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Abstract 

Distributed memory machines do not provide hardware support for a global address 
space. Thus programmers are forced to partition the data across the memories of the 
architecture and use explicit message passing to communicate data between processors. 
In this paper we focus on the compiler support required to allow programmers to express 
their algorithms using a global name-space. We present a general method for analysis of 
a high level source program and its translation. to a set of independently executing tasks 
communicating via messages. If the compiler has enough information, this translation 
can be carried out at compile-time Otherwise run-time code is generated to implement 
the required data movement. We describe the analysis required in both situations and 
present the performance of the generated code on the IntellPSCj2. 
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1 Introduction 

Distributed memory architectures promise to provide very high levels of performance at 

modest costs. However, such machines tend to be extremely awkward to program. The 

programming languages currently available for such machines directly reflect the underlying 

hardware in the same sense that assembly languages reflect the registers and instruction set 

of a microprocessor. 

The basic issue is that programmers tend to think in terms of manipulating large data 

structures, such as grids, matrices, etc. In contrast, in current message-passing languages 

each process can access only the local address space of the processor on which it is executing. 

Thus, the programmer must decompose each data structure into a collection of pieces, each 

piece being "owned" by a single process. All interactions between different parts of the data 

structure must then be explicitly specified using the low-level message-passing constructs 

supported by the language. 

Decomposing all data structures in this way and specifying communication explicitly can 

be extraordinarily complicated and error prone However, there is also a more subtle problem 

here. Since the partitioning of the data structures across the processors must be done at 

the highest level of the program, and each operation on these distributed data structure 

turns into a sequence of "send" and "receive" operations intricately embedded in the code, 

programs become highly inflexible. This makes the parallel program not only difficult to 

design and debug, but also "hard wires" all algorithm choices, inhibiting exploration of 

alternatives. 

In this paper we present a programming environment, called Kalil, which is designed 

to simplify the problem of programming distributed memory architectures. Kali provides 

a software layer supporting a global name space on distributed memory architectures. The 

computation is specified via a set of parallel loops using this global name space exactly 

as one does on a shared memory architecture. The danger here is that since true shared 

memory does not exist, one might easily sacrifice performance. However, by requiring the 

user to explicitly control data distribution and load balancing, we force awareness of those 

issues critical to performance on nonshared memory architectures. In effect, we acquire 

the ease of programmability of the shared memory model, while retaining the performance 

characteristics of nonshared memory architectures. 

In Kali, one specifies parallel algorithms in a high-level, distribution independent manner. 

The compiler then analyzes this high-level specification and transforms it into a system 

1 Kali is the name of a Hindu goddess of creation and destruction who possesses multiple arms, embodying 
the concept of parallel work. 
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of interacting tasks, which communicate via message-passing. This approach allows the 

programmer to focus on high-level algorithm design and performance issues, while relegating 

the minor but complex details of interprocessor communication to the compiler and run-time 

environment. Preliminary results suggest that the performance of the resulting message­

passing code is in many cases virtually identical to that which would be achieved had the 

user programmed directly in a message-passing language. 

This paper is a continuation of our earlier work on compiling high level languages to 

parallel architectures. In [10] we described the analysis required for mapping such languages 

to hierarchical shared memory machines, while [10] extended that work to distributed mem­

ory machines. This work was based solely on compile-time extraction of communication 

patterns, an approach feasible for a wide range of numerical algorithms. However, in some 

cases, the compiler lacks adequate information at compile time to fully extract of the commu­

nication pattern. In [11] we looked at these other cases, and at the run-time code necessary 

for extraction of communication patterns and for data movement during program execution. 

The Kali environment contains support for both compile-time and run-time extraction of 

communication patterns. Compile time analysis is preferable, whenever feasible, since run­

time analysis is expensive. However, there is a wide class of algorithms involving dynamic 

data structures when one must rely on run-time analysis. The Kali environment appears 

to be the first environment combining both approaches, and can thus efficiently support 

a wide range of applications. This paper presents a general framework for the analysis 

and transformation of source code required to support the extraction of communication 

patterns both at compile-time and at run-time. We also give performance figures, showing 

the advantage of compile-time analysis, in cases where it is applicable, but also showing 

that the costs of run-time analysis are generally manageable, when compile-time analysis is 

impossible. 

The organization of this paper is as follows. Section 2 presents our general framework 

for analysis. After that, section 3 focuses on compile-time analysis, and section 4 focuses on 

run-time analysis. Both sections include performance data for Kali programs automatically 

mapped to an Intel iPSC/2 hypercube. Then in section 5, we compare our work with other 

groups, and finally section 6 gives conclusions. 

2 General Method 

In this section we describe the general framework required for analyzing and mapping Kali 

programs to distributed memory machines The approach followed here concentrates on loop 

level parallelism. Five tasks must be performed in order to map a parallel loop accessing a 
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shared name-space onto a distributed memory machine: 

1. Data Distribution. The program's data must be distributed among the processor 

memones. 

2. Iteration Distribution. The loop iterations must be divided amongst the processors. 

3. Communications Set Generation. The sets of array elements referenced by other pro­

cessors must be identified. 

4. Communications Implementation. The message-passing statements implementing non­

local references on each processor must be generated using the sets from the last step. 

5. Computation Implementation. The actual computation performed in the loop must 

be implemented. 

The next four subsections of this paper present the above steps in a general setting 

Section 2.5 describes compile-time and run-time analysis, both of which are based on this 

method. 

We illustrate our work using Kali, a set of extensions which can be applied to any imper­

ative language to express parallelism [18]. There are constructs for defining data distribution 

and parallel loops, but no explicit communication between processors. The compiler gen­

erates the communications needed to correctly implement a program. This gives the user 

responsibility for the first two tasks, and the complIer responsibility for the remainder. We 

have chosen this division for pragmatic reasons. The user tasks can be specified at a high 

level and have a great impact on performance; therefore, it is appropriate to allow the user 

to specify them. The compiler tasks, on the other hand, demand low-level programming; we 

feel that such details are better left to the compiler. In this paper, we will concentrate on 

the compiler tasks. 

To illustrate low-level details of the generated code we will use pseudocode based on 

BLAZE, a predecessor of Kali [17]. It is understood that this sort of code would not be 

written by the Kali programmer, but only serves to illustrate the internals of the algorithms. 

2.1 Data Distribution 

The first step in our method is to choose the distribution patterns to be used for the arrays 

in the program. Following [12], we define the distribution pattern of an array as a function 

from processors to sets of array elements. If P is the set of processors and A the set of array 

elements, then 

local: P --t 2A : local(p) = {a E A I a is stored locally on p} (1) 
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processors Proe : array[ l..P ] with P in 1 .. max-proes; 

var A, B : array[ l..N ] of real dist by [ block] on Proes; 
C : array[ l..N, l..M ] of real dist by [ cyclic, * ] on Proes; 
permute: array[ l..N ] of real dist by [ block] on Proes; 

forall i in l..N on A[i].1oc do 
A[i] := B[ permute[i] ]; 

end; 

Figure 1: Kali syntax for distributing data and computation 

where 2s is the class of subsets of set S. In this paper we will assume that the sets of local 

elements are disjoint, reflecting the practice of storing only one copy of each array element 

We also make the convention that array elements are represented by their indices, which we 

take to be integers (or vectors of integers for multI-dimensIOnal arrays). If there are several 

arrays in an example, we will use subscripts to differentiate between their local functions. 

Kali provides notations for the most common distribution patterns. Data arrays can be 

distributed across the processor array Proc using dist clauses, also shown in Figure 1. The 

processors array, Proc, is declared as a one-dimensional array with P processors where the 

value of P is chosen at run-time to be between 1 and max_procs.2 Arrays A and Bare 

distributed by block, which assigns a contiguous block of array elements to each processor. 

This gives them a local function of 

localA(p) = {~ I (p - 1)· r ~l + 1 ::; ~::; p r ~l } (2) 

Array C has its rows cyclically distributed. Here, if P were 10 processor 1 would store 

elements in rows 1, 11, 21, and so on, while processor 10 would store rows which were 

multiples of 10. Its local function is 

localc(p) = {(i,)) I ~ = p (mod P)} (3) 

Other static distribution patterns are available in Kali, and we are working on extensions 

to dynamic distribution patterns. In this paper we will only consider block and cyclic 

distributions, however. 

2.2 Iteration Distribution 

The next task in implementing shared name-spaces on non-shared memory machines is to 

divide the iterations of a loop among the processors. This can be modeled mathematically 

lFor further information on such declarations and other Kali syntax, refer to [18]. 
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forall i E rangeA on A[i] loc do 

A[f(l)] ... 

end; 

Figure 2: Pseudocode loop for subscript analysis 

by a function similar to the local function. If P is the set of processors and I the set of loop 

iterations, then 

exec: P ~ 21 : exec(p) = {1. Ell? is executed on p} (4) 

Again, we assume that iteration sets are disjoint and that iterations are represented by the 

value of the loop index. 

In Kali, parallel loops are specified by the forall construct illustrated in Figure 2. A 

forall is essentially a for loop in which there are no inter-1.teration data dependences, as 

defined in [1, 30]. This lack of dependence allows all loop iterations to be executed in 

parallel. It also implies that all data needed for.a forall iteration is available prior to the 

execution of the loop. There is an implied barrier synchronization at the end of a forall 

loop, so that values can be written out before they are used in the rest of the code. The on 

clause of a Kali forall specifies the processor to execute each iteration of the loop. In effect, 

this determines the exec function for that forall. In Figure 1, the on clause specifies that 

iteration i of the forall will be executed on the processor storing element i of the A array 

Thus, in this example, 

exec(p) = localA(p) (5) 

In general, the on clause can refer to either the processor array itself or to a data array with 

an arbitrary subscript. In these cases, the exec function is the inverse of the expression in 

the on clause [12]. 
Foralls are one of the most common forms of parallel loops, but certainly not the only 

one, as shown by the doacross [7] and doconsider [19, 26] constructs. We are working to 

extend our research to other parallel constructs. 

2.3 Communication Set Generation 

The next task in translating forallioops onto non-shared memory machines is to generate 

sets describing the necessary communication. This entails an analysis of array references to 
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determine which ones may cause access to non-local elements. This section describes the 

analysis in general terms, while the next will use its results to guide code generation. 

We consider forallioops of the form shown in Figure 2. This form makes three simplifying 

assumptions: 

1. Only one array A is referenced within the loop. In a theoretical sense, this is not a 

serious limitation since the local functions of multiple arrays can be applied as needed. 

2. The forallioop bounds and on clause specify that the forall iterates over elements of 

the array A. A more general on clause adds complexity to the exec(p) sets and sets 

derived from them, but does not cause any theoretical problems. 

3. A[fC't)] is assumed to be an r-value, i.e. referenced but not assigned to. Thus, we need 

only consider reading non-local data. If A[J(1.)] is assigned to, a dual analysis can be 

performed to reveal which non-local array elements have values assigned to them. 

Figure 2 also portrays A as a one-dimensional array. All of our analysis will also apply to 

multi-dimensional arrays if the index i is taken to be a vector rather than a scalar. Similarly, 

while we will only consider a single array reference, the methods shown also apply when 

there are multiple references 

We define four functions to generate the necessary sets. 

send...set : P X P -+ 2A : 

send...set(p, q) = {a E A I a must be sent from p to q} 

recv...set : P X P -+ 2A : 

recv...set(p, q) = {a E A I a must be received by p from q} 

local..iter : P -+ 21 : 

localJ.ter(p) = {t E I I t is executed on processor p 

and accesses no nonlocal array elements} 

nonlocaLiter : P -+ 21 : 

nonlocaLiter(p) = {i E I I i is executed on processor p 

and accesses some nonlocal array elements} 

(6) 

(7) 

(8) 

(9) 

We refer to send...set and recv...set as the communication sets and locaLiter and nonlocaLtter 

as the iteration sets. 
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To derive more useful definitions for the above sets, we introduce two auxiliary functions. 

ref: P ~ 2A: 

ref(p) = {a E A I Processor p accesses element a} (10) 

deref: P ~ 21 : 

deref(p) = {i E I I Iteration i accesses only data stored on p} (11) 

By definition, ref(p) is generated by references made on processor p. In Figure 2, references 

can only be made in one way: an iteration i executed on p references element A[f(~)]. The 

only iterations executed on p are elements of exec(p), so the only array elements referenced 

are f(i) where i E exec(p). Thus, ref(p) = f(exec(p)). Similarly, deref(p) = f-l(local(p)). 

Equation 6 suggests an expression for send...1let(p, q): it consists of array elements stored 

on p (Le. in local(p)) but accessed on q (in ref(q)). Thus, send...1let(p, q) = local(p) n 
ref(q). A similar analysis shows recv...1let(p, q) = ref(p) n local(q). The set locaLtter(p) 

consists of iterations performed by p (in exec(p)) which access only data on p (in deref(p))j 

thus, locaLtter(p) = exec(p) n deref(p). Finally, nonlocaL~ter(p) is the complement of 

locaLtter(p), so nonlocaL~ter(p) = exec(p) - deref(p). These expressions are collected 

below for reference. 

ref(p) f(exec(p)) (12) 

deref(p) - f-l(local(p)) (13) 

send...set(p, q) local(p) n ref(q) (14) 

recv...set(p, q) ref(p) n local(q) (15) 

locaLtter(p) exec(p) n deref(p) (16) 

nonlocaLiter(p) - exec(p) - deref(p) (17) 

Note that send...set(p,q) = recv...set(q,p), as one would expect. 

The generated sets can be visualized for block distributions in two dimensions, as shown 

in Figure 3. In this case, processors are represented by ordered pairs of the form (p1, p2). Be­

cause of the form of the on clause, the exec( (p1, p2}) sets are the same as the local( (p1, p2}) 

sets. These sets are represented by the large dashed squares in the figure. When the sub­

script functions have the form f(i) = i + c in each dimension, as in the figure, ref(p) is a 

shift of exec(p). One instance of this is shown as the solid square. Intersections between 

the sets are the overlapping regions, labeled as areas 1, 2, and 3. Since area 1 is the inter­

section of ref({p1,p2}) and local({p1,p2 + 1}), it represents recv...1let({p1,p2}, (p1,p2 + 1}) 

(or, equivalently, area 1 represents send...1let( {p1, p2 + 1}, (p1, p2})). Similarly, areas 2 and 3 
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processors Procs : array[ l..P, l..P ] with P in l..sqrt_max..,procsj 
var A, B : array[ l..N, l..N ] of real dist by [ block, block] on Procsj 

forall i in 2 .. N, j in l..N-3 on A[i,j].loc do 
A[ i, j ] .= A[ i, j ] - B[ i-1, j+3 ]j 

endj 

localA( (p1, p2)) = exec( (p1, p2)) 

l localA( (p1, p2 + 1)) 
_____________ , _______ t ______ _ 

I 
I 

re!B( (p1, p2)) 
= glexec((p1,p2))) 

~+_---___y--- area 1 

r 

I 
I 
I 
I --------,-----

I 
I 
I ________ .J 

I 

area 2 

\l; _______ ---I~ __ area 3 
I 
I 
I 
I 
I 
I 

l~=l~~(~[:.-~~; ------r-----' 
localA( (p1 - 1, p2 + 1)) 

J ;II 

Figure 3: Visualizing subscript analysis 
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represent other send....set and recv....set sets. The figure does not show the deref( (pI, p2)) or 

the iteration sets, but a similar visualization is possible for them. 

Note that our general method does not specify when the sets must be generated, nor 

how they are to be stored. The compiler is free to perform the analysis deriving the sets 

whenever the information concerning the subscript functions is available. As we show in 

Sections 3 and 4, different programs may allow the analysis be performed at either compile­

or run-time. 

2.4 Communication and Computation Implementation 

The implementations of the communication and computation phases of a program are inti­

mately related, and we treat them together in this section. Several issues arise in such an 

implementation: 

1. When and how is nonlocal data received and stored? Clearly, data stored on other 

processors must be received and stored locally before it can be used. 

2. When is data sent to other processors? In a sense, this is the converse of the last point. 

Any data received by one processor must be sent by another. 

3. How is communicated data accessed? It is not enough to send and receive the data; a 

processor must also be able to access the correct sections of the data it receives. 

4. In what order should the computations be done? Reordering loop iterations can result 

in better performance. 

The choices made in dealing with anyone these issues have implications for the other issues, 

so the design of the implementation must be integrated carefully. In Figure 4 we outline the 

code implementing the pseudocode program of Figure 2 on a typical processor p. A more 

detailed discussion of the implementation is given below. 

Our generated code addresses sending and receiving data by a prefetch strategy in which 

sends data as soon as it is available and receives data just before it is needed. In the case 

of rorall loops, all data is available before the 100Pi thus processors send their data to 

other processors immediately. Similarly, iterations which need nonlocal data do not begin 

execution until all data has been received. This arrangement ensures that the nonlocal rorall 

iterations can be executed without interruption once they have begun. 

Iterations in the local iteration loop can access the local sections of arrays directly. This 

is not always the case for the nonlocal iterations. If there is more than one array reference 

in the loop, some of the references are local while others are nonlocal; thus, a locality test 
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-- Send local data to other processors 
for q E P - {p} do 

if (send_set(p, q) f 4» then 
send( q, A[send_set(p, q)] ); 

end; 
endj 

-- perform local iterations (no communicated data needed) 
for i in locaUter(p) do 

... A[!(i)] ... 

end; 

-- receive nonlocal data 
for q E P - {p} do 

if (recv_set(p, q) f 4» then 
buffer[ q, recv_set(p, q) ] := recv( q )j 

end; 
endj 

-- perform remaining iterations (using communicated data) 
for i E nonlocat~ter(p) do 

if ( f( i) E local(p)) then 
tmp := A[f(i)]; 

else 
tmp := search_buffer( buffer, f(i) )j 

end; 

end; 

Figure 4: Code implementing Figure 2 on processor p 
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is necessary before performing the reference. After the test, the reference can be satisfied 

from either the communications buffer or the local array section as needed. If it can be 

shown that all references have the same behavior on a given loop iteration (for example, if 

a subscript is repeated), the test can be eliminated. The communications buffer access may 

involve as little as an indirection into the array or as much as a general search, depending 

on the data structure used for the buffer. Sections 3 and 4 use different techniques in this 

regard because of their different requirements. 

We make one other optimization in our generated code: computation and communication 

are overlapped where possible. This is done by executing the local loop iterations before 

receiving data from other processors, giving the messages time to reach their destinations. Of 

course, if all iterations are nonlocal, no overlap will occur, but this situation is unavoidable. 

It should be pointed out that this optimization requires the dependence-freedom guaranteed 

by the forall loop semantics. 

2.5 Compile-time Versus Run-time Analysis 

The major issue in applying the above model is the analysis required to compute the com­

munication and iteration sets. It is clear that a naive approach to computing these sets at 

run-time will lead to unacceptable performance, in terms of both speed and memory usage. 

This overhead can be reduced by either doing the analysis at compile-time or by careful 

optimization of the run-time code. 

In some cases we can analyze the program at compile time and precompute the sets 

symbolically. Such an analysis requires the subscripts and data distribution patterns to be 

of a form that allows closed form expressions for the communications sets. If such an analysis 

is possible, no set computations need be done at run-time. Instead, the expressions for the 

sets can be used directly. Compile-time analysis, however, is only possible when the compiler 

has enough information about the functions local, exec, and the index function, I, used to 

reference the array elements so as to produce simple formulas for the sets. We describe 

compile-time analysis in Section 3. 

In many programs the sets for a forallioop do not have a simple description computable 

at compile time. In such cases, the sets must be computed at run-time using general-purpose 

representations. However, the impact of the overhead from this computation can be lessened 

by noting that the variables controlling the communications sets often do not change their 

values between repeated executions of the forallioop. Our run-time analysis takes advantage 

of this by computing the communication sets only the first time they are needed and saving 

them for later loop executions. This amortizes the cost of the run-time analysis over many 

repetitions of the forall, lowering the overall cost of the computation. Section 4 describes 
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the details of this method, and shows that it can produce acceptably efficient programs. 

3 Compile-time Analysis 

3.1 Analysis 

Many scientific applications have very regular array access patterns. These access patterns 

may arise from either the underlying physical domain being studied or the algorithm being 

used. Examples of such applications include 

1. Dense linear algebra operators, such as matrix multiplication and Gaussian elimination 

2. Relaxation algorithms on regular meshes 

3. Alternating Direction Implicit (ADI) methods 

The distrIbution and subscripting functions used in such applications tend to be simple: 

some type of block or cyclic distribution, along with linear subscript functions. With 

such functions, the communication and iteration sets can often be described by a few scalar 

parameters (such as low and high bounds on a range). Such a representation is very space­

efficient and can be calculated quickly if analytic expressions are avaIlable for the parameters. 

With such representations, computing the communication and iteration sets becomes either 

a set of constant declarations or a few integer operations. We refer to the analysis for these 

cases as comp7,le-time analys7,s. 

The general methodology of compile-time analysis is 

1. Restrict attention to specific forms of subscript (e.g, linear functions of rorall indices) 

and distributions (e.g, block distribution). 

2. Derive theorems giving closed-form expressions for the communication and iteration 

sets based on the subscript and distribution forms chosen. 

3. Generate code to evaluate the closed-form expressions given by the theorems. 

4. Control communication and iteration in the compiled code by using the results of the 

expressions above. 

Steps 1 and 2 are done when the compiler is designed, and steps 3 and 4 are part of the code­

generation strategy. Details of this approach can be found in [12], which derives the theorems 

for compiling linear subscript functions with block or cyclic distributions. Compile-time 

analysis leads to extremely efficient programs, but the price paid is some loss of generality. 
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var A : array[ l..N, l..N ] of real dist by [ cyclic, * ] on Procsj 

for k in l..N-l do 

forall i in k+ 1 .. N on A[i, *] lac do 
for j in k+ 1 .. N do 

A[i,j] := A[ij] - A[k,j] * A[i,k] / A[k,k]j 
endj 

endj 

endj 

Figure 5: Kali program for Gaussian elimination 

If no simple descriptions of the sets are obtainable, then this style of analysis cannot be 

used. In this paper, we will illustrate compile-time analysis by applying it to the program 

for Gaussian elimination shown in Figure S. 

In the case of Gaussian elimination, all subscripts that could cause nonlocal references 

are invariant with respect to the forallioop. For purposes of analysis, these can be treated 

as constant functions. No restrictions on the array distributions are necessary to derive the 

following theorem. 

Theorem 1 If the subscriptmg junct'LOn m a forall loop is f( 't) = C for some constant c/ 

then 

ref(p) { ~c} if exec(p) =/: 4> 
(18) -

if exec(p) = 4> 

deref(p) 
{ Iter tf c E local(p) 

4> if c f/. local(p) 
(19) 

recv....set(p, q) - { ~c} if c E local ( q) and ex ec(p) =/: 4> 
(20) otherwise 

send....set(p, q) { ~c} if c E local (p) and ex ec( q) =/: 4> (21) - otherwise 

locaLiter(p) - { ~xec(p) if c E local(p) 
(22) 

otherwise 

nonlocal_iter(p) 
{ :xec(p) 

if c E local(p) (23) - otherwise 

where Iter is the entire range of the forall loop. 

The full proof is given in [12]. In essence, it formalizes the observation that exactly one 

processor will store a given array element. 
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local(p) 

exec(p) 
ref(p) 

deref(p) 

send...set(p, q) 

recv...set(p, q) 

locaLiter(p) 

nonlocaLiter(p) 

- {(i,j) I ~ = p (mod P), 1 ~ ~,J ~ N} 

- local(p)n{k+1,k+2, ... N} 

- {(k,J) I k + 1 ~ j ~ N} 
_ {{ ~ I k + 1 ~ ~ ~ N} if k = p (mod P) 

¢> otherwise 

_ {{(k,j) Ik+1~j~N} ifk=p (modP)andp~q 
¢> otherwise 

{ 
¢> if k = q (mod P) and p ~ q 

- {(k,j) I k + 1 ~ J ~ N} otherwise 

- { 
- { 

exec(p) 
¢> 

¢> 
exec(p) 

if k == p (mod P) and p ~ q 
otherwise 

if k == p (mod P) and p ~ q 
otherwise 

Figure 6: Sets generated for A[k, j] in the Gaussian elimination example 

To derive the communication and iteration sets for reference A[k, J]' we substitute Equa­

tion 3 as necessary for local in Equations 19 through 23 and replace c by k. The J term in 

the reference is handled by including all elements in j's range as the second element in an 

ordered pair. Figure 6 shows the resulting sets. A similar set of functions can be derived for 

A[k, k]. 
Given the sets shown in Figure 6, it is a simple matter to implement the program on 

a non-shared memory machine. Code is emitted to check if sets are empty or not, and if 

they are nonempty to calculate the set bounds. Because the pivot row must be sent to all 

processors (formally, since send...set(p, ql) = send...set(p, q2) for all ql, q2 E P - {p}), the 

messages can be sent as a broadcast. Having known bounds on the sizes of the messages 

allows them to be stored as arrays, thus avoiding a more expensive access search. No tests for 

locality need be made, since either both A[k,j] and A[k, k] are local or neither is. Figure 7 

shows the resulting implementation on processor p. This is precisely the code generated by 

the Kali compiler, translated to pseudocode for clarity (The actual target language is C.) 

Some minor optimizations, such as combining the two broadcasts into one operation, could 

still be applied to the program, but even in this form the performance is quite acceptable. 

14 



for k E {1,2, ... N -1} do 

var tmp1 : array[ l..N ] of realj 
tmp2: realj 

- - send (broadcast) messages 
if( k == p (mod P) ) then 

tmpl[k+1..N] := a[k,k+1..N]j 
send( Proc - {p}, tmp1[k+1..N] )j 
tmp2 := a[k,k]j 
send( Proc - {p}, tmp2 )j 

end; 

- - no local ~terattOns 

- - recezve messages 
if( k 1:- p (mod P) ) then 

tmp1[k+1..N] := recv( (k - 1) mod P + 1 )j 
tmp2 := recv( (k - 1) mod P + 1 )j 

endj 

- - nonlocal derations 
for ~ E {k + 1, k + 2, ... N} n local(p) do 

for J E {k + 1, k + 2, ... N} do 
A[i,j] := A[iJ] - tmp1[J] * A[i,k] / tmp2j 

end; 
endj 

end; 

-- from reference a[k,J} 

-- from reference a[k,k} 

-- from reference a[k,j} 
-- from reference a[k,k} 

Figure 7: Pseudocode for Gaussian elimination on processor p 
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Performance for N = 32 

Processors Total time Computation Communica tion Speedup 
1 0.2959 0.2773 0.0095 0.93 
2 0.1809 0.1458 0.0347 1.53 
4 0.1229 0.0760 0.0466 2.25 
8 0.0999 0.0412 0.0589 2.77 
16 0.0941 0.0233 0.0708 2.94 
32 0.0963 0.0143 0.0826 2.88 

Performance for N = 512 

Processors Total time Computation Communication Speedup 
2 611.91 606.71 2.38 1.93 
4 307.24 303.17 2.95 3.85 
8 155.70 151.59 3.53 7.60 
16 80.34 75.91 409 14.73 
32 43.10 38.32 4.67 27.47 

Table 1: Performance of Gaussian elimination program 

3.2 Performance 

To evaluate the effectiveness of compile-time analysis, we integrated it into the Kali compiler 

for the Intel iPSC/2. The compiler as now implemented analyzes subscripts of the form i+ c 

and c - i, where i is the forall loop index, as well as constant subscripts. In the future we 

plan to add analysis for the more general case of coi + Cl. We report here on performance 

tests of the Gaussian elimination program of Figure 5. 

The Gaussian elimination program was run for several values of N and using all the 

possible numbers of processors on the iPSC/2. For each combination, three timings were 

obtained: the total time for the program, the time for computation only, and the time for 

communication only. To avoid clock granularity problems on the shorter runs of the program, 

we added an outer loop to repeatedly execute the elimination and divided the raw times by 

the number of outer loop iterations. Table 1 gives the resulting times in seconds for N = 32 

and N = 512, the smallest and largest array sizes we tested. Copying the pivot row into 

the temporary array was included in the communication time. Note that this results in an 

apparent communication overhead even for a single processor; this is realistic, since a single 

processor would not make a copy ofthe pivot row. The communication time could be made 

effectively zero by inserting a test to determine if only one processor was in use. Table 1 

also gives the speedup, defined as the total computation time divided by the computation 

time on one node. Given the available data, this compares the Kali program to the "best" 
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Figure 8: Speedup of Gaussian elimination program 

sequential program. Memory restrictions did not. allow the 512 X 512 matrix factorization 

to be run on one processor. In that case, the single-processor time for calculating speedup 

was estimated from its operation count and the time for smaller problems. Figure 8 graphs 

the speedup curves for all matrix sizes tested. 

The Kali program does not achieve perfect speedup for any case tested for two reasons: 

1. The computation time does not scale linearly. In this case, the deviation from linear 

speedup is due to imperfect load balancing, which becomes negligible for larger problem 

sIzes. 

2. The communication overhead is significant, particularly when the number of rows per 

processor is small. This is inherent in the algorithm, since any implementation using 

distributed data must communicate nonlocal data. 

Any parallel program would have the communication overhead, but might avoid load bal­

ancing problems. We therefore calculated "perfect" parallel times by adding the measured 

Kali communication time to the single-processor computation time divided by the number 

of processors. These times served as a realistic comparison to the actual Kali run times. The 

results of this comparison are shown graphically in Figure 9. Note that the Kali programs are 

very close to the "perfect" times in all of the graphs, in many cases being indistinguishable. 

This is more clearly shown in Figure 10, which graph the ratio of the Kali program times to 
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the perfect program times. In those figures, the shape of the curves is less important than 

the vertical scale; it indicates that the Kali programs never have an overhead of more than 

9% on the iPSCj2 compared to the "perfect" programs. This shows that Kali is performing 

nearly as well as the best possible implementation on this example. 

4 Run-time Analysis 

4.1 Analysis 

The compile-time analysis, as described in the last section, is applicable if the distribution 

and the array indexing is of the form analyzable by the compiler. However, there are pro­

grams where the compiler does not have enough information to generate the communication 

sets at compile-time. This situation arises, for example, when using an unstructured mesh to 

solve partial differential equations [16]. The mesh is generally represented using adjacency 

lists which denotes the neighbors of a particular node of the grid. Figure 11 presents code 

to perform a "relaxation" operation on such an irregular grid. In this section we describe 

the code generated for run-time analysis using this code fragment as an example. 

Here, arrays a and old...a store values at nodes in the mesh, while array ad) holds the 

adjacency list for the mesh and coe! stores algorithm-specific coefficients. We assume that 

the grid is generated on the fly by some algorithm and hence the values in the array ad) 
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processors Proes : array[ l..P ] with P in l..nj 
var a, old_a: array[ l..n ] of real dist by [ block] on Procs; 

count: array[ l..n ] of integer dist by [ block] on Proes; 
adj : array[ l..n, 1..4 ] of integer dist by [ block, * ] on Procs; 
eoef: array[ l..n, 1..4 ] of real dist by [ block, * ] on Proes; 

- - code to set up arrays 'adj' and 'coer 

while ( not converged) do 

- - copy mesh values 
forall i in l..n on old_a[i].loc do 

old_ali] := a[i]j 
endj 

- - perform relaxatlon (computahonal core) 
forall i in l..n on a[i].1oc do 

endj 

var x: realj 
x:= 0 OJ 
for j in l..eount[i] do 

x := x + coefliJ] * old_a[ adj[i,j] ]j 
endj 
if (count[i] > 0) then a[i]:= Xj endj 

- - code to check converyence 

endj 

Figure 11: Nearest-neighbor relaxation on an unstructured grid 
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record 
froffi..,proc: integer; 
to"'proc: integer; 
low: integer; 
high: integer; 
buffer: Areal; 

end; 

- - sendmg processor 
-- recezvmg processor 
-- lower bound of range 
-- upper bound of range 
- - pomter to message buffer 

FIgure 12: Representation of recv...set and send...set sets 

are set at run-time before the routine itself is called. In the code, the arrays are shown 

distributed by block; proper distribution of the arrays in this case raises load balancing 

issues outside the scope of this paper. The forallioop ranges over the grid points updating 

the value with a weighted sum of the values at the grid point's immediate neighbors. 

The important point here is that the reference to old_a[adJ[i,J]] in this program creates 

a communications pattern dependent on data (adJ[i,j]) which cannot be fully analyzed by 

the compiler. Thus, the ref(p) sets and the communications sets derived from them must 

be computed at run-time. We do this by running a modified version of the forall called the 

mspector before running the actual forall. In Figure 13, the inspector is the code nested 

within the if statement at the beginning of the program. The inspector only checks whether 

references to distributed arrays are local. If a reference is local, nothing more is done. If the 

reference is not local, a record of it and its "home" processor is added to a list of elements to 

be received. This approach generates the recv...set(p, q) sets and, as a side effect, constructs 

the iteration sets local..iter(p) and nonlocal..iter(p). To construct the send...set(p, q) sets, we 

note that send...set(p, q) = recv...set(q, p). Thus, we need only route the sets to the correct 

processors. To avoid excessive communications overhead we use a variant of Fox's Crystal 

router [8] which handles such communications without creating bottlenecks. Once this is 

accomplished, we have all the sets needed to execute the communications and computation 

of the original forall, which are performed by the part of the program which we call the 

executor. The executor in Figure 13 consists of the two for loops over messages which 

perform the necessary communication and the two for loops over variable 't which perform 

the local and nonlocal computations. 

The representation of the recv...set(p, q) and send...set(p, q) sets deserves mention, since 

this representation has a large effect on the efficiency of the overall program. We represent 

these sets as dynamically-allocated arrays of the record shown in Figure 12. Each record 

contains the information needed to access one contiguous block of an array stored on one 

processor. The first two fields identify the sending and receiving processors. On processor p, 

the field from_proc will always be p in the out set and the field to_proc will be p in the m 
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set. The low and h~gh fields give the lower and upper bounds of the block of the array to be 

communicated. In the case of multi-dimensional arrays, these fields are actually the offsets 

from the base of the array on the home processor. To fill these fields, we assume that the 

home processors and element offsets can be calculated by any processor; this assumption 

is justified for static distributions such as we use. The final buffer field is a pointer to the 

communications buffer where the range will be stored. This field is only used for the in set 

when a communicated element is accessed. When the in set is constructed, it is sorted on the 

jrom-proc field, with the low field serving as a secondary key. Adjacent ranges are combined 

where possible to minimize the number of records needed. The global concatenation process 

which creates the out sets sorts them on the to-proc field, again using low as the secondary 

key. If there are several arrays to be communicated, we can add a symbol field identifying 

the arrayj this field then becomes the secondary sorting key, and low becomes the tertiary 

key. 

Our use of dynamically-allocated arrays was motivated by the desire to keep the im­

plementation simple while providing quick access to communicated array elements. An 

individual element can be accessed by binary search in O(logr) time (where r is the number 

of ranges), which is optimal in the general case here. Sorting by processor id also allowed 

us to combine messages between the same two processors, thus saving on the number of 

messages. Finally, the arrays allowed a simple implementation of the concatenation process. 

The disadvantage of sorted arrays is the insertion time of O(r) when the sets are built. In 

future implementations, we may replace the arrays by binary trees or other data structure 

allowing faster insertion while keeping the same access time. 

The above approach is clearly a brute-force solution to the problem, and it is not clear 

that the overhead of this computation will be low enough to justify its use. As explained 

above, we can alleviate some of this overhead by observing that the communications patterns 

in this foraH will be executed repeatedly. The adj array is not changed in the while loop, 

and thus the communications dependent on that array do not change This implies that we 

can save the recv...set(p, q) and send...set(p, q) sets between executions of the foraH to reduce 

the run-time overhead. 

Figure 13 shows a high-level description of the code generated by this run-time analysis 

for the relaxation foraH. Again, the figure gives pseudocode for processor p only. In this case 

the communications sets must be calculated (once) at run-time. The sets are stored as lists, 

implemented as explained above. Here, locaU~st stores locabter(p)j nonlocaUist stores 

nonlocaL~ter(p)j and recvJ~st and sendJist store the recv...set(p, q) and send...set(p, q) sets, 

respectively. The statements in the first if statement compute these sets by examining every 

reference made by the foraH on processor p. As discussed above, this conditional is only 
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Code executed on processor p: 

if ( firsLtime ) then - - Compute sets for later use 
localJist := nonlocalJist := sendJist := recv Jist := NILj 
for each 7. E locala(p) do 

endj 

flag := truej 
for each J E {I, 2, ... ,count[7.]} do 

if ( adj [i, j] ¢ localold..Jl(p) ) then 
Add old..a[ adj[i,j] ] to recvJist 
flag := falsej 

endj 
endj 
if ( flag) then Add i to localJist 

else Add i to nonlocalJist 
end; 

Form sendJist using recvJists from all processors 
(requ7.res global communication) 

endj 
for each msg E sendJ7.st do 

send( msg )j 
- - Send messages to other processors 

endj 
for each 7. E locaU7.st do 

Gngmal loop body 
endj 

- - Do local iterations 

for each msg E recvJist do - - Recewe messages from other 
processors 

recv( msg ) and add contents to rnsgJist 
endj 
for each i E nonlocaUist do - - Do nonlocal 'tterations 

x:= O.Oj 
for each j E {I, 2, ... , count[t]} do 

if ( ad) [1,,)] E localold...a(p) ) then 
tmp := old..a[ adj [i,j] ]; 

else 
tmp := Search rnsgJist for old_a[ adj[i,j] ] 

endj 
x := x + coef[i,j] * tmp; 

endj 
if (count[i] > 0) then ali] := Xj endj 

end; 

Figure 13: Message passing pseudocode for Figure 11 
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executed once and the results saved for future executions of the forall. The other statements 

are direct implementations of the code in Figure 4, specialized to this example. The locality 

test in the nonlocal computations loop is necessary because even within the same iteration 

of the forall, the reference old..a[ ad) [l,)]] may be sometimes local and sometimes nonlocal. 

We discuss the performance of this program in the next section. 

4.2 Performance 

To test the methods shown in Section 4, we implemented the run-time analysis in the Kali 

compiler. The compiler produces the inspector loop directly from the source program, em­

bedding calls to library routines for managing the various lists. We then compiled and 

benchmarked the program of Figure 11. 

We tested the program shown on several grids. Here we will focus on one typical example, 

a random modification of a square mesh with 4 nearest-neighbor connections. The base mesh 

is referred to as a "5-point star" in the hteraturej the modified mesh is designed to model 

unstructured meshes. To modify the mesh, 10% of the edges were randomly reset to other 

points. The points were numbered in row-major order in the original mesh. We will refer to 

this mesh as the "modified square" mesh. The meshes were created with torus wrap-around 

connections, thus giving each point exactly four neighbors. We also performed tests with 

other meshes, with similar results [12]. 

We varied the number of points in the mesh from 210 to 218 (corresponding to meshes of 

dimension 32 X 32 to 512 x 512). For each mesh size, we obtained five timings. 

1. The total time to execute the program. 

2. The time for the inspector. 

3. The time for the executor. 

4. The time for the computation only in the executor. 

5. The time for the communication only in the executor. 

As with the Gaussian elimination test, we added an outer loop repeating the computation to 

avoid clock granularity limitations and normalized the timings. The raw data for the largest 

and smallest meshes we tested are given in Table 2. The nonzero communication times for 

one node are attributable to checking the (empty) message lists and to clock granularity. 

Because the inspector is only executed once while the executor may be repeated many 

times, a straightforward calculation of the parallel speedup would be deceiving. Therefore, 

we computed speedup by assuming one inspector and 100 executor evaluations for all values 
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Performance for N = 1024, IT = 100 

Processors Total Inspector Executor Speedup 
time time Total Compo Comm. 

1 1.644 0.012 1.631 1.630 0.002 0.992 
2 0.939 0.008 0.930 0.851 0.072 1.737 
4 0.599 0.007 0.593 0.449 0.139 2.718 
8 0.395 0.007 0.388 0.245 0.139 4.120 
16 0.291 0.007 0.284 0.148 0.140 5.590 
32 0.239 0.007 0.233 0.094 0.140 6.792 

Performance for N = 262144, IT = 10 

Processors Total Inspector Executor Speedup 
time time Total Comp Comm. 

8 24.644 1.275 23.412 22.154 0.078 6818 
16 13.550 0.747 13.409 11.765 0.077 11.903 
32 8.083 0.466 7685 6.872 0.078 20.757 

Table 2: Performance of unstructured mesh relaxation program 
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of N. When a given graph could not be tested on one processor, its sequential time was 

estimated as in Section 3.2. Figure 14 graphs the number of processors against the parallel 

speedup for all problem sizes. 

As with the Gaussian elimination program, times for the unstructured mesh solver do 

not achieve perfect linear speedup. This can be attributed to three sources of overhead. 

1. The time to execute the inspector 

2. The communication time in the executor 

3. The search overhead in accessing nonlocal references 

The communication overhead is inherent in the algorithm, while the inspector and nonlocal 

access overheads are artifacts of our implementation. To take the inherent overhead into 

account in evaluating our program, we proceed as in Section 3.2 by comparing actual Kali 

performance to a "perfect" parallel program consisting of linear speedups in the computation 

added to our actual communication time. Figure 15 graphs this overhead as a ratio of the 

Kali time to the "perfect" program time; the overheads range from almost nothing to nearly 

100%. Thus, the cost of our implementation can be quite large. It should be noted that 

the overheads are generally lower for larger meshes; this suggests that performance will scale 

well for large problems of practical interest. 

Figures 16 and 17 break down the overhead into its inspector and nonlocal access com­

ponents. Note that the apparent exponential increase in these graphs is caused by the 

logarithmic scale on the horizontal axis; in reality, the increases are closer to linear relations. 

Figure 16 illustrates the inspector overhead by plotting the ratio of the inspector time and 

the "perfect" parallel time versus number of processors. This can be interpreted as the num­

ber of extra mesh sweeps that the inspector is costing. For example, a ratio of 2 means the 

inspector is effectively adding two passes through the forall to the total time; this is a 2% 

overhead if the forall is repeated 100 times, or a 200% overhead if the forall is executed once. 

The graph shows that inspector overhead is not a major factor in this test. Figure 17 shows 

the executor overhead as the ratio of executor computation time to the computation time 

with linear speedup. By design of the test, the computational load was perfectly balanced. 

Thus, the executor overhead is due to nonlocal element access. These overheads here are 

large; up to 211 %. It should be noted, however, that the nonlocal access overhead is inversely 

related to problem size. For the largest problem, the overhead is only 10% on 32 processors. 

This indicates that our search technique may be acceptable for large problems, which require 

the most computation time in any case. 
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5 Related Work 

There are many other groups that translate shared-memory code with partitioning annota­

tions into message-passing programs. Researchers have been particularly active in applying 

this approach to regular problems such as those considered in Section 3. A much smaller 

community has considered irregular problems like those in Section 4. We are the first group 

to unify compile-time and run-time analyses in a single system and provide efficient imple­

mentations for both cases. This section compares our work with both the compile-time and 

run-time analysis of other groups. 

Recent research on compiling regular programs includes [2, 4, 6, 9, 14, 21, 23, 24, 28,31]. 

All of these groups produce highly efficient code for the problems to which our compile-time 

analysis applies. One advantage of our work over most of these is that it allows overlap of 

communication and computation. No other groups specify how this can be done, although 

it appears that some of their methods could be adapted to do so. Some methods, such as 

[2,4, 14, 22, 28, 31], appear to be more generally applicable than our compile-time analysis. 

In particular, those methods can optimize some loops with inter-iteration dependences. We 

are working to extend our analysis to those cases. Code generation strategies for different 

groups also differ significantly from ours and from each other. In general, the approach used 

by other groups works from the innermost levels of loop nests outwards while ours emphasizes 

viewing the forallloop as a whole. Whether this accounts for the added generality of some 

other methods remains to be seen. 

Several significant extensions to the above work involve memory management. Gerndt 

[9] introduces the concept of "overlap" between the sections of arrays stored on different 

processors and shows how it can be automatically computed. Using such overlaps allows 

uniform addressing of local and nonlocal references, avoiding the explicit test needed in our 

methods. Overlaps have the disadvantage of sometimes allocating much more memory than is 

actually used, however. Tseng [28] has developed the AL language and its compiler targeted 

to the WARP systolic array. An important advance is that AL automatically generates 

the distribution for an array, including overlap information, given only the programmer's 

specification of which dimension is to be distributed. Distribution of computation follows the 

distribution of data, so the AL compiler effectively attacks all of the tasks listed in Section 2. 

Since AL targets only regular computations, it is unclear whether the same methods will 

apply to irregular problems. A large part of Chen and Li's work [13, 14] is also concerned 

with automatically distributing data among processors. The exact problem that they solve, 

however, is to determine sets of elements of different arrays which should be mapped to the 

same processor. This work needs some modification to determine the distribution pattern of 
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a single array. All three efforts are a significant advance over the current state of our work. 

We are working to develop similar methods for Kali. 

Of the researchers mentioned above, only [6, 14, 22] explicitly consider run-time message 

generation similar to Section 4. None of these groups either separate the message genera­

tion code into an inspector or save the information to avoid recalculation. Without these 

techniques, they report no speedup of parallel code using run-time analysis. 

Saltz and his coworkers [19, 20, 25, 26, 27] have independently been pursuing optimiza­

tions similar to our run-time analysis. They use an inspector-executor strategy identical to 

ours, but use different data structures to represent the communication sets. Saltz reports on 

two different schemes: 

1. A hash table scheme which is directly comparable to our sorted range lists. 

2. A scheme which enumerates all references in the forall separately, which avoids the 

locality test and hash table lookup overhead in the executor. 

Both schemes have lower time overheads than our sorted lists, but at a substantial cost in 

terms of space. (The enumeration scheme is the extreme case for both these statements.) 

They improve on our work by introducing the doconsider loop, which allows a form of 

pipelined execution. Early versions of this work used FORTRAN-callable subroutines to 

provide a convenient user interface to the inspector and executor; more recent work has 

produced a prototype compiler [25]. Another group doing similar work is Williams and 

Glowinski [29]. 

Other researchers have suggested a fundamentally different approach to implementing 

shared name-space programs on nonshared memory machines: demand-driven strategies 

based on paging [3, 5, 15]. We prefer our prefetch solution because it requires less system re­

sources, and because it can avoid certain pathological behaviors exhibited by paging systems 

No detailed comparison of the two approaches has been done, however. 

6 Conclusions 

Current programming environments for distributed memory architectures provide little sup­

port for mapping applications to the machine. In particular, the lack of a global name space 

implies that the algorithms have to be specified at a relatively low level. This greatly in­

creases the complexity of programs, and also hard wires the algorithm choices, inhibiting 

experimentation with alternative approaches. 

In this paper, we described an environment which allows the user to specify algorithms 

at a higher level. By providing a global name space, our system allows the user to specify 
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data parallel algorithms in a more natural manner. The user needs to make only minimal 

additions to a high level "shared memory" style specification of the algorithm for execution 

III our system; the low level details of message-passing, local array indexing, and so forth are 

left to the compiler. Our system performs these transformations automatically, producing 

relatively efficient executable programs. 

The fundamental problem in mapping a global name space programs onto a distributed 

memory machine is generation of the messages necessary for communication of nonlocal 

values. In this paper, we have presented a framework which can systematically and auto­

matically generate these messages, using either compile time or run time analysis of com­

munication patterns. Compile-time generation of communication can be done in restricted 

situations only. However, when applicable, this approach produces performance close to what 

can be achieved through handwritten code. We need to extend this approach to consider 

loop structures other than forall loops. 

The run-time analysis generates messages by performing an mspector loop before the 

main computation, which records any nonlocal array references. The executor loop subse­

quently uses this information to transmit information efficiently while performing the actual 

computation. 

The inspector is clearly an expensive operation. However, if one amortizes the cost of 

the inspector over the entire computation, it turns out to be relatively inexpensive in many 

cases. This is especially true in cases where the computation is an iterative loop executed a 

large number of times. 

The other issue effecting the overhead of our system is the extra cost incurred throughout 

the computation by the new data structures used. This is a serious issue, but one on which 

we have only preliminary results. In future work, we plan to give increased attention to 

these overhead issues, refining both our run-time environment and language constructs. We 

also plan to look at more complex example programs, including those requiring dynamic 

load balancing, to better understand the relative usability, generality and efficacy of this 

approach. 
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