NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM MICROFICHE. ALTHOUGH IT IS RECOGNIZED THAT CERTAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RELEASED IN THE INTEREST OF MAKING AVAILABLE AS MUCH INFORMATION AS POSSIBLE
Model Checking for Linear Temporal Logic: An Efficient Implementation
Model Checking for Linear Temporal Logic: An Efficient Implementation (Unclassified)

Program verification is a critical problem in computer science. Many believe that manual, informal verification is acceptably reliable and more practical than formal verification. However, verification of distributed programs is difficult to achieve manually. This report provides evidence to support the claim that model checking for linear temporal logic (LTL) is "practically efficient." We describe two implementations of a linear temporal logic model checker. One is based on transforming the model checking problem into a satisfiability problem; the other checks an LTL formula for a finite model by computing the cross-product of the state transition graph of the program with a structure containing all possible models for the property. We experimented with a set of mutual exclusion algorithms and tested safety and liveness under fairness for these algorithms.

We provide the syntax and semantics of LTL, a detailed example of a finite state concurrent program, and express safety and liveness-under-fairness properties for this program in LTL. Both implementations are based on the tableau algorithm, which is described in detail. Finally, we discuss the basic ideas behind the two different model-checking algorithms, and provide more details regarding the implementations and experimental results.
8c. (continued)

Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Air Force Systems Command (DARPA)
Rome Air Development Center
Griffiss Air Force Base, NY 13441

NASA-Ames
Moffett Field, CA 94035
Rivi Sherman
Amir Pnueli

Model Checking for Linear Temporal Logic:
An Efficient Implementation
1 Introduction

1.1 Is automatic program verification important?

Program verification is a critical problem in computer science. Many believe that manual, informal verification is acceptably reliable and more practical than automatic formal verification. However, verification of distributed programs is difficult to achieve manually.

Consider the following simple distributed algorithm. P_1 and P_2 are two processes that are executed on a processor. They share a common variable t, and each has a local variable $y_i, i = 1, 2$ that can be read by the other process. We assume that at each step exactly one process is active, i.e., it executes the current statement. P_1 and P_2 share a common resource (printer or disk) and the algorithm is meant to guarantee that at most one process uses the resource at a given time. We say that the process is in the critical section when it uses the resource. L_3 and M_3 are the critical sections for P_1 and P_2, respectively.

The reader is challenged to verify whether the following algorithm satisfies two properties:

1. "Mutual exclusion" is guaranteed: it is never true that P_1 is at L_3 and P_2 is at M_3.

2. Liveness is guaranteed: always if P_1 (P_2) is at L_1 (M_1) (requesting the resource), then eventually P_1 (P_2) will be at L_3 (M_3) (getting the resource).

DECLARE
INITIALLY

PROCESS P_1

DECLARE $t : [0..1]$;
INITIALLY $t = 1$;

L_0 : goto L_0; | \{ $t := 1$; goto L_1; \}

L_1 : $y_1 := 1$;

L_2 : if ($y_2 = 0 \lor t = 0$) goto L_3;
if ($y_2 = 1 \land t = 1$) goto L_2;

critical section L_3 : $y_1 := 0$; goto L_0;

PROCESS P_2

DECLARE $y_2 : [0..1]$;
INITIALLY $y_2 = 0$;
1.2 How to verify it automatically

Program verification is defined as follows: given an implementation A and a specification ψ, does A satisfy ψ? Putting this into more formal terms, in the most general case, program verification is equivalent to the problem of checking if $L_1 \subseteq L_2$, where L_1, L_2 are two languages defined by Turing machines. Hence, in the most general case the verification problem is undecidable.

Programs, however, have been verified manually. Manual verification is sometimes misleading and almost always very tedious, especially in the case of parallel or distributed programs. Some systems designed to support formal, manual verification have been developed in the last few years. For example, Crawford and Goldschlag provide an interactive theorem prover to support the verification of distributed systems ([CG87]). Theorem provers provide only a partial and most often not satisfactory answer to the problem.

Taking a different approach, Clarke et al. [CES83] suggested that by focusing strictly on finite state programs, one could provide a fully automatic verifier that would still be applicable to such domains as communication protocols and circuit design. In [CES83] an algorithm for checking a finite state model against a property specified by Computation Tree Logic (CTL) is provided. The algorithm is linear in the size of the model and the property. The algorithm was implemented [B86, BC86], and was proved to be useful for verifying circuit design. However, the CTL formalism is not always enough to express properties of distributed systems [L80, EH86]. Linear Temporal Logic (LTL), on the other hand, seems to provide the required expressive power at the cost of having a model checking problem, which is NP-complete [SC82].

Thus, the linear temporal logic advocates claim to have the required expressive power while those in favor of branching time claim to be “efficient”. In [LP85] an $O(|M|2|P|)$ algorithm for checking a finite state model M against a linear temporal logic formula p is described. It is claimed that since the property is usually small and the worst case rarely happens, the algorithm is “practically efficient.” Branching Time “struck back” in [EL85], where it was shown that any model checking algorithm for LTL implies an algorithm of the same complexity for CTL^*, the extended version of branching time temporal logic,
which subsumes both LTL and CTL.

In this work, we provide evidence to support the claim that model checking for LTL is "practically efficient."

We describe two implementations of a linear temporal logic model checker. One is based on transforming the model checking problem into a satisfiability problem. The other checks an LTL formula for a finite model by computing the cross-product of the finite state transition graph of the program with a structure containing all possible models for the property. We experimented with a set of mutual exclusion algorithms and tested safety and liveness under fairness for these algorithms. We believe that the measurements we have done for these examples provide experimental evidence for the practicality of model checking of linear temporal logic formulae.

Section 2 provides the syntax and semantics of linear temporal logic. Section 3 provides a detailed example of a finite state concurrent program and expresses safety and liveness-under-fairness properties for this program, in LTL. Both implementations are based on the tableau algorithm described in Section 4. Section 5 discusses the basic ideas behind the two different model checking algorithms. Section 6 provides more details regarding the implementations and experimental results.

2 Linear temporal logic

A temporal logic formula is defined over a set \(\Phi_0 \) of atomic formulae, using the boolean operators \(\lor \) and \(\neg \) and the temporal operators next (\(\bigcirc \)) and until (\(\bigcup \)). A model for a temporal formula \(p \) is an infinite sequence of states \(\sigma : s_0, s_1, \ldots \), and a mapping \(\tau : \{s_i | i \geq 0\} \to 2^{\Phi_0} \) assigning to each state \(s_i \) the set of atomic formulae that are true at this state.

\(\Phi \) denotes the set of all temporal formulae that are inductively constructed from \(\Phi_0 \) as follows:

\[
\begin{align*}
\text{if } P \in \Phi_0 \text{ then } P \in \Phi \\
\text{if } p, q \in \Phi \text{ then } \neg p \text{ and } p \lor q \in \Phi \\
\text{if } p, q \in \Phi \text{ then } \bigcirc p \in \Phi \text{ and } p \bigcup q \in \Phi
\end{align*}
\]

For a given model \(\sigma \) and a temporal formula \(p \), we say that \((\sigma, j) \) satisfies \(p \), denoted by \((\sigma, j) \models p \), if \(p \) is evaluated to true on the \(j \)th state of \(\sigma \).

Formally:

\[
(\sigma, j) \models P, \text{ for } P \in \Phi_0 \text{ iff } P \text{ is evaluated to true in } s_j \text{ by the mapping } \tau, \text{ that is, if } P \in \tau(s_j)
\]
\[(\sigma, j) \models \neg p \iff (\sigma, j) \not\models p\]
\[(\sigma, j) \models p \lor q \iff (\sigma, j) \models p \text{ or } (\sigma, j) \models q\]
\[(\sigma, j) \models \Box p \iff (\sigma, j + 1) \models p\]
\[(\sigma, j) \models p \mathcal{U} q \iff \exists i \geq j \text{ such that } (\sigma, i) \models q \text{ and for all } k, j \leq k < i, (\sigma, k) \models p\]

We use the following operators as abbreviations:

- **and:** \(p \land q = \neg (\neg p \lor \neg q)\)
- **implies:** \(p \rightarrow q = \neg p \lor q\)
- **equivalent:** \(p \equiv q = (p \rightarrow q) \land (q \rightarrow p)\)
- **eventually:** \(\Diamond p = T_{\sigma} p, (\sigma, j) \models \Diamond p\) if for some \(i \geq j, (\sigma, i) \models p\).
- **always:** \(\Box p = \neg \Diamond \neg p, (\sigma, j) \models \Box p\) if for all \(i \geq j, (\sigma, i) \models p\).

A model \(\sigma\) satisfies \(p\) if \((\sigma, 0)\) satisfies \(p\).

A formula \(p\) is **satisfiable** if there exists a model that satisfies \(p\).

A formula \(p\) is **valid** if for every model \(\sigma\), \(\sigma\) satisfies \(p\). Hence, a formula \(p\) is valid if \(\neg p\) is not satisfiable.

The temporal formalism is used to specify properties of finite state programs. A program is defined as the set of all possible computations. A computation of a given program is a sequence of states, starting from the initial state, where each state is defined by an assignment of values to all program variables. A computation can be viewed as a model for a temporal logic formula. A program satisfies a property \(p\), if for every computation \(\sigma\) of this program, \(\sigma\) satisfies \(p\).

For linear temporal logic, the **model checking problem** is stated as follows: given a finite state transition graph \(M = (N, E, r)\), where \(r\) is a special root node (the initial state), a mapping function \(\pi : N \rightarrow 2^{\mathcal{O}_0}\) assigning atomic propositions to states, and a linear temporal logic formula \(p\), does every path of \(M\) initiated at \(r\) satisfy \(p\)?

3 Example

To demonstrate the terms and notation, we give an example of a distributed program and some properties that this program is required to satisfy.

We distinguish between two types of program properties, **safety** and **liveness**. Safety properties state that nothing "bad" happens throughout the computation, while liveness properties state that something "good" eventually will happen during the computation.
We assume an asynchronous semantics, meaning that the set of all program computations consists of all possible interleavings of process computations.

Peterson’s Mutual Exclusion Algorithm

DECLARE \(t : [0..1]; \)
INITIALLY \(t = 1; \)

PROCESS \(P \)
DECLARE \(y_1 : [0..1]; \)
INITIALLY \(y_1 = 0; \)

\(L_0 : \) goto \(L_0; \) \{ \(y_1 := 1; \) goto \(L_1; \) \}
\(L_1 : \) \(t := 1; \)
\(L_2 : \) if \((y_2 = 0 \vee t = 0) \) goto \(L_3; \)
\quad if \((y_2 = 1 \wedge t = 1) \) goto \(L_2; \)
\textit{critical section} \(L_3 : \) \(y_1 := 0; \) goto \(L_0; \)

\(|| \)

PROCESS \(P_2 \)
DECLARE \(y_2 : [0..1]; \)
INITIALLY \(y_2 = 0; \)

\(M_0 : \) goto \(M_0; \) \{ \(y_2 := 1; \) goto \(M_1; \) \}
\(M_1 : \) \(t := 0; \)
\(M_2 : \) if \((y_1 = 0 \vee t = 1) \) goto \(M_3; \)
\quad if \((y_1 = 1 \wedge t = 0) \) goto \(M_2; \)
\textit{critical section} \(M_3 : \) \(y_2 := 0; \) goto \(M_0; \)

\(t \) is a global variable and \(y_1 \) and \(y_2 \) are local variables of \(P_1 \) and \(P_2 \), respectively. All variables are of type integer with range \([0..1]\). All statements appearing under the same label are assumed to be one atomic statement, i.e. nothing is interleaved between them.
Since each process has four possible locations we can view each program counter as a variable with range \([0..3]\). To describe the program computations we transform each program variable into a set of propositions, standing for the bit representation of the variable. We use \(t, y_1\) and \(y_2\) as propositions to represent the corresponding variables. \(P_{10}, P_{11}, P_{20}\) and \(P_{21}\) are used to represent the program counters of \(P_1\) and \(P_2\), respectively. In the initial state of the program, \(t = 1, y_1 = 0, y_2 = 0\) and \(P_1\) and \(P_2\) are in \(L_0\) and \(M_0\), respectively. Hence, for all program computations, \(t\) is true and \(y_1, y_2, P_{10}, P_{11}, P_{20}\) and \(P_{21}\) are false in the first state of the computation. From this initial state there are four possible transitions:

1. \(P_1\) executes the statement “goto \(L_0\)”, resulting in the same state.
2. \(P_1\) executes the statement “\(y_1 := 1;\) goto \(L_1\)”, resulting in a state where \(t, y_1\) and \(P_{10}\) hold and \(y_2, P_{11}, P_{20}\) and \(P_{21}\) are false.
3. \(P_2\) executes the statement “goto \(M_0\)”, resulting in no change in state.
4. \(P_2\) executes the statement “\(y_2 := 1;\) goto \(M_1\)”, resulting in a state where \(t, y_2\) and \(P_{20}\) hold and \(y_1, P_{10}, P_{11}\) and \(P_{21}\) are false.

The construction of the global transition graph of the program proceeds in this way. Since the number of variables and the range of each is finite, there are only a finite number of different states.

The safety property that we want to check for this algorithm is that it really guarantees mutual exclusion, i.e., it is never the case that \(P_1\) is in \(L_3\) and \(P_2\) is in \(M_3\) at the same time. Hence we want all program computations to satisfy

\[\Box(\neg(P_{10} \land P_{11} \land P_{20} \land P_{21})) \]

The liveness property is that each of the processes—if it is not idle forever (i.e., at \(L_0\) or \(M_0\))—eventually gets to execute its critical section. Hence, we want all program computations to satisfy

\[\Box((P_{10} \land \neg P_{11} \lor \neg P_{10} \land P_{11}) \rightarrow \Diamond (P_{10} \land P_{11})) \]

and

\[\Box((P_{20} \land \neg P_{21} \lor \neg P_{20} \land P_{21}) \rightarrow \Diamond (P_{20} \land P_{21})) \]

Often, we want to verify that the program satisfies these properties under some fairness condition, to exclude those executions in which one of the processes is not active from some point on in the computation. For example, we may want to consider the above
properties under the assumption that each process executes infinitely many transitions. It is rather clear that Peterson's algorithm above does not satisfy the liveness property if we do not assume such fairness. To specify those computations that satisfy the require fairness condition, we use an additional proposition. The proposition \(p_1 \) will hold only in these states in which \(P_1 \) is active; namely, only \(P_1 \) can execute a transition from a state in which \(p_1 \) is true. Thus, we have now two different initial states, one in which \(p_1 \) holds and one in which \(\neg p_1 \) holds. Each of these states has four possible next states, resulting from the two transitions the active process can take and the two alternatives for the next active process. To specify the liveness property above, under fairness, we use the following:

\[
\Box(\Diamond p_1 \land \Diamond(\neg p_1)) \rightarrow \Box((P_{10} \land \neg P_1 \lor \neg P_{10} \land P_1) \rightarrow \Diamond(P_{10} \land P_1))
\]

4 The tableau algorithm

The satisfiability problem for temporal logic formulae is NP-complete. In the worst case, the number of steps needed to decide if a given formula \(p \) is satisfiable is \(O(2^{|p|}) \). The tableau algorithm for checking the satisfiability of a linear temporal formula [PS81] is aimed at avoiding the exponential worst case, when possible, by generating only those states that are necessary. The algorithm consists of two parts:

1. Given a formula \(p \), a directed graph \(M_p = (N_p, E_p, \tau) \) is constructed, and a set \(\pi(n) \) of atomic propositions is associated with each node \(n \) in \(N \). This graph is "locally consistent" in the sense that for each node \(n \), the set of formulae \(\pi(n) \) is consistent for all formulae except for path formulae involving \(\Diamond \) and \(U \).

2. Checking global consistency: for each node \(n \in N_p \), and for each formula \(\forall a \Diamond p, qU p \in \pi(n) \), check if there exists a path from \(n \) that eventually satisfies \(q \).

In the following, we assume (without loss of generality) that all paths in the model are infinite. We can assume that the formula to be checked is of the form \(p \land \Box T \).

4.1 The construction part

We distinguish between two types of formulae called \(\alpha \) and \(\beta \) formulae.

\(\alpha \) formulae are those that can be expressed by a conjunction of their subformulae, e.g., \(\Box p \equiv p \land \Box \Box p \). In the construction procedure an \(\alpha \) formula \(r \) is replaced by the set of its subformulae, denoted \(\alpha(r) \), as follows:
\[\begin{array}{|c|c|c|}
\hline
r & \alpha(r) & \beta_1(r) & \beta_2(r) \\
\hline
p \land q & \{p, q\} & \{p\} & \{q\} \\
\Box p & \{p, \Box p\} & \{-p\} & \{q\} \\
\neg(p \lor q) & \{-p, \neg q\} & \{p, q\} & \{-p\} \\
\neg(p \rightarrow q) & \{p, \neg q\} & \{-p, \neg q\} & \{p, q\} \\
\neg(\Diamond p) & \{\Box (\neg p)\} & \{\neg p, \neg q\} & \{p, q\} \\
\neg(\square p) & \{\Diamond (\neg p)\} & \{\neg p, \neg q\} & \{p, q\} \\
\hline
\end{array} \]

\(\beta \) formulae are those that can be expressed as a disjunction of their subformulae, e.g., \(\Diamond p \equiv p \lor \Box \Diamond p \). In the construction, procedure a node with a \(\beta \) formula \(r \) is replaced by two nodes, each containing one of the sets of subformulae, denoted \(\beta_1(r), \beta_2(r) \) and defined as follows:

To describe the construction algorithm, we define for a set of formulae \(\phi \):

- The set \(\text{next}(\phi) \) is the set of formulae that must be true in a successor of any state that satisfies all \(p \in \phi \).
 \[\text{next}(\phi) = \{ q \mid \Box q \in \phi \} \]

- The set \(\text{basic}(\phi) \) is the subset of \(\phi \) that uniquely identifies a state satisfying all \(p \in \phi \).
 \[\text{basic}(\phi) = \{ p \mid p \in \phi \text{ and } (p \text{ is atomic or } p = \Box q) \} \]

The function \(\text{analyze}(\phi) \), provides for a set of formulae \(\phi \), a set \(S \) of sets of formulae resulting from repeated applications of \(\alpha, \beta \) rules to formulae in \(\phi \). The function \(\text{analyze} \) is used to construct \(M_\phi = (N_\phi, E_\phi) \), as follows:

\(\text{construct}(p) \)
- start with root \(r, \pi(r) = \{p\}, N_\phi = \{r\}, E_\phi = \emptyset \).
- \(S = \text{analyze}(\pi(r)) \)
- for \(\phi \in S \)
 - if \(\text{basic}(\phi) = \text{basic}(\pi(n)) \) for some \(n \in N_\phi \)
add \((r, n)\) to \(E_p\)
else
add a new node \(n\) to \(N_p\), with \(\pi(n) = \phi\)
add \((r, n)\) to \(E_p\)
for \(m \in N_p\) a leaf in \((N_p, E_p)\)
\(S = \text{analyze}(\text{next}(\pi(m)))\)
for \(\phi \in S\)
if \(\text{basic}(\phi) = \text{basic}(\pi(n))\) for some \(n \in N_p\)
add \((m, n)\) to \(E_p\)
else
add a new node \(n\) to \(N_p\), with \(\pi(n) = \phi\)
add \((m, n)\) to \(E\)
end construct

The function \textbf{analyze} is formally defined as follows:

\textbf{analyze}(\phi_0)
\[X := ((\phi_0, \emptyset))\]
for \((\varphi, \varphi) \in X\) with \(\varphi \neq \emptyset\)
\[X := X - \{(\varphi, \varphi)\}\]
if \(p \in \phi\)
if \(p\) is an \(\alpha\) formula
\[\phi := (\phi - \{p\}) \cup \{q \mid q \in \alpha(p) \text{ and } q \not\in \varphi\}\]
\[\varphi := \varphi \cup \{p\}\]
\[X := X \cup \{(\phi, \varphi)\}\]
if \(p\) is a \(\beta\) formula
\[\phi_1 := (\phi - \{p\}) \cup \{q \mid q \in \beta_1(p) \text{ and } q \not\in \varphi\}\]
\[\phi_2 := (\phi - \{p\}) \cup \{q \mid q \in \beta_2(p) \text{ and } q \not\in \varphi\}\]
\[\varphi := \varphi \cup \{p\}\]
\[X := X \cup \{(\phi_1, \varphi), (\phi_2, \varphi)\}\]
if \(p\) is an atomic formula or \(p = \bigcirc q\)
\[\phi := \phi - \{p\}\]
\[\varphi := \varphi \cup \{p\}\]
\[X := X \cup \{(\phi, \varphi)\}\]
\[S := \emptyset\]
for \((\emptyset, \varphi) \in X\)
if there is no \(q, \neg q \in \varphi\)
\[S := S \cup \{\varphi\}\]
return \(S\)
end analyze
4.2 Checking eventualities

When the construction of the structure \((N_p, E_p)\) is completed, each node in the graph is locally consistent, but we still have to check for global consistency. That is, we have to check that each node satisfies the following two properties:

1. the node has at least one successor.
2. for each formula of the form \(\Diamond p\) or \(q \mathcal{U} p\) in the set of formulae \(\pi(n)\) of a node \(n\), there exists a path leading from \(n\) to a node \(m\), such that \(p \in \pi(m)\).

Each node that does not satisfy these two properties is removed from the graph. The formula \(p\) is satisfiable if and only if the remaining graph contains the root node \(r\).

[LP85] shows that when checking temporal consistency it is enough to check consistency in the strongly connected components of the graph.

A strongly connected component (SCC) in a directed graph is a maximal set of nodes of the graph such that there is a path between each pair of nodes in the set.

We say that a SCC \((N', E')\) is consistent in a model \(M\), if for every \(n \in N'\) and every \(\Diamond p, q \mathcal{U} p \in \pi(n)\) there exists \(m \in N'\) with \(p \in \pi(m)\), and if \(N'\) contains a single node \(n\), then there exists some successor of \(n\) in \(M\).

\(\text{check}(N_p, E_p)\) checks temporal consistency in the locally consistent model \(M_p\):

\[
\text{check}(N_p, E_p) \\
\text{find strongly connected components in } (N_p, E_p). \\
\text{For } G \text{ a leaf SCC in } (N_p, E_p) \\
\text{if } G \text{ is consistent} \\
\text{stop} \\
\text{else} \\
\text{remove } G \text{ from } (N_p, E_p) \\
p \text{ is satisfiable iff } r \in N_p \\
\text{end check}
\]

If \(p\) is satisfiable, then a model can be constructed from the the graph \((N_p, E_p)\). For every node \(n \in N_p\) and every \(\Diamond p\) or \(q \mathcal{U} p\) in \(\pi(n)\) we know that there exists a path from \(n\) leading to a node \(m\) such that \(p \in \pi(m)\). However, we have to construct one infinite path, starting from root such that for all nodes along the path, all formulae will be satisfied along this path. The following procedure, \text{build_model}, defines such an infinite path. Note that ; (the semicolon) here denotes concatenation.

\[
\text{build_model}(N_p, E_p) \\
\delta(n) \text{ denotes the ordered list of successors of a node } n.
\]
\begin{verbatim}
n := r
\sigma := n
while (true)
 m := head of \delta(n)
 \sigma := \sigma; m
 \delta(n) := tail(\delta(n)); m
 n := m
end build_model
\end{verbatim}

The tableau algorithm for checking satisfiability of a temporal formula \(p \) is composed of the following steps:

1. \texttt{construct}(\(p \)) to get the structure \(M_p = (N_p, E_p) \)
2. \texttt{check}(\(N_p, E_p \))
3. if \(r \in N_p \)
 \(p \) is satisfiable
 else
 \(\neg p \) is valid

In the worst case, the size of \(M_p \) is \(O(2^{|p|}) \).

5 The satisfiability approach vs. the model checking approach

Given a finite state program \(A \), a property \(p \) and fairness condition \(F \), our goal is to verify whether every fair (according to \(F \)) execution of the program satisfies \(p \). Two basic approaches to this problem are described here. One is to construct a formula \(\phi(A, F, p) \) consisting of the possible transitions that can be executed by the different processes, the fairness condition and the property \(p \), such that \(\neg \phi(A, F, p) \) is valid iff \(A \) satisfies \(p \) under \(F \). The other approach is to construct the transition graph for the program \(A \), and check if \(F \rightarrow p \) is satisfied along every possible execution path in the transition graph.

5.1 Verifying by checking satisfiability

We are given a program \(A \), composed of \(n \) processes \(P_1, P_2, \ldots, P_n \), a property \(p \), and fairness condition \(F \); we wish to verify that any possible interleaving execution of the processes that satisfies \(F \) satisfies \(p \).
To verify that A satisfies p under F:

1. For a given algorithm A, a property p and fairness condition F, construct the temporal formula $\phi(A, F, p)$.

2. Use the tableau algorithm to check satisfiability of $\phi(A, F, p)$.

3. A satisfies p under F if and only if the tableau algorithm terminates with $\neg\phi(A, F, p)$ valid.

$\phi(A, F, p)$ is of the form

$$\phi(A, F, p) = \neg((I \land \Box(\bigvee_{i=1}^{n} \theta(P_i))) \rightarrow (F \rightarrow p))$$

I specifies the initial state, and $\theta(P_i)$ specifies the transitions that can be executed by process P_i. If $\phi(A, F, p)$ is satisfiable, then there exists a model whose initial state satisfies I, each of the model transitions from one state to the next corresponds to one of the possible processes transitions specified by $\theta(P_i), i = 1, \ldots, n$, and the model satisfies the fairness condition F, but it does not satisfy p. This implies that this model describes a fair execution of the program that does not satisfy the required property; hence, A does not satisfy p. If $\phi(A, F, p)$ is not satisfiable it means that $\neg\phi(A, F, p)$ is valid, hence any model corresponding to a program execution specified by $I \land \Box(\bigvee_{i=1}^{n} \theta(P_i))$ that is a fair execution (i.e., satisfies F) must also satisfy p, hence A satisfies p under F.

To be able to specify fairness, we use for each process a proposition p_i, which must hold in every state where process P_i is active. The general form of $\theta(P_i)$, is

$$p_i \land \mu(P_i) \land (\bigvee_{k=1}^{m} t_k)$$

where $\{t_k \mid k = 1, \ldots, m\}$ stand for the set of transitions that can be executed by P_i and $\mu(P_i)$ guarantees that when P_i is active it can not change the values of any variable that is a local variable of another process. $\mu(P_i)$ has the form

$$\bigwedge_{j \neq i} \bigwedge_{\text{variable of } P_j} (x \equiv O x)$$

Note that the set of local variables of a process include the program counter for this process.

Each of the t_m is specified by a formula that is a conjunction of two parts. The first part specifies the current state, which includes the program counter value and a condition stating some values of some variables. The second part specifies changes of values in the next state resulting from executing the transition: change of program counter and change
of variables by an assignment statement. All other local and shared variables are not changed.

To demonstrate how \(\phi(A, F, p) \) is constructed, we now define the parts of the formula for Peterson's mutual exclusion algorithm.

\[
\begin{align*}
I &\equiv \neg P_{10} \land \neg P_{11} \land \neg P_{20} \land \neg P_{21} \land t \land \neg y_1 \land \neg y_2 \\
\end{align*}
\]

For process \(P_1 \):

\[
\begin{align*}
\mu(P_1) &\equiv (y_2 \equiv \neg y_2) \land (P_{20} \equiv \neg P_{20}) \land (P_{21} \equiv \neg P_{21}) \\
t_1 &\equiv \neg P_{10} \land \neg P_{11} \land (\neg P_{10} \land \neg P_{11} \land (y_1 \equiv \neg y_1) \land (t \equiv \neg t) \lor (P_{10} \land \neg P_{11} \land \neg y_1 \land (t \equiv \neg t))) \\
t_2 &\equiv P_{10} \land \neg P_{11} \land (\neg P_{10} \land P_{11} \land (y_1 \equiv \neg y_1) \land \neg t) \\
t_3 &\equiv \neg P_{10} \land P_{11} \land (\neg y_2 \lor \neg t) \land (P_{10} \land P_{11} \land (y_1 \equiv \neg y_1) \land (t \equiv \neg t)) \\
t_4 &\equiv \neg P_{10} \land P_{11} \land (y_2 \land t) \land (\neg P_{10} \land P_{11} \land (y_1 \equiv \neg y_1) \land (t \equiv \neg t)) \\
t_5 &\equiv P_{10} \land P_{11} \land (\neg P_{10} \land \neg P_{11} \land \neg y_1 \land (t \equiv \neg t)) \\
\end{align*}
\]

Hence

\[
\theta(P_1) \equiv p_1 \land \mu(P_1) \land (t^1_1 \lor t^1_2 \lor t^3_1 \lor t^4_1 \lor t^5_1)
\]

For process \(P_2 \):

\[
\begin{align*}
\mu(P_2) &\equiv (y_1 \equiv \neg y_1) \land (P_{10} \equiv \neg P_{10}) \land (P_{11} \equiv \neg P_{11}) \\
t_1 &\equiv \neg P_{20} \land \neg P_{21} \land (\neg P_{20} \land \neg P_{21} \land (y_2 \equiv \neg y_2) \land (t \equiv \neg t) \lor (P_{20} \land \neg P_{21} \land \neg y_2 \land (t \equiv \neg t))) \\
t_2 &\equiv P_{20} \land \neg P_{21} \land (\neg P_{20} \land P_{21} \land (y_2 \equiv \neg y_2) \land \neg t)
\end{align*}
\]
\[t_3^2 \equiv \neg P_{2o} \land P_{21} \land (\neg y_1 \lor t) \land \neg P_{2o} \land \neg P_{21} \land (y_2 \equiv \neg y_2) \land (t \equiv \neg t) \]

\[t_4^2 \equiv \neg P_{2o} \land P_{21} \land (y_1 \land \neg t) \land \neg P_{2o} \land \neg P_{21} \land (y_2 \equiv \neg y_2) \land (t \equiv \neg t) \]

\[t_5^2 \equiv P_{2o} \land P_{21} \land \neg P_{2o} \land \neg P_{21} \land \neg y_2 \land (t \equiv \neg t) \]

Hence

\[\theta(P_2) \equiv p_2 \land \mu(P_2) \land (t_1^2 \lor t_2^2 \lor t_3^2 \lor t_4^2 \lor t_5^2) \]

A fair execution is an execution in which each process is active infinitely often, specified by \(\Box(p_1 \land p_2) \).

It follows that in order to check safety of the Peterson mutual exclusion algorithm under fairness, we have to check satisfiability of the formula

\[\neg((I \land \Box(\theta(P_1) \lor \theta(P_2))) \rightarrow (\Box(p_1 \land p_2) \rightarrow \Box(\neg(P_{1o} \land P_{11} \land P_{20} \land P_{21})))) \]

and to check liveness

\[\neg((I \land \Box(\theta(P_1) \lor \theta(P_2))) \rightarrow ((\Box(p_1 \land p_2) \rightarrow \Box(\neg(P_{1o} \land P_{11} \lor P_{10} \land P_{11}) \rightarrow \Box(P_{1o} \land P_{11}))))) \]

Since checking satisfiability is exponential in the size of the formula that is checked, using the formula \(\phi(A, F, p) \) to check if \(A \) satisfies \(p \) may be, in the worst case, exponential in the length of the program plus the size of the property.

5.2 Verifying by model checking

In the model checking approach, the transition graph of the program is constructed and then it is checked to determine if there exists a path in the graph that satisfies \(\neg(F \rightarrow p) \)

1. Construct the global transition graph \((S, T)_A \) for the program \(A \).

2. Use construct\((\neg(F \rightarrow p)) \) to construct a structure \(M_{\neg(F \rightarrow p)} = (N, E) \).

3. Cross product \(M_{\neg(F \rightarrow p)} \) and \((S, T)_A \) to get a locally consistent structure, denoted \((V, R)_{(A,F,p)} \), with a root node denoted \(v_0 \).

4. check\((V, R)_{(A,F,p)}\)

5. \(A \) satisfies \(p \) under \(F \) if and only if \(v_0 \notin V \).
If \(v_0 \in V \) after \(\text{check}((V, R)_{(A,F,p)}) \), then the remaining structure contains a path corresponding to a possible execution of the program \(A \), and this path satisfies the formula at the root of \((N, E)_{(F\rightarrow p)} \), that is, it satisfies \(\neg(F \rightarrow p) \). Hence, there exists an execution that satisfies \(F \) but does not satisfy \(p \). This implies that \(A \) does not satisfy \(p \) under \(F \). If \(v_0 \) is deleted from \(V \), then there does not exist a path in the transition graph that satisfies \(\neg(F \rightarrow p) \), hence every execution of the program \(A \) that satisfies \(F \) satisfies \(p \). This implies that \(A \) satisfies \(p \) under \(F \).

5.2.1 Constructing the global transition graph

The global transition graph consists of the set of nodes \(S \) and the set of edges \(T \). Each \(s \in S \) stands for a program state and a set \(\pi(s) \) of propositions and negations of propositions is associated with it. The set \(\pi(s) \) provides the value of the program variables in the state \(s \), by the corresponding propositions. In each state \(s \), exactly one process \(P_i \) is identified as active, by setting the corresponding \(p_i \) to true and \(p_j \) for all \(j \neq i \) to false. The construction of the graph starts with a special root state \(s_0 \) such that \(\pi(s_0) \) corresponds to the values of program variables at the initial state. \(s_0 \) has \(n \) successors, where successor \(i \) corresponds to the initial state with process \(i \) active, i.e., \(p_i \) is true. The construction of the transition graph proceeds by generating transitions from each state, according to the statements that can be executed from the state by the active process, and creating states corresponding to the resulting program state with one of the processes being the next active process. Since the program is finite state, the transition graph construction must terminate.

5.2.2 Cross product of the two structures

The cross product procedure is defined by taking those pairs \((n, s)\), \(n \in N \) and \(s \in S \), which are consistent. A pair \((n, s)\) is consistent if and only if for every atomic formula \(P \), at most one of \(P \), \(\neg P \) is in \(\pi(n) \cup \pi(s) \). \(V \) is initialized to \(v_0 \) corresponding to the pair \((r, s_0)\), that is, \(\pi(v_0) = \pi(r) \cup \pi(s_0) \). \(R \) is initialized to the empty set. \((V, R)_{(A,F,p)}\) is constructed by \text{cross_product}.

\begin{verbatim}
cross_product((N, E, r), (S, T, so))
 start with root v0, \(\pi(v_0) := \pi(r) \cup \pi(s_0) \), \(V := \{v_0\} \), \(E := \emptyset \)
 for v \in V a leaf in (V, R)
 for m \in N, (n, m) \in E
 for t \in S, (s, t) \in T
 if (m, t) is consistent
 if for some u \in V \ basic(u) = basic(\pi(m) \cup \pi(t))
 add (v, u) to R
 else

15
add a new node u to V with \(\pi(u) = \pi(m) \cup \pi(t) \)
add \((v, u)\) to \(R\)
end cross-product

6 Implementation and experimental results

6.1 Implementation of the tableau algorithm

Several issues seemed to be vital to an efficient implementation of the tableau algorithm.

6.1.1 The form of the LTL formula

1. Conjunctive form has an advantage over disjunctive form. A disjunctive form of a subformula specifying a transition in the program is: \(p_s \land c_s \rightarrow \bigcirc q_{s'}\) where \(p_s\) and \(c_s\) specify the current program counter and a condition, respectively and \(q_{s'}\) specifies the next state. The program is specified by the conjunction of all disjunctive formulae specifying transitions. An equivalent specification for the program is by disjunction of all transitions specified in conjunctive form by \(p_s \land c_s \land \bigcirc q_{s'}\) (see the formula in Section 5.1). The implementation of the tableau algorithm was faster for the conjunctive form, probably because of the priority we give to rules applied to \(\alpha\) formulae (see Section 6.1.3.).

2. Putting the “next” operator (\(\bigcirc\)) as “low” as possible turned out to be more efficient than an equivalent form in which next operators appeared before \(\land, \lor\) or \(\neg\) operators.

6.1.2 Representation of sets of formulae

Each node in the constructed graph is associated with a set of formulae. The set of all possible subformulae of the formula to be checked is computed (the size of the set is at most \(5|p|\) for a formula \(p\)) and the formulae are numbered. A set is represented by an array of bits, where the \(i\)th bit is 1 iff the \(i\)th formula is in the set. This representation allows operations such as union, checking consistency of a set, checking membership, etc. to be performed efficiently by bit operations.

6.1.3 Application of \(\alpha, \beta\) rules

In the construction procedure, the same rule may be applied to the same formula many times. To avoid some of this duplication, \(\alpha\) rules should have priority over \(\beta\) rules, as the following shows. Consider \(\phi = \{q_1, q_2, \ldots, q_k\}\), a set of formulae where \(q_1\) is an \(\alpha\) formula and \(q_2\) is a \(\beta\) formula. If we first apply the \(\beta\) rules to \(q_2\), we have two nodes
associated with \(\phi_1 = \{q_1, \beta_1(q_2), \ldots, q_k\} \) and \(\phi_2 = \{q_1, \beta_2(q_2), \ldots, q_k\} \). Thus, the rules for \(q_1, q_3, \ldots, q_k \) must be applied at least twice. Applying the \(\alpha \) rule for \(q_1 \) in \(\phi \) will result in a set \(\{\alpha(q_1), q_2, \ldots, q_k\} \).

To try to minimize duplicate applications of the same rule to the same formula, we construct, in a preprocessing procedure, a table \(T \), providing the results of repeated applications of \(\alpha \) rules to subformulae. The set of subformulae \(CL(p) \) is computed. For each \(q \in CL(p) \), the set \(\alpha(q) \) or the sets \(\beta_1(q), \beta_2(q) \) resulting from applying the corresponding rule for \(q \) are stored in \(T[q] \), the entry corresponding to \(q \) in the table \(T \). Then, the \(\alpha \) closure of \(T \) is computed by repeatedly applying \(\alpha \) rules to each set \(\phi \) in the entry \(T[q] \) in the table. A set \(\phi \) is \(\alpha \) closed if for every \(\alpha \) formula \(q \in \phi, \alpha(q) \subseteq \phi \). \(\alpha \) rules are applied to sets in the table until each set \(\phi \) is \(\alpha \) closed. In the construction algorithm, a rule is applied to formula \(q \) in a set \(\phi \) by replacing \(\phi \) by \(\phi \cup \psi \) for each \(\psi \) in \(T[q] \).

6.1.4 Search of nodes in the graph

With the generation of a set \(\phi \) the graph is searched to find if there exists a node \(n \) such that \(\text{basic}(\pi(n)) = \text{basic}(\phi) \). To enable an efficient search we interpret the binary representation of a set \(\pi(n) \) as a number that is used as a unique id of the node \(n \). The ids are hashed (see [K73]) into a table of size \(K \), such that on the average entry \(i \) in the table will have a list of \(\lfloor N_p \rfloor / K \) nodes. Hence, to search the graph for the set \(\text{basic}(\phi) \), we search the nodes in the entry corresponding to \(\text{basic}(\phi) \) in the hash table.

6.2 Implementation of the model checker

The implementation of the construction of the global transition graph uses ideas similar to those described above. States are represented by the set of propositions and negation of propositions that hold in the state. When the cross product with the model \(M_p \) is computed the resulting structure is composed of nodes each of which is a pair of pointers \((p_s, p_n)\) where \(p_s \) is pointer to a state in the global transition graph and \(p_n \) is a pointer to a node in the model. The set associated with \((p_s, p_n)\) is \(\pi(s) \cup \pi(n) \).

6.3 Experimental results

In the current implementation the model checking approach was up to 10 times faster than the satisfiability approach. The following results were measured on a SUN 4 for two mutual exclusion algorithms \(X_1 \) and \(X_2 \) (see Appendix) \(X_1 \) is a mutual exclusion algorithm for \(n \) processors that guarantees safety and communal liveness but not liveness. Communal liveness, in this case, means that if some process is asking to use the resource, then eventually some (not necessarily the same) process will get to execute its critical
section. Algorithm \(X_2 \) is a more complicated mutual exclusion algorithm. It guarantees safety and liveness for \(n \) processors.

Each row in the table provides execution time in seconds and the number of nodes in the locally consistent structure. The results relate to the verification of the program composed of \(n \) processes of algorithm \(X_1 \) or \(X_2 \) (in the first column) when checked against the property in the second column.

Note that some results are missing for the model checking program. This is because the current implementation (to be corrected in the near future) of the compiler requires a lot of manual preparation.

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Property</th>
<th>Satisfiability</th>
<th>Model Checking</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Nodes</td>
<td>Time</td>
</tr>
<tr>
<td>(X_1, n = 4)</td>
<td>Safety</td>
<td>1514</td>
<td>18.67</td>
</tr>
<tr>
<td>(X_1, n = 4)</td>
<td>Liveness</td>
<td>2423</td>
<td>78.94</td>
</tr>
<tr>
<td>(X_1, n = 4)</td>
<td>Com Liveness</td>
<td>2171</td>
<td>78.39</td>
</tr>
<tr>
<td>(X_1, n = 5)</td>
<td>Safety</td>
<td>6752</td>
<td>113.37</td>
</tr>
<tr>
<td>(X_1, n = 5)</td>
<td>Liveness</td>
<td>10289</td>
<td>582.03</td>
</tr>
<tr>
<td>(X_1, n = 5)</td>
<td>Com Liveness</td>
<td>9587</td>
<td>560.51</td>
</tr>
<tr>
<td>(X_1, n = 6)</td>
<td>Safety</td>
<td>28190</td>
<td>698.46</td>
</tr>
<tr>
<td>(X_1, n = 6)</td>
<td>Liveness</td>
<td>91316</td>
<td>8125.0</td>
</tr>
<tr>
<td>(X_1, n = 6)</td>
<td>Com Liveness</td>
<td>79436</td>
<td>7616.0</td>
</tr>
<tr>
<td>(X_2, n = 4)</td>
<td>Safety</td>
<td>4598</td>
<td>214.46</td>
</tr>
<tr>
<td>(X_2, n = 4)</td>
<td>Liveness</td>
<td>6824</td>
<td>885.02</td>
</tr>
<tr>
<td>(X_2, n = 5)</td>
<td>Safety</td>
<td>23012</td>
<td>2106.17</td>
</tr>
<tr>
<td>(X_2, n = 5)</td>
<td>Liveness</td>
<td>73330</td>
<td>19742.0</td>
</tr>
</tbody>
</table>

7 Conclusions

The results presented here indicate that model checking for LTL may indeed be implemented efficiently.

In [CS89], a distributed implementation of the satisfiability algorithm, provides further improvement.

Our model checker provides the user with

- The expressive power of Linear Temporal Logic.
- The ability to check, given two LTL specifications, whether one implies the other.
- Efficiency comparable to the CTL model checker.
Acknowledgments

This report is dedicated to Dr. H. Schorr and all others who do not believe that verification is important and/or useful.

David Mizell made this work possible.

Susan Coatney implemented the compiler in the best possible way.

Danny Cohen and Jon Postel believed that this report was worth writing.

References

Algorithm X_1 for 2 processes

DECLARE $y: [0..1]$;
INITIALLY $y=1$;

PROCESS P1
DECLARE $t_1: [0..1]$;
INITIALLY $t_1=0$;

L0 : goto L0; | { $t_1 := 0$; goto L1; }
L1 : if ($t_1=0$) goto L2;
if ($t_1=1$) goto L3;
L2 : $t_1 := y$; goto L1;
// L3 - critical section
L3 : $t_1 := y$; goto L0;

END

PROCESS P2
DECLARE $t_2: [0..1]$;
INITIALLY $t_2=0$;

M0 : goto M0; | { $t_2 := 0$; goto M1; }
M1 : if ($t_2=0$) goto M2;
if ($t_2=1$) goto M3;
M2 : $t_2 := y$; goto M1;
// M3 - critical section
M3 : $t_2 := y$; goto M0;

END
Algorithm X_2 for 2 processes

DECLARE $y: [0..3]$;
INITIALLY $y=0$;

PROCESS P1
DECLARE $r_1: [0..3]; t_1: [0..1]$;
INITIALLY $r_1=3; t_1=0$;

L0: goto L0; if { $t_1 := 1; \text{ goto L1; }$ }

L1: if ($r_1=3 \land (y=0 \lor y=1)$) goto L2;
 if ($r_1=3 \land \neg(y=0 \lor y=1)$) goto L1;
 if ($\neg(r_1=3)$) goto L2;

L2: if ($\neg(y=0) \land \neg(y=1)$) { $r_1 := y; \text{ goto L1; }$ }
 if ($y=0 \lor y=1$) { $r_1 := y; \text{ goto L3; }$ }
// L3 - critical section
L3: { $r_1 := 3; t_1 := 0; \text{ goto L4; }$ }

L4: if ($t_2=1$) { $y := 2; \text{ goto L0; }$ }
 if ($t_2=0$) { goto L5; }

L5: if ($t_1=1$) { $y := 1; \text{ goto L0; }$ }
 if ($t_1=0$) { $y := 0; \text{ goto L0; }$ }

END

PROCESS P2
DECLARE $r_2: [0..3]; t_2: [0..1]$;
INITIALLY $r_2=3; t_2=0$;

M0: goto M0; if { $t_2 := 1; \text{ goto M1; }$ }

M1: if ($r_2=3 \land (y=0 \lor y=2)$) goto M2;
 if ($r_2=3 \land \neg(y=0 \lor y=2)$) goto M1;
 if ($\neg(r_2=3)$) goto M2;
M2 : if (¬(y=0) ∧ ¬(y=2)) {r2:=y; goto M1;}
 if (y=0 | y=2) {r2:=y; goto M3;}

// M3 - critical section
M3 : { r2 := 3; t2:=0; goto M4; }

M4 : if (t1=1) {y:=1; goto M0;}
 if (t1=0) { goto M5; }

M5 : if (t2=1) {y:=2; goto M0;}
 if (t2=0) {y:=0; goto M0;}

END