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Summary 

Close-range photogrammetric measurements were 
made for the lower surface of an aero elastic super
critical research wing having a full-span aspect ra
tio of 10.3. The measurements were made during 
wind-tunnel tests of quasi-steady pressure distribu
tions on the wing. The tests were conducted in the 
Langley 'fransonic Dynamics Thnnel at Mach num
bers up to 0.900 and dynamic pressures up to about 
300 psf. Deflection data were obtained at 57 loca
tions on the wing lower surface with dual nonmetric 
still-frame cameras. Representative data are pre
sented as a graphical overview to show variations and 
trends of spar deflection with test variables. Com
parative data are presented for photogrammetric and 
cathetometric results of measurements of the wingtip 
deflections. 

Introduction 

The Langley Research Center has conducted 
an aeroelastic research wing program to evaluate 
transonic aerodynamic computer codes for the pre
diction of lifting surface loadings. The research 
program consisted primarily of wind-tunnel measure
ments of steady and unsteady pressure distributions 
on wing models and correlation of these measure
ments with computational results . Quasi-rigid and 
flexible semispan wing models were used in the wind
tunnel tests. Thus far, three quasi-rigid models 
have been tested in the Langley 'fransonic Dynamics 
Tunnel: a delta wing model (ref. 1), a swept wing 
model with super critical airfoil sections (ref. 2) , and 
a rectangular wing model with a supercritical airfoil 
(ref. 3) . These models were designed and fabricated 
to minimize structural dynamic effects and, accord
ingly, to simplify correlation of the experimental data 
with computational results. 

More recently, wind-tunnel measurements have 
been completed for a fourth model of the aero
elastic research wing program (refs. 4 through 6). 
Both static and dynamic data were obtained for this 
highly flexible wing which was designed for a flight
test program to evaluate active control systems. Se
lected results from dynamic pressure measurements 
for the flexible wing are reported in references 5 and 
6 and the measured static pressure data are cur
r~ntly being analyzed. The measured static pressure 
distributions were supplemented with corresponding 
measurements of wing surface deflections to provide 
for more meaningful results. 

The purpose of this paper is to document the 
results of wing surface deflection measurements for 
their corresponding wing surface static pressure mea
surements. The documentation presented herein 

graphically shows variations of the primary wing spar 
shapes and wingtip deflections as a function of the 
various test variables to provide views of the trends 
developed in the data. Tabulations of all wing surface 
deflection measurements are presented in a "Supple
ment to NASA Technical Memorandum 4194," which 
is available on request, for use in evaluation of. the
oretical techniques under development. A request 
form is included at the back of this report. Wing 
surface deflection measurements were obtained for a 
range of Mach number from 0.600 to 0.900 , a range 
of angle of attack from - 2° to 4° , a range of con
trol surface deflection from _8° to 8°, and dynamic 
pressures up to about 300 psf. Wing deflections at 
57 locations were obtained with two nonmetric still
frame cameras synchronized to an electronic flash. 
Cathetometric measurements of some of the wingtip 
deflections were also obtained. The tests were con
ducted in a heavy gas medium. 

Symbols 

ao 

b 

Geor 

c 

M 

Ps 

Pt 

q 

T 

Xs 

XS,rms 

Xc 

YS 

YS,rms 

Yc 

Yl 

Y -axis intercept of linear equation 

slope of linear equation 

wing semispan, in. 

correlation coefficient 

wing streamwise local chord, in. 

free-stream Mach number 

static pressure, psf 

stagnation pressure, psf 

free-stream dynamic pressure, psf 

stagnation temperature, OR 

streamwise spatial coordinate, in. 

estimated root-mean square preci
sion of spatial coordinate X S 

streamwise station coordinate for 
each camera, in. 

local streamwise distance from wing 
leading edge, in. 

spanwise spatial coordinate, in. 

estimated root-mean-square preci
sion of spatial coordinate YS 

lateral station coordinate for each 
camera, in. 

perpendicular distance from wing 
line of symmetry, in. 

vertical spatial coordinate, positive 
up, in. 



ZS,avg 

ZS,c 

ZS,p 

ZS,rms 

ZS,l002 

ZS,l004 

Zc 

() 

average value of targets ZS,l002 and 
ZS,lO04 relative to wind-off value of 
corresponding ZS, in. 

cathetometric measurement of 
vertical spatial coordinate Z S 
relative to wind-off condition, in. 

photogrammetric measurement 
of vertical spatial coordinate Z S 
relative to wind-off condition, in. 

estimated root-mean-square preci
sion of spatial coordinate Z S 

vertical spatial coordinate of target 
1002, in. 

vertical spatial coordinate of target 
1004, in. 

vertical station coordinate for each 
camera, in. 

angle of attack of model at wing 
root chord, positive leading edge 
up, deg 

static angle of outboard control 
about hinge line, positive leading 
edge up, deg 

wing nondimensional semispan 
station, yL/b 

elevation angle of orientation for 
each camera, deg 

roll angle of orientation, deg 

azimuth angle of orientation for 
each camera, deg 

Abbreviations: 

rms 

w.O.z. 

Model 

root mean square 

wind-off zero 

Views of the test configuration mounted in the 
Langley Transonic Dynamics Thnnel are shown in fig
ures 1 and 2, and the wing planform and photogram
metric targets mounted on the wing lower surface are 
shown in figures 3 through 5. The wing had a full
span aspect ratio of 10.3 and a leading-edge sweep 
angle of 28.8°. The wing was equipped with three 
trailing-edge control surfaces (figs. 3 through 5) that 
were hydraulically driven. Two of the control sur
faces were located near the root chord and one was 
located near the tip chord. Location coordinates for 
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the control surfaces are shown in figure 4. The in
board control surfaces were fixed at a deflection angle 
of 0°, and the outboard control surface was deflected 
to predetermined static angles in the approximate 
range from _8° to 8°. Only the deflection angle of 
the outboard control surface was varied during this 
study. The hinge line of the outboard control was 
located at 77 percent of the local wing chord. The 
wing front and rear spar centerlines were located on 
the 25-percent and 62-percent chord lines on the ba
sic wing planform, respectively (fig. 5). 

The wing contour was formed by three super
critical airfoil sections that were located at wing 
nondimensional semispan stations 'fJ of 0.071 , 0.426, 
and 1.000, and the corresponding airfoil thickness-to
chord ratios were 15 percent, 12 percent, and 11 per
cent, respectively. Straight line interpolation along 
constant-percent chord lines defined the wing con
tour between the three airfoils. The airfoil coor
dinates and twist distribution for the wing cruise 
condition are defined in reference 7, and additional 
geometric and structural characteristics are given in 
reference 4. 

Circular targets were located on the wing lower 
surface (fig. 1) to define the surface deflection (or 
shape). The inboard rows of targets were orientated 
perpendicular to the rear spar in order to facilitate 
comparisons with structural analysis programs. The 
rows near the model tip were orientated streamwise 
to facilitate comparisons with aerodynamic analysis 
programs. Sixty-five targets were provided; however, 
only 57 targets were visible for the deflection mea
surements. The visible target locations on the wing 
lower surface are identified in figure 3. The targets, 
which are commonly used for printed circuit artwork, 
were dark red in the shape of an annulus with an 
outside diameter of 1 inch and a thickness of 5 mils. 
The white painted wing surface visible at the cen
ter of the pads provided the required high contrast 
target for the photographic images. Specular reflec
tions were minimized by use of an over-spray of clear 
flat lacquer. The central hole diameters in the pads 
were selected to present constant image sizes of about 
100 micrometers on the films as photographed by the 
inboard cameras . The central hole diameter ranged 
from 65 mils for the inboard targets to 125 mils for 
the outboard targets. The visible targets were lo
cated on the wing in 10 semispan rows between the 
wing root and tip and at up to 8 chordwise positions. 
The wing target locations from surface table mea
surements are shown in table 1. The corresponding 
target coordinates corrected for the axis system used 
in the photogrammetric data reduction are shown in 
table 2. A description of the corrections in table 
2 is discussed in the section "Data Reduction." An 
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additional set of 18 high-contrast targets was placed 
on the test-section wall opposite the model mount 
within the field of view of each camera. These data 
were used to provide a basis for image restitution in 
the absence of film fiducial marks. 

Boundary-layer transition strips were placed on 
the wing upper and lower surfaces for selected test 
conditions. The transition strips were 0.10 inch 
wide and were made of No. 70 Carborundum grit 
embedded in a plastic adhesive. The size and lo
cation of each strip were determined from experi
ences gained by using transition strips on similar 
wind-tunnel models. The strips were located on the 
5-percent chord line from root to tip of the basic wing 
planform. The model surface forward of the strips 
was kept smooth to maintain laminar flow. 

Instrumentation 

Wing deflection data were recorded simultane
ously on photographic film by use of two still-frame 
70-millimeter square-format nonmetric cameras that 
were rigidly mounted behind high-strength glass 
windows in the test-section sidewall approximately 
26 inches below ZS,avg of the wing coordinates. (See 
fig. 1.) The cameras were separated by a distance 
of 41 inches and were fitted with 50-millimeter focal
length lenses focused to a distance of 5 feet. Illumi
nation was provided by a high-intensity strobe lamp 
located behind a window beneath the wing. Expo
sures were made remotely upon command by a con
trol room observer. A logic circuit was used to assure 
that both camera shutters were open before allow
ing the strobe lamp to trigger. Seventy frame pairs 
could be exposed before film magazine reloading was 
required. 

The relative vertical deflection of the wingtip was 
measured by use of a cathetometer to provide quick
look information. The cathetometer was mounted 
in the wind-tunnel control room behind windows of 
high-strength safety glass which provided a direct 
view of the test configuration (fig. 2). A horizon
tal line was drawn on the wingtip that approximated 
the wingtip chord line. During the test an orthog
onal hairline system in the cathetometer optics was 
focused on the wingtip chord line for relative vertical 
displacement measurements. 

Wind Thnnel 

The test was conducted in the Langley Transonic 
Dynamics Tunnel (ref. 8). This facility is a single
return wind tunnel that has a 16.00-foot square 
test section with cropped corners. The test section 
walls, ceiling, and floor are equipped with streamwise 
longitudinal slots. The stagnation pressure can be 

varied from slightly above atmospheric pressure to 
near vacuum over the Mach number range from 0 
to 1.2. The tunnel is a continuous-operation type and 
is powered by a motor-driven fan. Both test section 
Mach number and dynamic pressure are continuously 
controllable. The facility has the capability to use air 
or heavy gas (R-12) as a test medium. Heavy gas was 
used as the test medium for most of these test runs. 

Data Reduction 
Data reduction of the wing surface deflection mea

surements was accomplished by use of the theory of 
photogrammetry. The theory is based upon a pair 
of equations (referred to as the projective equations) 
which relate the two-dimensional measured coordi
nates (x , y) of a film image and the corresponding 
three-dimensional spatial coordinates (X S , Ys, Z S) of 
the target photographed. For this test program, the 
projective equations for each camera contained a to
tal of 14 projective parameters (or elements of orien
tation) . The calibration required for these measure
ments consisted of recovery of eight internal elements 
of orientation (referred to as the camera parameters) 
for each camera and six external elements of orien
tation (or station parameters) for each station. The 
camera parameters consisted of the principal distance 
of the lens, the image coordinates of the principal 
point, and five additional parameters which include 
three radial and two decentering lens distortion coef
ficients for each camera. The station parameters con
sisted of three station coordinates and three pointing 
(or orientation) angles for each camera station. A 
nonstandard technique was developed for image resti
tution due to the use of nonmetric cameras to record 
wing deflections. Also, the use of such cameras pre
vented removal of image errors that were introduced 
by film dimensional changes. A detailed discussion 
of the theory, equations, and the self-calibration pro
cess used in close-range photogrammetry is presented 
in reference 9. 

Photographic Methods 

Two sequences of photographs of the model (pho
tographic calibrations) were made prior to test
ing. The first sequence was referred to as the self
calibration photography, and the second sequence 
was referred to as the angle-of-attack calibration pho
tography. The required photographs for each se
quence were obtained sequentially and only after 
completion of both sequences were the films removed 
from the cameras and processed. 

Self-calibration photography. The self-
calibration photography sequence of photographs 
was used to provide the data to recover the inter
nal elements of orientation for the two cameras and 
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to provide coordinates of the wing targets in a prop
erly scaled (but arbitrary) wing coordinate system. 
The targeted wing (a = 0°) was photographed in the 
test section with each camera from six locations that 
were circumferentially distributed beneath the wing. 
The cameras were rolled about their lens axes a dif
ferent amount for each photograph. Finally, the self
calibration sequence was completed by mounting and 
locking the two cameras into their permanent test po
sitions behind the tunnel windows beneath the wing 
and taking a seventh and final photograph of the tar
geted wing lower surface (fig. l(b)). 

Angle-of-attack calibration photography. 
The angle-of-attack calibration photography se
quence of photographs was used to provide the data 
to transform the resulting wing coordinate system 
(obtained from the self-calibration photography) into 
a preferred wing coordinate system and to remove the 
rigid-body rotation component from the data. Also, 
image coordinate data were obtained from this se
quence of photographs for the 18 additional targets 
that were located on the tunnel side wall. Seven pairs 
of photographs were taken of the test wing and wall 
target grid from each camera as angle of attack was 
varied in increments of approximately 1° in the in
terval from - 2° to 4°. 

Film Measurement 

Two-dimensional coordinates from the film were 
obtained for each target image on each film nega
tive subsequent to film processing. Multiple read
ings of each coordinate were manually obtained by a 
precision mono comparator that was monitored by a 
microcomputer. The computer was pr:ogrammed to 
accept the data when two successive measurements 
of each target (both x- and y-coordinates) were re
peated within 10 micrometers. Coordinates of visible 
frame corners were also measured. Long-term instru
ment drift was found to exist in the comparator sys
tem; this drift was also monitored for each negative. 
The data were discarded when the coordinates of the 
first target measured differed by more than 15 mi
crometers when reread after reading all other targets. 
Seventy-five targets were measured on each film neg
ative. Calibration and test photography generated 
a total of 700 negatives which required considerable 
manual comparator observation. 

Image Data Preprocessing 

The use of nonmetric cameras which lack discrete 
fiducial marks precluded the use of a direct standard 
two-dimensional coordinate transformation to con
vert raw image coordinates from an arbitrary com-
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parator axis system to the conventional X-Y fidu
cial axis system. To overcome this difficulty, the 
frame corner data were used for this transformation. 
The four square-frame corners of each negative were 
measured for self-calibration and angle-of-attack se
quences. In these cases, the origin was established 
at the computed intersection of the frame diagonals. 
The orientation was then fixed by an in-plane rota
tion about the new origin to place the reference frame 
edge parallel to the abscissa axis. 

For test photography, it was necessary to operate 
under reduced test section ambient lighting to insure 
that fast strobe illumination predominated the expo
sures for the moving targets. Only two corners of the 
reference edge of each frame were measurable. These 
corners were used to establish the reference edge. In 
this case, the origin was temporarily established at 
the right angle apex opposite the reference edge (hy
potenuse) of a 45° triangle. The image quality of the 
frame corners was insufficient to allow scaling of im
age data. The image data were then corrected for 
systematic comparator errors. 

The final step in preprocessing of the image data 
involved the wall target image data that were ob
tained from the angle-of-attack photograph sequence. 
The quality of the wall target image data was quite 
good and resulted in highly repeatable image coor
dinates. The good quality of the wall target images 
was attributed to photographic exposure under high 
ambient illumination levels. Since the wall target 
grid appeared in all subsequent test photographs, 
their image coordinates were utilized (in lieu of fidu
cial marks) for the final image plane transforma
tion of test image data. Subsequently, all image 
data from each camera frame (not including self
calibration photographs) were transformed to best 
overlay, in a least-squares sense, the images from this 
target subset. Again, the transformation was con
fined to the image plane (two translations and one 
rotation) and the scale was held fixed . 

Wing Deflection Data Processing 

Simultaneous Triangulation and Resection Sys
tem (STARS, ref. 10) photogrammetric software 
was used to analyze the preprocessed image data. 
Individual modules of this software were utilized as 
follows to produce the desired results. 

Self-calibration. Preprocessed image data from 
the self-calibration photographic sequence were 
merged, and a two-camera bundle adjustment (refs. 9 
and 10) with self-calibration was performed. This 
procedure involved the solution of 1960 projective 
equations for 310 unknowns. Absolute control for 
this adjustment was established by use of known 
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X, Y, Z coordinates of two inboard wing targets 
(102 and 105) and the Z-coordinate of an outboard 
wingtip target (1003) as given in table 1. These three 
control points (targets 102, 105, and 1003) define a 
unique spatial coordinate system. The STARS bun
dle adjustment not only recovered the internal el
ements of orientation (principal distance, principal 
point location) for each camera, but also the lens 
distortion coefficients and external elements of ori
entation (the three station coordinates and the three 
pointing angles) for each camera station. The X, Y, Z 
coordinates for all targets in the system defined by 
the control points were also recovered from the ad
justment. However, rather than generate a reference 
coordinate system from three selected control points, 
a preferred wing coordinate system was generated 
with all the measured data of table 1. This was ac
complished in a least-squares formulation with the 
STARS Rigid Body Transformation module (ref. 10). 

Since the scale was allowed to adjust during the 
transformation and a knowledge of the external ele
ments of orientation of the two fixed camera stations 
was required for subsequent steps, the bundle ad
justment was repeated with the control point coor
dinates fixed to the values obtained from the rigid 
body transformation. Rigorous error propagation 
emerged directly from the least-squares bundle ad
justment (ref. 9). The Z-coordinates for the wing 
targets in the preferred wing coordinate system were 
recovered from this 14-station least-squares adjust
ment to an estimated rms precision of 0.0045 inch. 

Angle-oj-attack calibration. The wing was 
tested at various angles of attack with the camera 
stations fixed in the preferred coordinate system. 
The resulting X, Y, Z coordinates of the wing targets 
contained both the desired wing deformation data 
and the angle-of-attack rotation component. The 
angle-of-attack calibration was thus used to provide a 
means for separating the rotational component from 
the deformation data. 

The preprocessed image data obtained from the 
angle-of-attack photographic sequence were merged 
in pairs and the STARS Triangulation module was 
used to obtain X, Y, Z coordinate sets at each of 
seven calibration angles of attack. The projective pa
rameters used for the triangulation were those deter
mined from the self-calibration. Since the wing was 
assumed to be a rigid body for this calibration se
quence, the only variable between the resulting data 
sets was the angle-of-attack rotation. To verify that 
this was the case, a rigid body transformation (with 
scale fixed) was performed to best overlay the tri
angulated data sets from the two extreme angles of 
attack (-2° and 4°). The result of this transforma-

tion showed that the differences between the trans
formed set and the primary set were minimal. Also, 
this result verified that the actual coordinate system 
and the preferred wing coordinate system (as previ
ously obtained) were not precisely mutually orthogo
nal. The coordinate system was corrected so that the 
Y-axis in the wing coordinate system was parallel to 
the axis of rotation in the tunnel system for changes 
in angle of attack. Once mutual orthogonality be
tween the two systems was established, three final 
translations were made to adjust the preferred wing 
system to the actual tunnel system. The final coordi
nates of the wing targets in the tunnel coordinate sys
tem at zero angle of attack and the wind-off condition 
are given in table 2. The Z-precision estimates (ta
ble 3) reflect the overall effect of uncorrected image 
measurement errors-propagated through the recov
ery of the projective parameters- to the triangulated 
results from the pretest calibrations. 

The corrected target coordinates (table 2) were 
collectively used as a control for a final bundle ad
justment, using the preprocessed image data for the 
seven calibration angles of attack. All targets par
ticipated equally (in a least-squares sense) in the ad
justment; effectively the previously established tun
nel coordinate system was preserved. Except for the 
camera principal points, the internal elements of ori
entation and lens distortion parameters were rigidly 
constrained to their original self-calibration values. 
The station parameters were allowed to freely ad
just. Three station coordinates and three pointing 
angles were recovered for each camera at each cali
bration angle of attack. These parameters were lin
ear functions of angle of attack; hence, the slope
intercept equations were used for computation of the 
six station parameters for each camera. The recov
ered station parameters and corresponding computed 
slope-intercept equation coefficients for both camera 
stations are summarized in table 4. 

Triangulation oj results. The coordinates of 
each wing target for the test data were triangu
lated with the use of the calibrated camera param
eters and the computed station parameters for each 
tab point . The average value of the estimated rms 
precision for the resulting Z-coordinates for all tab 
points was found to be 0.011 inch varying from 0.006 
(inboard targets) to 0.015 inch (outboard targets 
near wingtip). The rotational component of an
gle of attack was removed from the data, so that 
wing shape deformations due to aerodynamic load
ing could be obtained by direct subtraction of trian
gulated Z-values for corresponding targets given in 
table 2. 
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Accuracy of Wind-Tunnel Parameters 
and Model Angles 

Mach Number and Dynamic Pressure 

Wind-tunnel flow parameters are obtained by 
measuring four primary values. They are stagnation 
pressure Pt, static pressure Ps, stagnation tempera
ture T, and the percent purity of the gas medium 
from which the ratio of specific heats is obtained. 
The stagnation and static pressures are measured by 
two modern laboratory quality pressure gauges. The 
accuracy of these gauges is 0.02 percent of full scale 
which is approximately 0.4 psf over the tunnel op
eration pressure range of 0 to 2200 psf. The values 
of stagnation temperature and the ratio of specific 
heats do not vary appreciably during most testing 
and do not contribute any significant errors to the 
calculation of flow parameters such as Mach number 

Presentation of Results 

M and dynamic pressure q. It is well-known that q 
is related directly to the value of Ps and that M is a 
function of the square root of q . Therefore, for most 
testing in the Langley Transonic Dynamics Thnnel 
operating envelope, the Mach number is set and held 
to within 0.002 of the desired value, and the dynamic 
pressure value is accurate to well within 1.0 psf. 

Wing-Root Angle of Attack and Control 
Surface Angle 

The model was instrumented near the wing root 
with a servo accelerometer and at the inboard side 
of the control surface shaft with a precision rotary 
potentiometer. The accuracy of the accelerometer 
allowed the wing angle of attack to be set to within 
0.01 0. The control surface angle was accurate to 
within 0.1°. 

The results of quasi-steady deflection measurements for an aero elastic research wing are tabulated in a 
"Supplement to NASA Technical Memorandum 4194." Representative results from the supplement for a typical 
test condition are presented in table 5, which shows the spatial coordinates for the wing targets and the 
corresponding test conditions . In table 5, the spatial coordinate entries which are a series of 9's indicate that 
the data were not available or were defective. A compilation of quasi-steady test conditions is presented in 
table 6. The data of table 6 show the tab point, Mach number, dynamic pressure, angle of attack, and outboard 
control surface deflection angle. A correlation between the graphic and tabulated results is given in table 7. 
Unless otherwise stated, the tests were conducted in a heavy gas medium (R-12). 

A graphical overview of the results in the supplement is presented in figures 6 through 30 as indicated in 
the following table. Data are presented in figures 6 and 7 to show a comparison of the results obtained from 
photogrammetric and cathetometric measurements and chordwise deflection of the model at various loadings , 
respectively. The front and rear spar deflections for variations of angle of attack and outboard control surface 
deflection are presented in figures 8 through 22. Variations of the spar tip deflection as a function of angle of 
attack and control surface deflection 'are presented in figures 23 through 28. Limited data are also presented 
in figures 29 and 30 to show some effects of dynamic pressure and Mach number on spar tip deflections. 

Figure 

Photogrammetric and cathetometric results for wingtip measurements ............. 6 
Effect of dynamic pressure on wing chordwise deflection at selected rows of targets along 

the span at M = 0.850, Q = 1°, and q = 100, 200, and 300 psf ............. . . . . . 7 
Variation of wing front and rear spar shapes with angle of attack at four Mach 

numbers and q = 100 psf .......... . ....................... 8 
Variation of wing front and rear spar shapes with control surface deflection at two angles 

of attack, q = 100 psf, and M = 0.600 . . .. . .... . .. . ........ ....... 9 
Variation of wing front and rear spar shapes with control surface deflection at two angles 

of attack, q = 100 psf, and M = 0.700 ..... . ....... . ............. 10 
Variation of wing front and rear spar shapes with control surface deflection at two angles 

of attack, q = 100 psf, and M = 0.800 ........... . ............... 11 
Variation of wing front and rear spar shapes with control surface deflection at two angles 

of attack, q = 100 psf, and M = 0.850 . .. . . . ........ . ............ 12 
Variation of wing front and rear spar shapes with control surface deflection at two angles 

of attack, q = 100 psf, and M = 0.880 ............ . . . ............ 13 
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Variation of wing front and rear spar shapes with angle of attack at four Mach numbers 
and q = 200 psf .. .. ......... .. .... . .. . ...... . 

Variation of wing front and rear spar shapes .with control surface deflection at two angles 
of attack, q = 200 psf, and M = 0.600 .... . .. ... ....... .. . . 

Variation of wing front and rear spar shapes with control surface deflection at two angles 
of attack, q = 200 psf, and M = 0.700 ........ ... . ....... . . 

Variation of wing front and rear spar shapes with control surface deflection at two angles 
of attack, q = 200 psf, and M = 0.800 . ........ . ....... . .. . 

Variation of wing front and rear spar shapes with control surface deflection at two angles 
of attack, q = 200 psf, and M = 0.850 . ....... . ..... .. .... . 

Variation of wing front and rear spar shapes with angle of attack at M = 0.800 
and q = 300 psf .. . . . . . ..... . .. . ....... . . . 

Variation of wing front and rear spar shapes with control surface deflection at a = 0°, 
q = 300 psf, and M = 0.800 . . . . . . . . . . . . . .. . . . . . . 

Variation of wing front and rear spar shapes with angle of attack at M = 0.800 
and q = 100 psf in air . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

Variation of wing front and rear spar shapes with control surface deflection at two angles 
of attack, q = 100 psf, and M = 0.800 in air . . . . . . . . . . . . . . . . . . . . . . . . . 

Variation of wing front and rear spar tip deflection with angle of attack at four 
Mach numbers and q = 100 psf .............. . .. . 

Variation of wing front and rear spar tip deflection with angle of attack at 
four Mach numbers and q = 200 psf . . ..... . . . ....... ... ... . .. . . 

Variation of wing front and rear spar tip deflection with angle of attack at 
M = 0.800 and q = 300 psf .. . .......... .................. . 

Variation of wing front and rear spar t ip deflection with control surface deflection at 
five Mach numbers, two angles of attack, and q = 100 psf . . . . . . . . . 

Variation of wing front and rear spar tip deflection with control surface deflection 
at four Mach numbers, two angles of attack, and q = 200 psf . . . . . . . . . . . . . . . . . . 

Variation of wing front and rear spar tip deflection with control surface deflection 
at a = 0°, M = 0.800, and q = 300 psf .... . .... . .... . . . 

Variation of average wing spar tip deflection with dynamic pressure at M = 0.700, 0.800, 
and 0.850 and three angles of attack .... . ..... . ...... ... ... . . . . . 

Variation of average wing spar tip deflection with Mach number at q = 100 and 200 psf 
and three angles of attack . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
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Discussion of Results 

Photogrammetric data were obtained for the test 
conditions when the response of the wing to the aero
dynamic loading was characterized as either static 
or quasi-static. Since the photogrammetric tech
nique used in this test program generated instan
taneous deflection data, care was taken to avoid 
recording data when the model tip response was 
significantly unsteady due to excessive noise, tur
bulence, flow separation, or other flow phenomena 
(ref. 11) . This unsteady response was the expe
rience for many test conditions at high dynamic 
pressures and/or Mach numbers. Subsequent to pho
tography, an additional visual deflection measure
ment was made of the wingtip elevation by use of 

a cathetometer. The cathetometric measurements 
were monitored over a period of about 15 seconds 
to obtain an average value of the relative wingtip el
evation. 

Photogrammetric and cat he to metric results are 
graphically presented in figure 6. The photogram
metric results were obtained for measurements of tar
get 1003 which is located midway between the front 
and rear spars on target row 10. The cathetometric 
results were obtained from measurements of a line 
on the wingtip between the projected front and rear 
spars. A line of agreement and a first-order regression 
line (least-squares fit) are included with the data as 
an aid for comparison. The data of figure 6 show that 
there was good agreement between the photogram
metric and cathetometric techniques. The slope of 
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the regression line is about 5 to 6 percent lower than 
that for the line of agreement. This difference is con
sidered to be small and is attributed to the use of 
nonmetric cameras, the relative location of the target 
to the wingtip, and the unsteadiness of the model. 

Wing Chordwise Bending 

Selected data from the photogrammetric results 
are presented in figure 7 to indicate the chord wise 
rigidity of the wing at various locations along the 
span (fig. 3) . The data of figure 7 show variations of 
the net local chord wise deflections normalized by the 
free-stream dynamic pressure at four different sta
tions. As indicated in the figure, results are presented 
for three free-stream dynamic pressures at four span
wise stations. The wing deflections are the net mea
sured values (wind-off values removed) normalized by 
the dynamic pressure for targets located on rows 2, 
5, 7, and 9 (fig. 3). Rows 2, 5, and 7 were approxi
mately normal to the wing rear spar, and row 9 was 
streamwise. The data indicate that the local deflec
tion along the chord wise stations was essentially lin
ear for each row of targets and for each dynamic pres
sure. The data for the more inboard row of targets 
(row 2) show a near-zero slope, and small positive 
slopes are shown for the other rows. Furthermore, 
the slope of the chord wise deflections became larger 
as the location of the rows approached the wingtip. 
The essentially constant slope of the local chord wise 
deflections for these data indicates that there was 
sufficient chordwise rigidity of the wing to effectively 
prevent chordwise bending of the wing model for the 
range of test conditions. 

Wing Spar Deflection", 

A graphical overview of the photogrammetric 
wing surface deflection measurements in the heavy 
gas medium, unless otherwise noted, is presented in 
the form of plots which show spanwise variations of 
the vertical deflection (i.e., the vertical spatial coor
dinate) for the front and rear spars. The results are 
arranged according to dynamic pressure and Mach 
number. For increasing Mach number, figures 8 
through 13 show deflection data for a dynamic pres
sure of 100 psf, figures 14 through 18 show deflection 
data for a dynamic pressure of 200 psf, and figures 19 
and 20 show deflection data for 300 psf. Additional 
deflection data for a dynamic pressure of 100 psf ob
tained with air as the test medium are shown in fig
ures 21 and 22. Figures 8, 14, 19, and 21 show varia
tions of the wing spar deflections of shapes for various 
angles of attack and Mach numbers; the remainder 
of the figures in each group show variations of wing 
spar deflections for various control surface deflections 
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at angles of attack of approximately 0° and 2°. The 
variations of the front and rear spar shapes with an
gle of attack and control surface deflections (figs. 8 
through 22) show the expected characteristic shape 
typical of a similar cantilever beam. Generally, the 
spar deflections along the span increased as angle of 
attack and control surface deflection were increased 
in the range of test conditions. The expected peak 
deflections occurred at the spar tips. The influence 
of control surface deflection on the spar shapes was 
small compared with that of angle of attack. The 
influence of control surface deflection in some tests 
was smaller than that of the unsteady motion of the 
wing. A typical indication of this condition is shown 
in figures 13(a) and 13(b) where the magnitude of 
the vertical deflections does not necessarily increase 
with control surface deflection (angle of attack of 0° 
and control surface deflections from - 2° to -1 ° and 
4° to 6°). 

Variations of the outboard chord wise target ver
tical positions (targets 1002 and 1004) with angle of 
attack and control surface deflection are shown in fig
ures 23 through 25 and figures 26 through 28 , respec
tively, for dynamic pressures of 100, 200, and 300 psf. 
These plots are companion ones of the results in fig
ures 8 through 23 and are generated to show the lin
earity of the spar tip deflection with angle of attack 
and control surface deflection. Variations of the spar 
tip deflection with angle of attack and control sur
face deflection were somewhat linear for the ranges 
of test conditions. The scatter in the results for con
trol surface deflection indicates an effect of occasional 
random deflection errors mentioned in the discussion 
of figures 8 through 22. 

Effect of Dynamic Pressure 

The effect of dynamic pressure on the average 
tip deflection of the two wing spars relative to the 
wind-off test condition is indicated in the results pre
sented in figure 29. The wingtip deflection was ap
proximated as the average deflection of targets 1002 
and 1004. The data show variations of the average tip 
deflection of the wing spars with dynamic pressure for 
angles of attack of -1 0, 0°, and 1 ° at Mach numbers 
of 0.700, 0.800, and 0.850 and with control surface 
deflection of 0°. The data (fig. 29) show that the 
wingtip deflection increases with dynamic pressure 
as it was varied from about 40 to 300 psf. The varia
tions of wingtip deflection with dynamic pressure in
dicate that for certain conditions, the wingtip deflec
tion may approach maximum or asymptotic values at 
high dynamic pressures. Such a maximum value of 
wingtip deflection is indicated for an angle of attack 
of 1 ° at Mach numbers of 0.800 and 0.850. Although 



dynamic pressure increased wingtip deflection, as ex
pected, this effect was accentuated by increasing the 
angle of attack. 

Effect of Mach Number 

The effect of Mach number on the average wing 
spar tip deflection of the two wing spars relative 
to the wind-off test condition is indicated in the 
results presented in figure 30. The data of figure 30 
show that for a given Mach number the angle of 
attack has a significant uniform effect. The data 
of figure 30 also show that Mach number has an 
insignificant effect on the wingtip deflection up to a 
value of about 0.800; above this value, the wingtip 
deflection may increase or decrease depending on 
angle of attack. Figure 30(a) for which the dynamic 
pressure is 100 psf shows that wingtip deflection 
increased with Mach number regardless of the angle 
of attack but the trend is inconsistent for the higher 
dynamic pressure of 200 psf as shown in figure 30(b) . 

Concluding Remarks 

Photogrammetric measurements of the static 
(quasi-static) wing surface deflections for a flexible 
aeroelastic supercritical research wing are presented 
herein. Wing deflection data were obtained at Mach 
numbers up to 0.900, angles of attack in the range 
from - 2° to 4°, control surface deflections in the 
range from _8° to 8°, and dynamic pressures in the 
range from 42 psf to 312 psf. 

A comparison of photogrammetric and catheto
metric measurements of wingtip deflection shows 
very good agreement. A graphical overview of 
the photogrammetric measurements shows signifi
cant variations of the wing spars and wingtip vertical 
deflections. The trends of the variations were quite 
consistent over the range of test conditions. There 
were significant variations of wingtip deflection with 
dynamic pressure that increased with angle of attack. 
The data indicated the development of a possible 
maximum or asymptotic value of wingtip deflection 
in the range of dynamic pressures from about 200 to 
300 psf. The effect of Mach number on the wingtip 
deflection was generally insignificant for Mach num
bers up to 0.800. A trend toward larger wingtip de
flections was indicated for Mach numbers above 0.800 
at the lower dynamic pressure of 100 psf. However, 
this effect of Mach number at a dynamic pressure of 
200 psf was not as consistent. 

NASA Langley Research Center 
Hampton, VA 23665-5225 
September 26 , 1990 
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Table 1. Spatial Coordinates of Target Locations on Wing Lower Surface 
in Tunnel Axis System 

[All coordinates are in inches] 

Target Xs YS Z a 
S 

Target Xs 

101 256.329 40.470 57.918 601 281.550 
102 259.464 39.067 57.344 602 283.416 
103 603 286.047 
104 267.214 35.600 57.258 604 288.740 
105 271.163 33.838 57.849 605 290.969 

b
106 

276.026 31.668 58.503 
b

107 
108 278.925 30.374 58.420 

606 293.700 

701 286.899 
702 288.494 

201 262.163 51.243 57.880 703 290.869 
202 265.009 49.975 57.514 704 293.299 
203 268.557 48.364 57.433 
204 272 .195 46.737 57.656 
205 274.206 45.837 57.975 

705 
b

706 295.752 
b

707 297.777 

b
206 

278.225 44.046 58.675 207 
b

208 280.617 42.979 58.661 

b
801 298.505 

901 290.781 
301 277.437 50.676 58.230 902 292.589 
302 280.996 49.090 58.701 903 295.192 

904 297.821 
401 268.944 63.767 57.498 
402 271.447 62.652 57.144 
403 274.682 61. 210 57.070 

b
905 

300.521 
b

906 
907 302.447 

404 277.992 59.735 57.359 
405 280.732 58.514 57.908 1001 293.212 
406 284.090 57.017 58.385 1002 294.983 

1003 297.466 
501 275.247 75.410 56.981 1004 299.949 
502 277.432 74.437 56.643 1005 301.963 
503 280.365 73.129 56.549 1006 304.379 
504 283.366 71.792 56.769 
505 285.850 70.684 57.256 
506 288.895 69.327 57.746 

aEstimated 19 value. 
b Targets on control surfaces. 

Y
S 

87.052 
86.221 
85.048 
83.848 
82.855 
81.637 

96.930 
96.220 
95.161 
94.078 

92.949 
92.082 

93.948 

104.389 
104.283 
104.228 
104.223 

104.223 
104.047 

108.591 
108.998 
108.998 
108.998 
108.998 
108.998 

Z a 
S 

56.333 
55.995 
55.883 
56.046 
56.457 
56.942 

55.662 
55.328 
55.210 
55.320 

55.752 
56.132 

55.977 

55.335 
54.757 
54.569 
54.574 

54.860 
55.137 

54.851 
54.421 
54.229 
54.215 
54.393 
54.721 



Table 2. Corrected Spatial Coordinates of Target Locations on Wing Lower Surface 

[All coordinates are in inches] 

Target Xs YS Zs 

101 255.480 40.507 60.904 
a

102 258.641 39.109 60.405 
b

103 263.393 37.023 60.219 
104 266.405 35.675 60.416 

a
105 270.375 33.867 61.022 

b
106 273.771 32.321 61. 522 

c
107 2 75 . 159 31. 670 61.603 

c
108 278.070 30.395 61.426 

201 261.293 51.310 60.836 
202 264.164 50.026 60.542 
203 267.699 48.446 60.498 
204 271.458 46.783 60.875 

b
205 273.309 45.940 61. 215 
206 275.933 44.899 61.660 

c
207 277.303 44.193 61. 779 

c
208 279.696 43.157 61.643 

301 276.578 50.746 61.426 
302 280.062 49.179 61.731 

401 268.018 63.769 60.389 
402 270.484 62.676 60.146 
403 273.738 61. 239 60.117 
404 277.094 59.807 60.508 
405 279.825 58.581 61.084 
406 283.171 57.127 61.351 

501 274.348 75.278 59.773 

502 276.475 74.365 59.576 
503 279.417 73.080 59.574 
504 282.38 9 71.785 59.903 

505 284.929 70.699 60.443 

506 287.970 69.400 60.683 

aBundle adjustment control points. 
bTargets added after self- calibration. 
c Targets located on control surfaces. 

Target 

601 
602 
603 
604 
605 
606 

701 
702 
703 

b
704 
705 

c
706 

c
707 

c
801 

901 
902 
903 

b
904 
905 

c
906 

c
907 

1001 
1002 

a
1OO3 
1004 
1005 
1006 

------.---~------

Xs Y
S Zs 

280.511 86.830 59.042 
282.378 86.000 58.876 
285.043 84.908 58.860 
287.754 83.792 59.160 
290 . 036 82.900 59.636 
292.784 81. 788 59.855 

285.837 96.627 58.307 
287.423 95.987 58.176 
289.839 94.966 58.180 
292.349 93.948 58.433 
293.855 93.289 58.728 
294.798 92.960 58.950 
296.868 92.049 59.087 

297.586 93.930 58.939 

289.789 104.190 57.731 
291.532 104.166 57.585 
294.148 104.105 57.508 
296.757 104.107 57.664 
298.466 104.123 57.935 
299.395 104.037 58.055 
301.383 104.008 58.155 

292.293 108.825 57.365 
293.871 108.790 57.214 
296.405 108.831 57.160 
298.799 108.910 57.284 
300.827 108.929 57.583 
303.276 108.856 57.676 

11 
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Table 3. rms Estimated Measurement Precision for Target Spatial Coordinates 

[All coordinates are in inches] 

Target X 
S,rms 

Y Z 
S, rms S, rms 

101 0.0045 0.0050 0 .. 0048 
a

102 
b

103 
104 0.0030 0.0037 0.0035 

a
105 

b
106 

c
107 0.0041 0.0051 0.0049 

c
108 0.0049 0.0060 0.0059 

201 0.0059 0.0061 0.0046 
202 0.0055 0.0056 0.0040 
203 0.0052 0.0052 0.0036 
204 0.0052 0.0052 0.0035 

b
205 0.0053 0.0053 0.0037 
206 

c
207 0.0057 0.0058 0.0043 

c
208 0.0061 0.0062 0.0049 

301 0.0071 0.0067 0.0039 
302 0.0074 0.0071 0.0044 

401 0.0098 0.0094 0.0047 
402 0.0096 0.0092 0.0042 
403 0.0096 0.0090 0.0039 
404 0.0096 0.0090 0.0038 
405 0.0098 0.0090 0.0040 
406 0.0101 0.0093 0.0045 

501 0.0139 0.0131 0.0046 
502 0.0139 0.0130 0.0042 
503 0.0139 0.0129 0.0039 
504 0.0139 0.0129 0.0039 
505 0.0141 0.0129 0.0041 
506 0.0143 0.0131 0.0046 

aBundle adjustment control points 
bTargets added after self-calibration 
c Targets located on control surfaces 

Target X 
S,rms 

Y 
S,rms 

601 0.0182 0.0170 
602 0.0182 0.0170 
603 0.0183 0.0169 
604 0.0183 0.0169 
605 0.0185 0.0170 
606 0.0187 0.0171 

701 0.0220 0.0205 
702 0.0220 0.0205 
703 0.0220 0.0205 
704 

b
705 

0.0221 0.0205 

c
706 0.0222 0.0205 

c
707 0.0223 0.0206 

c
801 0.0229 0.0212 

901 0.0248 0.0233 
902 0.0250 0.0234 
903 0.0254 0.0237 
904 

b
905 

0.0257 0.0241 

c
906 0.0261 0.0244 

c
907 0.0265 0.0247 

1001 0.0265 0.0249 
1002 0.0267 0.0251 

a
1OO3 0.0271 0.0254 
1004 0.0275 0.0257 
1005 0.0278 0.0260 
1006 0.0282 0.0263 

- - --- ----- ---

Z 
S, rms 

0.0046 
0.0043 
0.0041 
0.0041 
0.0043 
0.0046 

0.0046 
0.0044 
0.0042 
0.0043 

0.0045 
0.0048 

0.0048 

0.0048 
0.0046 
0.0046 
0.0047 

0.0049 
0.0052 

0.0048 
0.0047 

0.0048 
0.0050 
0.0054 



Table 4. Summary of Angle-of-Attack Calibration Results 

Angle of attack, deg Least-squares results 

Station 

parameters -2.0288 - 1.0150 -0.0612 1.0349 2.0357 3.0510 4.0271 al aO Ccor 

Forward camera station 

Xc, in. 261.1423 261.6075 262.0370 262.5255 262.9913 263 .4311 263.8687 0.4508 262.0582 0.9999 

Ye, in . -3.5917 - 3.6370 - 3.6448 - 3.6088 - 3.6057 -3.6202 -3.5936 0.0024 -3.6169 0.2531 

Ze. in. 31.5574 31.6652 31.8048 31.9645 32.0994 32.2561 32.4258 0.1439 31.8218 0.9983 

'1/1, deg 2.1495 1.8100 1.4963 1.1327 0.7821 0.4519 0.1127 - 0.3365 1.4744 -0.9999 

0, deg 18.6309 18.6742 18.6824 18.7162 18.7417 18.7462 18.7567 0.0205 18.6861 0.9722 

t/>, deg 1.8746 0.8324 - 0.2070 - 1.3443 - 2.4020 -3.4500 -4.5027 - 1.0543 - 0.2464 -0.9999 

Aft camera station 

Xc, in. 302.9109 303.3734 303.7989 304.2812 304.7209 305.0942 305.5056 0.4286 303.8065 0.9996 

Ye, in. -6.3497 - 6.3765 - 6.3773 - 6.3815 - 6.3901 - 6.4246 -6.4043 - 0.0096 -6.3766 -0.8918 

zc, in. 30.6329 31.5041 32.3214 33.2495 34.1697 35.0182 35.9238 0.8729 32.3759 0.9999 

'1/1, deg -25.6405 - 25.8889 -26.1203 -26.3855 - 26.6297 - 26.8240 -27.0622 - 0.2344 -26.1271 -0.9995 

0, deg 16.1339 15.6699 15.2693 14.7995 14.3135 13.8911 -13.4282 - 0.4455 15.2376 - 0.9998 

t/>, deg 3.4554 2.4625 1.6067 0.5936 - 0.3706 -1.2651 - 2.1730 - 0.9283 1.5557 -0.9999 

13 
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Target 

101 
102 
103 
104 
105 
106 

a107 
a108 

201 
202 
203 
204 
205 
206 
207 
208 

301 
302 

401 
402 
403 
404 
405 
406 

501 
502 
503 
504 
505 
506 

Table 5. Wing Deflection Measurements for Typical Test Condit ion 

Xs 

255.507 
258.669 
263.414 
266.430 
270.391 
273.797 
999.999 
999.999 

261.330 
264.206 
267.731 
271.484 
273.344 
275.962 
277.329 
279.721 

276.610 
280.091 

268.076 
270.534 
273.780 
277.129 
279.869 
283.213 

274.405 
276.539 
279.487 
282.456 
284.981 
288.029 

[
Tab point = 108; M = 0.791 ; q = 99.796 PSf; ] 

a = 1.024°; 8 = - 0.065° 

YS Zs Target Xs 

40.399 61.101 601 280.601 
39.017 60.611 602 282.459 
36.919 60.407 603 285.125 
35.572 60.600 604 287.832 
33.785 61.228 605 290.118 
32.220 61.721 606 292.859 
99.999 99.999 
99.999 99.999 701 285.930 

702 287.524 
51.190 61.243 703 289.938 
49.886 60.926 704 292.442 
48.321 60.898 705 293.951 
46.664 61.283 706 294.872 
45.790 61.585 707 296.979 
44.755 62.038 
44.073 62.175 801 297.688 
43.017 62.027 

901 289.890 
50.607 61.944 902 291.641 
49.062 62.267 903 294.265 

904 296.865 
63.628 61.162 905 298.585 
62.555 60.923 906 299.510 
61.153 60.901 907 301.487 
59.690 61.286 
58.452 61.858 1001 292.418 
57.026 62.154 1002 293.993 

1003 296.534 
75.226 61.061 1004 298.928 
74.284 60.858 1005 300.927 
72.953 60.849 1006 303.378 
71.716 61.210 
70.622 61.751 
69.277 61.986 

YS 

86.709 
85.984 
84.866 
83.751 
82.855 
81.695 

96.652 
95.949 
94.922 
93.942 
93.239 
92.862 
91.987 

93 .904 

104.200 
104.103 
104.054 
104.061 
104.060 
104.073 
103.952 

108.764 
108.936 
108.821 
108.992 
108.892 
108.830 

aTarget spatial coordinates were not available. 

Zs 

60.884 
60.757 
60.748 
61.053 
61.555 
61.762 

60.723 
60.596 
60.606 
60.897 
61.187 
61.394 
61.554 

61.516 

60.605 
60.476 
60.477 
60.679 
60.994 
61.166 
61.284 

60.477 
60.432 
60.392 
60.611 
60.944 
61.088 



Table 6. Quasi-Steady Test Conditions for Wing Deflection Measurements 

Tab point M q. a. S. Remarks 
psf deg deg 

001 0.000 0.000 0.000 0.000 Wind-off zero 

210 0.600 100.518 -2.014 0.008 a sweep 

211 0.600 99.982 -1.029 -0.044 
212 0.600 100.400 0.023 -0.019 

213 0.600 99.805 1.019 0.006 

214 0.600 101.192 2.027 -0.018 
215 0.600 100.599 3.005 -0.013 ,w 
216 0.600 100.457 4.024 -0.009 

217 0.600 100.913 0.006 -7.979 S sweep 

218 0.600 102.756 0.006 -6.003 

219 0.600 101.851 0.004 -3.996 

220 0.600 100.887 0.005 -3.031 

221 0.600 101.218 0.005 -2.051 

222 0.600 100.827 0.004 -1.006 

223 0.600 99.957 0.004 -0.052 
224 0.600 101.487 0.004 1.001 

225 0.600 101.037 0.003 2.010 

226 0.600 101.390 0.003 3.001 

227 0.600 101.434 0.004 4.020 

228 0.600 101.204 0.003 5.983 ,I. 
229 0.600 101.354 0.002 8.021 

230 0.600 101.028 2.000 -8.034 S sweep 

231 0.600 100.636 1.999 -5.963 

232 0.600 100.864 2.000 -4.042 

233 0.600 101.678 1.999 -2.991 

234 0.600 101.097 1.999 -1.966 

235 0.600 101.137 1.999 -1.003 

236 0.600 100.625 1.999 0.050 

237 0.600 100.979 1.999 1.042 

238 0.600 100.829 2.000 2.034 

239 0.600 100.958 1.999 3.027 

240 0.600 100.956 1.999 4.031 

241 0.600 100.381 1.999 6.042 , 
242 0.600 101.127 1.998 8.059 

148 0.700 99.441 -2.022 -0.083 a sweep 

149 0.700 99.366 -1.023 -0.032 

150 0.700 100.149 -0.027 -0.073 

151 0.700 100.003 0.997 -0.004 

152 0.700 100.488 2.005 -0.045 

153 0.700 99.594 2.998 -0.069 II, 
154 0.700 100.195 4.024 -0.066 
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Table 6. Continued 

Tab Point M q, n, 0, Remarks 
psf deg deg 

168 0.700 100.240 -0.008 -8.026 o sweep 
170 0.700 99.800 -0.009 -4.033 

J 
172 0.700 100.371 -0.010 -2.027 
176 0.700 100.680 -0.010 2.017 
179 0.700 100.112 -0.010 3.990 
181 0.700 100.517 -0.011 8.022 

}55 0.700 100.361 2.009 -8.014 o sweep 
156 0.700 100.978 2.009 -5.994 
157 0.700 } 00.284 2.009 -4.012 
159 0.700 100.092 2.009 -1.985 
161 0.700 100.121 2.009 0.021 
163 0.700 100.375 2.009 2.011 f 
165 0.700 99.718 2.008 4.037 

80 0.800 100.879 -2.003 -0.028 n sweep 
81 0.800 100.473 -1.023 -0.050 
82 0.800 100.828 0.000 -0.039 

108 0.800 99.796 1.024 -0.065 
109 0.800 99.854 2.009 -0.063 
110 0.800 100.537 2.992 -0.063 , 
111 0.800 101.735 3.998 -0.064 

105 0.800 101.206 0.002 -8.00} o sweep 
106 0.800 100.103 0.001 -5.990 
107 0.800 99.419 0.001 -4.075 
86 0.800 100.395 0.001 -3.045 
87 0.800 101.471 0.000 -2.040 
88 0.800 99.910 0.000 -1.045 
90 0.800 100.106 -0.001 1.021 
91 0.800 100.268 0.000 1.984 
92 0.800 99.694 0.000 3.043 
94 0.800 100.093 -0.001 4.063 
95 0.800 98.901 -O.OO} 6.018 , 
96 0.800 100.250 -0.001 8.053 

115 0.800 101.305 2.009 -8.032 o sweep 
116 0.800 101.868 2.011 -6.025 
117 0.800 101.968 2.010 -4.027 
118 0.800 101.803 2.010 -2.981 
119 0.800 102.238 2.009 -2.030 
120 0.800 102.029 2.009 -1.035 
122 0.800 101.450 2.018 0.002 
123 0.800 101.049 2.018 1.026 
124 0.800 102.573 2.018 2.014 , 
125 0.800 102.273 2.018 3.020 
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Table 6. Continued 

Tab Point M q. a. O. Remarks 
psf deg deg 

126 0.800 101.966 2.018 4.004 o sweep 

127 0.800 102.336 2.018 6.011 , 
128 0.800 101.803 2.018 8.027 

783 0.850 99.778 -2.008 0.033 a sweep 

784 0.850 99.555 -1.019 0.026 

785 0.850 99.731 -0.003 0.013 

788 0.850 100.169 1.020 0.011 

789 0.850 100.344 1.998 0.025 

790 0.850 100.099 2.992 0.007 ~ 

791 0.850 100.160 4.027 0.000 

801 0.850 100.293 -0.001 -3.043 o sweep 

802 0.850 100.137 0.000 -1.993 

803 0.850 100.860 -0.001 -1.037 

804 0.850 100.341 -0.001 1.031 

805 0.850 100.564 -0.001 2.003 

806 0.850 100.618 -0.001 3.021 'f 
807 0.850 100.339 -0.00 1 6.041 

792 0.850 100.435 2.021 -6.068 o sweep 

793 0.850 100.334 2.020 -2.998 

794 0.850 100.743 2.020 -1.996 

795 0.850 100.994 2.021 -1.031 

796 0.850 100.334 2.020 0.993 

797 0.850 100.735 2.019 2.057 

798 0.850 100.396 2.019 3.057 ,If 
799 0.850 100.588 2.019 6.011 

268 0.880 100.628 -0.023 -7.998 o sweep 

270 0.880 100.401 -0.023 -4.003 

272 0.880 100.143 -0.023 -2.981 

273 0.880 100.873 -0.024 -1.996 

274 0.880 100.538 -0.024 -1.037 

276 0.880 100.771 -0.024 1.027 

277 0.880 100.642 -0.024 2.032 

278 0.880 100.265 -0.024 2.993 

280 0.880 101.182 -0.024 3.998 " 
281 0.880 101.251 -0.024 6.026 

283 0.880 101.093 2.025 -4.004 o sweep 

284 0.880 99.964 2.026 -3.004 

285 0.880 99.799 2.024 -1.983 

286 0.880 100.577 2.024 -1.003 

287 0.880 101.147 2.024 1.011 

288 0.880 101.228 2.023 2.071 if 

289 0.880 101.516 2.024 2.988 
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Table 6. Continued 

Tab Point M q, a, 0, Remarks 
psf deg deg 

290 0.880 101.144 2.024 3.987 o sweep 
291 0.880 101.085 2.023 6.002 

• 
292 0.880 101.167 2.023 7.987 
293 0.880 100.972 2.024 0.048 

476 0.600 200.356 -2.032 -0.052 ex sweep 
477 0.600 199.231 -1.018 -0.025 

+ 
479 0.600 199.838 1.006 -0.014 
481 0.600 200.093 2.0n -0.035 

548 0.600 200.334 0.008 -5.990 o sweep 
567 0.600 202.296 -0.021 -1.984 
568 0.600 202.321 -0.023 -1.010 
570 0.600 202.380 -0.023 1.077 
572 0.600 203.313 -0.023 2.030 
573 0.600 203.768 -0.023 3.050 
574 0.600 203.612 -0.025 5.972 

482 0.600 199.566 2.021 -5.994 o sweep 
483 0.600 200.161 2.020 -2.987 

~ 
484 0.600 199.282 2.019 -2.019 
485 0.600 200.379 2.019 -1.055 
486 0.600 199.522 2.019 1.048 
487 0.600 198.999 2.018 2.027 

446 0.700 200.791 -2.012 -0.048 ex sweep 
449 0.700 200.373 -1.032 -0.052 

~ 450 0.700 199.582 0.Ql5 -0.060 
451 0.700 200.345 1.021 -0.056 
452 0.700 200.136 2.004 -0.050 

465 0.700 199.957 -0.014 -6.015 o sweep 
466 0.700 200.971 0.008 -3.023 
467 0.700 199.635 0.006 -2.008 
468 0.700 201.693 0.006 -1.041 
469 0.700 201.081 0.006 1.037 
471 0.700 200.462 0.005 2.002 
473 0.700 201.172 0.005 3.032 , 
474 0.700 200.870 0.004 6.024 

453 0.700 199.792 2.006 -6.018 o sweep 
455 0.700 201.403 2.005 -3.030 
456 0.700 201.251 2.005 -2.029 
459 0.700 199.607 2.029 1.027 
460 0.700 200.688 2.028 2.030 
461 0.700 200.384 2.028 3.011 r 
462 0.700 200.494 2.028 6.008 
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Table 6. Continued 

Tab Point M q, ex, 0, Remarks 
psf deg deg 

423 0.800 200.865 -2.029 -0.055 ex sweep 
424 0.800 199.907 -1.030 -0.037 

~ 425 0.800 201.393 0.001 -0.024 
426 0.800 200.616 1.026 -0.035 
427 0.800 200.337 2.024 -0.028 

437 0.800 204.280 0.011 -6.032 o sweep 
438 0.800 203.288 0.011 -2.994 
439 0.800 203.492 0.010 -2.008 
440 0.800 202.202 0.010 -1.007 
441 0.800 201.853 0.009 1.015 
442 0.800 204.732 0.010 2.012 

443 0.800 203.387 0.010 3.030 if 

444 0.800 204.540 0.009 6.036 

428 0.800 202.119 2.024 -5.963 o sweep 
429 0.800 201.354 2.024 -3.042 
431 0.800 202.829 2.024 -2.024 
432 0.800 199.750 2.023 -1.065 
433 0.800 201.244 2.023 1.023 
434 0.800 200.533 2.024 2.032 
435 0.800 203.957 2.021 3.064 W 
436 0.800 203.772 2.022 6.042 

911 0.850 199.727 -2.022 -0.048 ex sweep 

912 0.850 200.654 -1.032 -0.039 

~ 913 0.850 200.556 0.006 -0.068 

914 0.850 200.871 1.005 -0.070 
915 0.850 202.492 2.021 -0.065 

916 0.850 202.039 -0.011 -6.062 o sweep 

917 0.850 200.945 -0.012 -3.019 

918 0.850 201.597 -0.013 -2.009 

919 0.850 200.681 -0.013 -1.021 

920 0.850 202.207 -0.013 1.037 

921 0.850 200.895 -0.014 2.024 

922 0.850 199.740 -0.014 3.015 If 
923 0.850 203.088 -0.014 5.999 

924 0.850 202.528 2.020 -6.007 o sweep 

925 0.850 202.815 2.019 -3.024 

926 0.850 200.509 2.020 -2.033 

927 0.850 202.695 2.020 -1.010 

928 0.850 202.545 2.019 1.056 

929 0.850 200.369 2.019 2.020 if 

930 0.850 204.826 2.020 3.067 
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Table 6. Continued 

Tab Point M q, a, S, Remarks 
psf deg deg 

931 0.850 202.482 2.019 5.979 o sweep 
932 0.850 202.730 2.019 0.056 • 
948 0.800 299.589 -1.036 0.029 a sweep 
951 0.800 297.697 0.000 -0.048 

+ 952 0.800 298.743 1.024 -0.044 

953 0.800 297.301 0.006 -3.005 o sweep 
955 0.800 299.726 0.015 -1.928 
957 0.800 295.817 0.014 -0.892 
958 0.800 298.955 0.011 2.993 
959 0.800 297.900 0.012 2.067 
960 0.800 298.602 0.011 0.964 

" 961 0.800 300.477 0.011 6.090 

977 0.800 103.502 -2.022 -0.072 a sweep in air 
978 0.800 102.518 -1.019 0.049 
979 0.800 102.772 -0.009 -0.034 
980 0.800 102.729 1.009 -0.033 
981 0.800 102.983 2.017 -0.025 
982 0.800 103.579 2.968 -0.029 , 
983 0.800 103.658 3.996 -0.051 

1004 0.800 104.793 0.006 -6.004 o sweep in air 
1005 0.800 104.693 0.005 -3.039 
1006 0.800 104.757 0.005 -2.026 
1007 0.800 104.682 0.005 -1.036 
1008 0.800 104.854 0.004 1.019 
1009 0.800 105.420 0.004 2.001 
1010 0.800 105.108 0.004 2.975 
1011 0.800 105.001 0.004 6.016 

1012 0.800 105.217 2.015 -6.020 o sweep in air 
1013 0.800 105.121 2.015 -3.006 
1014 0.800 105.293 2.015 -2.039 
1015 0.800 105.501 2.014 -1.008 
1016 0.800 105.530 2.015 1.013 
1018 0.800 105.611 2.014 2.004 
1019 0.800 105.743 2.013 3.010 
1020 0.800 105.720 2.012 6.004 

665 0.700 100.443 -0.012 -0.013 Trnnsition SfS installed 
667 0.750 111.908 -0.014 -0.021 
669 0.800 123.682 -0.016 -0.020 
671 0.850 135.351 -0.017 -0.030 
673 0.870 139.763 -0.018 -0.022 

20 
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Table 6_ Concluded 

Tab Point M q, a, 0, Remarks 

psf deg deg 

680 0.700 100.216 -0.010 -0.044 Air data 

685 0.750 111.773 -0.015 -0.034 

+ 
689 0.800 123.632 -0.013 -0.047 

691 0.850 133.431 -0.015 -0.043 
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Table 7. Correlation of Graphic and Tabulated Results 

Figure Tab point 
(a) 

Angle-of-attack variation: 
8(aT) 001, 211 , 212 , 213, 214, 215 , 216 
8(bT) 001 , 148, 149, .150, 151 , 152, 153, 154 
8(cT) 001 ,80,81,82, 108, 109, 110, 111 
8(dT) 001 , 783, 784, 785, 788, 789, 790, 791 

Control surface deflection variation: 
9(aT) 001 , 218, 219 , 220 , 221 , 222 , 223 , 224, 225, 226 , 227, 228 , 229 
9(bT) 001 , 218, 219 , 220, 221 , 222 , 223, 224, 225 , 226 , 227, 228, 229 
9(cT) 001 , 231 , 232 , 233, 234, 235 , 236, 237, 238 , 239 , 240 , 241 , 242 
9(dT) 001 , 231 , 232 , 233 , 234 , 235 , 236 , 237, 238 , 239 , 240 , 241 , 242 

10(aT) 001 , 155, 156, 157, 159, 161 , 163, 165 
10(aB) 001 , 155, 156, 157, 159, 161 , 163, 165 
10(bT) 001 , 168, 170, 172, 176, 179, 181 
10(bB) 001 , 168, 170, 172, 176, 179, 181 

11 (a) 001 ,82,86, 87,88, 90, 91 , 92, 94 , 95 , 96, 105, 106, 107 
11(b) 001 , 82, 86, 87, 88, 90, 91 , 92 , 94 , 95 , 96, 105, 106, 107 
11 (c) 001 , 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128 
l1(d) 001 , 115, 116, 117, 118, 119, 120, 122, 123, 124, 125, 126, 127, 128 

12(aT) 001 , 801, 802, 803, 804, 805, 806, 807 
12(aB) 001 , 801 , 802, 803, 804, 805, 806, 807 
12(bT) 001 , 792, 793, 794, 795, 796. 797, 798 , 799 
12(bB) 001 , 792, 793, 794, 795, 796, 797, 798, 799 

13(a) 001 , 270 , 272 , 273 , 274, 276, 277, 278, 280 , 281 
13(b) 001 , 270 , 272, 273 , 274, 276, 277, 278, 280, 281 
13(c) 001 , 283 , 284, 285 , 286 , 287, 288, 289 , 290 , 291 , 292 
13(d) 001 , 283 , 284, 285 , 286, 287, 288, 289, 290 , 291 , 292 

Angle-of-attack variation: 
14(aT) 001 , 476, 477, 479, 481 
14(bT) 001 , 446 , 449 , 450, 451 , 452 
14(cT) 001 , 423 , 424, 425, 426 , 427 
14(dT) 001 , 911 , 912 , 913 , 914, 915 

aT indicates top plot on page; B indicates bottom plot on page. 
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Table 7. Continued 

Figure Tab point 
(a) 

Control surface deflection variat ion: 
15(aT) 001 , 548, 567, 568, 570, 572, 573, 574 
15(aB) 001 , 548, 567, 568, 570, 572, 573, 574 
15(bT) 001 , 482, 483, 484, 485, 486 487 
15(bB) 001 , 482, 483, 484, 485, 486, 487 

16(a) 001 , 465, 466, 467, 468, 469, 471 , 473, 474 
16(b) 001 , 465, 466, 467, 468, 469, 471 , 473, 474 
16(c) 001 , 453, 455, 456, 459, 460, 461, 462 
16(d) 001, 453, 455, 456, 459, 460, 461, 462 

17(a) 001 , 437, 438, 439, 440, 441, 442, 443, 444 
17(b) 001 , 437, 438, 439, 440, 441, 442, 443, 444 
17(c) 001 , 428, 429, 431 , 432, 433, 434, 435, 436 
17(d) 001, 428, 429, 431 , 432, 433, 434, 435, 436 

18(a) 001 , 916, 917, 918, 919, 920,921,922,923 
18(b) 001 , 916, 917, 918,919, 920, 921 , 922, 923 
18(c) 001 , 924, 925, 926 , 927, 928, 929, 930, 931 
18(d) 001 , 924, 925, 926 , 927, 928, 929, 930, 931 

Angle-of-attack variation: 
19(a) 001 , 948, 951 , 952 
19(b) 001 , 948, 951 , 952 

Control surface deflection variation: 
20(a) 001 , 953, 955, 957, 958, 959, 960, 961 
20(b) 001 , 953, 955, 957, 958, 959, 960, 961 

Angle-of-attack variation in air: 
21(a) 001 , 977, 978, 979, 980, 981 , 982, 983 
21 (b) 001, 977, 978, 979, 980, 981 , 982, 983 

Control surface deflection variation in air: 
22(a) 001 , 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011 
22(b) 001 , 1004, 1005, 1006, 1007, 1008, 1009, 1010, 1011 
22(c) 001 , 1012, 1013, 1014, 1015, 1016, 1018, 1019, 1020 
22(d) 001, 1012, 1013, 1014, 1015, 1016, 1018, 1019, 1020 

aT indicates top plot on page; B indicates bottom plot on page. 
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Table 7. Concluded 

Figure 

23(a) 
23(b) 
23(c) 
23(d) 

Angle-of-attack variation: 
211 , 212, 213, 214, 215, 216 
148, 149, 150, 151, 152, 153, 154 
80,81 , 82, 108, 109, 110, 111 
783, 784, 785, 788, 789, 790, 791 

24(a) 476, 477, 479, 481 
24(b) 446, 449, 450, 451 , 452 
24( c) 423, 424, 425, 426, 427 
24(d) 911 , 912, 913, 914, 915 

25 948, 951 , 952 

Control surface deflection variation: 

Tab point 

26(a) 217, 218, 219, 220, 221 , 222, 223, 224, 225, 226, 227, 228, 229 
230, 231 , 232, 233, 234, 235, 236, 237, 238, 239, 240, 241 , 242 

26(b) 168, 170, 172, 176, 179, 181, 155, 156, 157, 159, 161 , 163, 165 
26(c) 82, 86, 87, 88, 90, 91 , 92, 94, 95 , 96 , 105, 106, 107 

115, 116, 117, 118, 119 120, 122, 123, 124, 125, 126, 127, 128 
26(d) 792, 793, 794, 795, 796, 797, 798, 801 , 802, 803, 804, 805, 806, 807 
26(e) 268, 270, 272, 273, 274, 276, 277, 278, 280, 281 

283, 284, 285, 286, 287, 288, 289, 290, 291 , 292, 293 

27(a) 548, 566, 567, 568, 570, 572, 573, 574, 482, 483, 484, 485, 486, 487 
27(b) 465, 466, 467, 468, 469, 471 , 473, 474, 453, 455, 456, 459, 460, 461 , 462 
27(c) 428, 429, 431, 432, 433, 434, 435, 436, 437, 438, 439, 440, 441 , 442, 443, 444 
27(d) 916, 917,918, 919, 920,921,922, 923, 924,925, 926, 927, 928, 929, 930, 931 , 932 

28 953, 955, 957, 958, 959, 960, 961 
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(a) Wing-fuselage assembly in test section. 

Figure 1. Test configuration in Langley Transonic Dynamics Tunnel. 
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(b) Aft-camera view of test wing. 

Figure 1. Concluded. 
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Figure 2. Plan view of wing-fuselage assembly, test section, and control room in test chamber 
of Langley Transonic Dynamics TUnnel. 

----- - ---------~-- -- ------------------------

27 



I 

I 

I 

I 

I 

I 

I 

I 

c 

>-(f) 

a> 
0 
c 
ro 
(j) 
'5 
Q) 
en .::: 
c 
ro 
0.. 

(f) 

28 

120 

Target 

110 

Target 

100 901 

Target 
902 
903 

·801 904 
905 

90 Target ·906 
701 ·907 
702 

Front spar 703 
Target 704 

80 601 705 
602 ·706 

Target 603 ·707 

Rear spar 501 604 
70 502 605 

503 606 
504 

Target 505 
401 506 

60 402 
403 
404 
405 

50 Target 406 

301 
302 

40 
Target 

201 
202 
203 

Target 
204 

30 205 
101 206 
102 ·207 
103 ·208 
104 

20 105 
106 

·107 
·108 

10 
·On control surface 

0 10 20 30 40 50 60 70 80 

Streamwise distance, XS ' in . 

Figure 3. Wing planform showing relative location of targets on wing lower surface. Targets 
are numbered from leading edge to t railing edge. 
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Outboard control surface coordinates: 

72.857,107.700 
69.712,107.700 
62.161 ,89.700 
65.962,89.700 

Inboard control surface coordinates: 

49.759,45.000 
46.004,45.000 
47.387,25.670 
42.396,25.670 
40.031 ,13.000 
45.854,13.000 

(0 ,0) L.....-___ _ ____ __ ~ 

___ ---7(75.240, 113.920) 

Outboard control 

Inboard control 

. Figure 4. Wing planform and control surfaces locations. 
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Figure 5. Front and rear spar centerline locations on wing planform. Dimensions are in inches. 
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Figure 6. Photogrammetric and cathetometric results for wingtip measurements. aD 
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(b) Target row 5. 

Figure 7. Effect of dynamic pressure on wing chordwise deflection at selected rows of targets 
along span at M = 0.850 and a = 10. 
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0.700,0.800, and 0.850 and three angles of attack. Control surface deflection, 0°; Z S,avg = 

0.50(ZS,lO02 + ZS,l004)· 
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Figure 29. Concluded. 
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Figure 30. Variation of average wing spar tip deflection with Mach number at q = 100 and 
200 psf and three angles of attack. ZS,avg = 0.50(ZS,lO02 + ZS,lO04)' 
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