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Abstract 

This paper describes a simulation to predict the 
susceptibility of an advanced avionics control sys- 
tem to electrical transients resulting in logic errors, 
latched errors, error propagation, and digital upset. 
The system is based on a custom-designed micropro- 
cessor, and it incorporates fault-tolerant techniques. 
The system being tested and the method of perform- 
ing the transient-injection experiment are described. 
Results for 2100 transient injections are analyzed and 
classified according to charge level, type of error, and 
location of injection. 

Introduction 

Digital system upset, as used herein, is caused by 
electrical transients and refers to the mode that a sys- 
tem can enter in which the system is not performing 
its intended function but in which no physical com- 
ponent failure is caused by the transient. This upset 
mode is inherent to digital computers and other sys- 
tems with discrete internal states. It is estimated 
(ref. 1) that 80 percent of computer "crashes" are 
caused by electrical transients. Digital control sys- 
tems onboard aircraft and spacecraft are exposed to 
many sources of electrical transients. Of particular 
interest are electrical transients produced by sources 
external to the system like lightning, high energy ra- 
dio frequency (HERF) transmitters, electromagnetic 
interference (EMI), and high energy particles. 

The application of digital systems to the control 
of critical functions necessitates the study of system 
susceptibility to upset by electrical transients. Upset 
studies have been performed in the past using hard- 
ware injection experiments (ref. 2) and simulation 
injection experiments (ref. 3). These hardware and 
simulation experiments were performed on identical 
systems, and the results were compared. The sys- 
tem test-bed was a general-purpose computer based 
on an Intel 8080 microprocessor. This system, how- 
ever, was not representative of avionics control sys- 
tems (electronic systems used in the control of air- 
craft functions), and the program that was executing 
during injections was not a real application program. 

The study of transient injections on digital sys- 
tems can yield two types of results-the understand- 
ing of the mechanisms by which electrical transients 
produce logic errors, error propagation, latched er- 
rors, and possible prevention strategies; and the im- 
pact of these errors on the overall functionality of the 
system and the possibility of system upset. Given 
that there is a logic error in the system, protec- 
tion schemes can prevent the system from enter- 
ing an upset mode. These protection schemes can 
be implemented by using specially designed hard- 

ware and software algorithms. This paper describes 
a simulation study of transient-caused logic errors, 
latched errors, error propagation, and pin errors (er- 
rors propagating to external pins) on a microproces- 
sor designed specially for avionics applications. The 
section "Simulation Methodology" describes the se- 
lected simulation program and the development of 
the program into the transient-injection and error- 
propagation analysis system. The section "Experi- 
ment Setup" describes initial runs to determine sim- 
ulation accuracy, injection waveform, gate-transistor 
combination requirements, and the processor used as 
the system under test. The simulated processor, the 
HS1602, was developed by Hamilton Standard and is 
the computational unit of an electronic engine con- 
troller (EEC). Detailed descriptions of the processor 
and two hardware units of the EEC were obtained 
from Hamilton Standard. Results for 2100 transient 
injections are presented in the section "Experimen- 
tal Results." An error-transition model is described 
in the section "Data Analysis," and a description of 
the feasibility of performing such assessment by using 
digital simulation is presented in the section "Upset- 
Assessment Outlook." 

Simulation Methodology 

The modeling of the transient-injection process 
(fig. 1) requires multiple levels of simulation. Circuit 
analysis is employed to obtain the  incidence of logic 
errors caused by the analog transients. Logic errors 
are then used in a logic level simulation (gate, func- 
tional) to determine error-propagation characteris- 
tics of the entire system under test. The SPLICE1 
(simulation program with large-scale integrated cir- 
cuit emphasis) mixed-mode simulator selected for 
the study can perform coupled-circuit analysis and 
logic simulation. A mixed-mode simulator eliminates 
the need for two separate programs and the inter- 
facing associated with data transfer, interpretation, 
and manipulation between the two programs. The 
SPLICE1 consists of the following three parts: 

1. The language (description) translator, which 
is similar to a compiler. The description 
listing of the circuit is analyzed for syn- 
tax errors, undefined arguments, connectivity, 
etc. A data file is generated that represents 
the circuit with initialization and run-time 
parameters. 

2. The simulator, which takes the circuit data file 
and performs the actual simulation. 

3. The postprocessor, which plots and prints 
selected node values against time from the 
simulation. 



The detailed implementation and characteristics of 
the SPLICEl simulator are documented in 
reference 4. 

Several modifications and enhancements have 
been made to the SPLICEl simulator for the 
transient-injection study. Typical injection of tran- 
sients is performed by connecting a current or voltage 
source at  the node where the injection is to occur. 
This method, however, requires the reprocessing of 
the entire circuit for changes in injection location and 
current characteristics. A new method was developed 
to allow the direct specification to the simulator of in- 
jection locations and electrical characteristics of the 
transient. This was accomplished by changes in the 
SPLICEl relaxation algorithm (ref. 5). The electri- 
cal characteristics of the transient are then specified 
as a mathematical expression as a function of time. 

The SPLICEl simulator was also enhanced by 
the creation of a utility to manipulate external data 
files during simulation to service modules that rep- 
resent external memory. Modeling large memories 
(random-access memory (RAM) and read-only mem- 
ory (ROM)) with SPLICEl primitives (models pre- 
defined in the SPLICEl description) was not feasi- 
ble. This utility allows the user to specify a memory 
device as a normal electrical device with all connec- 
tions and electrical characteristics associated with it. 
When the simulator processes the memory module 
during a memory access, the address is calculated 
and an external file is used to store or retrieve the 
value for the calculated memory location. 

Finally, two new facilities were developed for the 
output postprocessing. The first facility extends 
the output of SPLICEl from 16 to 80 nodes and 
produces an output only if any of the 80 selected 
output nodes changes value. It also converts the 
value of selected groups of nodes to a hexadecimal 
radix. This notation can aid in the identification 
of microprocessor operations by grouping the DATA 
and/or ADDRESS lines. The second new facility 
is an extended-trace facility that monitors all the 
nodes in the system, approximately 4000 nodes for 
the HS1602. Output is generated for a node every 
time a gate driving that node is evaluated by the 
simulator. Monitoring all nodes is essential for a 
study of fault propagation. 

Experiment Setup 

Processor Description 

The EEC's are typically full-authority, dual- 
channel jet-engine controllers. They incorporate 
fault-tolerant techniques at various levels. One chan- 
nel of the EEC, excluding the interfaces, was sim- 

ulated and used as the system being tested. An 
EEC application program was supplied by Hamil- 
ton Standard and was modified to account for the 
single-channel nature of the system being tested. The 
simulated EEC is based on the HS1602 16-bit mi- 
croprocessor. Integral to the microprocessor are a 
parity generator and parity-error detection, a watch- 
dog timer, and a universal transmitter and receiver. 
Other modules are the arithmetic logic unit (ALU), 
control unit, decoder unit, countdown unit, and mul- 
tiplexer. A gate-level description of the entire micro- 
processor was supplied by Hamilton Standard. The 
gate-level description is structured in a hierarchi- 
cal manner. Each basic submodule of the gate-level 
description was then described at  the transistor level. 
The simulation can be performed with any combi- 
nation of gate-level submodules or transistor-level 
submodules. An increase in transistor submodules 
results in a penalty in simulation execution time. 
Transistor models for the transistor-level submodules 
are CMOS (complementary metal-oxide semiconduc- 
tor) models similar to those found in analog circuit 
analysis tools, such as SPICE (simulation program 
with integrated circuit emphasis). Silicon param- 
eters for the transistor models were obtained from 
the manufacturer. Capacitance loads were calcu- 
lated from metallization lengths in the circuit layout. 
Metallization lengths supplied by the manufacturer 
were from VLSI (very large scale integration) CAD 
(computer-aided design) tools. 

Injection Waveform 

The current waveform used for the injections is 
the double exponential type, based on the following 
approximate analytical solution (ref. 6) for ion track 
charge collection: 

where a is the collection-time constant and ,O is the 
track-establishment constant. The values of a and ,O 
were set to 1 . 6 4 ~  10-lo and 5 . 0 0 ~  lo-'', respectively, 
for the injection experiment. The constant A is the 
approximate maximum current, and it was varied to 
produce charge accumulations of 0.5 to 9 PC. The 
charge level was limited to 9 PC, since charge levels 
higher than 9 pC cause permanent damage to the 
circuits (ref. 7). It was found, however, that for 
the CMOS technology modeled in this experiment, 
it was total charge, and not the time constants a 
and ,O, that determined the potential of the transient 
to cause logic errors. 

During transient injections, the simulated EEC 
was executing the initialization portion of the ap- 
plication software. The initialization consists of the 



watchdog test, parity test, instruction set test, RAM 
test, and ROM sum test. Also, initial data values are 
loaded in RAM during this part of the program. 

Initial Runs 

To establish simulation accuracy and increase 
confidence of results, an undisturbed simulation run 
was compared with the operation of the actual hard- 
ware unit. Two comparisons were made. The first 
verifies the correct flow and execution of instructions 
by monitoring data, address, and control lines during 
the time that these lines are stable (valid). Correct 
execution flow was observed for 74 instruction cy- 
cles (90 300 simulation steps). The second compari- 
son, which is more rigorous, monitors all changes in 
logical values, including transitional times. For the 
second comparison, 16 231 simulation steps were ana- 
lyzed. This comparison reveals electrical characteris- 
tics of the simulation, such as propagation delay, race 
conditions, and gate loading. This comparison, how- 
ever, is not completely deterministic, since some per- 
formance parameters in the actual hardware circuit, 
given the same conditions, vary from one experiment 
to the next. Gate delay, for example, can be mea- 
sured and specified as minimum, typical, and max- 
imum delay time. Differences in transitional times 
between the ~imulat~ion and the actual system were 
3 nsec or less after normalization. Normalization was 
needed because the actual system runs at 12.08 MHz 
and the simulation was set at 82 nsec per clock cy- 
cle (12.195122 MHz). Normalization consists of mul- 
tiplying the simulation times by a 1.009530 factor. 
Simulation resolution was 1 nsec; therefore, all time 
values were in 1-nsec increments. Differences in tran- 
sitional times are well within the acceptable levels of 
accuracy for the simulation. 

Gate-Transistor Module Combination 

For transient injections, the number of transistor- 
level submodules needed for accurate simulation was 
determined by experimentation. Simulations were 
performed with all gates at 1, 2, 3, 4, and 5 gate 
distances modeled at the transistor level, where gate 
distance is as defined in figure 2. For a combinatorial 
circuit, it was found that a minimum of three gate 
distances is needed for accurate simulation; that is, 
modeling gates at the transistor level at more than 
three gate distances does not change the results of 
the simulation. 

When latches in the circuit are within three gate 
distances of the transient-injection node, a minimum 
of four gate distances is required for consistent re- 
sults. Figure 3 shows an example of a circuit with a 
latch at two gate distances from the transient. In this 

example, the shaded gates and latch need to  be mod- 
eled at the transistor level for correct results. The 
transient injections for the gate-distance experiment 
were at the maximum 9-pC level. 

Experimental Results 

A total of 2100 transient injections were per- 
formed on the simulated processor. Seven nodes were 
randomly selected from each of the six major units. 
The nodes were injected with 10 electrical transients, 
with charge levels of 0.5, 1.0, 2.0, . . ., 9.0 PC, at five 
different times during program execution. The inci- 
dence of errors, as a function of charge level, is shown 
in table 1. A first-order error is defined as a logic er- 
ror that is present one clock cycle after the transient 
has been injected (i.e., latched error). Second-order 
errors are latched errors that are present two or more 
clock cycles after the transient. First-order pin errors 
are first-order logic errors that appear at the device 
pins. First-order pin errors are a subset of first-order 
latched errors. Functional errors were recorded when 
there was a change in the functional operation of the 
microprocessor. 

Injections with charge levels of less than 2 pC 
cause few or no errors. For charge levels from 2 
to 6 PC, there is an increase in all types of errors 
with increase in charge. Increasing the charge level 
above 6 pC does not have any significant effect on 
the number of errors. 

Table 2 shows first-order errors in the system for 
injections in each individual functional unit. First- 
order error is an approximation of the susceptibility 
of the module to the transient injection. As can 
be seen from the table, the watchdog and the ALU 
have the highest susceptibility to  transients, and the 
decoder, control, and countdown have about half the 
errors. Injections in the multiplexer did not produce 
any effect on the system. 

Because of the complexity of the software used 
in the EEC and the various recovery mechanisms 
implemented in software and hardware, a quanti- 
tative measurement of system upset was not fea- 
sible with digital simulation. During simulation, 
however, many of the mechanisms for recovery were 
observed. "Power on" resets were issued after some 
errors were detected by the processor as parity er- 
ror. This reset causes reinitialization and check of 
the RAM, PROM (programmable read-only mem- 
ory), etc. When the processor detects a parity er- 
ror, a parity-error counter is incremented and the 
suspected memory unit is "charged" with the par- 
ity error. The parity-error counter could be used 
at a later time to change control of the engine from 
one channel to  another. Another observed functional 



recovery was corrupted data values that were dis- 
carded because the values were out of range. 

To thoroughly evaluate the recovery mechanism 
and determine if the system would enter an upset 
mode after a functional error, the simulation would 
have to be run for several million machine cycles, 
and the functional outputs of the system would have 
to be monitored to determine if they were within a 
specified range. This translates into several weeks of 
simulation time for each transient injection, which 
makes the creation of a data base not viable. A 
simulation run of 10 msec real time, with 12 two- 
input logic gates and 2 D-type flip-flops modeled at 
the transistor level, requires approximately 130 hr of 
CPU time in a MicroVAX 11 computer. 

Data Analysis 
This section presents an analysis of the error- 

propagation probability by using an error transition 
model. That is, given an error in module A, what is 
the probability that the error source was module B? 
The results of this analysis are useful in identifying 
several critical aspects of the system: the identifica- 
tion of the critical-error propagation paths; the deter- 
mination of the module most sensitive to error prop- 
agation; and the module with the highest potential 
for causing external pin errors. Figure 4 is a state 
transition diagram, based on the measured data, to 
quantify the intermodule latched-error propagation. 
A state in the figure represents a system module that 
contains one or more errors. In this model, the sys- 
tem can be in more than one state at the same time. 
Given that errors exist in a module, the numbers in- 
side the state are average numbers of errors. When 
first-order latched errors exist in a module, they are 
not necessarily the results of an injection in that 
module. For example, although injections in the mul- 
tiplexer did not cause any latched errors, first-order 
errors were observed in the multiplexer after tran- 
sient injections in other modules. This is shown by 
the line from "FAULT INJECTION" to "MULTI- 
PLEX" (0.04) in the figure. 

Latched errors in the decoder unit do not propa- 
gate from other functional units. All latched errors 
that occurred in this unit were a result of the direct 
effect of the injected transient. The probability of a 
latched error in the decoder unit propagating to the 
pins is small (0.01). Thus, the decoder is not a criti- 
cal unit from a fault-propagation point of view. The 
model shows that the critical fault path in the system 
is between the control unit and the watchdog unit. 
Given a latched error in the control unit, the prob- 
ability that it propagated via the watchdog unit is 
0.32. Conversely, the probability of the control unit 
being the source of a latched error in the watchdog 

unit is also high (0.30). Although the one-way prop- 
agation probability is high in some cases (e.g., 0.63 
from the watchdog unit to the multiplexer), none has 
a higher two-way propagation probability. Therefore, 
if all other factors are equal, the best way to reduce 
intermodule error propagation is to protect the inter- 
connections between the watchdog and control units. 
Since a significant number of functional errors result 
from the second-order and higher order latched er- 
rors, the system level impact of providing this pro- 
tection is expected to be a decrease in the probability 
of functional errors. 

The model also shows that the modules with the 
highest potential to cause external pin errors are the 
watchdog and control units. Fifty-seven percent of 
all pin errors were a result of the latched errors in 
the watchdog and control units. The module most 
sensitive to fault propagation was the ALU. Of all 
functional units, an error occurrence in the ALU is 
likely to lead to the largest number of latched errors 
(9.89). Applying internal retry to ALU operations 
may be a successful way of reducing the number of 
latched errors. It is important that, with the ex- 
ception of the decoder, the probability of the tran- 
sient injection directly causing the latched errors is 
low. More than 95 percent of latched errors were 
caused by propagations from other latched errors in 
the ALU, control, countdown, watchdog, and multi- 
plexer. Also, 89 percent of pin errors were caused by 
latched-error propagation; therefore, error propaga- 
tion is critical in the study of highly reliable systems. 

Upset- Assessment Out look 
Testing the resiliency to upset of a hardware unit 

independently from its operating system software 
is not meaningful because of the interdependency 
between the hardware modules and the software pro- 
gram controlling the hardware resources. The appli- 
cation program is also usually involved in the hard- 
ware management and forms an integral part of the 
system and the upset-assessment process. (Appli- 
cation program is used in this context as the pro- 
gram that implements the control laws in a control 
system.) For example, electrical transients can be 
detected by the microprocessor as sensor failures. 
The microprocessor can synthesize the missing values 
from other sensors or transfer control to other chan- 
nels and shut itself down or enter other modes. Fig- 
ures 5 and 6 show hypothetical flow diagrams to illus- 
trate this example. Figure 5 shows no fault-tolerance 
techniques, while figure 6 shows some built-in fault 
tolerance. In figure 6, the validity of the reading from 
sensor A is determined based on other physical val- 
ues as illustrated by the comparison g(xl ,x2,x3) < 
value sensor A < f (xl ,  x2, x3), where g() and f () 



are functions of other sensors or calculated values. 
In this example, if the value sensor A is out of range 
two consecutive times, the sensor is assumed to be 
failed and other paths are taken to calculate control 
parameters. Physical characteristics of the control 
loop and control laws are therefore used to manage 
hardware resources. 

Previous work in the area of upset (ref. 8) identi- 
fied an upset dependency on software. This relation, 
however, was at  a low level of software (i.e., proces- 
sor instruction level). In this previous work, "illegal" 
loops were found within the correct program. The 
illegal loops are a result of multiword instructions. 
Multiword instructions typically have one, two, or 
three words. The first word is the instruction itself, 
and the second and third words are the data nec- 
essary to perform the instruction. The second and 
third words of a multilevel instruction are never read 
as an instruction under normal operation. If the pro- 
cessor is forced (e.g., with an electrical transient) to 
read a data word as an instruction, the processor can 
enter an illegal path or loop, where it no longer is ex- 
ecuting the code correctly. When the system is in 
this mode, reset or other corrective action is usually 
necessary. The HS1602 instructions, however, are 
single-word instructions, and no illegal loops exist. 
The upset-software dependency is at  a higher level, 
and the application and operating system are the de- 
termining factors in the upset susceptibility of the 
system, as illustrated by the example in this section. 

During transient-injection runs, the system did 
not enter an upset mode. The state of the system, 
however, was in many cases different than the state 
of the system for the undisturbed (gold) run. Within 
the scope of this experiment, it is impossible to pre- 
dict in a quantitative manner the impact that present 
system state would have had on the continued oper- 
ation of the system. Limited simulation runs and in- 
formal predictions based on observations of the oper- 
ation of the EEC system suggest that the occurrence 
of upset is an unlikely event. Thus, random tran- 
sient injection is not an effective method of uncover- 
ing upset in such systems. This situation is similar 
to  software testing for the detection of code design 
errors. In software testing, like in upset testing, ex- 
haustive testing is not an alternative because of the 
large state space, and partial testing only reveals the 
more probable errors. Also, upset testing, unlike nor- 
mally executed software, has to account for entry into 
sections of a program at any random location. Nor- 
mally executed software has predetermined entry and 
exit points, as defined by test (comparison) instruc- 
tions. The possibility of random entry into the code 
makes program flow analysis an extremely difficult 
task, and the result of the program flow analysis is 

limited by some of the assumptions that were made 
to make the problem tractable. Other mechanisms 
that contribute to the complexity of program flow 
analysis include watchdog timer updates; hardware- 
implemented, interrupt-driven, program flow control; 
hardware status checks; and corrective action during 
background program execution. Upset, a functional 
characteristic, can be separated between hardware 
and software in only the most simple of systems, 
when the results are almost trivial. Therefore, the 
study of upset on systems that incorporate recov- 
ery mechanisms, multiprocessing, and fault-tolerant 
techniques requires the analysis of the dependency 
of the code on the computational and combinato- 
rial units and on the physical mechanisms that cause 
changes in logic values and disruption of the data 
flow. Upset assessment of these systems could be 
performed by analytical means (i.e., program flow 
analysis, timing analysis, etc.) or a combination of 
analysis and digital simulation, where the analysis is 
used to extrapolate the results of the simulation. In 
systems with recovery mechanisms, deviation from 
an undisturbed path (compared with a gold system) 
does not imply that the system is not meeting its re- 
quirements. A prediction of the future state of the 
system can be attempted, by analytical means, from 
the present state of the system, which was obtained 
from the simulation after transient injections. 

Overall system functional testing also presents the 
problem of input-output dynamics. Since the control 
system is an element in a control loop, any control 
command issued by the control unit is fed back to its 
inputs in the form of parameter measurements and is 
used for following computations. Static inputs during 
upset testing will likely result in inaccurate results; 
thus, evaluation of the system should be performed 
in a closed loop. It is rarely possible or economically 
feasible to test a control unit in its normal control 
loop. Computer simulation of the mechanical devices 
in the loop is an alternative for closed-loop testing. 

Concluding Remarks 
A system for the analysis of electrical transient in- 

jection and error propagation was developed based on 
the SPLICE1 (simulation program with large-scale 
integrated circuit emphasis) multimode simulator. 
An electrical engine controller was used as the can- 
didate system for the tool development and injection 
experiments. The gate-transistor level mix for ac- 
curate results was obtained experimentally. For the 
modeled technology, no more than four gate distances 
need modeling at  the transistor level. Approximately 
25 percent of the electrical transient injections re- 
sulted in logic errors. Some modules were more 
susceptible than others to  transient-induced logic 



errors, ranging from approximately 37-percent error 
incidence for the ALU and watchdog to 0-percent in- 
cidence for the multiplexer. These results suggest 
that error recovery techniques can be applied to the 
more vulnerable modules in a discriminative man- 
ner to obtain a larger improvement from the added 
cost associated with implementing the error recovery 
techniques. Error recovery techniques that are im- 
plemented at a low level can be used to keep logic 
errors from propagating to other modules. 

In general-purpose systems that do not employ 
fault tolerance, the study of upset is performed by 
analyzing the internal states of the system. In- 
ternaa state monitoring through simulation stud- 
ies does not lead to upset susceptibility predictions 
on systems that incorporate recovery mechanisms 
and fault-tolerance techniques. Fault-tolerance tech- 
niques have indirectly addressed some of the weak- 
nesses that permitted system functional upset. Theo- 
retical development is needed in the area of hardware, 
software, implementation, and control-law depen- 
dency to further investigate the upset phenomenon. 
A "unified" theory will contribute to the study of 
upset and other areas of great interest, such as ultra- 
reliable systems. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
September 14, 1990 
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Table 1. Error Incidence 

Table 2. First-Order Errors by Functional Unit 

Charge level, 
PC 
0.5 
1 
2 
3 
4 
5 
6 
7 
8 
9 

Totals 

First- 
order errors 

1 
2 
9 

38 
52 
64 
72 
76 
77 
79 

470 

Functional unit 

Watchdog 
Multiplexer 
Decoder 
Control 
Countdown 
ALU 

Second- 
order errors 

0 
0 
0 

10 
14 
15 
17 
19 
22 
23 

120 

First-order errors 

132 
0 

68 
70 
70 
130 

Percent errors per injection 

37.7 
0 

19.4 
20.0 
20.0 
37.1 

First-order 
pin errors 

0 
0 
5 

23 
30 
34 
37 
4 1 
42 
43 

255 

Functional 
errors 

0 
0 
7 

17 
24 
29 
29 
29 
29 
29 

193 
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Figure 1. Transient-injection process. 
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Figure 2. Gate distance from injection node in combinatorial circuit. 
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Figure 3. Gate distance in circuit including latches with shaded areas modeled at  transitor level. 
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Figure 5. Flow diagram without fault tolerance. 
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Figure 6. Flow diagram with built-in fault tolerance. 
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