i e e S
)G e

B s .5’A;2:5:35?!
] DATA MANAGEMENT SYSTEM

(DMS) TESTBED USER’S MANUAL
- DEVELOPMENT

B (NASA-CR-137391) DATA MANAGEMENT SYSTEM N91-13093
(DMS) TESTBED USER'S MANUAL DEVFLOPMENT,
VOLUMES 1 AND 2 (Softech) 98 p cscL 098 et

- nclas

G3/61 0312534

- - J.G. McBride

~ SofTech, Inc.

N. Cohen

. , o~ - SofTech, Inc.

. g e OctOber 31, 1986

Cooperative Agreement NCC 9-16
- : “Research Activity No. SE.2

S O

B - é%;? ~~N~F =~

Research Institute for Computing and Information Systems
University of Houston - Clear Lake

- T-E-C-H-N-I-C-A-L R-E-P-O-R-T

The

RICIS

Concept

The University of Houston-Clear Lake established the Research Institute for
Computing and Information systems in 1986 to encourage NASA Johnson Space

Center and local industry to actively support research in the computing and

information sciences. As part of this endeavor, UH-Clear Lake proposed a
partnershlp with JSCto _|omt1y define and manage an integrated program of research
in advanced data processmg technology needed for JSC’s main missions, including

administrative, engineering and science responsibilities. JSC agreed and entered | into

a three-year cooperative agreement with UH-Clear Lake beginning in May, 1986, to
jointly plan and execute such research through RICIS. Additionally, under
Cooperative Agrecment NCC 9-16, computing and educational facilities are shared
by the two institutions to conduct the research.

The mission of RICIS is to conduct, coordinate and disseminate research on
computing and information systems among researchers, sponsors and users from
UH-Clear l_ake, NASA/JSC, and other research organizations. Within UH-Clear
Lake, the mission is being implemented through interdisciplinary involvement of
faculty and students from each of the four schools: Business, Education, Human
Sciences and Humanities, and Natural and Apphed Sciences.

Other research organizations are involved via the “gateway” concept. UH-Clear
Lake establishes relationships with other universities and research orgamzauons

having common research interests, to provide additional sources of expertise to
conduct needed research.

A major role of RICIS is to find the best match of sponsors, researchers and
research objectives to advance knowledge in the computing and information
sciences. Working jointly with NASA/JSC, RICIS advises on research needs,

recommends principals for conducting the research, provides technical and
administrative support to coordinate the research, and integrates technical results
into the ,CQQBE"?UVC,E‘,’QIS of UH-Clear Lake and NASA/JSC.

K.

11
iy

‘ 1“ ‘ “ » o
lim‘m“m mmmmm ‘n) mumnmmh m.m i mmh.um.\ lL A

L.

"
I

K.

"
um‘.‘“m

DATA MANAGEMENT SYSTEM
(DMS) TESTBED USER’S MANUAL

DEVELOPMENT

Preface

This research was conducted under the auspices of the Research Institute for
Computing and Information Systems by SofTech, Inc. The project was under the
overall technical direction of Dr. Charles McKay, Director, Software Engineering
Research Center at the University of Houston-Clear Lake. Primary research for this
project was done by John McBride, Manager of the SofTech Houston Operations and
Norman Cohen, SofTech Systems Consultant.

Funding was provided by the Avionics System Division, Engineering Directorate,
NASA Johnson Space Center through Cooperative Agreement NCC 9-16 between
NASA/JSC and UH-Clear Lake. The NASA Technical Monitor for this activity was
Gary K. Raines, Head, Data Processing Section.

The views and conclusions contained in this report are those of the authors and
should not be interpreted as representative of the official policies, either express or
implied, of NASA or the United States Government.

(.

[

SOFlecH

DATA MANAGEMENT SYSTEM (DMS)
TESTBED USER’S MANUAL
DEVELOPMENT

VOLUMES I & IX

¥0-092
31 OCTOBER 1986

Prepared for

Avionics Systems Division, Research and Engineering
Johnson Space Center

Prepared by

SofTech, Inc.
in coordination with the
Research Institute
for
Computing and Information Systems
at the
University of Houston, Clear Lake

SofTech, Inc

O ORIGINAL PAGE IS
e D OF PCOR QUALITY

I SR B

{

VOLUME I

COMMENTS ON THE
NETVORK COMMUNICATION SERVICES
IN THB

. TINMAN USER’S MANUAL FOR DATA MANAGEMENT

SYSTEM (DMS) TEST BED

SOFlecH

\m

TABLE OF CONTENTS

Section

1 INTRODUCTION
2 REVIEV OF POLICY STATEMENTS
3 REVIEV OF THE TINMAN DMS USER’S MANUAL

1 Avoiding Active Polling

2 The Type of Datagram Contents

3 Avoid Use of Physical Addressing Schemes
.4 The Need for More Basic Services

5 Scope of the DATAGRAM Generic Package

6 Assembly-Language-Style Records

7 Support for Multilevel Security

W0-092 Vol. I iii

PRECEDING PAGE BLANK NOT FILMED

SOFlecH

il

i

{

Section 1

INTRODUCTION

This volume provides a critical review of the network communication
services contained in the Tinman User’s Manual for Data Management System
(DMS) Test Bed (hereinafter, referred to as the Tinman DMS User’s Manual)
prepared by the Lockheed Engineering and Management Services Company, Inc.
under Contract NAS 9-15800, Job Order 34-208. The review is from the
perspective of applying modern software engineering principles and using the
Ada language effectively to ensure the test bed network communication services
provide a robust capability.

Overall the material on network communication services reflects a
reasonably good grasp of the Ada language. Language features are
appropriately used for most services. Design alternatives are offered to

provide improved system performance and a basis for better application
software development.

Section 2 contains a review and suggested clarifications of the Statement
of Policies and Services contained in Appendix B of the Tinman DMS User’s
Manual; Section 3 is a review of the Network Communication Services; and

Section 4 contains concluding comments.

SOFlecH

W0-092 Vol. I 1-1

Section 2
REVIEV OF POLICY STATEMENTS
We are interested in clarifying the intent of certain statements of policy
.contained in Appendix B of the Tinman DMS User’s Manual. For each such
statement we provide a discussion below explaining why a clarification is

needed and suggest how the statement might be rephased.

Sfatenent $3:

The DMS design must isolate the subsystems so that malfunctions or changes
to the software in one subsystem do not affect the operation of any other
subsystenm.

Discussion:
A subsystem may be built in such a way that it will not function correctly
if it does not receive the data it is expecting from another subsystem.
Vhile the DMS can provide tools for building robust subsystems, the use
made of these tools is beyond the control of the DMS. A change to one
subsystem affecting the logical structure of its communication with
another subsystem may indeed affect the operation of the other subsystem.
Recommendation:
Replace with:

The DMS design must isolate the subsystems so that:

a. changes to the software in one subsystem do not affect the operation
of any other subsystem, provided that the changes preserve the

SOFlecH

W0-092 Vol. I 2-1

| Yl airs m | (N

logical communications channels of the first subsystem and the
protocols for using each channel;

b. software malfunctions in one subsystem do not affect the operation of
any other subsystem, except insofar as the second subsystem fails to
receive data it was expecting from the first subsystem.

Statement #5:

The DMS will support real time communications that do not exceed specific
transport delays (minimum and maximum). Subsystems requiring more
capability must provide their own dedicated bus. The DCN component of the
DMS will support a maximum (20ms.) single packet transfer time from point
to point (subsystem to subsystem) within the same LAN. This is to include

all overhead associated with message transfer through all seven ICY layers.

Discussion:

Ve assume there is no requirement for the application programmer to
specify a maximum packet transfer time explicitly. For example,
priorities can be associated with communications channels, with an

implicit correspondence between priorities and transfer time.

Recommendation:

Replace the second sentence with:

The DMS may associate maximum transfer times with virtual circuit priority
levels so that a subsystem can specify the maximum allowable circuit time
by requesting a virtual circuit at a given priority level. A subsystem
requiring a smaller transfer time than that associated with the highest

priority level must provide its own dedicated bus.

SOFlecH

V0-092 Vol. I 2-2

Statement #6:

Near real time communications will be isolated from other types of data
communications on the network (e.g., by unique identifiers, by
multiplexing the available bandwidth into near real time services and
non-near real time services, etc.). Connection establishment for near
real time communications must allow bypassing of logical name to physical
address translations and minimize network transport delays associated with

connection establishment of human users.

Discussion:

There are two ways to interpret the sentence "Connection establishment for
near real time and non-near real time communications must allow bypassing

of logical name to physical address translations":

1. Establishment of the connection allows translation to be bypassed
every time actual data is sent. (Translation may be done once at the
time of connection, and the translated (physical) address is saved
for use in routing data.)

2. It must be possible to bypass address translation in the actual
establishment of the connection, that is, to establish a connection
to a physical address.

Ve assume the first interpretation is intended.

Recommendation:

Replace the second sentence with:

WVhen the DMS establishes a connection for near-real-time communications,
it must provide the communicating subsystems with "handles" uniquely
identifying the connection. During establishment of the connection,
logical network addresses may have to be translated to physical addresses,
but the "handle" will allow subsequent access to the communication channel

without further translation.

SOFlecH

W0-092 Vol. I 2-3 ‘

B

1 m

Statement #7:

It must be possible to prioritize messages so that messages with higher
priority are handled first. A receiving subsystem must have the ability
to examine the incoming message queue to determine each message’s

attributes (e.g., priority, origin, relative position in the queue, time
tag, time out value and size). It should be possible for a subsystem to

remove a message from the incoming queue or change its priority.
Discussion:
This policy statement implies the existence of certain requirements that
are not stated explicitly elsewhere, including the routine logging of time
tags, sender’s identification, and message size; and the ability to
specify a time-out value when sending a message. Are these indeed
requirements, or just examples of the kind of attributes an incoming
message might have? Must these capabilities be provided for all messages?
Recommendation:

Delete the second and third sentences.

Statement #11:

Data will only be transmitted in response to a request. In general,
subsystems will not broadcast data or periodically send data unannounced
to another subsystem. Exceptions to this policy will only be allowed in

emergency Ssituations.

SOFlecH

W0-092 Vol. I 2-4

Discussion:

The crux of this policy statement is that a subsystem should only receive

data it anticipates receiving. In particular:

It may sometimes be reasonable to broadcast a particular kind of message
to a set of subsystems all designed to handle that kind of message. This
capability must be supported even if the principle of isolating subsystems
dictates that it be used sparingly.

Even in emergency situations, messages should only be broadcast to those
subsystems designed to look for the messages and respond sensibly, even if
the only action is to disregard the message. A subsystem expecting only
attitude readings on a certain channel will not recognize a loss-of-

pressure alarm sent on that channel.

Recommendation:

Replace with:

Data will only be transmitted to subsystems designed to receive and handle
the data. (This handling may consist of recognizing and then ignoring
certain kinds of messages.) Transmission of a given kind of data to a
given subsystem will be allowed only if explicitly permitted by that
subsystem’s ICD.

Statement #12:

Subsystems communicate with other subsystems, not with processes within a
subsystem. If a process in subsystem A needs information from a process
in subsystem B, it addresses its request to subsystem B who is then

responsible for determining which process will respond to the request.

SOFlecH

V0-092 Vol. I 2-5

ali [(] 1 0 Wi W W |

(e

The NOS will route messages to subsystems, not processes within a
subsystem. The intent is that if subsystem A needs information from a
process in subsystem B it addresses its request to subsystem B who is then
responsible for determining which process will respond to the request,
However, in the event that the need for direct process to process message
routing is identified, the following option will be provided. Subsystem A
may optionally append the name of the process in subsystem B (to which the
message is to be routed) to B’s address. The NOS will still route to
subsystem B but subsystem B will use the appended process name to place
the message in the proper incoming queue without the necessity of

determining which process is to service the request.

Discussion:

Irrespective of its internal structure, a subsystem may have several
logical input and output streams (communications channels). When wve say
that the NOS routes messages to a subsystem, we mean that the NOS routes
messages to particular logical input streams that are part of the
subsystem’s interface. Internally, a subsystem may delegate the task of
establishing and using communications channels to particular processes.
The practical effect is that messages are routed directly to the processes
that handle them, but the abstract view is that the receiving subsystem
has one or more logical input streams and that the message was routed to
one of these. This view neither precludes or requires a subsystem design
in which there is one logical input stream and a central dispatching
process that passes a message along to a particular task based on its

contents.

Recommendation:

Replace with: .

Subsystems request connections to other subsystems, not to processes

within another subsystem. However, messages may be sent and received on

SOFfecH

W0-092 Vol. I 2-6

behalf of a subsystem by particular processes within that subsystem. This
results, in effect, in direct process-to-process communication even though
each subsystem is oblivious to the internal structure of the other
subsystem. One process within a subsystem may route a message to another
process in the same subsystem based on the contents of the message, but
this detail about the internal implementation of the subsystem is

irrelevant to other subsystems.

Statement $#13:

By adhering to the intent of policy statement 12 above the structure of a
subsystem can be hidden from the BIU and from human and software users.
Changes to the internal structure of a subsystem, especially those
involving the removal or renaming of processes will then be transparent to
human and software users. Furthermore, it will allow the NOS to maintain
configuration data at the subsystem level rather than the process level.
This policy can be stated more generally as: It is the responsibility of
each subsystem to manage its own resources, including the determination of

vhich process will service which request.

Discussion:

The approach suggested for policy statement #12 supports the fulfillment
of policy statement #13. The logical input and output streams of a
subsystem must be distinguished from the internal structure. Logical
input and output streams are part of a subsystem’s interface, but its
process structure is an internal implementation concern. Processes can be
added or removed at will, as long as some process continues to handle each
logical stream, but addition or removal of a potential stream connection
is an external change that may affect other subsystems. (Virtual circuits
may be created and removed dynamically during subsystem execution, but
only if the logical input and output streams to which they are connected

are part of the subsystem’s interface.)

SOFlecH

w0-092 Vol. I 2-7

l

Recommendation:
Add at end:
(Addition or removal of processes must be distinguished from addition or
removal of potential communication channels from a subsystem’s ICD. While

the former is an internal change to a subsystem, the latter is external

and may affect other subsystems.)

Statement $14:

When subsystem A attempts to establish a connection to another subsystem

B, B must respond to A before it can be assumed that a connection exists.

Discussion:

Ve assume it is not necessary for B to respond directly and explicitly to
A. For example, the NOS routine called by A to establish a connection
might vait for a response from B before returning a circuit ID to A. This
ensures that A cannot do anything until a connection has been established.
From A’s point of view, the effect of the call is simply to obtain a

circuit ID, and the communication with B is hidden.
Recommendation:
Replace with:
Vhen subsystem A attempts to establish a connection with subsystem B, B

must also inform the NOS of its readiness to establish a connection before

A is permitted to use the connection.

SOFTecH

V0-092 Vol. I . 2-8 -

Statement $28:

Each subsystem should have a mnemonic name. Remote users (human and
subsystem) should be able to address messages to the "ECLSS" or "GN&C"
subsystems regardless of where they are physically located. Each LAN and
each region should have a mnemonic identifier so communications from
processes in other LANs can logically address transmissions across the
netvork. The DCN will translate these logical names into and from unique

physical addresses.

Discussion:

Policy statements 26 and 27 wisely call for hiding the physical location
of network resources from users, and the requirement in policy statement
28 to be able to name subsystems by mnemonic names further supports this
policy. Besides simplifying the user interface, this approach provides
flexibility to change the physical network configuration without affecting

subsystems.

Hovever, we do not understand the neédrfor a name consisting of a region
mnemonic and a LAN mnemonic. Such a name is not a logical name, but a
physical name, specifying the location of a subsystem within the network.
A true logical name uniquely identifies a subsystem within the network
without reference to the LAN containing the subsystem or the region
containing the LAN. Indeed this allows different parts of the same

subsystem to be split across the DMS network.

Recommendation:

Remove the third sentence.

SOFlecH

V0-092 Vol. I 2-9

| il i [, i I | 1] [|

I

Statement #33:

The design of the IOC DMS will be based on common subsystem and BIU
processor types. However, the design should in way require a common
processor type. It should be sufficient that they have the same external
interfaces and obey common communications protocols. Also, the design of
the IOC DMS must accommodate communications with heterogeneous LAN types
within regions to include heterogeneous gateways. The intent is to
maximize commonalty without restricting flexibility to upgrade technology.

Discussion:

Ve presume the second sentence is meant to read "However, the design

should in no vay require a common processor type."
Recommendation:
Add the word "no" to the second sentence:
Hovever, the design should in no way require a common processor type.

Statement #35:

Data types, i.e., machine representations (including floating and fixed
point and bit and byte ordering) will be pulled from the Federal Standards
in order to limit the number of and clearly state the representations

accepted for layer 6. Data format conversion is not a DMS function.

Discussion:

We are concerned about the reference to "limiting" the representations
accepted for layer 6. Ada supports the definition of new problem-oriented
data types, and it will often be useful to transmit objects in these data

types from one subsystem to another. However, it is impossible to

SOFlecH

W0-092 Vol. I 2-10

enumerate in advance all data types and to specify a representation for
each. Resolution of this problem requires stepping back from the DMS
requirements and considering requirements for the compilers that will be

used to compile subsystems.

A standard binary representation for transmission between subsystems is
indeed needed. It would be wasteful of processor time and bandwidth to
convert all complex data into textual form for transmission. It would be
inconsistent with the software engineering principles of data abstraction
and information-hiding and the intended use of Ada, and inimical to
program reliability and maintainability, to require application programs
to decompose abstract data into its constituent elements and transmit

these elements individually.

Rather, standard representations can be provided for scalar data types
(numeric and enumeration types), and standard rules can be provided for
constructing the representation of composite types (array and record
types) from the representation of their components. (Example: "The
representation of a record consists of the representations of the record
components existing in that record, in order of declaration, with each
component starting on a byte boundary; arrays are stored in ascending
order with the last index varying most rapidly and the representation of
each component beginning on a byte boundary.") In addition to scalar and
composite types, the Ada language has access types, task types, and
private types. The transmission of access-type and task-type values from
one Ada main program to another is generally not meaningful and should not
be supported. Each private types has an underlying representation as a

scalar, composite, access, or task type.

In the spirit of policy statements 2 and 35, it is not necessary to
restrict Space Station software developers to Ada compilers that always
use the standard representations internally. If necessary, the Ada
runtime system can perform the necessary conversions on incoming and

outgoing data. Alternatively, to ensure that conversion can always

SOFlecH

W0-092 Vol. I 2-11

§ IR [Iy [| I

i

be bypassed, NASA might impose a less stringent requirement: that
compilers must support representation specifications to a sufficient
degree that a programmer can stipulate the network standard representation
for objects of a particular type. (Representation specifications are a
— low-level feature of the Ada language that control the internal
representations for programmer-defined data types. Normally, a compiler
may choose which representation specifications to obey and which to
reject, so not all representation specifications are recognized by all
compilers. Certain matters of internal representation, such as the order
in which array components are stored, are beyond the control of
representation clauses. Compilers must either conform by default to the
network standard in such matters or else provide some means, such as an
implementation-defined pragma, for the programmer to request conformance

— in particular cases.)

— Whenever a high-level, abstract data type (e.g., a type for representing
celestial coordinates) is of interest to more than one application, we
would expect the type to be defined in a package residing in a
network-wide library. Individual subsystems (i.e., Ada main programs) can

import the type definition by a with clause for that package.

Representation specifications for the type, located in the importing
package, will ensure that all subsystems using the type have a common

representation for it, so internal representations can be transmitted from

one importing subsystem to another without conversion. Network standards

would ensure that these representation specifications are accepted by the

{

compilers used for each subsystem.

I

Recommendation:

Remove the words "limit the number of and" from the first sentence.

1

HH

SOFlecH

LI

W0-092 Vol. I 2-12

0

Section 3
REVIEV OF THE TINMAN DMS USER’S MANUAL
The following sections identify the major areas of concern in the Tinman
design. A discussion of each area is provided with recommended changes.

3.1 Avoiding Active Polling

The datagram facilities require active polling for incoming messages.
This method of communication is efficient for systems in which data is
expected to arrive at a rate that is of the same order of magnitude as the
polling rate. However, if the average message arrival rate is much lower than
the polling rate then the process is inefficient and uses more computer
resources than necessary. Also of concern is the impact the polling model has
on the design of the application software that uses network communication
services. The polling model has its basis in sequential processing languages
and encourages a sequential style of design for applications, even when the
application has naturally occurring concurrency. This in turn results in an

application design that is difficult to modify.

A better model for communication is one that readily supports both
sequential and concurrent design styles. The Tinman model could support both
styles if the RETRIEVE call were to wait for up to some specified maximum
period for an incoming datagram. If a datagram were to arrive within the
period, then it would be returned; otherwise a time-out exception would be
raised. The retrieving process would be blocked during the time-out period.
If the receiving subsystem had useful work to do while waiting for an incoming
datagram, it could use Ada’s powerful task synchronization primitives. The
task calling RETRIEVE could be blocked while another task in the subsystem
continued to execute. The time-out period associated with the RETRIEVE could
be used to either avoid a deadlock situation or to return immediately for

highly time-critical applications that did not use tasking. A time-out period

¥0-092 Vol. I 3-1 SOFlecH

| N f | |] | |

of zero seconds would behave like the polling model. Thus both sequential and

concurrent style designs could be easily achieved.

3.2 The Type of Datagram Contents

The Tinman manual anticipates that datagrams of different types will all
arrive in the same incoming queue. By allowing all datagrams to arrive on the
same queue modifications that do not change the logical communications
interface can be made to a subsystem without affecting other subsystenms.
Different instantiations of the generic package DATAGRAM will provide versions
of RETRIEVE for receiving datagrams of different types. In some respects,
this is a very sensible approach. The Ada language encourages the definition
of new abstract data types to model application entities, and it is reasonable
to expect that applications will communicate by passing values of these
abstract data types as messages. An unlimited number and variety of
application-oriented data types are possible, so there is no way for the NOS
specification to anticipate all possible messagé types in advance.

In general, it is difficult and possibly inefficient to manage any queue
unless the messages in the queue are of a fixed type (in some cases a record
type with a fixed number of variants). If the messages are of different types
then they must first be examined to determine their type before the
appropriate instantiation of the RETRIEVE can be called and an appropriate
routine can be invoked to handle the message. As the number of message types
increases, the logic involved in this decision becomes more complex,
increasing the likelihood of error. Also, if the subsystem is distributed
across the DMS network, the retrieving process may be located on a different
node than the routine that handles the message. In this case, the retrieving
process must then send another message across the network, increasing network

traffic.

For improved modularity it is more appropriate to have distinct queues for

each type of message. The receiving subsystem should expect incoming messages

W0-092 Vol. I 3-2 SOFlecH

of specific types on specific queues. Since the queues are typed, it is
unnecessary to first examine the message to determine the correct
instantiation of RETRIEVE and a central dispatching routine is not required.
Also, in a distributed subsystem, messages can be routed by the NOS directly
to the network node which supports the function that handles the message.
Changes to the subsystem can still be made without affecting other subsystems

as long as the logical communications interface requirements have not changed.

3.3 Avoid Use of Physical Addressing Schemes

As noted earlier in the discussion of policy statement 28, it is unwise to |
designate a subsystem address in terms of the region and LAN in which it is
physically located. The definition of ADDRESS TYPE for a subsystem address
includes the physical location of the subsystem. This approach makes
restrictive assumptions that may prevent the distribution of a subsystem over
more than one LAN or region if this eventually becomes feasible. It will also
require massive reprogramming every time the physical location of a subsystem
changes, since all references to the subsystem address must be changed. A
viser approach is to give each subsystem a logical name that is translated by
the NOS into a physical location, based on tables maintained by a network

administrator.

3.4 The Need for More Basic Services

The Tinman design provides a number of powerful facilities that may be
needed for certain applications, including the ability to scan the incoming
message queue and the automatic establishment of a bi-directional connection
every time a connection is established. However, this design may impose an
unvanted overhead on applications that do not require such sophisticated
capabilities. A better approach is to provide basic NOS services that are
simple and efficient and can serve as building blocks for implementing more

sophisticated services, rather than to try to anticipate the complex

¥0-092 Vol. I 3-3 SC’FTECH

rr

[

I E R

combinations of features that some application writers might find useful. As
subsystem communication requirements crystallize, utilities can be written on
top of the basic network services to provide commonly needed higher-level

capabilities.

Consider the SCAN command, for example. We have doubts about the wisdom
of including such sophisticated queue-manipulation and
message-receipt-scheduling operations as basic network communication services.

Here are some reasons:

1. Ve expect this functionality will be required by few subsystems, but
it will add to the complexity and overhead of network communications
even for subsystems that do not require such functionality. Much of
the time, for example, one subsystem will expect to receive messages
from another particular subsystem, so it will be wasteful to have the
sender and receiver identified in each message. Likewise, few
applications would require all the attributes described (such as
CLASS, TIME_TAG, or STATUS) to be sent with every message.

2. Sophisticated manipulation of the incoming message queue and
extraction of higher priority messages are presumably aimed at the
timely processing of important messages, but we expect examination,
analysis, and manipulation of the queue to itself be quite
time-consuming. In most cases, a subsystem is more likely to provide
timely service by quickly removing items from a queue in order of
arrival rather than by trying to schedule the handling of enqueued
messages. The effect of messages with different priorities can be
achieved by the provision of multiple communication channels with
different priorities. The receiving subsystem would always look for
messages on high-priority channels first.

3. For subsystems that must service messages in some order other than
order of arrival, queue manipulation can be provided by the subsystem
itself (perhaps with the aid of general-purpose NOS utility that is
not part of the network communication services). Such a subsystem
would have a process whose sole responsibility is to remove messages
from an incoming queue and insert them in a subsystem-internal data
structure as quickly as possible. The subsystem would have complete
control over the data structure, including the removal of messages
from the data structure so they can be processed.

V0-092 Vol. I 3-4 SOFlecH

4, Ada’s poverful data abstraction facilities allow the structure of a
message to be arbitrarily complex. If the application requires it,
information like the time of transmission, the identity of the sender
and other attributes can be included in the message.

Similarly, consider the automatic establishment, every time a virtual
circuit is established to connect two subsystems, of incoming and outgoing
queues for both subsystems. By default, subsystems should be able to request
a virtual circuit for communications in one direction. In many cases this may
be all that is required. Given such a capability, it is easy to implement

bi-directional communications.

3.5 Scope of the DATAGRAM Generic Package

Each instantiation of a generic package creates a nev and distinct
instance of every entity provided by the generic package. The point may be
moot given the message-type problem identified earlier, but some of the
facilities currently provided by instances of DATAGRAM should not be declared
in a generic template. It is logically necessary for each instantiation to
produce a new DATAGRAM_TYPE and new versions of SEND and RETRIEVE. however,
it would make sense for there to be only one MESSAGE_COUNT type for use by all
instances of the generic package, and one HEADER _TYPE (so that a common set of
header-manipulating utilities, applicable to all types of datagrams, could be
written). Similarly, new ADDRESS BLOCK and ADDRESS LINK types, and new
MULTICAST and DELETE_MN procedures, should not be created for each datagram
type. (It is not clear whether the declaration of TIME _STAMP is a subtype
declaration with "type" 1nadvertentl§ vritten instead of subtype, in which
case the same subtype is shared by all instances of the package, or a derived
type declaration with the word "new" inadvertently omitted, in which case each
instance provides a distinct TIME_STAMP type. Logically, a single type is
more appropriate.) There should be one set of exceptions raised by
subprograms in all instances of the package, not distinct exceptions for each

instance.

¥0-092 Vol. I 3-5 SOFlecH

One solution to this problem is to make DATAGRAM a nongeneric package and
nest a generic package inside of it. Only entities like DATAGRAM_TYPE, SEND,
and RETRIEVE would be declared in the generic package. Another solution is to
declare in a separate package, say DATAGRAM TYPES_PACKAGE, the entities to be
shared by all instances of the generic package DATAGRAM. DATAGRAM would be
given a with clause for DATAGRAM_TYPES PACKAGE and could also include renaming
declarations for the entities provided by DATAGRAM TYPES_PACKAGE. This would
make it appear that all entities were being provided by each instance of
DATAGRAM, but an entity declared by renaming declarations would be a single
entity, created once and passed along by many instances.

It is not clear whether SCAN should be provided by the generic package or
made common to all instances. The parameter and result types of SCAN are the
same for all instances. Howvever, if we view each instance of the generid
package as creating a distinct queue for datagrams of a particular type, each
instance could provide versions of SCAN for examining that particular

instance’s queue.

3.6 Assembly-Language-Style Records

The HEADER TYPE record component, contained in the DATAGRAM TYPE record,
is used as an assembly-language-style control block. Different subcomponents
are set and examined by different modules at different times, and some
subcomponents, particularly the STATUS component, have multiple uses. Data
flow is obscure and complex, modules using the records become more tightly
coupled than is necessary or desirable, and error-prone protocols are imposed
on each subsystem. HEADER TYPE records should be used only within the NOS,
and hidden from users of the NOS. Information to be provided by the sender to
the NOS should be provided through separate in parameters to SEND.

Information to be provided by the NOS to the sender should provided through
out parameters to SEND. Similarly, specific in and out parameters to RETRIEVE
should be used to convey information from the receiver to the NOS and from the

NOS to the receiver, respectively. It is appropriate to group items in a

¥0-092 Vol. T 16 SOFlecH

record vhen the items can be taken together as modeling a single abstract

entity, but the components of HEADER TYPE records do not meet this criterion.

3.7 Support for Multilevel Security

The Tinman user’s manual does not address the multilevel security issues
raised by Policy Statement 30. The implications of multilevel security
requirements for network communications require further study. For example,
there may be restrictions on the ability of two subsystems to establish a
connection in a particular direction based on the security level of each
subsystem. This might be reflected in an exception SECURITY_VIOLATION that

can be raised by the connection-request subprograms. It may also be necessary

to establish virtual circuits with different security levels, implemented by
different kinds of physical connections.

N0-092 Vol. I 3.7 SOFTecH

Wi i | | 1 1 u | 1

Bl

i

| | Iiv
]] ! il

I

Section 4
CONCLUSIONS

The Tinman User’s Manual reflects much careful thought about the problem
of Space Station Network Communications. Our major concerns are confined to
three areas:

1. The requirement for active polling of incoming messages. The active
polling requires excessive resources if the rate of arriving messages
is significantly less than the polling rate. This is particularly
problematic if the computing resources are required to perform a
significant amount of other work. Active polling complicates the
design of applications with naturally occurring concurrent
processing. The use of communication design structures that are
compatible with application structures reduces the complexity of the
design of the application, thus reducing the cost of developing and
maintaining the application software. The requirement for active
polling also makes the network communication services less flexible
to the users of those services.

2. The use of single data queues or virtual-circuit connections for
messages of different types. The use of single datagram queues or
virtual circuit connections may have significant impact if the
subsystem is distributed on the DMS network, since messages received
by the subsystem may have to be retransmitted across the network to
the appropriate process to handle that message type. Furthermore,
the use of a single datagram queue or virtual circuit connection for
messages of different types does not provide a rational structuring
of information. It forces the application programmers to manage
messages of different types. Again, the network communication
services are made less flexible for users.

3. The remaining hints of physical network configuration in the
structure of logical addresses. Basing the services on a physical
model of the DMS network significantly reduces the flexibility of
system designers, particularly if a subsystem must move to different
physical parts of the network due to design changes or dynamic
reconfiguration. Failure to hide network topology and separate the
concerns of logical and physical viewpoints, will lead to massive
reprogramming if the physical location of a subsystem changes.

SOFlecH

W0-092 Vol. I 4-1

VOLUME II

DESIGN ALTERNATIVES FOR THE NETWORK
COMMUNICATTIONS SERVICE IN THE DATA MANAGEMENT
SYSTEM (DMS) TESTBED

i m o WL wm o W

SOFTecH

TABLE OF CONTENTS
'Section
1 INTRODUCTION
2 NETWORK MODEL

2.1 Physical Network Model
2.2 Logical Network Model

2.3 Mapping of the Logical model Onto the Physical Model

2.4 Users of the NOS
3 REQUIREMENTS
4 SERVICES
4.1 Overview
Virtual-Circuit Communication
Datagram Communication

Broadcast and Multicast Services
The Role of Tasking

&S
-
F W

Specification of Network IO
Behavior of Network IO Subprograms

PN
W N

Open

Close

Datagram Output File

Datagram Input File

Set Data Unavailable Response
Read

VUrite

End of File

PR A R I O
WwWwwwwwww
O~ W

4.4 Summary of Exceptions

Data Unavailable
Status Error
Mode Error

Name Error

Use Error

Device Error

End Error

Data Error

S E
[e o BEN o NV, BN VA I o8 Bl

PPN A P R Ol

W0-092 Vol. II iii

PRECEDING PAGE BLANK NOT FILMED

&\J-\J-\J-\J'-\L\J-\&\

1
= b b b pd b
~NooNumn e SN

v
[
@

4-18
4-19
4-19
4-19
4-19
4-20
4-20
4-20

SOFlecH

TABLE OF CONTENTS (CONT.)

Section

5 EXAMPLES OF USE

5.1 Processing a Bounded Sequence of Data

5.2 Performing Background Processing While Vaiting for
Datagrams

5.3 A File Server

5.4 Converting Arriving Messages to Entry Calls

5.5 Merging Streams of Incoming Messages

5.6 Processing Datagrams of Different Priority

5.7 Using Message Contents to Control Order of Processing

5.8 Using Datagrams to Control Periodic Sampling

5-4

5-10
5-12
5-16
5-22
5-26
5-31

¥0-092 Vol. II iv SOF,-ECH

ul i | [T/RI— | il | il | DN |

ik,

2-4

4-1

4-2
5-1
5-2
5-3
5-4
3-5
5-6
5-7

5-9
5-10
5-11

5-12

5-13

5-14

5-15

Wv0-092

LIST OF ILLUSTRATIONS

Page
Physical Network Model 2-2
Logical Network Structure of Processing Entities 2-3
Visibility Between Processing Entities 2-5
Mapping of Processing Entities to Ada Programs or Tasks 2-6
Calls on Open Vaiting Normally Until Both Parties Have
Requested a Connection and the Connection Has Been Established 4-2
Behavior of the End_of_File Function 4-18
Notation for Network Communication Patterné 5-2
Notation for Program Structure 5-2
Flov of Messages from PAYLOAD DATA MANAGER to DATA_ANALYZER 5-3
Flow of Requests for Data and Averaged Sensor Readings 5-5
Structure of the Program to Provide Average Reading on Request 5-7
Flow of Messages Between FILE_SERVER and Client 5-10
Program structure using Virtual Circuit_Delivery Template 5-15
Program structure using Datagram_Delivery Template 5-17
Flov of MESSAGES to and from POWER_SUPPLY_MONITOR 5-18
Program-unit structure of POVER_SUPPLY_ MONITOR - 5-19
A Processing Entity with Datagram Streams Corresponding to 5-22
Different Priority Levels
Task structure for processing bulletins of different priorities 5-24
Use of the Warning Retriever Task to Control the Order in which
Messages are Processed 5-29
Network communication with SENSOR_MANAGER 5-32
Program-unit structure for SENSOR_MANAGER 5-38

v SOFlecH

Ul oot Bt of GOl ot bt i
T ree e ey e e Tilee proges of Dus Propaoel

ORIGINAL PAGE IS
OF POOR QUALITY

Section 1

INTRODUCTION

The Space Station Data Management System (DMS) provides a network
operating system (NOS) for communication services between network users. This
report describes a proposed network model and NOS communication services.
Since the Space Station has selected Ada as the programming language for DMS
softwvare, the proposed NOS services build upon conceptual I/0 models of Ada
for a parsimonious design. This approach leads to simpler services that can

be used in a straightforvard wvay.

The set of NOS communication services contained in this report represents
an interface between the application layer (layer 7) and the presentation
layer (layer 6) of the Open Systems Interconnection (O0SI) Basic Reference
Model. It is not intended as an interface set for a typical DMS user as not
all DMS users will be knowledgeable in Ada, but as one of several NOS
interface sets available to an Ada programmer who is developing applications
that use the NOS. Other NOS interface sets, such as virtual terminal, file

services etc. and DMS user interface sets are not addressed herein.

Section 2 of the report presents the proposed network model of the DMS.
Section 3 describes the functional requirements of the NOS communication
services; Section 4 provides the services that represent the application
programmer’s interface to the NOS communication services; Section 5 includes
some example applications illustrating a wide range of flexible communication

capabilities.

¥0-092 Vol. II 1-1 SOFlecH

)] [[/ | [| L IR |

Section 2

NETVORK MODEL

The DMS network is represented as both a physical network and a logical
network. The physical network represents the actual hardware to support
program execution and communication. The topology of the network is not
significant in the discussion of the NOS but an aid in understanding network
terminology. The logical network represents the processing entities and their
relationships to support the mission requirements. A clear distinction
between these two views and an appropriate way to relate them to each other is

presented below. The kinds of NOS users are also defined.

2.1 Physical Netwvork Model

The DMS network physical model is a hierarchical structure consisting of a
set of regions, each of which consists of a set of local area networks (LAN),
each of which consists of a set of nodes. The nodes are the physically
addressable units in the network. A region may be considered as a single
Space Station or ground control center. Regions are generally geographically
collocated collections of LAN’s. Regions will typically access each other
wvith telecommunications, while LAN’s within a region will typically have

hardwired access to each other.

Nodes may be implemented as a network interface unit (NIU) and a set of
processors and other equipment (e.g., sensors, control units, peripherals,
etc.). Processors which must access the network communicate through the NIU.
Communication between regions and LAN’s is supported by network bridges that
may be implemented as special purpose NIU’s. Each copy of the NOS will run
the same on different nodes. A node may contain one or more processors, but
this is hidden from the NOS. A special node executive (NE) may be required to
present a consistent processor model to the NOS.

¥0-092 Vol. II 2-1 SOFlecH

Processors are not directly addressable on the DMS network. All DMS
netvork communications must be between nodes on the network. This does not
preclude the use of additional or special purpose networks that may exist
between processors and other equipment. Direct processor-to-processor
communication may use a variety of methods, but it does not use the DMS
network. Such communication is beyond the scope of the NOS. Figure 2-1

illustrates the physical model of the DMS network.

REGION =" e REGION |0 —ST—{ REGION

TYPICALLY

TELECOMMUNICATIONS
*0 0
; TYPICALLY

HARDWIRED
NOS
NE
1 i
03] 0s os
(1 X 3 OTHER EQUIPEMENT
soP soP soP

Figure 2-1. Physical Netwvork Model

W0-092 Vol. II 2-2 SOF,-ECH

J L | i 1l Vi [| A | |)

I 111 S R

{

[

o Hii

2.2 Logical Network Model

The logical model of the DMS network is not fully defined. Notions of
subsystems and processes do exist, but the explicit logical structure and
communication capabilities within and between subsystems are still evolving.
The following is a proposed logical network model that serves to reduce the
complexity of the software for the Space Station Program. While the model is
recommended as an approach to system design, the specific services described
in Section 4 later do not require it. It is presented to provide a framework
for discussions within this report and as a concept for consideration within
the Space Station Program community.

It is proposed the logical model of the DMS network be a hierarchical
structure consisting of groups of processing entities with logical addresses

that can communicate with certain restrictions. A Space Station processing
entity, such as the GN&C or Flight Control subsystem, may in turn contain a
group of entities that are its children. Subsystem entities may have parent
system entities. These system entities represent groups of subsystems with
common attributes. Likewise, the child entities of a subsystem may in turn be
parents of other subgroup processing entities. Children of the same parent
are siblings of each other. Figure 2-2 illustrates the hierarchy of
processing entities.

=i A -
{58 -

O~
o
{

Figure 2-2. Logical Network Structure of Processing Entities

¥0-092 Vol. II 2-3 SOFrECH

B R PR R4S PAOT R NPT AR 4 T
Seoratmops et e Tale e of Py Progu

One processing entity may communicate with another if it has access to its
logical name. Naming of entities is, however, restricted in accordance with a
visibility rule. The rule states a processing entity may only name its
ancestors and their siblings. (This rule is analogous to the scoping rules of
nested procedures in Ada.) Figure 2-3 depicts the visibility rule for entity
names. In the figure, each circle represents a processing entity, and
decomposition (children) is illustrated with circles inside circles. If the
surface of each circle is vieved as a one-way mirror allowing an entity to
"see" out of its circle then it can also "see"” out of its ancestors’ circles
and "see" the siblings of its ancestors. "Seeing" the entities implies the
logical name of the entity is accessible. However, an entity cannot see
inside another’s circle. The inner structure of an entity is hidden from
other entities.

This model does not necessarily preclude communication between two
arbitrary processing entities. While entities within two different subsystems
can not directly "see" each other, they may nevertheless need to communicate.
If entity Al in subsystem A needs to send a datagram to entity Bl in subsystem
B, then entity Al would address the datagram to subsystem B. Subsystem B is
then responsible to ensure the datagram is properly routed to entity Bl. This
allows the internal structure of subsystem B to change, both logically and
physically on the network, without necessitating change to subsyste;ﬁAvégiidﬁg
as the logical interfaces between the two subsystems did not change (i.e. the
specific function of entity Bl expected by entity Al remains unchanged in

accordance with policy #3 in Appendix B of the Tinman DMS User’s Manual).

This model reduces the complexity of the software by reducing the number
of visible interfaces within and between subsystems. It follows the principle
of information hiding which is a major concept of modern software engineering.
Software designs that adhere to this model result in systems that are
significantly less ccstly to modify as compared with more traditional flat
designs where every processing entity can, in principle, "see" every other

entity.

¥0-092 Vol. II 2-4 SOFlecH

fl

I
I

i

iE| |

I |

I 1
i

M b

e

IR [

!

lv‘u "
i
dii o

SURFACE OF
CIRCLES ARE
VIEWED AS
ONE-WAY
MIRRORS

PROCESSING ENTITIES
CAN 'SEE’ OUT

SIBLING ENTITIES
CAN 'SEE’ EACH
OTHER

ENTITIES CAN'T 'SEE’
INSIDE OTHERS

Figure 2-3. Visibility Between Processing Entities

2.3 Mapping of the Logical Model Onto the Physical Model

The mechanism for the mapping of logical processing entities, such as
subsystems, onto physical processors that use the DMS network is the Ada
program and the NOS interfaces.

Processing entities, such as subsystems, are supported by a set of Ada
programs and/or tasks that call upon the NOS for communications services. The
NOS is responsible for maintaining the configuration of the system (including
the correspondence between the addresses of processing entities and the

addresses of physical nodes) and communication among different nodes in the
physical network.

¥0-092 Vol. II 2-5 SOFlecH

Crara S e ol et s Lalo el et S 2
Toee e bt T T pea e of the, Progeen

An effective mapping of processing entities to Ada programs and tasks can
aid in minimizing the cost of evolution, while a poor mapping may exasperate
the process. One recommended approach during the design process is that

designers map the logical model of processing entities in terms of the

physical model so that an Ada program represents one or more sibling entities.

Entities with different ancestors should not be grouped into the same Ada
program. The lowest level descendent processing entities should be
represented as tasks or main programs. Such a mapping is illustrated in
Figure 2-4, This type of mapping reduces the coupling between processing
entities and the side effects during evolution.

The way sibling entities are allocated to programs is influenced by a
number of factors including, but not limited to, the physical distribution of
entities across the network. Sibling entities that reside on different nodes
will be allocated to different programs unless a distributed Ada program
capability is available (i.e. tasks of a single program reside on different

network nodes). Sibling entities residing on the same node can be allocated to

the same program.

LOGICAL
NETWORK
LEVER.

Slts 5] =

& LY =
2 —

O - ade it PeoaRANS
77 - aee Tasns
Q - reoCTIING SNTITRS

Figure 2-4. Mapping of Processing Entities to Ada Programs or Tasks

¥0-092 Vol. II 2-6 SOF"ECH

L R R L AL T LI EE N NENEPP PR
he e Pert st T e o e P

] (T I LI 1 al

Designers should take care vhen allocating processing entities to a
netvork node. If the node only supports a single Ada program then all
entities should be siblings. Nonsibling entities may be allocated to a node

if it supports multiprogramming since the entities may be mapped to different
programs.

It is emphasized that this recommended mapping of processing entities onto
the DMS network is performed during the software design phase and is not
required by the NOS proposed later in this report.

2.4 Users of the NOS

Processing entities communicate with each other using two kinds of
mechanisms. Entities mapped to different Ada programs will make explicit
calls upon the NOS at the Ada source-code level to communicate with each
other. The applications programmer is explicitly aware of this mapping and
makes use of the NOS services described later. These services constitute the

interface for the applications programmer. Thus, an Ada program is one type
of NOS user.

Entities mapped onto Ada tasks within the same program rendezvous to
effect communication. Thus, the second potential user of the NOS is the Ada
Run Time System (ARTS). The ARTS is responsible for communication among tasks
of an Ada program. If the single Ada program is distributed across the DMS
network, then the ARTS may require the NOS to effect the communication between
Ada tasks. Such use is implicit at the Ada source code level, since the NOS
calls are made by ARTS rather than explicitly in the Ada program. The set of

NOS interfaces for the ARTS may be different from those described in this
report.

V0-092 Vol. II 2-7 SOFlecH

VIt e e o DO et
Tt ita beses e 1w T piae e of e, Fheeqarn

In the strictest sense only a few processing entities are direct users of
the NOS. These may be viewed as agents which act on the behalf of other
entities for communication. The NOS interface described in this report
represents the lowest sublayer in the OSI applications layer and may actually
only be seen by the applications programmer who is designing and implementing
these agent processes. Indeed, processes at the subsystem level may not even
be aware the NOS is used for some purpose. For example, a DMS user may wish
to view information in a database. The }nformation may be in a database local
to the network node or on a remote node. The process that handles the
operator query may pass the query on to an information system that in turn
must determine how to access the requested information. Whether the
information system can locate the information locally or must request services
from a remote information system may be entirely transparent to the process

that handled the operator’s guery.

W0-092 Vol. II 2-8 SOFlecH

[R Y Ry R I T O NE X CRURY LR NP
M Doeqri gy ac e D e o e Py o

' mi a I n

i

Wi |

Rl

i

1 SR N

1

Section 3

REQUIREMENTS

Our services are designed to fulfill the following requirements:

. Virtual-circuit (connection) service shall be provided. It shall be

possible to associate a priority with such a connection to guarantee that
the transport lag will not exceed a specified upper bound. No
communication shall take place over a virtual circuit until a connection
has been established. Unidirectional virtual-circuit connections shall be
provided. These can be combined to establish two-way communication.

. Datagram (connectionless) service shall be provided. This will allow a

message to be sent to another processing entity without first establishing
a connection. A processing entity may have zero or more logical datagram
input streams, and a datagram is addressed to a particular stream.

. It shall be possible to establish virtual-circuit connections

° by prior agreement between processing entities, without an exchange
of messages at the application-code level (0SI level 7); or

° in response to a received message (by a datagram or over an existing
virtual circuit), in accordance with a previously agreed-upon
protocol, requesting that a virtual circuit be established for
transmission of messages belonging to one of a previously agreed upon
finite set of data types.

. In establishing virtual circuits, it shall be possible for application

programmers to specify certain properties of the connection. These
properties might include the maximum acceptable transport lag, the degree
of error checking required, security constraints, whether or not network
resources supporting the connection should remain committed to the
connection between transmissions, and the relative priority of different
connections when contending for network resources.

. In requesting virtual-circuit connections and addressing datagrams, only

logical names shall be used. These logical names shall make no reference
to the physical location or underlying implementation of a processing
entity.

. In requesting virtual-circuit connections and addressing datagrams, a

processing entity outside of processing entity X shall not refer to the
internal structure of X. In particular, it shall not refer to lower-level
processing entities contained in X.

¥0-092 Vol. II 3-1 SOFlecH

10.

V0-092 Vol. II 3-2 SOF,-ECH

. Once a virtual-circuit connection has been established between two

processing entities, but not before then, the NOS shall provide connection
end-point identifier values to each processing entity. All calls on the
NOS to perform virtual-circuit communications shall identify with a
connection end-point identifier the virtual circuit to be used.

. A single virtual circuit or a single datagram stream shall be restricted

to messages of a single type. It shall be possible for Ada compile-time
consistency checks to detect attempts to use the same virtual-circuit
connection for data of different types.

. It should be possible for application programmers to isolate the decision

to communicate using virtual circuits or datagrams, limiting the amount of
program text that must be modified if this decision is changed.

Flexibility should be provided to interleave the receipt of data with
other processing. In particular:

] It must be possible to wait for incoming data without busy waiting.

® It must be possible to perform other activities while waiting for
data to arrive.

. It must be possible to limit the amount of time a process waits for
data to arrive.

. There should be a straightforward way to process several incoming
streams of data whose arrivals are interleaved.

ol | | 1 v u U |]]

i | I]

(1!

Section 4

SERVICES

This section describes the application programmer’s interface to the

network operating system. The section consists of four subsections:

1. An overview explaining the approach taken and the basic elements of the
interface. This subsection is tutorial, concentrating on concepts and
omitting details.

2. The actual syntactic interface, in the form of an Ada generic package
specification.

3. A detailed specification of the behavior of each subprogram provided as

part of the interface, including the exceptions that may be raised by each
subprogram.

4. A cross-reference by exception of the circumstances in vhich each
exception may be raised by the various subprograms.

4.1 Overview

In designing our services, we have followed the design principle of
parsimony. Rather than introducing new conceptual models, we have built upon
the Ada conceptual model for file input/output to model network
communication. We have tried to provide the simplest interface that will
allow an application to obtain the required effects in a straightforvard way.
When certain requirements can be met by use of Ada tasking constructs, we have

not duplicated those constructs in the network communication services.

An Ada program generally uses input/output operations to send data to or
receive data from entities outside the program. These entities, known as

external files, have traditionally been files in a file system (for example,

disk files) or devices (for example, a keyboard, a video display, or a

printer). An Ada program uses the Network Operating System to send data to or

W0-092 Vol. II 4-1 SDFTECH

receive data from entities outside the program, so it is appropriate to model
network communications as input/output operations. In this case, external

files correspond to virtual circuit connections or datagram streams.

Network communications services are provided to the Ada programmer through
a generic package called Network I0. This generic package closely resembles
the predefined generic package Sequential IO, the primary differences being in
the treatment of external files. Like Sequential IO, Network IO is
instantiated once for each type of data to be written or read. Any programmer
familiar with predefined Ada input/output will find Network IO easy and
comfortable to work with. Sequential I0 has a simple interface, and
Network IO inherits this simplicity.

Processing entities may communicate through virtual circuits or by sending

datagrams. Some internal files (that is, file variables in a program) are

used for virtual-circuit communication and some for datagram communication.
For virtual circuit communication, an open file is (in the jargon of the 0SI
reference model) a connection end point. For datagram communication, an
internal output file corresponds to a stream of datagrams addressed to a
particular processing entity; and an internal input file corresponds to a
stream of datagrams addressed to the processing entity executing the program.
Sections 4.1.1 and 4.1.2 describe scenarios for virtual-circuit and datagram

communication, respectively, in greater detail.

party A: DMS: party B:

call Open ->
Vait for a matching call.
<- call Open
Establish a connection.

Place connection end-point
identifiers in each file
parameter and return from

|
|
|
|
l
|
|
| each call.
I

(end of call) <- -> (end of call)

Figuie 4-1. Calls on Open Vaiting Until Both Parties
Have Requested a Connection and the Connection Has Been Established

¥0-092 Vol. II 4-2 SOFT ecH

b

I

I ui

I

I

1

There is a potential requirement for limited multicasting or broadcasting
of messages in emergency situations. The version of Network IO presented in
this document does not address this requirement because there are many open
issues that must be resolved before the requirements are crystallized.
Section 4.1.3 discusses these issues.

The use of Network IO does not in any way require the use of multitasking.
This is an important practical concern because of the inefficiency of
currently available Ada tasking implementations. Section 4.1.4 addresses

these concerns in greater detail.

4.1.1 Virtual-Circuit Communication

A virtual circuit is established by opening a file and disconnected by
closing the file. Connections are unidirectional, with the direction of data
transmission determined by the Mode parameter to Open. Unlike Sequential_IO,
which uses a string to pass the name of an external file to Open, Network IO
uses a string to.pass the logical name of a processing entity to Open. The
Form parameter of Open is a string that describes properties of the connection
and of the negotiation for a connection. For a connection to be established,
both parties to the communication must call Open. This may happen by prior
agreement between the parties or in response to one party sending a datagram
to the other, for example. As shown in Figure 4-1, neither call on Open
completes until the NOS has received a call from both parties and established
a connection. VWhen the calls complete, each internal file variable identifies
an end point of the connection. Each party may view the effect of a normal
call on Open as establishing a connection, without regard to the actions of
the other party.

A call on Vrite transmits data over the connection and a call on Read
obtains transmitted data. Transmitted messages are buffered by the NOS, so
additional calls on Write can take place before a call on Read obtains the
data transmitted by an earlier call on Write. Normally, if no data is

available for receipt, a call on Read waits for such data to become available.

N0-092 Vol. II 4-3 SOFlecH

However, a procedure Set_Data_Unavailable Response can be called to change the
native of a given file so that a Read operation invoked when no data is
available will raise the exception Data Unavailable immediately. When a
file’s data-unavailable response is to fail, an unblocked input operation can
be achieved by a block statement containing a call on Read for that file and a

handler for Data_Unavailable.

When the transmitting processing entity has written its last message, it
calls Close to sever the connection. Any data previously sent but not yet read
remains buffered so that it can be read by the receiving processing entity.
Once this data has been read, any attempt to read more data will raise the
exception End_Error (the exception raised by the standard Ada input/output
packages when an attempt is made to read past the end of a file). The
function End_Of File can be applied to an input file to avoid raising this
exception. The function returns False if there is data in the corresponding
buffer. It returns True if the buffer is empty and the sending processing
entity has called Close. Othervise, the call waits for the sending processing
eﬁtity to either place another message in the buffer or to call Close. The"
resulting relationship between a writer’s calls on Write and Close and‘a
reader’s calls on End Of File and Read are identical to the relationship
created by Sequential I0. As observed by a single sending or receiving task,
the behavior of these subprograms when used for communication is identical to
the behavior of the corresponding Sequential IO subprograms when used to write

or read disk files.

The receiving processing entity may sever the connection at any time by
calling Close, though it will typically do so only after End 0f_File becomes
true. This has no effect on the sending processing entity. It is analogous
to one program writing one hundred records to a disk file and another program
reading the first ten, then closing its input file. Any data buffered in a
virtual-circuit connection when the receiving processing entity calls Close is

permanently lost.

SOFlecH

W0-092 Vol. II 4-4

il

mi N

4.1.2 Datagram Comuunication

Datagrams are addressed not to processing entities, but to aatagram
streams. There are zero or more datagram streams associated with a processing
entity. These streams have names assigned by the network administrator and
exist permanently unless removed by the network administrator. Datagram
stream names for a given processing entity are unique, but different
processing entities may have identically named streams, so a datagram stream

is identified by the combination of a processing-entity name and a stream name.

A processing entity may have more than one datagram stream. A given
datagram stream is used for transmitting messages of only one data type. By
prior agreement, different streams of the same data type might be used for
transmitting messages of different priorities. A processing entity can then
process highest-priority datagrams first by checking streams for input in
priority order. This approach is illustrated in Section 5.6.

Given the name of a datagram stream (consisting of a processing entity
name plus a stream name), the function Datagram Output_File returns an
internal-file value corresponding to that stream. Given the name of one of
the executing processing entity’s own datagram streams, the function
Datagram_Input File returns an internal-file variable corresponding to that
incoming datagram stream. Because the type for internal files is limited
private and no provision is made for copying datagram-stream internal files
into variables, internal files corresponding to datagram streams can only be

named by such function calls.

Conceptually, the internal files associated with datagram streams are
alwvays open, even when the corresponding processing entities are inactive.
Indeed, since these internal files cannot be named by variables, they cannot
be passed to the Open or Close procedures, whose internal-file parameters are
of mode in out. (Datagram-stream files are analogous in this respect to the
standard input and output files of the predefined Ada package Text_I0.)
Datagram-stream files may be passed to the End_Of File function, but that

function always returns False for such files.

W0-092 Vol. II 4-5 SOFTECH

A datagram is written to a particular stream of a particular processing entity by
a call of the form

Write (Datagram Output_File (Entity, Stream), Message);
A processing entity reads a datagram from a particular incoming stream by a call
of the form

Read (Datagram Input_File (Stream), Message);
From the caller’s p01nt of viev, the behavior of Write and Read for datagram-
stream internal files is identical to their behavior for virtual-circuit internal

files. The only difference is how those internal files are generated.

If a datagram stream is empty and the corresponding file’s data-unavailable
response is to wait, a task calling Read is blocked until a datagramrarrives.
However, other tasks in the same processing entity may continue to execute. If
the task performing a Read accepts an entry call just aftervard to pass the
message on to another task, a conditional call on this the entry has the effect of
obtaining an incoming datagram if one is available and performing a specified
alternative action othervise. Like virtual-circuit internal files, datagram
internal files can be set to trigger the Data Unavailable exception if Read is
called when no data is available. An application requiring incoming datagrams to
be fetched in a certain order, according to some property of the message contents,
can dedicate a task to fetching datagrams from an incoming stream as quickly as
they arrive and inserting them in a data structure based on the relevant
propertiesl The same task would accébf”éhtiy cails to extract dafégEZﬁé’wi:h
specified properties from the data structure. This approach is illustrated in
Section 5.7.)

4.1.3 Broadcast and Multicast Services

There may be a requirement to send the same message to several recipients
simultaneously. This is known as multicasting A spec1al case of multicasting is
roadcasting, sending the same message to all»possible recipients Ve are awvare

of two roles a multicast capability can play.: The first is to propagate alarm
messages in the event of a critical emergency. The second is to provide a way for

an application to send messages to a class of recipients (e.g., to all engineering

V0-092 Vol. II 4-6 SOFrECH

[

consoles or to all subsystems requiring a time stamp) without requiring that the
sending program be modified every time a processing entity is added to or removed

from that class.

Network IO does not explicitly provide multicast capability, but there are
several ways to provide such a capability within the Network IO model. Several
open issues must be resolved before a multicast capability can be specified.
Resolution of these issues, in turn, requires clarification of the requirements
for a multicast capability. This section outlines the relevant issues and

sketches several alternative approaches.

Multicast messages must be datagrams. A virtual-circuit connection is, by its
nature, a relationship between two parties that has been explicitly negotiated by
both parties. Therefore, multicasting must consist of sending multiple copies of

a single datagram to different datagram streams.

It is an underlying principle of Network IO that each datagram stream is
restricted to messages of a single type. This is practically required by the
strong type system of the Ada language: A subprogram used to obtain incoming data
can only obtain data of one type; distinct subprograms are required to obtain data

of different types.*

Thus it does not make sense to broadéast a message to all datagram streams.
Messages can only be sent to streams of the appropriate type. This suggests that,
if broadcasting is to be supported, all broadcast datagrams should be of the same
type. The broadcast cannot be to all datagram streams, but only to streams of

this type.

*If subprograms are overloaded, there are still distinct subprograms, even
though they happen to have the same name. There must be enough information
at the point of the subprogram call (for example, the types of the actual
parameters) for the compiler to determine which one of the distinct
subprograms with a common name is being called. Generic units are applicable
to multiple types, but only after they are instantiated. A program does not
call a generic subprogram, but a specific instance of a generic subprogram.

¥0-092 Vol. II 4-7 SOFlecH

Ada’s type restrictions support a fundamental design principle: A
processing entity should not be sent a message unless it is expecting that
kind of message and is prepared to handle it. Unlike people, processing
entities cannot be expected to receive information of an unanticipated form
and invent an appropriate response. If a processing entity is to receive an

emergency datagram, it should be via a stream dedicated to that purpose.

It is not clear that a universal broadcast is appropriate in an emergency.
Certain emergeﬁcies vill have to be announced to many subsystems throughout
the network, but there may be many processing entities that have no sensible
response to such an emergency. Broadcasting announcements to all processing
entities complicates programming, because each processing entity must
recognize the emergency announcements, even if only to ignore them. More
seriously, unnecessary broadcasting may slow down the transmission of the
emergency announcements to the processing entities where they are really

needed and divert system resources needed to respond to the emergency.

The role of each subsystem in responding to an emergency must be carefully
planned by system integrators. Universal broadcast can lead to the dangerous
assumption that, since emergency announcements have been broadcast to each of
several independently developed processing entities, the problem is somehow
taken care of. In fact, if a processing entity has an important role to play
in an emergency situation, this should be part of its interface specification.
In that case, a conscious decision will be made to place the processing entity

on a multicast list for emergency announcements.

The current model of Network IO is capable of supporting multicasting.

One naive approach is simply for processing entities that must multicast
to explicitly transmit a separate copy of the datagram to all intended
recipients:

for T in Multicast_List’Range loop
Vrite o) ,
(Datagram_Qutput_File (Multicast_List (I), "ALARM_STREAM"),
Message);
end loop;
-- Multicast _List is an array of strings.

¥0-092 Vol. II 4-8 SOFlecH

a

W Wi R Y

{ 1 {1

There are several problems with this approach:

* The list of recipients must be managed by the program, requiring the
program (or a file read by the program) to be changed every time a
recipient is added or removed. It might be preferable for the
netwvork administrator to maintain a single list that is somehow
identified by the application program.

. Datagram Output File must be called anew for each recipient. It is
impossible to compute internal-file values and store them in a table
ahead of time, because these values belong to a limited-private type.

° Given the knowledge that the same message is to go to several
recipients, the NOS may be able to deliver datagrams more efficiently
than by repeated transmission of individual copies.

The first of these problems can be solved within the current design of
Network I0 by establishing "a post-office processing entity" for each class of
recipients. The post-office processing entity would simply relay any message
it received to each processing entity on its recipient list. There would be

only one copy of the recipient list, maintained by the system administrator.

The second and third problems could be solved by implementing the
post-office processing entities as extensions of the NOS rather than as
ordinary application processing entities. Internally, the post-office
processing entities would be implemented in terms of low-level NOS operations
rather than in terms of Network 10, allowing the knowledge that there are
multiple recipients to exploited efficiently; but they would appear from the
outside to be ordinary processing entities. No change would be necessary to

the Network IO interface provided to applications.

(Equivalently, the post-office processing entities could be thought of as
virtual processing entities that exist in name only. The NOS intercepts all

datagrams addressed to such processing entities and handles them specially, by

multicasting them. From the application programmer’s point of view,
addressing a datagram to such a processing entity has the same effect as
addressing it to a multicast list.)

¥0-092 Vol. II 4-9 SOFlecH

4.1.4 The Role of Tasking

It is both convenient and stylistically appropriate to use Network IO in
conjunction with multitasking, but this is by no means required. The
specification of Network_IO does not include tasks. Furthermore, an
application may use Network_IO without using multiple Ada tasks. Therefore,
concerns about the performance of multitasking in early Ada implementations do

not impede the effective use of Network_ IO.

While Network IO does not require the use of multitasking, it can be used
to its fullest potential in multitask designs. Order-of-magnitude
improvements in the performance of Ada multitasking implementations can be
expected in the near future and throughout the life of the Space Station.
Once these improvements are realized, important benefits will be achieved by
transition to a multitask approach. The design of Network IO will facilitate

this transition.

For an application receiving data from multiple asynchronous sources or
performing other processing while waiting for messages to arrive, the use of
multitasking greatly simplifies the logic of the application, resulting in
lower development costs, higher reliability, and substantially safer and
easier modification of the program. Concurrency is natural in such an
application, because there are several separate conceptual threads of events
with which the program must deal. By associating a task with each such
thread, one can construct a program whose structure corresponds directly to
the problem to be solved. Typically, this means providing one task to handle
each asynchronous source of input plus a central task to perform the main
processing. Ada’s tasking features provide a straightforward way for the
programmer to control the synchronization of these tasks, simply and
explicitly, while isolating the logic of independent conceptual threads.

As a practical matter, most early implementations of rendezvous are too
slow to be used for handling high-volume communications. To cope with this
reality, Network IO provides the ability to specify that a call on Read will

raise the exception Data_Unavailable if no data is waiting to be read. This

W0-092 Vol. II 4-10 SOFrECH

| Eii oW on

!

13] il

1 R

1

{

allows a single-task program (i.e., a program without any task units) to poll
for data and to interleave other processing with the polling. The
interleaving logic will be far more complex than the logic of a multitask
program, but the nonmultitasking use of Network IO will result in no more

complexity than any other nonmultitasking approach.

4.2 Specification of Network_ IO

Below is the Ada specification of the generic package Network_IO. The
specification lists the types, subprograms, and exceptions constituting the
application programmer’s interface to the Network Operating System and
describes the syntax for invoking the subprograms. The behavior of the
subprograms is described in Section 3.

with I0_Exceptions;
generic

type Message Type is private;
package Network IO is

type File Type is limited private;
type File Mode is (In_File, Out _File);
type Data Unavailable _Response Type is (Wait, Fail);

procedure Open
(File : in out File_Type;
Mode : in File Mode;
Name : in String;
Form : in String);

procedure Close (File : in out File Type);

function Datagram _Output_File
(Entity Name : String;
Stream Name : String)
return File _Type;

function Datagram_ Input_File
(Stream_Name : String) return File _Type;

¥0-092 Vol. II 4-11 SOFlecH

procedure Set Data_Unavailable_Response

(File : in File_Type;

Response : Data_Unavailable Response_Type);
procedure Read (File : in File Type; Item : out Message Type);
procedure Write (File : in File Type; Item : out Message Type);

function End_Of_File (File : in File Type) return Boolean;

Data Unavailable : exception;

Status_Error : exception renames I0_Exceptions.Status_Error;
Mode Error : exception renames I0_Exceptions.Mode_Error;
Name Error ¢ exception renames I0_Exceptions.Name Error;
Use Error : exception renames I0_Exceptions.Use Error;
Device_Error : exception renames I0_Exceptions.Device Error;
End _Error : éxception renames I0_Exceptions.End_Error;
Data_Error : exception renames I0_Exceptions.Data Error;
private

type File Type is [irrelevant to user of Network IO};

end Network_IO;

4.3 Behavior of Netwvork IO Subprograms

This section describes the behavior of the seven subprograms provided by an
instance of the generic package Network I0. In each case we begin by repeating
the Ada subprogram specification given in the generic package specification of
Section 2. This is followed by English text describing therbehavior of the
subprogram. Finally, we enumerate the exceptions that may be raised by each

subprogram and the circumstances in which those exceptions are raised.
4.3.1 Open

procedure Open
(File : in out File_Type;
Mode : in File Mode;
Name : in String;
Form : in String);

A call on Open establishes a virtual-circuit connection to the processing
entity named by the Name parameter. The establishment of the connection obeys
the constraints specified in the Form parameter. The File parameter is set to

an open internal-file value identifying an end point of this connection. If

¥0-092 Vol. II 4-12 SOFlecH

|] l il LN 1 u (N1 a ml

e

Y

i

e

the Mode value specified in the call on Open is Out_File, messages may be sent
over this connection by writing to the internal file. If the Mode value
specified in the call on Open is In _File, messages may be received over this
connection, in the order in which they were sent, by reading from the internal
file.

[The syntax of the Form string and the full range of attributes
specifiable by the string are still to be determined. We have identified
the followving attributes so far:

° the role of the requested connection, alloving the NOS to correctly
match multiple connection requests by the same pair of processing
entities

. the quality of service, including:
. the maximum acceptable transport lag for data transmission

° vhether bandwvidth is to be reserved during the lifetime of the
connection or seized and released with each transmission

. vhether error checking and correction is required

) the time limit within vhich the other party must also request the
connection before the request is abandoned

° security-related constraints

Using a string instead of a record type requires run-time interpretation
of the string. However, it allows new Form attributes to be defined
during the evolution of the NOS without recompiling all code that calls
Open. Furthermore, it is consistent with the Form parameter in Ada’s
predefined input/output packages.]

Exceptions:

) Open raises Status_Error if the internal file passed as File is
already open.

. Open raises Name Error if the string passed as Name is not a valid
logical name of a processing entity.

' Open raises Use Error if a virtual connection cannot be established
subject to the constraints specified in the Mode parameter (including
the constraint to establish a connection within a certain amount of
time).

. Open raises Device Error if a malfunction or overloading of the NOS
prevents completion of a connection.

. ¥0-092 Vol. IT 4-13 , SOFlecH

4.3.2 Close
procedure Close (File : in out File _Type);

Close severs the association between the internal file passed as File and
the corresponding connection end point, allowing any NOS resources used by
that association to be released. Despite the severing of the association
betwveen the internal file and the connection end point, the connection itself
remains in existence, preserving data that has been sent but not yet received,

until neither end point is associated with an internal file.

(Note: Programs opening files should close them once the files are no longer
needed, so that resources can be released.)

Excegtions:

] Close raises Status_Error if the internal file passed as File is not
open.

4.3.3 Datagram Output File

function Datagram Output_File
(Entity_Name : String;
Stream Name : String)
return File _Type;

Datagram OQutput File returns an open internal file corresponding to the
datagram stream named by Stream Name belonging to the processing entity named
by Entity Name. A datagram may be sent to that stream by writing to that
internal file.

Exceptions:

. Datagram Output_File raises Name_Error if the string passed as
Entity_ Name is not the valid logical name of a processing entity, or
if it is a valid name but Stream Name does not name one of that
processing entity’s datagram streams.

) Datagram Output File raises Device Error if a malfunction or
overloading of the NOS prevents interpretation of the strings passed
as Entity Name and Stream Name.

W0-092 Vol. II 4-14 SDFréEH

gilli ® n] [} | il |

N

I | 10— 1 m
L i i N

[l

[

!
i

il

FE

4.3.4 Datagram Input_PFile

function Datagram Input_File
(Stream_Name : String) return File _Type;

Datagram_Input_File returns an open internal file corresponding to the
datagram stream named by Stream Name belonging to the processing entity
executing the call. A datagram may be retrieved from that stream by reading
from that internal file.

Exceptions:

. Datagram_Input_File raises Name_Error if the string passed as
Stream | Name does not name a datagram stream of the processing entity
executing the call.

4.3.5 Set_Data_Unavailable_Response

procedure Set_Data_Unavailable Response
(File T in File _Type;
Response : Data_Unavailable_Response_Type);

Sets the current data-unavailable response for the input file passed as
File to the value passed as Response. A file’s current data-unavailable
response affects the behavior of Read. The setting remains in effect until
termination of the main program or until another call on
Set_Data_Unavailable Response. The initial data-unavailable response of a file
(set for virtual-circuit connection files when they are opened and for

datagram-stream files at the start of the main program) is Vait.

Exceptions:

() Set Data_Unavailable_Response raises Status_Error if the file passed
as File is not open.

. Set_Data_Unavailable_Response raises Mode Error if the file passed as
File is open with a mode of Out _File.

V0-092 Vol. IT 4-15 SOFlecH

4.3.6 Read

procedure Read (File : in File Type; Item : out Message Type);

Read receives the next message from the input file passed as File and

places its value in the Item parameter. If the current data-unavailable

response of the file passed as File is Fail, the exception Data_Unavailable is

raised.

Unless it raises an exception, a call on Read does not complete until

a message is received.

Exceptions:

Read raises Data_Unavailable if the current data-unavailable status
of the file passed as File is Fail and no message is immediately
available to be read.

Read raises Status Error if the internal file passed as File is not
open.

Read raises Mode_Error if the internal file passed as File is open
vith a mode of Out _File.

Read raises Device Error if a malfunction or overloading of the NOS
prevents receipt of the next message.

Read raises End Error if the internal file passed as File is
associated with a virtual-circuit connection, the sender’s connection
end point is no longer associated with an internal file, and the
connection contains no unreceived data.

In some cases, Read may raise Data_Error if the message read cannot
be interpreted as a value of the type Message _Type. However, the NOS
is not required to raise this exception in all cases.

4.3.7 Vrite

procedure Write (File : in File Type; Item : out Message Type);

Write sends the value passed as Item to the output file passed as File.

¥0-092 Vol. II 4-16 SOFT ecH

K

W

ami

!

(i

Exceptions:

o Write raises Status_Error if the internal file passed as File is not
open.
. Write raises Mode Error if the internal file passed as File is open

vith a mode of In File.

. In some cases, VWrite may raise Device Error if a malfunction or
overloading of the NOS prevents receipt of the message. However, the
NOS is not required to raise this exception in all cases.

[For a virtual-circuit file, the raising of Device Error will depend
on the degree of error-checking specified in the Form parameter vhen
the file vas opened.]

4.3.8 BEnd_Of _Pile
function End Of File (File : in File_Type) return Boolean;

Returns True if the internal file passed as File is associated with a
virtual-circuit connection, the sender’s connection end point is no longer
associated with an internal file, and the connection contains no unreceived
data. Returns False if the internal file passed as File is associated with a
datagram stream or if the internal file passed as File is associated with a
virtual-circuit connection that still contains unread data. If the internal
file passed as File is associated with a virtual-circuit connection, the
sender’s connection end point is still associated with an internal file, and
the connection contains no unread data, End_Of File does not return a value
until the sender either severs the association between the connection and its
output file (in which case True is returned) or sends another message (in

which case False is returned).

This behavior is summarized in Figure 4-2. 1Its net effect is to return
True for virtual-circuit files over which more data can be read, to return
False for virtual-circuit files over which there will be no more data to be

read, and to return False for all datagram-stream files at all times.

¥0-092 Vol. II 4-17 SOF[lecH

| unread | sender’s | |

case|kind of file|data left?|file open?| action |
1] | | ves I |
— | yes +-———---———+ return Palse |
2 | | | no I I
———+ virtual + + + +
3 | circuit | no | yes | WVait for case |
| | | | 1 or 4 to hold.|
—_— + + + +
4 | | no] no | return True |
5 1 | yes | | |
-———+ datagram +——————+ N/A | return False |
6 | | mno | I I

3 3
r *

Figure 4-2. Behavior of the End_Of Pile Function

Exceptions:

L End Of File raises Status_Error if the internal file passed as File
is not open.

. End_Of File raises Mode Error if the internal file passed as File is
open with a mode of Out_File.

) For virtual-circuit files, End_Of File raises Device Error if a
malfunction or overloading of the NOS prevents checking whether the
connection’s other end point is still associated with an internal
file or whether the connection contains unread data.

4.4 Summary of Exceptions

This section reviews the information given in Section 3 about the raising
of exceptions. In this section, however, the information is organized by

exception instead of by subprogram.

4.4.1 Data Unavailable

Read raises Daté_Unavailable if the current data_unavailable status of the
file passed as File is Fail and no message is immediately available to be

read.

¥0-092 Vol. IT 4-18 SOFrECH

I

”"H '

i

!

4.4.2 Status_Error

Open raises Status Error if the internal file passed as File is already
open. Close, Set_Data_Unavailable Response, Read, Write, and End_Of_File raise

Status_Error if the internal file passed as File is not open.

4.4.3 Mode_Error

Set_Data_Unavailable Response, Read and End_Of File raise Mode_Error if
the internal file passed as File is open with a mode of Out_File. Vrite
raises Mode Error if the internal file passed as File is open with a mode of
In File.

4.4.4 Name_Prror

Open raises Name_Error if the string passed as Name is not a valid logical
name of a processing entity. Datagram Output_File raises Name Error if the
string passed as Entity Name is not the valid logical name of a processing
entity, or if it is a valid name but Stream Name does not name one of that
processing entity’s datagram streams. Datagram Input_File raises Name Error
if the string passed as Stream Name does not name a datagram stream of the

processing entity executing the call.

4.4.5 Use_Error

Open raises Use Error if a virtual connection cannot be established
subject to the constraints specified in the Mode parameter (including the

constraint to establish a connection within a certain amount of time).

¥0-092 Vol. II 4-19 SoFrECH

4.4.6 Device Brror

In general, an operation raises Device Error if a malfunction or
overloading of the NOS prevents completion of the operation. Open raises
Device_Errof if a connection cénnot be establishéd:r”ﬁétagram_OUtput_File
raises Device Error if the strings passed as Entity Name and Stream Name
cannot be interpreted. Read raises Device Error if the next message cannot be
received. In some cases (depending on the level of error checking specified
wvhen a virtual-circuit connection is establishe&), Vrite may raise
Device_Error if the message being written cannot be received. For
virtual-circuit files, éhé;of;File raises Device_Error if checks cannot be
made to determine whether the connection’s other end point is still associated

with an internal file or whether the connection contains unread data.

4.4.7 End Brror

Read raises End_Error if the internal file passed as File is associated
with a virtual-circuit connection, the sender’s connection end point is no
longer associated with an internal file, and the connection contains no

unreceived data.

4.4.8 Data Error

In some cases, Read may raise Data Error if the message read cannot be
interpreted as a value of the type Message Type. However, the NOS is not

required to raise this exception in all cases.

V0-092 Vol. II 4-20 SDFT ecH

m | i [l I | il

Section 5

EXAMPLES OF USE

This section contains eight hypothetical applications illustrating how
Network IO may be used to achieve a wide range of flexible network-
communication capabilities. Each example contains actual Ada code, though in
some cases we have used bracketed, underlined text in place of code dealing
with details irrelevant to network communications. Ve have used two kinds of

illustrations to represent the structure of the examples graphically.

To represent the pattern of network communications, we use diagrams like
Figure 5-1. Circles represent processing entities and rectangular strips
extending from the circles represent datagram streams. A jagged arrow from a
circle to a strip representing a datagram stream indicates that a datagram may
be sent from the processing entity represented by the first circle to the
datagram stream represented by the strip. A virtual-circuit connection
betwveen two processing entities is represented by a line with a plug at each
end plugged into the corresponding circle. An arrovhead on the line indicates
the direction of the connection. The diagram depicts potential communication
paths. It does not indicate the circumstances under which datagrams are
actually sent or virtual circuits are actually established, nor the order in

which these things happen.

To represent the structure of an Ada program, we use diagrams like Figure
5-2. Large parallelograms represent concurrent tasks and small embedded
parallelograms represent entries of that task. Rectangles with embedded
rectangles represent packages and the embedded rectangles represent
subprograms provided by that package. Stand-alone rectangles represent
separately compiled subprograms. Large solid arrows represent procedure and

entry calls and point from the caller to the called subprogram or entry.

Small arrows represent data passed through parameters during a subprogram

or entry call and point from the producer of the data to its consumer.

W0-092 Vol. II 5-1 SOFlecH

DATAGRAM
TRANSMISSION

VIRTUAL-CIRCUIT o . ‘DATAGRAM
CONNECTION STREAM

Figure 5-1. Notation for Network Communication Patterns

TASK 1 TASK 2

/ IN PARAMETER va
ENTRY_t /

OUT PARAMETER
‘—

ENTRY 2 /

‘m PARAMETER o
- PACKAGE 1
OUT PARAMETER =

SUBPROGRAM 1
- IN PARAMETER SUBPROGRAM _2

/ Va
t
1

SUBPROGRAM 4

Pigure 5-2. Notation for Program Structure

¥0-092 Vol. II 5-2 SOFrECH

Ll L RIIE [

il

{

{|

r
i

5.1 Processing a Bounded Sequence of Data

By prior agreement, the processing entity DATA_ANALYZER and the processing
entity PAYLOAD DATA_ MANAGER are to establish a virtual-circuit connection.
PAYLOAD DATA_MANAGER will transmit a sequence of Float values to
DATA_ANALYZER, then the connection will be removed. Figure 5-3 depicts the

flow of messages across the network.
Both processing entities instantiate Network_IO as follows:

package Network Float_IO0 is new Network IO (Float);

PAYLOAD_DATA_MANAGER

DATA
-] DATA_ANALYZER

Figure 5-3. Flov of messages from PAYLOAD DATA MANAGER to DATA ANALYZER

¥0-092 Vol. II 5-3 SOFlecH

PAYLOAD DATA_MANAGER executes statements of the following form, where
Output_File is a variable of type Network Float_IO.File Type, Form is a
variable of type String, and X is a variable of type Float:

Network_Float_IO.Open
(Output_File,
Network Float_I0.0ut_File,
"DATA_ ANALYZER",
Form),

vhile [there is additional data to send] loop
[obtain the data and place it “in X];
Netvork_Float_I0.Write (Output File, X);
end loop;

Network_Float_IO0.Close (Output_File);

DATA_ANALYZER executes statements of the following form, where Input File
is a variable of type Network Float_IO.File Type, Form is a variable of type
String, and Y is a variable of type Float:

Network Float_IO0.Open
(Input Flle,
Network Float_IO.In_File,
"PAYLOAD DATA MANAGER",
Form);

while not Network_Float IO.End_Of File (Input_File) loop
Network Float I0.Read (Input File, Y);
[process the data in Y};

end loop;

Network Float_IO.Close (Input_File);

5.2 Performing Background Processing WVhile Vaiting for Datagrams

A processing entity is responsible for taking sensor measurements every
second and maintaining the average of the five most recent measurements. '
Every time a datagram arrives on the incoming stream REQUEST_STREAM, a return
datagram specifying the most recent average is to be sent to the stream named

in the incoming datagram. (The incoming datagram is analogous to ordinary

¥0-092 Vol. II 5-4 SOFlecH

(I

i

Wil

(

IR

[l

mail containing a return-address label to be used for sending a reply.) The

processing entity is to continue executing indefinitely. Figure 5-4 depicts

the flow

ENTITY
REQUESTI
DATA

of messages across the network.

REQUEST g,
(mc:.uomeogsgA T

UHN
H@@
S

ENTITY PROVIDING
NG REQUEST STREAM | AVERAGED READING

4p3

R

AGEo HEADm
GS

Figure 5-4. Flov of Requests for Data and Averaged Sensor Readings

The s

consists

olution for the processing entity providing averaged readings
of four compilation units:

The package Request_Package. This package is imported (using a with
clause) by the processing entity that computes averages and all
processing entities that communicate with that processing entity, to
define the common data type these processing entities use for
requests for data.

¥0-092 Vol. II 5-5 SOFTecH

° A main program consisting of a task Communication Task that receives
and replies to datagrams and a task Averaging Task that takes
periodic measurements and provides averages upon request.

° A subunit for the Communication_Task body, showing how Network IO is
used.

[A subunit for the Averaging Task body.

' The Averaging Task body is not directly relevant to network
communications, but is supplied for completeness. We do not show the library
procedure Read_Sensor imported by Averaging Task to actually drive the sensor
and obtain a reading. Figure 5-5 shows the relationships of the program units
and the data flow among thenm.

package Request_Package is

type Request_Type is
record i
Requestor_Part : String (1 .. 128);
Stream_Part ¢ String (1 .. 64);
end record; -

end Request_Package;

¥0-092 Vol. II 5-6 SOFlecH

B v e W owa i w t

I BYO I I (]

i i

miig E

AVERAGING_TASK

COMMUNICATION_TASK /
“AVERAGED
SENSOR READINGS

GET_AVERAGE

REQUEST FOR DATA

FILE

[
% E Ismson READING
a ¥
S|l
OPEN J g & W [opeN] READ_SENSOR
" 3|E3
z all=
CLOSE]] cLosk |
g
DATAGRAM_OUTPUT_FLE] 2 DATAGRAM_OUTPUT_FILE B
L— DATAGRAM_INPUT_FILE] DATAGRAM_INPUT_FILE |
\—»-{READ] 2 READ]
WRITE) N\ WAITE |
|END_OF FiLE 1 ENO_OF_FILE B
|
FLOAT 10
nsgg:‘s\&lo PACKAGE

REQUEST_IO and FLOAT_IO are both instances of the generic
package NETWORK_|0. COMMUNICATION_TASK executes a loop that
is repeated once every time a request for sensor data is received.
AVERAGING_TASK executes a loop that is executed once each time
its entry is called and once each time it is time to read new data
from the sensor. Neither task consumes processor cycles between
repetitions of its loop.

Figure 5-5. Structure of the Program to Provide Average Readings on Request

W0-092 Vol. II 5-7 SOFlecH

procedure Main Program is
task Communication_Task;
task Averaging Task is
entry Get Average (Average : out Float);

end Averaging Task;

task body Communication_Task is separate;
task body Averaging Task is separate;

begin

null; -- All work done by Communication_Task and
-- Averaging Task.

end Main_Program;

with Request_Package, Network IO;
separate (Main_Program)
task body Communication_Téék Is

package Request_IO is 7
new Network_IO (Request_Package.Request_Type);

package Float_I0 is new Network_IO (Float);

Request : Request_Package.Request_Type;
Average : Float;

begin
loop

Request_I0.Read
(Request_IO.Datagram Input_File ("REQUEST_STREAM"),
Request);

Avgg§g§pg9Task.Gethngige»(Average);

Float 10.Vrite -
(Float_IO.Datagram_Output File

(Request.Requestor_Part, Request.Stream_Part),

Average); ' ,

end loop;

" end Communication Task;

V0-092 Vol. II - 5-8

SOFTecH

il

vith Calendar, Read Sensor; use Calendar;
separate (Main_Program)
task body Averaging Task is
Next_Reading Time : Time;
[other declarations]
begin

-- Initialization. No entry calls accepted until first five
- readings have been obtained.

Next_Reading Time := Clock;

for T in 1 .. 5 loop
[read the sensor and save the value read];
Next . Readlng Time := Next _Reading Time + 1.0;
delay Next Reading Time - Clock;

end loop;

Next_Reading Time := Next_Reading Time + 1.0;

-- Routine processing. Wait for an entry call or
- Next_Reading Time to arrive.

loop
select
accept Get_Average (Average : out Float) do
[place the average of the last five readings
in Average];
end Get_ Average;
or
delay Next Reading Time - Clock;
[read the sensor and update the list of readings];
Next Reading Time := Next Readlng Time + 1.0;
end select;
end loop;

end Averaging Task;

N

.

\

iy

n

Communication_Task remains blocked at the call on Read when waiting for an
incoming datagram, without consuming CPU time. Similarly, Averaging Task
remains suspended at the selective wait until except when it is briefly woken

up to retrieve a new reading or to deliver an average. It does not consume CPU
time while suspended.

¥0-092 Vol. II 5-9 SOFlecH

5.3 A Pile Server

A processing entity named FILE SERVER has its own local file system.

Other processing entities requiring data from this file system send a datagram
to FILE_SERVER’s datagram stream REQUEST STREAM. FILE SERVER responds by

sending an acknovwledgment datagram to a stream named in the request and then

sending the contents of the file over a virtual circuit. (See Figure 5-6.)
The records in the file are of type Float. The datagram sent to REQUEST_STREAM

belongs to the type declared in the following package:

REQUEST_STREAM

WLEDGMENT

-
FILE DATA

FILE_SERVER

Figure 5-6. Flow of Messages Betwveen FILE SERVER and Client

package Service Request Package is

type Service Request Type is

record
Requestor Name : String (1 ., 64);
Acknowledgment_Stream_Name : String (1 .. 64);
File Name : String (1 .. 64);

end record;

end Service_Request Package;

W0-092 Vol. II 5-10

SOFlecH

{
!

[T

P

i

i
[

W

FILE_SERVER sends the acknovledgment datagram after trying to open the
specified file. The acknowledgment is of type Boolean, equal to True if the
file can be found and False otherwise. A virtual circuit connection is
established only if the file can be found.

Here is the FILE_SERVER program:

vith Service_ Request_Package, Network IO, Sequential_IO;
procedure File Server is

package Request_IO is
nev Network IO
(Service . _Request_Package.Service_Request _Type);
package Local Float IO is new Sequent1a1 10 (Float);
package Boolean I0 is new Network_ IO (Boolean);
package Remote_ Float I0 is new Network IO (Float);
use Request_ 10, Local Float_IO, Boolean 10, Remote_Float_IO;

Request : Service Request_Package.Service Request_Type;
Input_File : Local Float _Io. File _Type;

Successful : Boolean;

Output_File : Remote_Float_IO.File Type;

Data : Float;

Connection Form : constant String := [some string literall];

begin
loop
Read (Datagram_Input_File ("REQUEST_STREAM"), Request);

begin
Open (Input_File, In_File, Request.File Name);
Successful := True;
exception
vhen Name Error | Use Error =>
Successful := False;
end;

Vrite
(Datagram _Output_File
(Request. Requestor Name,
Request. Acknovledgment_Stream_Name),
Successful);

¥0-092 Vol. II 5-11 SOFTECH

if Successful then

Open
(Output_File,
Out File,
Request.Requestor_Name,
Connection_Form);

while not End_Of File (Input_File) loop

Read (Input_File, Data); -- Local Float_IO.Read
Write (Output_File, Data); -- Remote_Float_IO.Vrite
end loop;

Close (Output_File);
Close (Input_File);
end if;
end loop;

end File Server;

5.4 Converting Arriving Messages to Entry Calls

Often, incoming messages may arrive from severalrsources, interleaved in
an unpredictable way. From an abstract point of view, this situation
manifests several conceptual threads of activity. The most natural vay to
model this in the Ada language is with tasking.

Ada provides a rich set of facilities for handling interleaved stimuli
from different sources. If such stimuli are presented to a central task as

entry calls, then the selective wait statement provides the central task with

a wvide range of capabilities, including the following:'
. to vait for stimuli from several sources and to respond to each
stimulus as it arrives, based on the source of the stimulus

° to queue stimuli from a given source and only respond to them when
certain conditions hold

¥0-092 Vol. IT 5-12 SDFrECH

L

® to perform other processing when no stimuli are waiting to be
processed

) to perform other processing if no stimuli arrive within a specified
amount of time

Such stimuli may include datagrams and virtual-circuit messages arriving
from other processing entities, giving a processing entity great flexibility

in the handling of incoming messages.

The following generic package can be instantiated for each desired
virtual-circuit connection to produce a task that waits for input on that
— virtual circuit and calls a specified entry of a central task whenever a
message arrives. A second specified éntry is called upon successful or
unsuccessful conclusion of the attempt to establish a connection and a third
is called when the end of the file is detected. The type of the message, the
name of the sending processing entity, the Form string to be used in
establishing a connection, and the entries to be called are specified as

generic parameters:

()

generic
type Message Type is private;
Sender : in String;
Form : in String;
vith
procedure Signal Connection_Attempt
(Successful : in Boolean);

- vith procedure Deliver Message (Message: in Message Type);

with procedure Signal End;

i

package Virtual Circuit Delivery Template is

end Virtual Circuit_Delivery Template;

¥0-092 Vol. II 5-13 SOFlecH

i

with Network_IO;
package body Virtual Circuit_Delivery Template is
package Message IO is new Network IO (Message Type);
task Message Delivery Task;
task body Message Delivery Task is

Input_File : Message I0.File_Type;
Message : Message Type;
Connection_Failure : exception;

begin

begin
Message I0.0pen
(Input_File, Message 10.In_File, Sender, Form);
exception
vhen others =>
Signal Connection_Attempt (Successful => False);
raise Connection Fallure, -~ Abandon this task.
end;

Signal_Connection_Attempt (Successful => True);

while not Message I0.End_Of File (Input_File) loop
Message I0. Read (Input File, Hessage),
Deliver | _Message (Hessage),

end loop;

Message IO. Close (Input_File);
Signal_ End;

end Message Delivery Task;

end Virtual Circuit_Delivery Template;

Figure 5-7 shows the resulting program structure.

An almost identical generic package can Berasearfdrgenerate a call on a
specified entry every time a datagram arrives on a specified stream. In this
case, generic parameters specify the type of the datagram, the name of the
5-12 incoming datagram stream, and the entry to be called every time a

datagram arrives on the stream:

¥0-092 Vol. II 5-14 SOFlecH

[

Q1%

W
il

P
il

¥l

generic

type Message Type is private;
Stream Name : in String;
vith procedure Deliver Message (Message: in Message Type);

package Datagram Delivery Template is

end Datagram Delivery Template;

(INSTANCE OF VIRTUAL _CIRCUIT_DELIVERY_TEMPLATE)

MESSAGE-DELIVERY TASK

RESULY

FILE

w
E]
e ||[2
& X
w "g'] *
&S
= ELLS
z OPEN |
8 \ »CLOSE 1
<
@
w DATAGRAM_OUTPUT_FILE 1
w DATAGRAM_INPUT_FILE |
&
\—————»{READ |
WRITE B
—. END_GF _FILE |
MESSAGE |0
PACKAGE

%‘

SUQ:W‘

(THE CENTRAL TASK)

ENTRY PASSED AS
SIGNAL_CONNECTION_ATTEMPT

ENTRY PASSED AS
SIGNAL_END

"~

Entries of the central task are passed as generic parameters to the
instantiation of VIRTUAL_CIRCUIT_DELIVERY_TEMPLATE. The entry
corresponding to DELIVER_MESSAGE is called every time a message
is received, to pass the message to the central task.

Figure 5-7. Program structure using Virtual Circuit_Delivery Template

W0-092 Vol. II

5-15

SOFlecH

wvith Network IO;

package body Datagram Delivery Template is
package Message I0 is new Network IO (Message Type);
task Message Delivery Task;

task body Message Delivery Task is
Message : Message_Type;
begin
loop
Message I0.Read
(Message_IO.Datagram_Input_File (Stream_Name),
Message);
Deliver Message (Message);
end loop;
end Message Delivery Task;

end Datagram Delivery Template;

Figure 5-8 shows the resulting program structure.

The remaining examples are based on Virtual Circuit_Delivery Template and

Datagram Delivery Template, and depict their use. Because these templates are

so useful for interleaved processing, ve expect that they will be provided as
part of the NOS library.

5.5 Merging Streams of Incoming Messages

Processing entity ONE_KW_CELL MANAGER managé§7§WSet of 1-kilowatt power
cells that are dynamically switched on-line and off-line in groups.
Processing entity FIVE_KU_CELL;MANAGER does the same for a set of 5-kilowatt
pover cells. Both these processing entities have virtual-circuit connections
established, by prior agreement, with a third processing entity,
POVER_SUPPLY_MONITOR. Every time ONE_KV_CELL MANAGER or FIVE KW_CELL_MANAGER
swvitches a group of cells on or off, a message giving the number of cells
switched is sent to POVER_SUPPLY_MONITOR. A positive number indicates that
cells vere switched on-line and a'négative number indicates that cells were
svitched off-line. POWER_SUPPLY MONITOR may also receive datagrams in stream
REQUEST_STREAM requesting the total wattage of power cells currently on-line,

in vhich case it sends a reply to the return address given in the datagram.

¥0-092 Vol. II 5-16 SOFlecH

t! i LY t r i 1 i

]1
I

L Ll e al

{

(INSTANCE OF DATAGRAM _DELIVERY_TEMPLATE)

MESSAGE_DELIVERY_TASK

(THE CENTRAL TASK)

e3840 _ /
%

/
NE oren]
g § cLoSE]
N e —
2{| 3 (Y —
NI)
il]
ENO_OF_FRE j
T

Figure 5-8. Program structure using Datagram Delivery Template

As shown in Figure 5-9, POVER_SUPPLY MONITOR must, in effect, merge three
streams of inputs -- a stream of notices about groups of 1-kilowatt cells, a
stream of notices about groups of 5-kilowatt cells, and a stream of requests
for totals -- into a single stream, to treat each incoming message as it
arrives. This can be done by a task with three entries, one for each input
stream. One of these entries will be called whenever a message arrives in the
corresponding input stream. The task will execute a selective wait for calls

on all three entries, thus processing incoming messages as they arrive.

V0-092 Vol. II 5-17 SOFlecH

ONE_KW_CELL_MANAGER

POWER_SUPPLY_MONITOR

Figure 5-9. Flow of MESSAGES to and from POVER_SUPPLY MONITOR

The requests for total wattage are messages of the type provided by the
following package:

package Request_ Package is

type Request Type is
record :
Requestor Part : String (1 .. 128);
Stream Part : String (1 .. 64);
end record;

end Request_Package;

The work of POVER_SUPPLY MONITOR is done by the task Monitor_Task.
Instances of Virtual Circuit_Delivery Template and Datagram Delivery Template
are used to link the incoming virtual circuits and REQUEST_STREAM to entries

of Monitor Task. The resulting program unit structure is shown in Figure 5-10.

¥0-092 Vol. II 5-18 SOFTe ecH

L [l

procedure Null Procedure is
begin -

null;
end Null Procedure;

package One_KW_Message Package is
new Virtual Circuit De11very _Template

(Message _Type => Integer,
Sender => "ONE_KV_CELL_MANAGER",
Form => [some tring],

Signal Connection Attempt =>
Monitor _Task. Handle _Connection,
Deliver Message => Monitor _Task.Handle_1_KV_Group,
Signal_ End => Null Procedure),

package Five KW_Message Package is
nev Virtual Citcuit Del1very _Template
(Message _Type => Integer,

Sender => "FIVE_KVW_CELL_ MANAGER",
Form => [some string],

Signal Connection_Attempt =>
Monitor _Task. Handle _Connection,

Deliver Message => Monitor _Task.Handle_5 KV_Group,
Signal_ End => Null Procedure),

package Request Package is

nev Datagram_ “Delivery _Template

(Message Type => Request _Package.Request_Type,
Deliver . _Message => Monitor Task Handle Request),

package Integer IO is new Network IO (Integer);

task body Monitor_Task is separate;

begin
null; -- All work done by tasks.

end Power Supply Monitor;

separate (Power_Supply Monitor)
task Monitor Task is

Connection_Failure : exception;
Total Wattage ¢ Integer := 0;

¥0-092 Vol. II 5-20 SOFlecH

PRBCEDING PAGE BLANK NOT FILMED

begin
for I in 1 .. 2 loop -
accept Handle Connection (Successful : in Boolean) do
if not Successful then
raise Connection Failure; - -
end if;
end Handle_Connection' o
end loop; - »
loop -
select -
accept Handle_l KW Group (Cell Count : in Integer) do _
Total Vattage := Total _Vattage + Cell _Count; =
end Handle 1_KV_Group;
or —
accept Handle_5 KW _Group (Cell_Count : in Integer) do)
Total Vattage := Total Vattage + 5 * Cell Count; _
end Handle _5_KW_Group; -
or =
. -
accept Handle_Request
(Request : in Request_Package.Request_Type) do
Integer I0.VWrite -
(Integer_IO.Datagram Output_File
(Request.Requestor_Part, —_
Request.Stream Part), -
Total Wattage);
end Handle Request; -
end select; -
end loop; B
end Monitor_Task; —
5
Since the virtual-circuit connections are intended to remain in existence
permanently, there is no need to prov1de an entry to be called upon end of gé
-
file. The dummy procedure Null _Procedure is used as a generic actual
parameter in place of such an entry. The two instances of %;
Virtual Circuit_Delivery Template specify the same entry to be called upon =
%
[
¥0-092 Vol. II 5-21 SOF IECH =
- -

vl

(!

(f

(]

{1

(1l

i

connection establishment. Thus the entry Handle Connection is called twice

vhen Pover_Supply Monitor starts up. The for-loop at the beginning of the
Monitor Task body handles these calls.

5.6 Processing Datagrams of Different Priority

A processing entity is to process bulletins of three different priorities.
Bulletins are values of some type'Bulletin_Type and are processed by calling
the library procedure Process_Bulletin. A bulletin should not be selected for
processing while a higher-priority bulletin is waiting.

Our solution is to establish three different datagram streams,
HIGH_PRIORITY_ STREAM, MEDIUH_PRIORITY__STREAM, and LOV_PRIORITY STREAM,
corresponding to the three different priority levels of bulletins. This
arrangement is illustrated in Figure 5-11. Ve declare a task with one entry
corresponding to each priority level.

v

HIGH_PRIORITY_STREAM /

MEDIUM_PRIORITY_STREAM

LOW_PRIORITY_STREAM \

Figure 5-11. A Processing Entity with Datagram Streams Corresponding
to Different Priority Levels

¥0-092 Vol. II 5-22 SOFlecH

task Bulletin Processor is

entry Deliver High Priority Bulletin
(Bulletin : in Bulletin Type),

entry Deliver Medium Priority Bulletin
(Bulletin : in Bulletin Type),

entry Deliver Low Priority Bulletin
(Bulletin t in Bulletin _Type);

end Bulletin_Processor;

The following generic instantiations ensure that the appropriate entry is

called each time a datagram arrives at one of the streams:

package High Priority Bulletin Delivery_ Package is
nev Datagram Delivery Template
(Message Type => Bulletin _Type,
Stream Name => "HIGH PRIORITY STREAM",
Deliver _Message =>
Bulletin _Processor.Deliver High Priority Message);

package Medium_Priority_Bulletin Delivery Package is
nev Datagram Delivery Template
(Message Type => Bulletin _Type,
Stream Name => "MEDIUM PRIORITY STREAM",
Deliver _Message =>
Bulletin Processor.Deliver Medium _Priority_Message);

package Low_Priority Bulletin Delivery_ Package is
nev Datagram Delivery Template
(Message Type => Bulletin _Type,
Stream Name => "LOV_ PRIORITY STREAM",
Deliver _Message =>
Bulletin Processor De11ver Low _Priority Message),

W0-092 Vol. II 5-23

The resulting program structure is shown in Figure 5-12.

HIGH_PRICRITY_BULLETIN_DELIVERY_PACKAGE

% BULLETIN_PROCESSOR

/

DELIVER_MIGH_PRIORITY_MESSAGE |

‘4«' 7 DELIVER_MEDIUM_PRIORITY_MESSAGE]

DELIVER_LOW_PRIOAITY_MESSAGE |
/

MEDIUM_PRIORITY_BULLETIN_DELIVERY_PACKAGE

N

p————
[_f

High Priority_Bulletin_Delivery_Package, Medium_Priority_Bulletin_-

Delivery Package, and Low Priority Bulletin Dellvary Package are instances of the
generic package Datagram_DeIIvery_Template Each contains a task that calls the
corresponding entry of Bulletin_Processor when a datagram arrives on the corre-
sponding stream.

-

Figure 5-12. Task structure for processing bulletins of different priorities

W0-092 Vol. II 5-24 SOFrECH

The Bulletin_Processor task body is a straightforward application of the

selective wait statement with an else part: -

task body Bulletin Processor is

-
begin
loop , -
select
-- First check for a high-priority bulletin. =
accept Deliver High _Priority Bulletin -
(Bulletin : in Bulletin Type) do -
Process_Bulletin (Bulletin), _
end Deliver High Pr1ority Bulletm' -
else

-- No high-priority bulletin is waiting to be processed,
-- so consider medium- and low-priority bulletins.

select
—- First check for a medium-priority bulletin. %%
accept Deliver Medium Priority Bulletin
(Bulletin : in Bulletin Type) do
Process_Bulletin (Bulletin);
end Deliver_Medium Priority Bulletin; B
else —
-- No medium-priority bulletin is waiting to be -
-- processed, so wait for the arrival of the first
- bulletin of any priority.
Co -
select
accept Deliver High Priority Bulletin %%
(Bulletin : in Bulletin Type) do
Process_Bulletin (Bulletin); %;
end Deliver_ High Priority Bulletin;
¥0-092 Vol. II 5-25 SOFlecH =
|

1
i

or

accept Deliver Medium Priority_Bulletin
(Bulletin : in Bulletin_Type) do

Process Bulletin (Bulletin);
end Deliver Medium Priority Bulletin;
or

accept Deliver Low Priority_Bulletin
(Bulletin : in Bulletin _Type) do

Process_Bulletin (Bulletin);
end Deliver Medium Priority Bulletin;
end select;
end select;
end select;
end loop;

end Bulletin Processor;

There are many ways to achieve priority-driven processing of incoming
messages. The choice of datagrams for this example was arbitrary. We could
just as easily have established three virtual circuits corresponding to the
three bulletin priority levels and applied the same approach. The next
example illustrates a general scheme to use message contents to determine the
order in which messages are processed. Since these message contents could

include priority levels, the next example provides an alternative scheme for

achieving priority-driven processing of messages.

5.7 Using Message Contents to Control Order of Processing

A wvarning-system application has an incoming stream WARNING STREAM for
datagrams of the following type:

W0-092 Vol. II 5-26 SOFlecH

type Warning Type is
record
Category Part : Category Type;
Contents_Part : Contents_Type;
end record;

Category Type is defined as follows:

type Category Type is
(From_Ground, From Other_Station, From_This_Station);

The definition of Contents_Type is irrelevant to this example.

The application requires a way to retrieve the next incoming datagram with
a particular Category Part value, or to determine that no such datagram yet
exists. This capability will be supplied by the following task:

task Warning Retriever is

entry Retrieve_Warning (Category_Type)
(Contents : out Contents_Type);

entry Deliver Varning (Warning : in Varning Type);

Héﬁd Varning Retriever;

Retrieve_Warning is an entry family with one member for each Category Type
value. A call on the entry family member Retrieve Warning (From Ground), for
example, waits if necessary for a datagram with a Category Part value of
From Ground to arrive, then delivers the datagram’s Contents_Part. To avoid
wvaiting if a datagram of the appropriate category has not arrived, the
application can use a conditional entry call:

select
Retrieve Warning (From_Ground) (Contents);
Warning Found := True;

else
Warning Found :a False;

end select;

§0-092 Vol. II 5-27 SOFlecH

i il il |

{

Lindl]
I

I =

(i

R

ik

The entry Deliver Warning is not used by the application, but is used as
part of the implementation of the Varning Retriever task, as shown in Figure

5-13. The instantiation

package Warning Retrieval Package is
nev Datagram Dellvery Template
(Message_Type => Warning_Type,
Stream Name => "VARNING STREAM",
Delive?_Message => Varning_. Retriever Deliver Varnlng),

- causes the Deliver Warning entry to be called with a Varning Type value every

time a datagram arrives on VARNING_sTREAM.

To implement the Warning Retriever task, we assume the existence of a
generic package for first-in-first-out queues:

generic
type Element_Type is private;
package Generic_Queue_Package is

type Queue Type is limited private;
-- Default initial value is an empty queue.

procedure Enqueue
(Queue : in out Queue_Type; Item : in Element Type);

procedure Dequeue
(Queue : in out Queue Type; Item : out Element Type);

function Is_Empty (Queue : Queue Type) return Boolean;
Empty_Queue_Error : exception;
private

type Queue Type is [some type definition];

end Generic_Queue_Package;

This is a template for a typical Ada package providing an abstract data

type and a set of operations for manipulating that type.

¥0-092 Vol. II 5-28 SDFTECH

|

. [T
{APPLICATION TASK) / p——
CONTENTS hed _
o — A/m _WARNING (FROM_GROUND)] =
o | N
m _WARMING (FROM_OTHER lTAMJ o
v | -
AETARIVE_WARNING (PROM_THIS_STATION)] =
WARNING_RETRIEVAL _PACKAGE n_owry
OELIVER WARNING J _
=
?
-
-
-
Warning_Retrieval_Package is an lnstance of Datagram_Delivery_Template. It con-
tains a task that calls Warning_Retriever.Deliver Waming every time a datagram ar-
rives on WARNING_STREAM. Internal to the Warning_Retriever task, =
Queue Package is ‘an instance of Generic_Queue Package, used to maintain a sep- -
arate queue for each category of warning
=
Figure 5-13. Use of the Varning Retriever Task to Control the Order
in Vhich Messages are Processed =
¥0-092 Vol. II 5-29 SDF'ECH -
-

l

-

1

I

{rn

The body of Warning Retriever is as follows:

task body Warning Retriever is

package Queue_Package is
nev Generic_Queue_Package (Contents_Type);

use Queue_Package;
Queue_Table : array (Category Type) of Queue Type;
begin
loop
select
accept Deliver Warning (Warning : in Warning Type) do
Enqueue
(Queue_Table (Warning.Category_ Part),
Warning.Contents_Part);
end Deliver Varning;
or

vhen not Is_Empty (Queue_Table (From_Ground)) =>

accept Retrieve_Warning (From_Ground)
(Contents : out Contents Type) do

Dequeue (Queue Table (From Ground), Contents);
end Retrieve Warning;
or
vhen not Is_Empty (Queue_Table (From_Other_Station)) =>

accept Retrieve Warning (From Other _Station)
(Contents : out Contents Type) do

Dequeue
(Queue_Table (From_Other Station), Contents);

end”Retrieve_Varning;

¥0-092 Vol. IT 5-30 SOFTECH

or
vhen not Is_Empty (Queue Table (From_This Station)) =

accept Retrieve Varning (From_This _Station)
(Contents : out Contents Type) do

Dequeue
(Queue_Table (From This_Station), Contents);

end Retrieve Warning;
end select;
end loop;

end Varning Retriever;

Figure 5-13 illustrates ‘the relationship of the various program units.

5.8 Using Datagrams to Control Periodic Sampling

A processing entity SENSOR_HANACER is responsible for providing periodic
sensor data to other processing entities upon request. SENSOR_MANAGER can
service at most one other processing entity at a time. Service can be
requested by sending a datagram to CONNECTION STREAM. The processing entity
currently being serviced can send subsequent datagrams to INTERVAL_STREAM
requesting a change in sampling interval or to DISCONNECTION_STREAM releasing
SENSOR_MANAGER to serve other processing entities. For each datagram received
on CONNECTION_STREAM, SENSOR_MANAGER sends an acknowledgment datagram of type
Boolean, equal to True if SENSOR MANAGER is avallable and False if
SENSOR MANAGER is busy If SENSOR MANAGER is ava1lable, a viftual circuit
connection is established to send sensor readings to the requestor. See
Figure 5-14. '

W0-092 Vol. II : 5-31 SOF'-ECH

W W oW ¥l Wy B W WD Wm mE

Wil |

L

mreoo0r

am !

INCLUDING
n | BETURN
REQUEST FOR CONNECTION | AppREss

CONNECTION STREAM /'

ACKNOWLEDGMENT

REQUEST TO CHANGE POLLING

REQUEST FOR DISCONNECTION

DISCONNECT!ON_STREAHL

TIME-TAGGED SENSOR READING

WIERVALL INTERVAL_STREAM SENSOR_MANAGER

Figure 5-14. Network communication with SENSOR_MANAGER

The following package declares the type of datagrams sent to
CONNECTION STREAM:

vith Calendar;
package Service Request_Package is

type Service_Request Type is

record
Requestor_Name : String (1 .. 64);
Acknovledgment_Stream Name : String (1 .. 64);
Initial Interval : Calendar.Duration;

end record;

end Service_ Request_Package;

W0-092 Vol. II 5-32

SOFlecH

Datagrams sent to INTERVAL STREAM are values of type Calendar.Duration and
datagrams sent to DISCONNECTION_STREAM belong to a record type with no
components. (The simple existence of a message conveys the required
information.) Sensor readings are time-tagged values of type Float, as

defined in the following package:

with Calendar;
package Time_Tagged_Float_Package is

type Time _Tagged Float_Type is
record
Data Part : Float;
Tag_fart : Calendar.Time;
end record;

end Time_Tagged Float_Package;

These values are read by a library procedure Sample Sensor and sent over the

virtual circuit.

Ve introduce a new library generic pgékéée Null Datagram_Delivery Template.
This package is similar in form and purpose to the generic package
Datagram Delivery Template introduced earlier in Section 5-4. However,
Null Datagram Delivery Template is specially tailored to the receipt of empty
datagrams like those to be sent on DISCONNECTION STREAM. The entry called upon
receipt of a message has no parameters. Use of Null_Datagram_Delivery_Template
instead of Datagram Delivery Template avoids the work of passing a dummy entry
parameter that contains no information. Here is the text of Null Datagram -

Delivery Template:

generic

Stream Name : in String;
with procedure Signal Message;

package Null Datagram Delivery Template is

end Null Datagram Delivery Template;

¥0-092 Vol. II 5-33 SOF'-ECH

L[

Wil mEm Wm

miim E mi & Wl ommg Wk

i

package body Null Datagram_Delivery Template is
type Null Type is record null; end record;
task Message Delivery Task;
package Null Message IO is new Network IO (Null _Type);

task body Message Delivery Task is
Message : Null Type;
begin
loop
Null Message I0.Read
(Null Message IO.Datagram_Input_File
(Stream Name),
Message);
Signal Message;
end loop;
end Message Delivery Task;

end Null Datagram Delivery Template;
Here is the SENSOR_MANAGER program:

with Service_Request_Package, Calendar, Network IO;
procedure Sensor_Manager is

subtype Service Request _Type is
Service Request_Package.Service Request_Type;

task Request_Handler is ,
entry Request_Service (Request : in Service_Request_Type);
entry Request_Interval_Change
(Newv_Interval : in Calendar.Duration);
entry End_Service;
end Request_Handler;

task body Request_Handler is separate;

¥0-092 Vol. II 5-34 SOFlecH

package Service Request _Delivery Package is
new Datagram . Dellvery Template
(Message Type => Service_Request_Type,
Stream_ﬁame => "CONNECTION STREAM",
Deliver Message => Request_Handler.Request Service);

package Interval Request Delivery Package is
nev Datagram_ Delivery Template
(Message_Type => Calendar.Duration,
Stream Name => "INTERVAL_STREAM",
Deliver _Message =>
Request_Handler Request_Interval Change);

package End Request Delivery Package is
new Null™ Datagram Delxvery _Template :
(Stream Name => "DISCONNECTION STREAH“
Signal_Hessage => Request_Handler End_Service);
begin
null; -- All work done by tasks.

end Sensor_ Manager;

with Time_Tagged_Float_Package, Sample_Sensor;
use Calendar;

separate (Sensor_Manager)
task body Request_ Handler is

subtype Data _Type is
Time_Tagged_Float_Package.Time_Tagged_Float_Type;

package Acknowledgment IO is new Network_IO (Boolean);
package Data I0 is new Network IO (Data Type),
use Acknovledgment _I0, Data_ 105

Output_File : Data_IO.File_Type;
Current Interval : Duration;

Previous _Sample Time : Time;

Next Sample Time : Time;

Data : Data_Type;

Connection_Form : constant String := [some string literal];

¥0-092 Vol. II 5-35 SDF,-ECH

10— N U

i

| | & W wi

{11

begin
loop

accept Request_Service
(Request : in Service Request_Type) do

Open
(Output File,
Out_FiTe,
Request.Requestor_Name,
Connection Form);

Vrite
(Datagram Output_File
(Request.Requestor Name,
Request.Acknovledgment_Stream Name),
True);
Current_Interval := Request.Initial Interval;
end Request_Service;
Previous_Sample _Time := Clock - Current_Interval;

loop

Next_Sample Time :=
Previous_Sample Time + Current_Interval;

select

delay Next Sample Time - Clock;
Sample_Sensor (Data);
Write (Output_File, Data);

or

accept Request_Service
(Request : in Service_Request_Type) do

Vrite
(Datagram_Output_File
(Request.Requestor_Name,
Request.Acknowledgment_Stream Name),
False);

-- Busy with another processing entity.

end Request_Service;

w0-092 Vol. II 5-36

SOFTecH

or

accept Request_Interval Change
(New_Interval : in Duration) do

Current_Interval := New_Interval;
end Request_Interval Change;
or

accept End_Service;
exit;

end select;
end 1oop;
Close (Output_File);
end loop;

end Request Handler;

-The outer loop in the task body is repeated once for every session
(consisting of a request for a virtual-circuit connection, a connection
followed by transmission of sensor data, zero or more interval changes, and a
request for disconnection). The inner loop'is repeated once for each datagram

that arrives during a session. Figure 5-15 illustrates the program-unit

structure.

¥0-092 Vol. II 5-37 SOFrECH

I

i
|

Il

mie |

AIOUESY_SERVICE {

D_‘ & == | =)
-'!-.d AQOUEST OMLVERY PACRAGE N/ oo ﬁ oo l
—]
j
1
J

. . OuTPWY Md DATAGRAN OVTRWY FUE |
i Z T o/ NEOURST_WTSRVAL_CHANGE DATAGRAR_SOWY_FLE e X I
l ARAD ARAD l
/9 sy i
NS AECUSST_OBLVERY PACKAGE] [wam]
E— e_or_ma A, |
M)

U

Acknowledgment_lO (used for acknowledgment datagrams) and Data_IO (used to
send time-tagged sensor readings over a virtual-circuit connection) are both in-
stances of Network 10. Service_Request_Delivery_Package is an instance of
Datagram_Delivery Template that calls Flequest Handler. Request -

Service whenever a datagram arrives on CONNECTION STREAM. Interval -
Request_Delivery_Package Is an instance of Datagram _Delivery Template that calls
Request_Handler. Request Interval_Change every time an datagram arrives on
INTERVAL STREAM. End Raquest _Delivery_Package is an instance of

Null Datagram _Delivery _ Template that calls Request_Handler.End_Service every
time a datagram arrives on DISCONNECTION _STREAM. Each of these three in-
stances contains an instantiation of Network |0, not shown here.

Figure 5-15. Program-unit structure for SENSOR_MANAGER

¥0-092 Vol. II 5-38 SOFTECH

ORIGINAL PagE IS
OF POOR QUALMTY

