove useful in the sequel to observe from (2.21) and from the fact that Zij(x)

satisfies equilibrium that

8{: (6’U(X) - ZU(X))HJ(X)dS = _f I'i(X)dA (230)

C

Choosing ¢ as a square of size d and with sides parallel to the coordinate axes and by

a repeated application of (2.28) using the fact that Hijk1(x) is d-periodic, it is found that
[ (&%) = Zy(x)nj(x)ds = WIEj ! o(d3)
&

or equivalently (2.31)

14
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| §(x)dA = pIE;; ) O(d?)

C
where the constant L has the dimension of stress and ¢ denotes a cell size and oriented
domain and the bars indicate a suitable norm. Hence the residual is of order d3 but is also
dependent on the second derivative of the strain field Ejj. Hence the errors are small

provided the strain E;; do not have larger gradients.
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3. APPLICATION TQ PLATE WITH ORIENTED CRACKS
The study by Litewka and Sawczuk [3] of the properties of plates perforated by

periodically disposed slits is used as an example to study the effectiveness of the
homogenization procedure. The example was selected because experimental data was
available against which to test the predictions of the procedure. Furthermore, the shape and
distribution of cracks is such that severe demands are made on the computations since the
stress gradients within the unit elements are large in the vicinity of the slots.

A representative drawing of the perforated plate is shown in Fig. 3.1a and the
dimensions of the cracks-are given in Fig. 3.1b. The plates were made from an aluminum
alloy whose stress/strain relationship is given in Fig. 3.2. The macro stress, macro strain
relationships for the perforated plate for different values of the crack alignment are also
shown in Fig. 3.2. The failure modes are reported by Litwka and Morzynska [4] and

involve various forms of strain locations as illustrated in Fig. 3.3.

3.1 Loading and Boundary Conditions for Element

Following the procedures described in Section 2, the periodic element is of size D =
10 mm and the loading direction in relation to the direction of elongation of the cracks is
defined by the angle o (Fig. 3.1b) The macro quantities are the stresses Xy, Zy, ny and
strains Ey, Ey, Exy while the micro quantities are represented by Oy, Oy, Txy and &, €y,
Yxy repsectively. The homogenization procedure was completed using finite element
representation of quarter of the element as shown in Fig. 3.5. All the analysis was
performed using the ABAQUS [5] syétcm using the 8 node, isoparametric plane stress
element CPS8. Incremental elastic/plastic calculations were performed using the Mises '

Yield Criterion in conjunction with an isotropic incremental hardening law for which

P
3

%[f—(—a—)-}sud'é (3 1)

where 5= 3], = % sizj

16



and the uniaxial stress strain law has the form

eP = f(o)

so that f'(o)= —(E
do

The function f(G) was obtained from the stress/strain relationship for the aluminum
alloy given in Fig. 3.2. In this figure it should be noted that the stress reaches a limiting

value of 155 MPa.
The general case, subjected to macro stress pINS Zy, and ny, was analyzed using the

element shown in Fig. 3.4. This covers the whole of the cyclically repeating cell. When

the macro stress state is symmetric or anti-symmetric just a quarter of the repeating cell

need to be analyzed (Fig. 3.5).
Following the homogenization procedure described in Section 2 the displacement

field has the form

Ux,y)=U(x,y)+Ex - x+Eyy-y
V(x,y) = V(x,y)+Ey y+Eyy-x

where U,V is the periodic component. Taking nodes A and D with the same value of x =a

and nodes B and C with y = b. The boundary conditions imposed are;

Up-Up=Exy D

Vp-VA =Eyy D (3.2)
Uc-Ug=Exx-D

Vc-Vp=Exy D

The values of Exx, Eyy and Eyy are the loading inputs into the problem. The general case

17



was analyzed under two types of loading:

(i) strain controlled loading, where loading was applied by proportionately increasing the

macroscopic strains Exx, Eyy, Exy.

(ii) stress controlled loading, when the loading was applied by proportionately increasing

the resultant tractions F, Fy and Fxy that are related to the macro stress Zx, Zy and

ny respectively.

3.2 The Elastic Calculation

The macro stress/strain relations in plane stress are written in the form:

p \Y
E,.=X__X ¥y (3.3)
Yy Myy Mxx Yy
Zy
=2E,y=—~
Yxy Xy ny

From finite element calculation in the elastic range the following values for the

homogenized elastic constants were determined:
Elastic moduli My = 45700 MPa

Myy = 64900 MPa
Gyy = 18700 MPa

Poisson relation: vy =0.339
Vyx =0.239

18



which satisfy the reciprocal relation

Els
2l

In matrix form the stress/strain relation in plane stress has the form

Eqx 219 52 0 ][Zx«
— 106

E,y [=105|-52 154 0 |2, [P—a] (3.4)

0 0 535J|Z

Yxy
For comparison with the constants given in Eq. (3.3) the value of Young's Modulus and
the aluminum alloy of the plate is 69.5 MPa. It can be seen that the presence of the slots

substantially reduce the stiffness of the system for shear and transverse loading.

3.3 Elastic/Plastic Calculations

The general case was analyzed under two types of loading.

() Strain controlled loading, where loading was applied by proportionally
increasing the strains Ex, Ey and Eyy. This form of loading resulted in stable
calculations and is especially useful for determining the Limit Load Surface
which is more fully described later.

(i) Stress controlled loading, where the loading was applied by proportionally
increasing the stress I, Zy and Zxy. This is the form of loading reported in
the tests of Litewka and Sawczuk. Convergence was rather poor when the
loads approached the limit load value.

Elastic/plastic calculations were performed for a uniaxial loading condition whose

loading direction was defined by the angle . This is the loading condition used by
Litewke and Sawczuk. The calculations were repeated for different values of o which

ranged between 0° and 90°. The computed macroscopic stress/strain results are shown in

19



Fig. 3.6 from which it may be seen that the experimental and calculated values are generally
in good agreement. The predicted macroscopic stress/strain loading curves all show an
initial elastic response, followed by an elastic/plastic region and a limit load condition for
which the value of the load remains constant and further displacement is accommodated by
plastic deformations. Since no failure criterion has been included in these calculations no
failure is predicted from the calculations. In order to complete the relevant calculations a
failure criterion must be included. In the absence of an obvious failure criterion this is not
attempted at present, but shall be included later in an approximate analysis.

The limit condition is a surface which is a function of Zxy, Zyy and Zxy. The shape
of this surface was obtained by perforrhing elastic/plastic calculations for which the ratios
of the strains remained constant. The calculations were repeated for various strain loading
paths and the shape of the surfaces at the intersection with the section Zxy =0, section Zy-
= (0 and section Zy = 0 are plotted in Figs. 3.7, 3.8 and 3.9 as are the strain rate vectors
which satisfy the normality condition. The stress paths for different strain paths are shown
in Fig. 3.7a and when the limit condition is reached the strain incremental vectors are
normal to the surface.

An isometric plot of the 3D yield surface is given in Fig. 3.10. Only the Sxy 20
region is shown since the plot will be symmetrical with respect to the Zxx-Zyy plane.

It is interesting to observe the shape of the Limit Surface for the intersection with Zyy
= 0. For this biaxial stress state the Limit Surface shown in Fig. 3.7 has the curious
property that its shape is reminiscent of the Tresca yield condition in the first and third
quadrants while the second and fourth quadrants indicate a condition more closely

resembling the Mises condition. This topic is discussed more fully later.

4. ASTUDY QF EDGE EFFECTS

In Section 2.3, it was illustrated how one of the errors introduced in the

homogenization procedure is the imbalance of the applied macro stress Zij and the
calculated micro-stresses 6ij along the component boundary. For elastic conditions it was

determined that the total imbalance force over the length of the boundary of length d is two
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orders smaller than the value of the macro stresses.

In order to study the influence of edge effects, an infinitely long strip in the x
direction was analyzed. When the plate is subjected to axial stress Zxx (Fig. 3.11) the
sections such as AA and BB remain straight during deformation and consequently, only the
shaded portion shown in Fig. 3.7 needs to be analyzed.

The elastic solution for the case when Eyx = 0.02% and the elasto plastic solution for
Exx = 1.5% have been determined and the variation of stress Gyy along the centerline is
plotted as a function of the distance from the slot in Fig. 3.12.

If the slotted system were analyzed at the macro-level then one of the boundary
conditions would be Zyy = 0. In fact while T4 = 0 is satisfied on average the distribution
of Oyy at the micro-level is the same as that shown in Fig. 3.12. It can be observed that the

error in the edge stresses is given by Eq. (2.2) and when applied to the current problem

gives
Pyy = Oyy - Zyy
It is noted that
D/2
| pyydx=0
0

D/2
because | o,y dx =0 (Fig. 3.12a).
0

Hence the stresses obtained from the homogenized solution are in equilibrium with the
applied macro-stress, provided equilibrium over the cell length is considered. However
equilibrium is not satisfied at every point of the boundary. From St. Venant principle it is
to be expected that the homogenized solution is valid at a small distance from the edge.
Reference to the solution of the strip problem indicate that the stresses and strains in the
elements coincide everywhere with the homogenized solution with the exception of the

edge elements. This observation is illustrated by Table 1 which gives the stress Gyy at
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different locations in the strip. It can be seen that the stresses are equal at the same location
within the elements except for the edge elements, from which it can be deduced that the
deviation from the homogenized solution is only one layer thick. This result is applicable
for a continuous fiber reinforced composite loaded in the transverse direction but is not for

loading in the longitudinal direction.

Table 1

Seven Cell Strip - o0 =90

Oyy Along Const Sections
Elastic Solution - for Exx = 0.02%

X y =0.225 10.225 20.225 30.225
0.225 -0.13 -2.32 232 232
1.000 0.02 -2.15 -2.15 -2.15
1.775 -0.09 -1.96 -1.95 -1.95
2.225 -0.17 -1.45 -1.44 -1.44
3.000 -0.42 -0.25 -0.24 -0.24
3.775 0.30 219 2.19 2.19
4.056 0.45 3.28 3.28 3.28
4.250 0.31 3.65 3.64 3.64
4.444 0.15 3.92 3.91 3.91
4.556 0.42 4.35 4.34 4.34
4.750 0.60 4.66 4.65 4.65
4.944 0.39 4.64 4.63 4.63

The computations were extended to a loading level sufficiently high to cause
extensive plastic deformations. The stress distribution Oy along the centerline are shown
in Fig. 12b which are in equilibrium with the macrostress Zyy = 0. From the finite element
calculations the observation can again be made that the stress distributions are the same for
all elements except for those in the edge elements. This observation can be deduced from
the results given in Table 2 which show the variation in the stress field 6yy along the x

direction for the same section in adjacent elements.
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Table 2

Seven Cell Strip - o = 90
Oyy Along y=const Sections
Plastic Solution - Exx = 1.5%

X y = 0.225 10.225 20.225 30.225

0.225 8.11 -66.70 -65.90 -65.90
1.000 4.36 -52.90 -52.40 -52.40
1.775 -12.30 -42.70 -42.80 -42.80
2.225 7.96 -29.30 -29.70 -29.70
3.000 15.10 8.07 7.21 7.21
3.775 -6.55 39.00 39.00 39.00
4.056 -0.68 64.20 64.40 64.40.
4.250 -9.39 79.60 80.00 80.00
4.444 -11.30 87.90 88.40 88.40
4.556 -14.70 94.50 94.70 94.70
4.750 -2.00 94.50 94.50 94.50
4.944 3.15 94.70 94.70 94.70

5. COMPUTATIONAL RESULTS AND COMPARISON WITH EXPERIMENT

The predictions of the homogenization calculations are compared with the
experimental investigation performed by Litewka and Sawczuk [1] in Table 3 with elastic

properties defined by the relation (3.3)

Table 3
Experiments 41870 60780 19520 0.294 0.206
Calculated 45700 64900 18700 0.339 0.239

The relations between the predictions and measurement are generally within 10%.

The reciprocal relation
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Vxy _ Uyx
M, M,
is satisfied for the calculated constants and is closely satisfied by the experimental data

which give the result

v
Oxy My _ 0.983
Vyx My

The macroscopic stress/strain relationships when the material is subject to uniaxial
loading is given in Fig. 3.6 for different slot angles. The predictions compare with the
experimental data with almost perfect agreement for all angle orientations except for o =
1/6 when the difference in stress increases with strain from 0% to 10%. This may be due
to early localization of the deformation for this orientation. The calculations are unable to
predict the strains at which failure occurs. The large displacement analysis required to
determine the failure strains has not been performed. Instead a simplified analysis of this
problem has been completed and is described in the Appendix C

The results of the approximate finite strain calculations are given in Figs. 3.13 and
3.14 in which the stress and strain at failure are plotted for different slot angles o and strain
hardening exponents. The results are normalized with respect to the failure stress and
strain of an unperforated plate. The experimental failure stress values are also plotted in
Fig. 3.13 and indicate generally good agreement with the predictions of the approximate
analysis for low hardening exponents. The predictions of the failure strains in Fig. 3.14
indicate that when a is greater than 20°7 there is a sudden decrease in the strain to failure.

Thié pfediction is in keeping with tfxerekrperimental observations (Fig. 3.6).

6. DESCRIPTION OF LIMIT SURFACE AND CONSTITUTIVE EQUATION

The isometric projection of the limit surface is shown in Fig. 3.10. The lower bound

calculations performed in the Appendix define a limit surface defined by intersecting
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surfaces with the form

aijklzijzklzcrzl G,k 1=xy)
where ajjk] are defined in Eqn (B2) and Gy is the material limit stress. There are eleven
such relationships which indicate the complexity of the shape of the limit surface. In an
attempt to simplify the problem an approximate analysis is developed in the Appendix B

from which a simplified form of limit surface is given by three relationships instead of

eleven

Q(Z x0 2 yp 2 xy) = o}

where

2 2
3(%&] +12(%’ﬂ) <1 (6.1)
n n
02, . x2
19 32N <)
()| 2y
32 (10)222y 20Ty (10)22%
42 (10 _20 3(10 <1
2H5) e e

The homogenization calculations have been used to develop the limit surface, but the
means to formulate a closed-form mathematical description of the surface is less apparent.
It is easy to fit Hill's generalized yield surface but this description does not pick up the
shape shown in Fig. 3.7 for example. The procedure adopted here was to develop
expressions for the surface based on approximate models and to select the constants of the
approximate analysis to fit the results obtained from the homogenization procedures.

Tt is also difficult to develop constitutive equations for the plate which are valid
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T,

current procedure is that computational experiments can be performed to determine the
properties of the system. One such set of experiments consists of applying to the plate
increments of strain such that the ratio

L

AEyy

where k is a constant. The history of stress for some such strain paths is shown in Fig.
(3.7). The initial response is elastic when the stress increments are dictated by the elastic
constitutive equation of Eqn. (3.4). However as the applied stress approaches the limit
surface the trajectory of the stress path is influenced increasingly by plasticity. The final
location of the stress point on the limit surface is dictated by the normality rule when the
vector of strain increments is normal to the limit surface. For some strain paths the stress
state can change rapidly as the response of the material changes from purely elastic to
purely plastic. This is particularly true of the paths 3 and 4 shown in Fig. 3.7. The
simplest means of describing such behavior is to assume the component behaves in an
elastic-perfectly plastic manner. With this assumption the stress paths would initially
follow elastic response until the limit surface is reached when the normality rule would
dictate the location of the stress state. Such an assumption gives stress histories which are
close to those observed by calculation as indicated by the simple paths shown in Fig. 3.7.
Then the simple constitutive relations are given by the sum of elastic deformation and

plastic deformation
Ejj= Cija 21 +Ef
where the matrix Cjjk; is given in Table 3 and the plastic deformation rate satisfies

g . oo
Poy—
Eij }"a):i,-
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where @ has the form of the limit surface defined by Eqn. (6.1).

CONCLUDING REMARKS

It has been demonstrated that the procedures of homogenization can be used
efficiently to determine the macroscopic properties of composite systems from the
constituent properties. To investigate the efficiency of the procedure, a difficult problem
was selected which involves very high stress gradients more severe than would normally
be found in practice. The macroscopic response is highly anisotropic which is highly
representative of the anisotropic effects of damage. Furthermore, both elastic and plastic
properties have been investigated so that the application to practical systems with inelastic
deformation should be able to proceed without difficulty. The internal state of coinposites
is extremely complicated which underlines the need to formulate macroscopic constitutive
equations with a limited number of state variables which represent the internal state at the
micro level.

As a next step it is intended to apply the method to determine the macroscopic
properties of metal-matrix composites when subjected to the type of loadings to be
considered in the design process. The computational predictions are to be compared to the
results of an experimental program. From this investigation constitutive equations shall be
determined and couched in a form suitable for finite element calculations. An effort will be
directed towards selecting the microstructure to optimize the performance during operation

and the manufacturing process.
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APPENDIX A: APPROXIMATE ANALYSIS OF PLATE PROPERTIES

Some approximate analyses are performed to serve as a check on the validity of the
homogenization procedures and to provide insight into the physical behavior of the plate.

Approximate analyses for the elastic limit load and failure strains are now performed.
These approximate calculations serve as check on the effectiveness of the homogeneization

calculations and can also help to provide physical insight into the component behavior.

6.1 Elastic Constants

The elastic constants determined from the homogenization calculation are given in

Table 3 when the elastic constants of the homogeneous material of the plate are
E = 69550 MPa and v = 0.337
Bounding estimates for Ey and Ey can be obtained using guessed equilibrium stress and

compatable strain fields.

To obtain an upper bound on My a compatible strain field is assumed to be
Ex = Ex; Ey =-0 Ex
where Ey is the macrostrain. Energy balance then gives

1 2 1{E »
—2-M,(fsx = V[—z—-ex (O.95V):|

From these calculations the following results are obtained

Mx=095E and vyy=0.337

To obtain a lower bound on My the following stress field is assumed in the ligaments
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between the slots

Ox =2Zx cy=0

Again using complementary energy balance

2
1 Zx _1 [.1_(22,‘)21]
2 M, 2E 2
from which
Mx = O.SE

Similar procedures applied in the y direction give for the assumed strain calculations yields
Ey =0.95E
while the stress field calculation gives
Ey =0.9E
Calculations have also been performed by assuming the slots do not interact and the energy
icnrease in the body is given by the energy change for a slot in an infinite body.
For calculations in the x direction and assuming that the slots can be represented by

slits the elastic internal energy per unit area of the plate is found to be

2 2v2 2
3 m’} 3

U=
2E 2E  2E,
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where n is the number of cracks per unit area and the cracks are assumed to be non-

interacting.
In the present problem a = 2.5mm and n = 1/100 so that

E
E =——2—=O.72E
X 1+ma“n

The summary of results of experimental and computed and approximate results for elastic

constants.
Lower Non-Interacting Upper
Bound Experiment Hom Cracks Bound
x direction 0.5E 0.602E 0.66E 0.72E 0.95E
y direction 0.9E 0.874E 0.933E 1.00E 0.95E

The predictions of the homogenization procedure agree to within 10% of the
experimental observations. The non-interacting results are the most consistent of the

approximate procedures which use extremely simple calculations.
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APPENDIX B: LIMIT LOAD SURFACE

The isometric projection of the limit surface obtained from the homogenization
calculations is shown in Fig. 3.10. In spite of the fact that the Mises yield condition is
used it can be seen that the yield surface for the plate demonstrates features of both Tresca
and Mises type criteria. In order to study the shape of the yield surface more fully

approximate solutions are now developed.

Lower Bound Stress Analysis

An equilibrium stress field for the plate is illustrated in Fig. A.1. It can be deduced
that there are nine microstress fields Oxx, Oyy, Oxy given in terms of the macro stresses
Zyxo Zyy and ny applied to the perimeter of the plate element. In terms of the

macrostress X, Zy, Zxy the element perimeter stresses are given by

The value of Oy, Oy and 7 for the nine stress fields are given in Table A.1 and when these
. . . . 2 2 2 _ 2 :
are substituted in the yield condition G5y + Oyy = OxxOyy + 3o%y = Oy then the following

yield criteria are established.

Field 1) 03 +312< 0(2,

g,T
Field 2) o2+ +12<c?
y 2 o

. 2,2 T . 2.42
Field 3) ox+oy—oxcy+(cx+oy)5+‘c <05

Fieldd)  o2<o?

ow

Field 5) o (B.2)

<N
IA
Q
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Field6) o2+ %L 12<0?

Field7)  02+02-0,0,+3t><0g

Field8) o2+3t’<a?

Field9)  62+02-0,0,<0,

Table Al
Field Oxx Oyy Oxy
1 0 Oy T
2 2 Oy +1/2 /2
3 Ox +1/2 Gy +1/2 /2
4 Ox 0
5 0 Oy 0
6 Ox +1/2 2 12
7 Ox Oy T
8 Ox 0 T
9 Ox Oy 0

The inequalities given in Eqns. (B.2) define lower bounds of the limit surface.
Sections of the limit surface and the results of the lower bound calculations are shown in
Figs. A.2-A.3 and A.4. Also shown in the figures are the yield conditions for the
undamaged system. As is to be expected the equilibrium stress fields give a lower bound
on the yield surface. Generally, the bounds are good except in the Zyy’ Zyy intersection

where the difference between the lower bound and the homogenization results can be

considerable.
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Approximate Limit Surface Analysi

Another analysis is performed using engineering approximations but which give
results agreeing more closely with the numerical results.

Referring to Fig. A.5 the plate element has been divided into three sections I, IT and
T which represents the critical regions where unconstrained plastic deformation can occur.

The element I is subjected to the stress state
Op = 2Xx Tt = 2Zxy
With the assumption that the strain in the t direction is € = 0 gives the result

0]

P

O't =
Using this stress state in the limit condition

02 =02 +02-0,0,+315 =322 +1255,

where o, is the ultimate stress of the material gives the condition

2 2
z
3(5] +12(——"1) =1 (B.1)
GU o.l]
The element II is subjected to the average stress state
10 10
s3] ouio()

With the assumption that the stress o¢ = 0 the limit load criterion becomes
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10\2[ 23 L ZF
1= (—) [—% +35 (B.2)
With a stress field on element III given by

10 10
On=2Zy o= —9——Zy O = —4—Exy (B.3)

Then the limit condition for this element is

oﬁ=o,2,+of—onct+3o,2n

2 202V 20 I 2(5,. ¥
or 1=4fZx +(£) =X —39—";1+3(19) " 4 ' (B.4)
' oq 9/ \o, 9 op 4/ \ On

The estimated yield conditions (B.1)-(B.3) are plotted in Figs. A.2, A3 and A4
which also show the calculated limit conditions. The conditions (B.1) and (B.2) compare
well with the calculated values. However the pfedictions of (B.3) are less good.

To improve condition (B.4) it is modified by adjusting the constants in (B.3) so that it
fits closely the relationship determined from the homogenization calculations. The

relationship (B.4) is modified to give

2 2 2

> > s
8 Zx +(1_0£)_v RN G ARl 5 (B.5)
3\ oy 81 A o, ouAOu) 4\ G4

A simplified descripton of the limit surface is then given by the surfaces

34



35

(B.6)



APPENDIX C:. APPROXIMATE ANALYSIS OF FAILURE STRAINS

An approximate finite strain analysis is now performed when the perforated plate is

subject to uniaxial stress for different slot orientations. The failure analyses are applied to
the two characteristic ligaments which experiments indicate are the sources of failure.
Referring to Fig. A.6 the ligment I is the ligament in line with adjacent slots while ligament
11 is the ligament between laterally adjacent slots.

The constitutive law used is
o, = Keg

where G is the effective stress, € the effective strain and K and n are material constants.

The strain components are defined by the relationship

R

€. Oe
where sjj is the stress deviator.

The classical stability analysis for an undamaged homogeneous material subjected to a

uniaxial stress state predicts the failure strain at the load maximum to be
€0=n

and the nominal stress at load maximum is
0% = Kn"exp(-n)

Reference to Fig. 3.6 indicates a failure strain of the undamaged material to be1.5% so that

n for the material in question is
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n =0.015

Analysis of Ligamen

The plate is subjected to the macro stress ¢ shown in Fig. A.6 with stresses in

ligament I
On =—2iQo, D in2a tm=g-éqot
A D - ¢y A

sinocoso

D4y

where A is the original cross sectional area and A is the current cross sectional area of the

ligament.

Making the assumption that the strain in the t direction is zero i.e. & = 0 gives

on
=7

With the given approximate stress state the effective stress Gp is

. 3 5, VA D
C.=+/3sina|{l1-— o Y,
e =+/3sin [ 750 ] A [D—ly

Assuming a deformation theory for the plastic strains the ratio for €,/€; can be determined

in terms of stress deviators so that

€n _Sp _1 20,-6; 1 sina
€t Smt 3 Tnt 2 cosa

and the effective strain is then

2_2 _4(2, 2
€. = gsijeij = E(En + Sm)
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and

1/2
€e = 725,(1 + 4cot2a) €q
From the definition of finite strain

A
A, P(=€n)

so that the stress/normal ligament strain €, relationship becomes

D-ty
D

(2/\/5)“ (1 + 4cot2a)%‘
Gy = 3

3 73 Kegexp(—en)-
sin a[l - Zsin2 a]

From this expression the strain at the load maximum following the classical analysis is
€n =0

The strain in the longitudinal direction in the band is
8} =€q sinZo+ 2g,, sinacosa

and recalling that

cosQ
sin ot

€nt =2 €n

yields the strain in the longitudinal direction as

e} = [sinza +4cos? a]en
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Referring to Fig. A.6 the average strain is

N
g, = (_((Dl./_/s% = %[sinza + 40052(1]8,,

At load maximum €, = n so that

X 2

—= o+4 cosza]
D

[sin

Lol !
o

is the average failure strain.

Analysis of Ligament []

A similar analysis for ligament follows along similar lines except that the stress oy is

taken to be zero. Then

cn=—A—QG¢cosza-
A D-¢,

A .
Tt =—20,sinocosa -
A X
O = 0

Hence the effective stress O is

G =coso [3 - 2cos2oc]”2 ML
A D-¢,

and the corresponding strains are
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€, _ 2cosQ
€ 3sino

e2 =[1+3tan’alel
The stress G, — €, relationship is then given by

[1+3tanZo]™? ~4,
o= -Kelexp(-¢ )
£ osa[3—2costal/? " PEn) ™

In the band the strain in the longitudinal direction is
e}l = [sin2a +4cos? ale,

and the average strain in the longitudinal direction is

. II
- gl Bt s

At the load maximum &, = n which gives
€= £g[sinzoc +4cos’an
and

el fy [sm a+4cos o]
E[ D
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Fig. 2.1

A structure made of a perlodic composite material.
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__ aunit cell

Fig. 2.2a A nine-cell sub-domain within the body shown in Fig. 2.1
P, P, ...: homologous points. ABCD: unit cell.
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Fig. 2.2b Deformed shape of nine-cell sub-domain;

R >> 1, R radius of circle passing through three consecutive homologous points.
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Fig. 2.2c Macroscopically homogenous deformation of nine-cell
sub-domain is a good approximation to the deformed

shape of Fig. 2.2b.
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Fig. 2.2d The program of homogenization fails locally if the
deformed shape sub-domain of the homogenized body
is such that R is comparable to d. Such a situation
can develop near a crack tip or when localized defor-

mation occurs.
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Fig. 2.2e Traction free boundaries vs/homogenization.
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Fig. 3.1

(b)

a) Specimen with simulated damage.
b) Dimensions of cracks.
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Fig. 3.2 Macroscopic stress-strain curves for specimens with
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D=10mm

Fig. 3.4 Element used in homogenization process.
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Filg. 3.5 Finite element representation used in homogenization process.
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Fig. 3.6 Comparison of computed and experimental
results.
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Fig. 3.7 Limit Surface in Z,,, Zyy plane.
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Fig. 3.8 Limit Surface in Zy,, Z, plane.
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Fig. 3.9 Limit Surface in Z,y» Zxy plane.
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Fig. 3.10 Isometric view of limit surface.
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Fig. 3.12 Edge stress from homogehization calculations.
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b)E,=15%
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Fig. A.1 Equilibrium stress fields in element.
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Fig. A.2 Comparison of Calculation and Approximate Limit Surface
in Z,,, Zyy plane.
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Fig. A.3 Comparison of Calculation and Approximate Limit Surface
inZ,,, Exy plane.
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Fig. A4 Comparison of Calculation and Approximate Limit Surface
in 2., Zy plane.
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Fig. A.6 Model for simplified analysis of stress and strain at load maximum.
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