

N O T I C E

THIS DOCUMENT HAS BEEN REPRODUCED FROM
MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT

CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED
IN THE INTEREST OF MAKING AVAILABLE AS MUCH

INFORMATION AS POSSIBLE

Rivi Sherman
Amir PnueliLn

N
N

1
Q

AC FILE COPY

ISI Research Report
ISI/RR-89-241

June 1990

`SOVTM ^

	

University	 '" t
	of Southern	 t

California

Model Checking for Linear Temporal Logic:
An Efficient Implementation

D IC
FIF.CTE
JUL 1 21990

D%

D1T MT9n0j! 3TA!'°M£Y! R

ADPrOWod tar pudic relecaq
Dintrnaawn Uui :tOd

INFORM? ATION

	

SCIENCES
	

I	 2131822-1511

	

INSTITUTE	
46 76 Admiralty M'ay/Marina del Rey/California 90252-6695

90 ty , 12 038

Unclassified
'CFCLJR ITY

r.

REPORT DOCUMENTATION PAGE
Is. REPORT SECURITY CLASSIFICATION Ib. RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/ AVAILABIL	REPORT

This document is approved for public release;2b. DECLASSIFICATION / DOWNGRADING SCHEDULE distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S)

ISI/RR-39-241 -------

68. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7s. NAME OF MONITORING ORGANIZATION

USC/Information Sciences Institute
(If applicable)

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
4676 Admiralty Way
Marina del Rey, CA 90292-6695

Ba. NAME OF FUNDING/SPONSORING Bb. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFK;ATION NUMBER
ORGANIZATION Of applicable) RADC: F30602-88-C-0135,
DARPA	 RADC	 NASA-Ames DARPA Order No. 6131	 NASA-Ames: NCC-2-539

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM
ELEMENT NO.

PROJECT
NO.

TASK
NO.

WORK UNIT
CESSION NO.--over--

11. TITLE preclude Security Classification)

Model Checking far Linear Temporal Logic: An Efficient Implementation (Unclassified)

12. PERSONAL AUTHOR(S)	 Sherman, Rivi; Pnueli, Amir

13a. TYPE OF REPORT t 3b. TIME COVERED 14. GATE OF REPORT (Yom, MOnrt1U 	 COUNT
Research Report FROM	 TO

^^TT.AGE
1990, June

16. SUPPLEMENTARY NOTATION

17.	 COSATI CODES 18. SUBJECT TERMS (Continue on reverse if rec+amy and JdMrP* by block r4w*or)
0A,#))IJUtt r

'model-checking algorithms, Aprogram verification,
FIELD GROUP SUB-GROUP
09 02

19. ABSTRACT (Continue on roversa H necessary and identify by block number)
Program verification is a critical problem in computer science. Many believe that manual, informal verifi-
cation is acceptably reliable and more practical than formal verfication. However, verification of distrib-

\

uted programs is difficult to achieve manually. 	
CIS '^(j r (►u

This report provides evidence to support the claim that model checking for linear temporal logic(LTL) is
"practically	 Wo deseribb	 implementations	 linearefficient."	 Iwo	 of a	 temporal logic model checke 	 One is
based on transforming the model checking problem into a satisfi gbilityproblem; the other checks an LTL I 	 1 r
formula for a finite model by computing the cross-product oA the	 state transition	 h	 f
program with a structure con taining all possible models for the poperty.xperiment*W- i
mutual exclusion algorithms and tested safety and liveness under .fairne	 for these algorithms. hr , i;	 e r	 %ss

^ i1.L1s .	.!	 "	 'i:-_ i	 J.:!i	 i	 L ,^ i 	 1a ^i ,a .^	 P	 1/!t 1 /:'„S l
We provide the syntax and semantics of LTL, a detailed example of a finite state concurrent program,
and express safety and liveness-under-fairness properties for this program in LTL. Both implementations
are based on the tableau algorithm, which is described in detail. Finally, we discuss the basic ideas behind
the two different model-checking algoihms, and provide more details regarding the implementations and
experimental results.

20. DISTRIBUTION / AVAILABILITY OF !! ACT	 21. ABSTRACT SECURITY CLASSIFICATION
® UNCLASSIFIED/UNUMITED 	 ® SAME AS WT.	 C3 DTIC USERS	 Unclasdfied

22s. NAME OF RESPONSIBLE INDIVIDUAL 	 22b. TELEPHONE	 Area Cods) 2Zs OFFICE SYMBOL
Victor Brown	 Sheila Coyazo	 213/822-1511

DD FORM 1 473, M MAR	 83 APR edition may be wad until @*wiftd.	 SECURITY t^^►tsIFIG►TIOI
All other editions are obsok to.

Unclassified

Unclassified
ZCUF4?y CLAWIPICATION OF THIS IAO[

Unclassified

ISI Research Report
ISI/RR-89-241

June 1990

University
of Southern
California

RM Sherman
Amir Pnueli

Model Checking for Linear Temporal Logic:
An Efficient Implementation

^	 r

Accesion For

NTIS	 CRA&I
DTIC	 TA13 U
Unannounced ^]
Justific;avon

01striOullon J

A vg :,lability Codes

Dwn I
	 ^PeCid)

INFORMATION
SCIENCES	

213/822-1511
INSTITUTE

 J J/	 A# 	 4676 Admiralty Way/Marina del Rey/California 90292-6695
This research was sponsored In part by the Natlonal Aeronautics and Space Adrnkfbtratlon (NASA-Ammo) under Coop-
erat	 mive Agreement NCC-2-539 and In art by the Rome Air Development Center of the Air Force Systems Command
under Contract No. F30802-88-C-0135, DARPA Order No. 8131. VNws and cormftdons oontakwd In this report are the
authors' and should not be Interpreted as repnsentkq the offlaW opktlon or poloy of NASA, RADC, DARPA, the U.B.
Oovernrnent, or any person or agency connected with them.

1 Introduction

1.1 Is automatic program verification important?

Program verification is a critical problem in computer science. Many believe that man-
ual, informal verification is acceptably reliable and more practical than automatic formal
verification. However, verification of distributed programs is difficult to achieve manually.
Consider the following simple distributed algorithm. Pl and P2 are two processes that are
executed on a processor. They share a common variable t, and each has a local variable
y;, i = 1, 2 that can be read by the other process. We assume that at each step exactly
one process is active, i.e., it executes the current statement. P l and Pz share a common
resource (printer or disk) and the algorithm is meant to guarantee that at most one process
uses the resource at a given time. We say that the process is in the critical section when
it uses the resource. L3 and M3 are the critical sections for Pl and Pz, respectively.
The reader is challenged to verify whether the following algorithm satisfies two properties:

1. "Mutual exclusion" is guaranteed: it is never true that A is at L3 and P2 is at M3.

2. Liveness is guaranteed: always if Pl (P2) is at Ll (Ml) (requesting the resource),
then eventually Pi (Pz) will be at L3 (M3) (getting the resource).

DECLARE
INITIALLY

PROCESS Pl
DECLARE
INITIALLY
Lo : goto La;

t: [0..1];
t=1;

yi [0..1];
yl = 0;
{t := 1; goto Lj; }

critical section
END
11
PROCESS P2

Li yl •= 1;

Lz . if (yZ = 0 V t = 0) goto L3;
if(y2 =1At= 1) goto Lz;

L3 : yl := 0; goto Lo;

DECLARE	 yz : [0.1);
INITIALLY y, = 0;

1

MO : goto MO; I {t := 0; goto Ml ; }

Ml Y2 := 1;

M2:if(y1=0Vt=1)gotoM3;
if (y1 = 1 n t = 0) goto Mz;

critical section	 M3: Y2:= 0; goto MO;

END

1.2 How to verify it automatically

Program verification is defined as follows: given an implementation A and a specification
0, does A satisfy 0 ? Putting this into more formal terms, in the most general case,
program verification is equivalent to the problem of checking if L 1 C LZ , where LI , La are
two languages defined by Turing machines. Hence, in the most general case the verification
problem is undecidable.

Programs, however, have been verified manually. Manual verification is sometimes mis-
leading and almost always very tedious, especially in the case of parallel or distributed
programs. Some systems designed to support formal, manual verification have been devel-
oped in the last few years. For example, Crawford and Goldschlag provide an interactive
theorem prover to support the verification of distributed systems ([CG87]). Theorem
provers provide only a partial and most often not satisfactory answer to the problem.

Taking a different approach, Clarke et al. [CES83] suggested that by focusing strictly
on finite state programs, one could provide a fully automatic verifier that would still be
applicable to such domains as communcation protocols and cicuit design. In [CES83] an
algorithm for checking a finite state model against a property specified by Computation
Tree Logic (CTL) is provided. The algorithm is linear in the size of the model and the
property. The algorithm was implemented [B86, BC86], and was proved to be useful for
verifying circuit design. However, the CTL formalism is not always enough to express
properties of distributed systems [L80, EH86]. Linear Temporal Logic (LTL), on the
other hand, seems to provide the required expressive power at the cost of having a model
checking problem, which is NP-complete [SC82].

Thus, the linear temporal logic advocates claim to have the required expressive power
while those in favor of branching time claim to be "efficient". In [LP85] an O(IM121pI)
algorthm for checking a finite state model M against a linear temporal logic formula p is
described. It is claimed that since the property is usually small and the worst case rarely
happens, the algorithm is "practically efficient." Branching Time "struck back" in [EL85],
where it was shown that any model checking algorithm for LTL implies an algorithm of
the same complexity for CTL', the extended version of branching time temporal logic,

2

which subsumes both LTL and CTL.
In this work, we provide evidence to support the claim that model checking for LTL is
"practically efficient."
We describe two implementations of a linear temporal logic model checker. One is based
on transforming the model checking problem into a satisfiability problem. The other
checks an LTL formula for a finite model by computing the cross-product of the finite
state transition graph of the program with a structure containing all possible models for
the property. We experimented with a set of mutual exclusion algorithms and tested
safety and liveness under fairness for these algorithms. We believe that the measurements
we have done for these examples provide experimental evidence for the practicality of
model checking of linear temporal logic formulae.
Section 2 provides the syntax and semantics of linear temporal logic. Section 3 provides
a detailed example of a finite state concurrent program and expresses safety and liveness-
under-fairness properties for this program, in LTL. Both implementations are based on
the tableau algorithm described in Section 4. Section 5 discusses the basic ideas behind
the two different model checking algorithms. Section 6 provides more details regarding
the implementations and experimental results.

2 Linear temporal logic

A temporal logic formula is defined over a set to of atomic formulae, using the boolean
operators V and -, and the tempora l- operators next (Q) and until (U). A model for
a temporal formula p is an infinite sequence of states a : so, s l , ... , and a mapping
T : ja i I i > 0} --+ 2410 assigning to each state s; the set of atomic formulae that are true
at this state.

4P denotes the set of all temporal formulae that are inductively constructed from to as
follows:

if PE to then PEIt

ifp,gE 4D then -pandpVgE0

if p, g E It then Op E-0 and p Uq E It

For a given model o, and a temporal formula p, we say that (or, j) satisfies p, denoted by
(a, j) ^= p, if p is evaluated to true on the 1 th state of v.

Formally:

(a, j) ^- P, for P E to iff P is evaluated to true in si by the mapping r, that is, if
P E T(si)

3

(a, A) = -P iff (a, j) ^& P

(a, j) ^= P V q iff (a, j) ^= P or (a,j) ^= q

(a, j)^=OP iff (a,j-+'1)^=P

(o, j) H p Uq iff there exists i > j such that (a, i) ^= q and for all k, j < k < i, (o, k) ^= p

We use the following operators as abbreviations:

and: P n q = -(-P V -q)

implies: p —► q = —p V q

equivalent: p - q = (p —► q) n (q --► p)

eventually: Op = TUp, (v, j) I-- Op if for some i > j, (v, i) I-- p.

always: '7p = —O-p, (Cr, j) I-- qp if for all i > j, (o, i) ^= p.

A model a satisfies p if (a, 0) satisfies p.
A formula p is satisfiable if there exists a model that satisfies p.

A formula p is valid if for every model a, a satisfies p. Hence, a formula p is valid iff -gyp
L not satisfiable.
The temporal formalism is used to specify propee.ies of finite state programs. A program
is defined as the set of all possible computations. A computation of a given program is
a sequence of states, starting from the initial state, where each state is defined by an
assignment of values to all program variables. A computation can be viewed as a model
for a temporal logic formula. A program satisfies a property p, if for every computation
0 of this program, a satisfies p.
For linear temporal logic, the model checking problem is stated as follows: given a finite
state transition graph M = (N, E, r), where r is a special root node (the initial state),
a mapping function ir : N —► 240 assigning atomic propositions to states, and a linear
temporal logic formula p, does every path of M initiated at * satisfy p?

3 Example

To demonstrate the terms and notation, we give an example of a distributed program and
some, properties that this program is required to satisfy.
We distinguish between two types of program properties, safety and livenem. Safety
properties state that nothing "bad" happsns throughout the computation, while liveness
properties state that something "good" eventually will happen during the computation.

4

We assume an asynchronous semantics, meaning that the set of all program computations
consists of all possible interleavings of process computations.

Peterson's Mutual Exclusion Algorithm

DECLARE	 t : [0.1];
INITIALLY	 t = 1;

PROCESS P,
DECLARE	 y, : [0.1];
INITIALLY	 y, = 0;

Lo : goto Lo; I {y, := 1; goto L,;)

L,.t.= 1;

L2 : if (yz = 0 v t = 0) goto L3;
if (yz = 1 n t = 1) goto Lz;

critical section	 L3 : y, := 0; goto Lo;
END

PROCESS P2

DECLARE	 yz : [0..1];
INITIALLY	 yz = 0;

Mo : goto MO; I {yz := 1; goto Ml ;)

M,.t.=0;

M2 :if(y1=0Vt=1)gotoM3i
if (y, = 1 n t = 0) goto Mz;

critical section	 M3 : yz := 0; goto MO;
END

t is a global variable and y, and y2 are local variables of P, and P,, respectively. All
variables are of type integer with range [0.1]. Al! statements appearing under the same
label are assumed to be one atomic statement, i.e. nothing is interleaved between them.

5

Since each process has four possible locations we can view each program counter as a
variable with range [0.3]. To describe the program computations we transform each
program variable into a set of propositions, standing for the bit representation of the
variable. We use t, y, and y 2 as propositions to represent the corresponding variables,
P10 , P], , P2o and P^,, are used to represent the program counters of P, and P2 , respectively.
In the initial state of the program, t = 1, yl = 0, y2 = 0 and P, and P2 are in Lc and Ma,
respectively. Hence, for all program computations, t is true and yl , y2i Plo , Pl„ P2o and
P2, are false in the first state of the computation. From this initial state there are four
possible transitions:

1. Pl executes the statement "goto Lo", resulting in the same state.

2. Pl executes the statement "yl := 1; goto L 1 ", resulting in a state where t, y, 4nd
Flo hold and y2 , Pl , , P2o and P2 , are false.

3. P2 executes the statement "goto Mo", resulting in no change in state.

4. P2 executes the statement "y2 := 1; goto Ml ", resulting in a state where t, y 2 and
Pep hold and yl , P, o , P,, and P2, are false.

The construction of the global transition graph of the program proceeds in this way. Since
the number of variables and the range of each is finite, there are only a finite number of
different states.

The safety property that we want to check for this algorithm is that it really guarantees
mutual exclusion, i.e., it is never the case that P l is in L3 and P2 is in M3 at the same
time. Hence we want all program computations to satisfy

Cl-(PI , A P1 , n P2o n P2j

The liveness property is that each of the processes-if it is not idle forever (i.e., at Lo or
Mo)- eventually gets to execute its critical section. Hence, we want all program compu-
tations to satisfy

0((Plo A -,PI , V -PI , n Pj i) — O(Pio n Pl,))

and

0((P2o n -, P2, V —P2o n P2,) -+ O(P2p A P2.))

Often, we want, to verify that the program satifies these properties under some fairness
condition, to exclude those executions in which one of the processes is not active from
some point on in the computation. For example, we may want to consider the above

6

properties under the assumption that each process executes infinitely many transitions.
It is rather clear that Peterson's algorithm above does not satisfy the li veness property if
we do not assume such fairness. To specify those computations that satisfy the require'
fairness condition, we use an additional proposition. The proposition p i will hold only in
these states in which P, is active; namely, only P, can execute a transition from a state in
which pl is true. Thus, we have now two different initial states, one in which p l holds and
one in which —p l holds. Each of these states has four possible next states, resulting from
the two transitions the active process can take and the two alternatives for the next L -tive
process. To specify the liveness property above, under fairness. we use the following:

o (Op, A O(,pl)) — °((Pio n ,P,, v ,P,o n P,,) --i O(Pio A Pi,))

4 The tableau algorithm

The satisfiability problem for temporal logic formulae is NP-complete. In the worst case,
the number of steps needed to decide if a given formula p is satisfiable is 0(2 1PI). The
tableau algorithm for checking the satisfiability of a linear temporal formula [PS811 is
aimed at avoiding the exponential worst case, when possible, by generating only those
states that are necessary. The algorithm consists of two parts:

1. Given a formula p, a directed graph Mp = (Np, En , r) is constructed, and a set r(n)
of atomic propositions is associated with each node n in N. This graph is "locally
consistent" in the sense that for each node n, the set of formulae ir(n) is consistent
for al; formulae except for path formulae involving O and U.

2. Checking global consistency: for each node n E Np and for each fom ;a Op, qUp in
7r(n), check if there exists a path from n that eventually satisfies q.

In the following, we assume (without loss of generality) that all paths in the model are
infinite. We can assume that the formula to be checked is of the form p n OT.

4.1 The construction part

We distinguish between two types of formulae called a and rg formulae.

a formulae are those that can be expressed by a conjunction of their subformulae, e.g.,
Op = p n 00p. In the construction procedure an a formula r is replaced by the set of its
subformulae, denoted a(r), as follows :

7

r akr)

P Aq P,9
OP {P, 0E3P)

-(P V q) {-P, —q)
-(P --+ q) {P, -q)

-(Op) {O(-gyp)}
-(Op) {O(-gyp)}

Q formulae are those that can be expressed as a disjunction of their subformulae, e.g.,
Op = p V DOp. Ii, the construction, procedure a node with a , formula r is replaced
by two nodes, each containing one of the sets of subformulae, denoted 01 (r), 02 (r) and
defined as follows:

r 01(r)
p V q p
p -4 q {-p}
p =_ q {p, q}
P uq { 9'i
Op {p}

-(P n q) {-P)
-(p = q)

I
{-P, q)

-(P uq) {[](-q)}

02(r)

{q}
{ -P, -q)

{P, O(P uq))
{pop}

{-,q}
{p, ­q}

{ (-q u(-P n —q))

To describe the construction algorithm, we define for a set of formulae 0:

The set next(0) is the set of formulae that must be true in a successor of any state that
satisfies all p E 0.

next(0) = { q I Oq E 0}

The set basic(,O) is the subset of 0 that uniquely identifies a state satisfying all p E 0.

basic(0) = {p I p E 0 and (p is atomic or p = 0q))

The function analyze(o), provides for a set of formulae 0, r. set S of sets of formulae
resulting from repeated applications of a, P rules to formulae in ¢. The function analyze
is used to construct M. = (No , E,), as follows:

construct(p)
start with root r, x(r) = (p), Nr _ {r}, ED = 0.
S =analyze(x(r))
for m E S

if basic(0) = basic(x(n)) for some n E Nr

8

add (r, n) to Ep
else

add a new node n to Np , with 7r(n) _ ¢
add (r, n) to Ep

for m E Np a leaf in (Np , Ep)
S = analyze (next(ar(m)))
for 0 E S

if basic(0) = basic(r(n)) for some n E Np

add (m, n) to Ep

else
add a new node n to Np , with 7r(n)
add (m, n) to E

end construct

The function analyze is formally defined as follows :

analyze(4o)
X '= ((00, 0))
for (q,.cp)EX with 0#0

X := X — {(^, gyp)}

ifpE0
if p is an n formula

0:= (0— {p)) U {q I q E a(p) and q O cp}
W:=WU{p}
X := X U {(0'W))

if p is a # formula
01	 (0-{p})U{glgE0i(p) and g0W)
02 := (0- { p}) U { g I gE Q2(p) and gVW)
cP :=cPU{p}
X:= X U {(01M, (0s, P)}

if p is an atomic formula or p = Qq
0 : = 0 - {p}
V:=VU{p}
X := X U {(^, gyp)}

S.=0
for (0, v) E X

if there is no q, -q E V
S:=SU{A

return (S)
end analyze

9

4.2 Checking eventualities

When the construction of the stricture (Np, Ep) is completed, each node in the graph is
locally consistent, but we still have to check for global consistency. That is, we have to
check that each node satisfies the following two properties:

1. the node has at least one successor.

2. for each formula of the form Op or q Up in the set of formulae sr(n) of a node n,
there exists a path leading from n to a node m, such that p E x(m).

Each node that does not satisfy these two properties is removed from the graph. The
formula p is satisfiable if and only if the remaining graph contains the root node r.

[LP85] shows that when checking temporal consistency it is enough to check consistency
in the strongly connected components of the graph.

A strongly connected component (SCC) in a directed graph is a maximal set of nodes of
the graph such that there is a path between each pair of nodes in the set.

We say that a SCC (N', E') is consistent in a model M, if for every n E N' and every
Op, qUp E x(n) there exists m E N' with p E K(m), and if N' contains a single node n,
then there exists some successor of n in M.

eheek(Np , Ep) checks temporal consistency in the locally consistent model Mr:

check(Np , Ep)
find strongly connected components in (Np, Ep).
For G a leaf SCC in (Np, Ep)

if G is consistent
stop

else
remove G from (Np , Ep)

p is satisfiable iff r E Np
end check

If p is satisfiable, then a model can be constructed from the the graph (Np , Ep). For every
node n E Np and every Op or qUp in u(n) we know that there exists a path from n leading
to a node m such that p E x(m). However, we have to construct one infinite path, starting
from root such that for all nodes along the path, all formulae will be satisfied along this
path. The following procedure, build-model, defines such an infinite path. Note that
(the semicolon) here denotes concatenation.

buildlnodel(Np, Ep)
b(n) denotes the ordered list of successors of a node n.

10

n.=r
a.=n
while (true)

M := head of b(n)
a:= a; m
b(n) := tail(b(n)); m
n.=m

end build-model

The tabizau algorithm for checking satsifiability of a temporal formula p is composed of
the following steps:

1. construct(p) to get the structure Mp = (Np , Ep)

2. check(Np , Ep)

3. ifrENp
p is satisfiable

else
,p is valid

In the worst case, the size of Mp is 0(21PI).

5 The satisSability approach vs. the model check-
ing approach

Given a finite state program A, a property p and fairness condition F, our goal is to
verify whether every fair (according to F) execution of the program satisfies p. Two basic
approaches to this problem are described here. One is to construct a formula O(A, F, p)
consisting of the possible transitions that can be executed by the different processes, the
fairness condition and the property p, such that -,O(A, F, p) is valid iff A satisfies p under
F. The other approach is to construct the transition graph for the program A, and check
if F --► p is satisfied along every possible execution path in the transition graph.

5.1 Verifying by checking satis$ability

We are given a program A, composed of n processes Pl , P2 ,- - - , P, a property p, and
fairness condition F; we wish to verify that any possible interleaving execution of the
processes that satisfies F satisfies p.

11

To verify that A satisfies p under F:

1. For a given algorithm A, a property p and ielmess condition F, construct the
temporal formula O(A, F, p).

2. Use the tableau algorithm to check satisfiability of O(A, F, p).

3. A satisfies p under F if and only if the tableau algorithm terminates with -,¢(A, F, p)valid.

O(A, F, p) is of the form

n

O(A, F', p) = -((I n O(V e(Pi))) —' (F —' p))
i=1

I specifies the initial state, and 9(Pi) specifies the transitions that can be executed by
process Pi . If O(A, F, p) is satisfiable, then there exists a model whose initial state satisfies
I, each of the model transitions from one state to the next corresponds to one of the
possible processes transitions specified by B(Pi), i = 1, ... , n, and the model satisfies the
fairness condition F, but it does not satisfy p. This implies that this model describes a
fair execution of the program that does not satisfy the required property; hence, A does
not satisfy p. If O(A, F, p) is not satisfiable it means that -O(A, F, p) is valid, hence any
model corresponding to a program execution specified by I n O(V 1 9(Pi))) that is a fair
execution (i.e., satisfies F) must also satisfy p, hence A satisfies p under F.

To be able to specify fairness, we use for each process a proposition p i , which must hold
in every state where process Pi is active. The general form of 8(Pi), is

m

Pi A p(Pi) A (V tk)
k=1

where {tk I k = 1, ... , m} stand for the set of transitions that can be executed by P i and
µ(Pi) guarantees that when Pi is active it can not change the values of any variable that
i^ a local variable of another process. µ(Pi) has the form

A	 A	 (X = OX)
j#i s variable of P;

Note that the set of local variables of a process include the program counter for this
process.
Each of the tm is specified by a formula that is a conjunction of two parts. The first
part specifies the current state, which includes the program counter value and a condition
stating some values of some variables. The second part specifies changes of values in the
next state resulting from executing the transition: change of program counter and change

12

of variables by an assignment statement. All other local and shared variables are not
changed.
To demonstrate how O(A, F, p) is constructed, we now define the parts of the formula for
Peterson's mutual exclusion algorithm.

I= -'PI, n -PI , n -,P2o n -P2, n t n -yl n —y2

For process PI:

ti(PI)	 = (y2 = Oy2) n (P2o = OP20) n (P2, = OP2,)
1t l	 = ^P10 n -,P1 , n

(0-PI, A O-,PI , n (yl = Oyl) A (t = Ot) V
OP1p n O-Pi , n Oyl n (t = Ot))

1t 2 - PI, A API,

O,PIo A OPi, A (y1 = Oyl) n Ot
t3 -	 -,PIo n P11 n (-y2 V `t) n

OPIo A OPi, n (yl = Oyl) A (t = Ot)
t4 =	 -Pio n P1 , n (y2 A t) n

O,Pio n OPI, n (yl = Oyl) n (t = Ot)
t5 =	 PI, n PI, n

O-Pio n O,PI, n O-yl n (t = Ot)

Hence

®(PI) =— pi Ap(PI)A(t i Vt2Vt3Vt4Vt5)

For process P2:

µ(P2) _ (yl = Oy1) n (Plo = OPIo) n (Pi, = OPII)
ti = -P2p n -P2, n

(0-P20 n O,P21 n (y2 = Oy2) n (t = Ot) V
OP20 n O-,P21 n Oy2 n (t = Ot))

tz - P20 A -,P2, A

O,P20 n OP2, n (y2 = Oy2) n O,t

13

t3 = ^P20 A P21 A (,yl V t) A

OP2o A OP2, A (Y2 = Oy2) A (t = Ot)
t; _ ,P* A P2, A (y, A —,t) A

O—P2. A OP2, A (y2 = Oy2) A (t ° Ot)
2

E5 - Pep A P2 1 A

O,P2a A O,P2, A O,y2 A (t = Ot)

Hence
8(P2) _ p2Ap(P2)A(t1Vt2Vt3Vt4Vt5)

A fair execution is an execution in which each process is active infinitely often, specified
by q (Opl A Op2).

It follows that in order to check safety of the Peterson mutual exclusion algorithm under
fairness, we have to check satisfiability of the formula

,((I A q (e(Pl) V 8 (P2)))	 (q (Op, A Opt)	 q (, (Pio A Pi, A P20 A P21))))

and to check liveness

,((I A q(9(P,) V 9(P2))) -+

(q (OPl A Opt) -+ 0 ((—Pi. A Pl, V P10 A -Pi,) -> O(Plo A Pl,))))

Since checking satisfiability is exponential in the size of the formula that is checked, using
the formula O(A, F, p) to check if A satisfies p may be, in the worst case, exponential in
the length of the program plus the size of the property.

5.2 Verifying by model checking

In the model checking approach, the transition graph of the program is constructed and
then it is checked to determine if there exists a path in the graph that satisfies -(F -► p)

1. Construct the global transition graph (S, T)A for the program A.

2. Use construct (-,(F -4 p)) to construct a structure M-(F-►n) = (N, E).

3. Cross product M,(F-.p) and (S, T)A to get a locally consistent structure, denoted
(V, R)(A,F,p), with a root node denc',ed vo.

4. check((V,R)(A,F,p))

5. A satisfies p under F if and only if vo 5! V.

14

If vo E V after check((V, R)(A,F,p)), then the remaining structure contains a path corre-
sponding to a possible execution of the program A, and this path satisfies the formula at
the root of (N, E),(F.p) , that is, it satisfies -(F —► p). Hence, there exists an execution
that satisfies F but does not satisfy p. This implies that A does not satisfy p under F.
If vo is deleted from V, then there does not exist a path in the transition graph that
satisfies —(F --► p), hence every execution of the program A that satisfies F satisfies p.
This implies that A satisfies p under F.

5.2.1 Constructing the global transition graph

The global transition graph consists of the set of nodes S and the set of edges T. Each s E
S stands for a program state and a set 7r(s) of propositions and negations of propositions
is associated with it. The set ir(--) provides the value of the program variables in the state
s, by the corresponding propositions. In each state s, exactly one process P; is identified
as active, by setting the corresponding pi to true and pj for all j # i to false. The
construction of the graph starts with a special root state so such that 7r(so) corresponds
to the values of program variables at the initial state. so has n successors, where successor
i corresponds to the initial state with process i active, i.e., p i is true. The construction
of the transition graph proceeds by generating transitions from each state, according to
the statements that can be executed from the state by the active process, and creating
states corresponding to the resulting program state with one of the processes being the
next active process. Since the program is finite state, the transition graph construction
must terminate.

5.2.2 Cross product of the two structures

The cross product procedure is defined by taking those pairs (n, s), n E N and s E S,
which are consistent. A pair (n, s) is consistent if and only if for every atomic formula
P, at most one of P, -P is in 7r(n) U 7r(s). V is initialized to vo corresponding to the
pair (r, so), that is, r(vo) = 7r(r) U 7r(so). R ;s initialized to the empty set. (V, R) (A,F,p) is
constructed by cross product.

cross_product((N, E, r), (S, T, so))
start with root vo, r(vo) := 7r(r) U ir(so), V := {vo}, E := 0
for v E V a leaf in (V, R)

for mEN,(n,m)EE
for t E S,(s,t) E T
if (m, t) is consistent

if for some u E V basic(u) =basic(a(m); U 7r(t))

add (v, u) to R
else

15

add a new node u to V with r(u) = ir(m) U 7r(t)
add (v, u) to R

end cross-product

6 Implementation and experimental results

6.1 Implementation of the tableau algorithm

Several issues seemed to be vital to an efficient implementation of the tableau algorithm.

6.1.1 The form of the LTL formula

1. Conjunctive form has an advantage over disjunctive form. A disjunctive form of
a subformula specifying a transition in the program is: p, n c, —+ Qq,, where
p, and c, specify the current program counter and a condition, respectively and q,,
specifies the next state. The program is specified by the conjunction of all disjunctive
formulae specifying transitions. An equivalent specification for the program is by
disjunction of all transitions specified in conjunctive form by p, n c, n Qq,, (see the
formula in Section 5.1). The implementation of the tableau algorithm was faster for
the conjunctive form, probably because of the priority we give to rules applied to a
formulae (see Section 6.1.3.).

2. Putting the "next" operator (Q) as "low" as possible turned out to be more efficient
than an equivalent form in which next operators appeared before n, V or operators.

6.1.2 Representation of sets of formulae

Each node in the constructed graph is associated with a set of formulae. The set of all
possible subformulae of the formula to be checked is computed (the size of the set is at
most 51pl for a formua p) and the formulae are numbered. A set is represented by an
array of bits, where the ith bit is 1 iff the ith formula is in the set. This representation
allows operations such as union, checking consistency of a set, checking membership, etc.
to be performed efficiently by bit operations.

6.1.3 Application of a,# rules

In the construction procedure, the same rule may be applied to the same formula many
times. To avoid some of this duplication, a rules should have prioprity over P rules, as
the following shows. Consider 0 = {ql , q,, ... , qk }, a set of formulae where ql is an a
formula and qs is a P formula. If we first apply the P rules to 92 , we have two nodes

16

associated with 01 = { ql, #I (q2), • • • , qk} and 02 = {ql , #2(q2),..., qk}. Thus, the rules for
ql, q3 ,.. . , qk must be applied at least twice. Applying the a rule for ql in 0 will result in
a set {a(gl),g2,•••,qk}-

To try to minimize duplicate applications of the same rule to the same formula, we
construct, in a preprocessing procedure, a table T, providing the results of repeated ap-
plications of a rules to subformulae. The set of subformulae CL(p) is computed. For each
q ECL(p), the set a(q) or the sets /31 (q), #2(q) resulting from applying the corresponding
rule for q are stored in T [q], the entry corresponding to q in the table T. Then, the a
closure of T is computed by repeatedly applying a rules to eac'. . set 0 in the entry T [q] in
the table. A set 0 is a closed if for every a formula q E 0, a(q) C 0. a rules are applied
to sets in the table until each set 0 is a closed. In the construction algorithm, a rule is
applied to formula q in a set 0 by replacing ¢ by 0 U 0 for each ip in T [q].

6.1.4 Search of nodes in the graph

With the generation of a set 0 the graph is searched to find if there exists a node n
such that basic(x(n)) = basic(0). To enable an efficient search we interpret the binary
representation of a set x(n) as a number that is used as a unique id of the node n. The
ids are hashed (see [K73]) into a table of size K, such that on the average entry i in the
table will have a list of JNp j/K nodes. Hence, to search the graph for the set basic(0),
we search the nodes in the entry corresponding to basic(0) in the hash table.

6.2 Implementation of the model checker

The implementation of the construction of the global transition graph uses ideas similar
to those described above. States are represented by the set of propositions and negation
of propositions that hold in the state. When the cross product with the model M p is
computed the resulting structure is composed of nodes each of which is a pair of pointers
(p„ p,,) where p, is pointer to a state in the global transition graph and p„ is a pointer to
a node in the model. The set associated with (p„ p„) is 7r(s) U 7r(n) .

6.3 Experimental results

In the current implementation the model checking approach was up to 10 times faster
than the satisfiability approach. The following results were measured on a SUN 4 for
two mutual exclusion algorithms Xl and X2 (see Appendix) XI is a mutual exclusion
algorithm for n processors that guarantees safety and communal liveness but not liveness.
Communal liveness, in this case, means that if some process is asking to use the resource,
then eventually some (not necessarily the same) process will get to execute its critical

17

section. Algorithm X2 is a more complicated mutual exclusion algorithm. It guarantees
safety and liveness for n processors.
Each row in the table provides execution time in seconds and the number of nodes in
the locally consistent structure. The results relate to the verification of the program
composed of n processes of algorithm Xl or X2 (in the first column) when checked against
the property in the second column.

Note that some results are missing for the model checking program. This is because the
current implementation (to be corrected in the near future) of the compiler requires a lot
of manual preparation.

Algorithm Property
Nodes

Satisfiability
Time

Model
Nodes

Checking
Time

Xl , n = 4 Safety 1514 18.67 1189 5.61
Xi , n = 4 Liveness 2423 78.94 2566 8.75
Xl , n = 4 Com Liveness 2171 78.39 3493 55.08
Xl , n = 5 Safety 6752 113.37
Xl , n = 5 Liveness 10289 582.03
Xl , n = 5 Com Liveness 9587 560.51
Xl , n = 6 Safety 28190 698.46
Xl , n = 6 Liveness 91316 8125.0
Xi , n = 6 Com Liveness 79436 7616.0
X2 , n = 4 Safety 4598 214.46 3429 50.49
X2 , n = 4 Liveness 6824 885.02 7541 69.53
X-., n = 5 Safety L23012 12106.17
X2 , n = 5 Liveness 73330 1 19742.0

7 Conclusions

The results presented here indicate that model checking for LTL may indeed be imple-
mented efficiently.
In (CS89j, a distributed implementation of the satisfiability algorithm, provides further
improvement.
Our model checker provides the user with

• The expressive power of Linear Temporal Logic.

• The ability to check, given two LTL specifications, whether one implies the O her.

• Efficiency comparable to the CTL model checker.

18

Acknowledgments

This report is dedicated to Dr. H. Schorr and all others who do not believe that verification
is important and/or useful.

David Mizell ir.9de this work possible.

Susan Coatney implemented the compiler in the best possible way.

Danny Cohen and Jon Postel belie .-ed that this report was worth writing.

References

[BMP83] M. Ben-Ari, Z. Manna, A. Pnueli, "The temporal logic of branching time,"
Acta Informatica 20, (1983), pp. 207-226.

[1386] M.C. Browne, "An improved algorithm for the automatic verification of finite
state systems using temporal logic," Proceedings of the 1986 Conference on
Logic in Computer Science, 1986.

[BC86] M.C. Browne, E.M. Clarke, "SML: a high level language for the design and
verification of finite state machines," IFIP WG 10.2 International Working
Conference from HDL Descriptions to Guaranteed Correct Circuit Designs,
1986.

[CES83] E.M. Clarke, E.A. Emerson, A.P. Sistla, "Automatic verification of finite state
concurrent systems using temporal logic specifications: a practical approach,"
101h ACM Symposium on Principles of Programming Languages, 1983.

[CG87]	 J.M. Crawford, D.M. Goldschlag, "The mechanical verification of distributed
systems," Technical Report no. 7, Computational Logic Inc, 1987.

[CS89]	 K.M. Chandy, R. Sherman, "Parallel model checking," Technical Report, Cal-
ifornia Institute of Technology, 1989.

[EH86]	 E.A. Emerson, J. Y. Halpern, "Sometimes and not never revisited: on branch-
ing versus linear time temporal logic," JACM Vol 33 No. 1, January 1986.

[EL85]	 E.A. Emerson, C. Lei, "Modalities of model checking: branching time strikes
back," 12 th ACM Symposium on Principles of Programming Languages, 1985.

[K73]	 D.E. Knuth, Sorting and Searching, Addison-Wesley, Reading, Mass, 1973.

[L80]	 L. Lamport, "Sometime is sometimes not never - on the temporal logic of
programs," 71h ACM Symposium on Principles of Programming Languages,
1980.

19

[LP85] O. Lichtenstein, A. Pnueli, "Checking that finite state concurrent programs
satisfy their linear specification," 12t ' ACM .Symposium on Prociples of Pro-
gramming Languages, 1985.

[P77]	 A. Pnueli, "The temporal logic of programs," 19" ACM Symposium on Foun-
dations of Computer Science, 1977.

[PS81]	 A. Pnueli, R. Sherman, "Semantic Ttbleau for temporal logic," Technical Re-
port, Weizmann Institute, CS81 - 21, 1981.

[SC82]	 A.P. Sistla, E.M. Clarke, "The complexity of propositional temporal logic,"
14 I^ ACM Symposium on Theory of Computing, 1982.

20

Appendix

Algorithm Xl for 2 processes

DECLARE	 y: [0..1] ;
INITIALLY	 y-1;

PROCESS P1
DECLARE	 t1:[O..1];
INITIALLY t1-0;

LO : goto L0; I { tl :- 0; goto L1; }

L1 : if (ti-0) goto L2;
if (ti-1) goto L3;

L2 . ti :-: y; goto L1;

// L3 - critical section
:3 . tl :-: y; goto L0;

END

PROCESS P2

DECLARE	 t2: [0.. i] ;
INITIALLY t:-0;

NO : goto M0; I { t2 :- 0; goto M1; }

MI : if (t2-0) goto M2;

if (t2-1) goto M3;

M2 . t2 :-: y; goto MI;

// M3 - critical section
M3 . t2 :-: y; goto M0;

MID

21

Algorithm .X, for 2 processes

DECLARE	 y : [O .. 3] ;
INITIALLY	 y-0;

PROCESS P1
DECLARE	 rl:[0..3]; t1:[0..1];
INITIALLY r1-3; t1-0;

LO : goto L0; I { tl :- 1; goto L1; }

L1 : if (ri-3 ' (y-0 I y-1)) goto L2;
if (r1-3 ' '(y-0 I y- 1)) goto L1;
if (- (rl-3)) goto L2;

L2 . if (- (y-0)	 "(y-1)) {rl:-:y; goto Li;}
if ((y-0) ((y-1)) {rl:-:y; goto L3;1

// L3 - critical section
L3 . { rl :- 3; tl:-0; goto L4; }

L4 : if (t2-1) {y:-2; goto L0;}
if (t2-0) {	 goto L5;}

L5 : if (t1-1) {y:-1; goto L0;}
if (t1-0) {y:-0; goto L0;}

END

PROCESS P2
DECLARE
	

r2: [0..33 ; t2: [0..1] ;
INITIALLY r2-3; t2-0;

NO : goto MO; I { t2 :- 1; goto M1; }

M1 : if (r2-3 ' (y-0 I y-2)) goto M2;
if (r2-3 " '(y-0 I y-2)) goto M1;

if (- (r2-3)) goto M2;

22

M2 : if (- (y=0)	 - (y=2)) {r2:-:y; goto Mi;}
if ((y=0) I (y=2)) {r2:-:y; goto M3;}

// M3 - critical section
M3 : { r2 := 3; t2:=0; goto M4; }

M4 : if (ti-1) {y:=1; goto M0;}
if (t1=0) {	 goto M5;}

M5 : if (t2=1) {y:=2; goto MG J
if (t2=0) {y:=0; goto MO;;

END

23

	1991003795.pdf
	0001A02.TIF
	0001A03.TIF
	0001A04.TIF
	0001A05.TIF
	0001A06.TIF
	0001A07.TIF
	0001A08.TIF
	0001A09.TIF
	0001A10.TIF
	0001A11.TIF
	0001A12.TIF
	0001A13.TIF
	0001A14.TIF
	0001B01.TIF
	0001B02.TIF
	0001B03.TIF
	0001B04.TIF
	0001B05.TIF
	0001B06.TIF
	0001B07.TIF
	0001B08.TIF
	0001B09.TIF
	0001B10.TIF
	0001B11.TIF
	0001B12.TIF
	0001B13.TIF
	0001B14.TIF
	0001C01.TIF
	0001C02.TIF

