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Chapter 1

Introduction

The study reported here was performed during the period September 1989
through March 1990. It is a continuation of previous studies on the per-
formance of a TCAS antenna mounted on the fuselage of an aircraft. In
all previous studies and in Chapter 2 of this report, the TCAS antenna is
a 8-element circular monopulse array designed by Bendix [2]. The details
of this system are reported elsewhere [1]-[5] and will not be repeated here,
except for its more important features. Thus, in Chapter 2, only the perfor-
mance of this 8-element TCAS monopulse antenna mounted on the bottom
of a Boeing 737-200 aircraft is discussed. One of the goals of this study was
to see the effect of the engines on the performance of the TCAS system.
As expected, it is shown that the TCAS monopulse system is adversely
affected by the engines of the aircraft when it is mounted on the bottom of
the fuselage. It is also shown that the effect of the engines can be reduced
by moving the antenna location away from the engines towards the nose of

the aircraft.

Recall that the 8-element TCAS antenna transmits and receives sum



and difference beams at 1030 MHz and 1090 MHz, respectively. The ele-
ment excitations are generated with a beam forming network which uses a
Butler matrix and the beams are electronically steered by means of phase
shifters [2]. The bearing of an intruder with respect to the TCAS equipped
aircraft is determined by a monopulse angle measurement technique. For
this purpose, a monopulse characteristic curve is generated by appropriately
combining the sum and difference beams [3].

Although in previous studies [5] it has been shown that this monopulse
system performs very well, its construction is complicated and costly. Thus,
there is a need for an alternative angle measurement system whiéh is sim-
pler and less expensive to build. Thus, the second part of this report,
namely, Chapter 3, describes a four-element TCAS amplitude comparison
measurement system. .

In this system, the four element circular array transmits a beam in one of
four selectable directions. The array is mounted on the aircraft and aligned
in such a way that the beams are directed in the directions of 0°, 90°, 1800°
and 270° of relative bearing. The beams must have a 3-dB beamwidth of
90° + 10° for all elevation angles between +20° and —15°, and as in the
monopulse system, these are transmitted at 1030 MHz. In contrast to the
monopulse system, this antenna array receives signals omnidirectionally at
1090 MHz. By omnidirectionally, it is meant that all of the four beams
mentioned above are used to receive the incoming signals where each of
these beams is connected to a different receiver. The magnitude of the four
received signals are then compared and the difference of the largest two is

taken. This result is then compared against a calibration or lookup table
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to determine the bearing of the aircraft under observation. This amplitude
comparison scheme is simpler to build than the monopulse system and, as

shown in this report, appears to perform fairly well.



Chapter 2

Performance of Bottom
Mounted TCAS III

2.1 Introduction

This chapter describes the effect of the engines of the Boeing 737-200 on
the performance of a bottom mounted eight element TCAS III antenna.
The performance of this antenna at two locations on the bottom of this
aircraft are studied in detail where each engine was modelled by a set of
flat plates making up a box. As expected, it is found that the performance
of the system is degraded substantially when the antenna is close to the

midsection of the aircraft because of the engines.

2.2 Aircraft and Antenna Models

2.2.1 Model of Aircraft

The fuselage was modelled by a composite ellipsoid, whereas, the wings

and the horizontal stabilizer were modelled by flat plates. It is noted that

1]
|

Ll LI | | ¥ 1

Rl w | (NI [ (I |



Antenna | Z coordinate | Distance from
Location (inches) nose (inches)
BA -144.6 87.6
BB 70.0 378.6

Table 2.1: Locations of TCAS on bottom of Boeing 737-200.

sometimes for a bottom mounted antenna, as it is the case here, it is not
necessary to include the vertical stabilizer because it is in the shadow region
of the antenna and the antenna location is far away from this particular
stabilizer. Of course, to validate this conclusion, radiation patterns were
obtained with and without the vertical stabilizer and no noticeable changes
in the antenna patterns were observed. As mentioned before, each engine
was modelled by flat plates joined to make up a box like structure. It was

found that each engine could be reasonably well approximated by a set of

4 flat plates. This is shown in Figure 2.1.

2.2.2 Model of TCAS

The eight element TCAS was modelled by the “two monopoles per actual
element” model which was developed and validated earlier by [6] and is
shown in Figure 2.2. This model is quite accurate in the forward half space
of the aircraft and is reasonable even in the back. It is also simple enough

so that not too much time is spent calculating the element patterns in the

aircraft antenna code [7].
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Figure 2.1: Model of Boeing 737-200 that includes engines for a bottom
mounted TCAS III. ’
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Figure 2.2: Two element model of TCAS III.



2.3 Error Curves

The element patterns for each of the “two-monopole” elements were ob-
tained at each location of the TCAS on the fuselage. These were then
added with the appropriate phase so as to get the array patterns for the
sum () and difference (A) beams. A total of 64 such pairs were gener-
ated with each pair of sum and difference beam covering 360/64 = 5.625°
of azimuth. These were then used to create the monopulse curves. As in
previous studies, two sets of monopulse curves were created; namely, the
“lookup” tables, where only the fuselage is included in the model, and a set
of monopulse curves where the aircraft model includes all scatterers such
as the wings, engines and stabilizers. These two sets of monopulse curves
were further processed to get the error curves. The actual details of this
procedure can be found in [5]-[6].

In this report, error curves for a symmetrically mounted TCAS on the
bottom of a Boeing 737-200 are given. The main goal of this research was
to see what kind of effect the engines have on the performance of a bottom-
mounted eight element TCAS antenna. As stated above, the engines are
modelled with four plates that form a box. In other words, the model
being used here does not have an inlet. This modél will in general predict
higher levels of scattering than the actual engine because the engine inlet
is modelled by a flat plate which blocks off all the electromagnetic fields
which enter the inlet. Therefore, the predicted bearing errors will probably
be higher than the actual errors. At the present time the aircraft code
being used for this study does not have the capability to accurately model

|
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inlets. A number of solutions have been developed at the ElectroScience
Laboratory to handle the scattering by inlets; however, they are not as yet

implemented in the aircraft code [8]-[10].

2.4 Results and_Discussion

Error curves are presented below for two antenna locations; namely, one
where the antenna is closer to the nose than the engines, and a second
location where the antenna is very close to the engines. For reference, error
curves are also given for the two locations without including the engines in
the aircraft model. The two lécations are labelled BA and BB and their
corresponding distance from the nose are given in Table 2.1. The first
character identifies the position of the TCAS on the fuselage, B indicating
a bottom mounted antenna. Error curves for each of the two locations BA
and BB are given for the elevation angles of —10,0, and +10°, respectively.
These curves appear in Figures 2.3-2.14.

In these curves, the header in each curve contains some useful informa-
tion also. The first line of the header identifies the location of TCAS and
the elevation angle. The second line gives the statistical information about
the forward quadrant, ie, —45 < ¢ < +45° range. The absolute value of
the maximum error in this range, average and standard deviation are given.
This is also referred to as the ‘nose’ quadrant. The third line gives infor-
mation about the location of the antenna, distance from the nose and any

other relevant information about the model. The following observations

can be made from these results.



First of all it is clear that the error curves are very sensitive to the
elevation angle. For the two antenna locations on the bottom of the Boeing
737-200 one notices that the error decreases as one gets lower (more negative
elevation). This is due to less interference from the scattering components
on the aircraft as well as getting closer to the elevation angle for which
the lookup table was created. Further, the curvature of the fuselage and
the resultant shadowing of the antenna from the intruder above a certain
elevation also tends to increase the error.

The distance of the antenna from the engines also affects the perfor-
mance of the TCAS III. The performance gets worse as one moves closer
to the engines. For example, in the case of the TCAS at location BB, the
predicted bearing error (with the engines included) is so large as to ren-
der the system useless in a direction finding application. The location BA
near the nose gives better results although the effects of engines are still
observable. As expected, the errors do decrease as the elevation gets more
negative because one is getting deeper into the lit region of the TCAS III
and the diffraction effects are less pronounced.

One also notices that the horizontal and vertical stabilizers do not play
any significant role in the characteristic. This is seen from the Figures 2.15,
2.16, and 2.17 which are virtually identical to Figures 2.12, 2.13, and 2.14
respectively. This is due to the large distance between the antenna and
the stabilizers. Further, these are shadowed by the fuselage and the only
rays that reach the tail are the creeping rays and some double diffracted
rays. The effect of ﬁi{éée higher order mechanisms is even smaller and are

ignored.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT —10 DEG. ELEVATION
FORWARD: |MAX| = 0.0344 AVG. = 00011 STD. DEV. = 0.0045

TCAS Wl AT BA, 88" FROM NOSE, NO ENGINES, NO H STAB, NO V STAB
—180. —150. —120. -90. -60. —30. 0. 30. 60. 90. 120. 150. 180.

25. _I 1L | LI ' TTTT l TTTi ‘ LU 1 TTT7 l TT1T1T I TTFET ‘ rroi ] TT1 1 I TT1 ! TTH 25.
20. —E 20.
15. —f 15.
10. —g 10.

EN

BEARING ERROR (DEG)
o
IIEII

~5. —5-5.
-10. —3—10.
—15. —3—15.
—20. ——5—20.
—25. llll|,|lll'Il[[llllJLLll_LllllJ_llIlIl|IlIliIllJ_LlIllllllilllJ:_zs.

2180, —150. —120. -90. -60. —-30. O.  30. 60. 90. 120. 150. 1BO.
AZIMUTH ANGLE (DEG)

Figure 2.3: Error curve for TCAS III at BA about 88” from nose at —10°.
No engines in the model.

It important to reiterate that the model of the engine is simple and
is an over simplification of the real engine. Presently, there is no way to
incorporate all the effects of the inlets in the aircraft code. Thus, the
predicted bearing errors are probably somewhat higher than the actual

bearing errors.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT 0 DEG. ELEVATION
FORWARD: |MAX.| = 1.2998 AVG. = 0.6628 SID. DEV. = 0.3982

TCAS Il AT BA, 88" FROM NOSE, NO ENGINES, NO H STAB, NC V STAB
—-180. —150. -120. -9%0. -—60. -30. 0. 30. €0. 90. 120. 150. 180,

10.

25'_"!["!llll]]llll|]III!I.!T]I'II!III|II|1IIII||T1‘|Ill‘|l|1d25'
20. —520.
15. —515.

EM

llllllllll]11‘1‘!11]]lll

BEARING ERROR (DEG)
[o]

.-5_:_ —5—5.
—10.5— ‘_E"1°'
_.15_:__- —3—15.
_25:l¢lll|llllllllllllllllIlllJIIlIIllllIll'llllllllllllj_lllll:__25‘

Z180. -150. —120. -90. —-60. — g0. 120. 150. 18O.

. =30. O 30. 60
AZIMUTH ANGLE (DEG)

Figure 2.4: Error curve for TCAS III at BA about 88” from nose at 0°. No
engines in the model.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS

FORWARD: [MAX.| = 1.7967 AVG. = 0.7552 STD. DEV. =

25 180. -150. —-120. —-90. -60. —30. 0.

AT 10 DEG. ELEVATION

30. €0.

Q0.

0.5260
TCAS Il AT BA, 88" FROM NOSE, NO ENGINES, NO H STAB, NO V STAB

120.

150.

20.

10.

IIIIl[]IIIIIlIII!II|Illll|lllI]1|lIl|l|

BEARING ERROR (DEG)
o

-20.
_25‘|III|LIII11IIIIIJII'IIIllllllllll|Illll[lL_J.,LJ_LJ_J__I_l_LL_Llllll
-180. —150. -120. -90. -60. -—-30. 0. 30. 60. 90. 120. 150.

AZIMUTH ANGLE (DEG)
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p S S N0 O O SV SO0 0 A D SO S0 U W |

20.

15,

10,

-5.

—-10.

Figure 2.5: Error curve for TCAS III at BA about 88” from nose at +10°.

No engines in the model.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT —10 DEG. ELEVATION
FORWARD: |MAX| = 3.0168 AVG. = 05042 STD. DEV. = 0.7088

TCAS Il AT BA, 88" FROM NOSE, ENGINES INCLUDED, NO H STAB, NO V STAB
—180. —-150. —-120. -90. -60. -30. 0. 30. 60. 80. 120. 150. 1805

25_lllIFllI'llTlll‘ll|llIlllllllIIlllllll]flIl‘lllllllll'llI|_‘
20. | 0.

~ 15, | — 15.

O o 3

| o 3

0O 10 — 10

~ - 7

X s s

o £ M ;

o  Eall T

r op \ m O

L -V ! .

o 5 —-5.

Z C 3

X -10.F -10.

< " N

Lt - .

D —15.+ — -1s.
_.20:_ 4 -20.
—_25. 'nllllllLlun]lLu!llH|1111||||||1|L1[J_111]H!1||14LL111 4 _2s,

—180. —-1%0. —-120. -90. -60. -30. 90, 120. 150. 180.

AZIMUTH ANGLE (DEG)

Figure 2.6: Error curve for TCAS III at BA about 88” from nose at —10°.
Engines included in model. Note the high frequency oscillations.

14

uii

o EID W



: ERROR CURVE FOR BOTTOM MOUNTED TCAS AT O DEG. ELEVATION
— FORWARD: |MAX.| = 4.0086 AVG. = 0.6878 STD. DEV. = 0.7214

TCAS 1l AT BA, BB FROM NOSE, ENGINES INCLUDED, NO H STAB, NO V STAB
—_180. —-150. —120. -90. -—60. —~30. Q. 30. 60. 90. 120. 150. 180.
25 ll[lllll‘l|1!llI||‘llll|ll$|‘!llI||||l|ll|lll|lI||||l]|lll 5.

i

20. 20.

15. 15.

10.

llillllllllllllll

vlllllllllllllllllllllll

Y
O
L
()
N
Y s
O
14
r o 0.
L ]
== O '—5._ —2—5.
— Z n 3
¥ —t.f -0
< " ]
LJ - ]
D -15. —-15
- —20.|- - -2o0.
_25—llllllIl‘Illlllllllllllllllllllllllll_]lllL[lllllIIlll IIL:_25_

“480. —-150. —-120. -80. -60. -30. O. g0. 120, 150. 180.

30. 60.
AZIMUTH ANGLE (DEG)

Figure 2.7: Error curve for TCAS III at BA about 88” from nose at 0°.
Engines included in model.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT 10 DEG. ELEVATION

FORWARD: |[MAX.| = 24432 AVG. = 0.7648 STD. DEV. = 0.5969

TCAS Il AT BA, 88" FROM NOSE, ENGINES INCLUDED, NO H STAB, NO V STAB
—180. —-150. —120. -90. -80. -—30. 0. 30. 60. 90. 120. 150. 180,
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AZIMUTH ANGLE (DEG)

Figure 2.8: Error curve for TCAS III at BA about 88” from nose at +10°.
Engines included in model.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT —10 DEG. ELEVATION
_ FORWARD: |MAX) = 0.0961 AVG. = 0.0011 STD. DEV. = 0.0101
TCAS Il AT BB, 378" FROM NOSE, H STAB, NO ENGINE, NO V STAB
—-180. —-150. —120. -90. -60. -—30. 0. 30. 60. 90. 120. 150. 180.
- 25 _llll'llll‘llllllIlVll!IlIIllllllll'|||1]ll!l|III1|||II|||II 25.
- 20. 20.
15. 15.

10. 10.

Illllllllllllllllllll

II]IIIIlllII‘IlIl‘lI!

[
BEARING ERROR (DEG)
- o
oll

-10.

Illllllllllllllllll‘llll

— Figure 2.9: Error curve for TCAS III at BB about 378” from nose at —10°.
' No engines in the model.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT O DEG. ELEVATION
FORWARD: |MAX.| = 1.2959 AVG. = 09195 STD. DEV. = 0.3082

TCAS Il AT BB, 378' FROM NOSE, H STAB, NO ENGINE, NO V STAB
2;180. -150. -120. -%0. -60. -30. 0. 30. 60. 90. 120. 150. 180.
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—20.5— —f—zo.
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2180, -150. —120. —90. —60. ~30. O. 120. 150. 180.

30. 60,
AZIMUTH ANGLE (DEG)

Figure 2.10: Error curve for TCAS III at BB about 378" from nose at 0°.
No engines in the model.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT 10 DEG. ELEVATION
i FORWARD: [MAX.| = 45205 AVG. = 3.4282 STD. DEV. = 1.0221
nd TCAS Il AT BB, 378" FROM NOSE, H STAB, NO ENGINE, NO V STAB

—180. —150. —120. -80. —-60. -30. O. 30. 60. 90. 120, 150. 180.
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AZIMUTH ANGLE (DEG)

Figure 2.11: Error curve for TCAS III at BB about 378” from nose at +10°.

No engines in the model.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT —10 DEG. ELEVATION
0.1850 STD. DEV. =

FORWARD: [MAX.| = 0.5691 AVG. =

TCAS Il AT BB, 378" FROM NOSE, H STAB, ENGINE INCLUDED, NO V STAB
30.

—-180. —-1580. —120. -80. -60. -30.
25.

0.

60.

90.

0.1289

120.

150.

T 25.

20.

15,

lllllllll‘llll]ll|l|lll

BEARING ERROR (DEG)
Q

-5, [ J-s.
-10.F 10
—15. [ J -15.

C 3 .
—20. - — —20.
-2 _lJII'lllIlI|1l||llllllllllllllll|||||||'llll|ll|]ll|llll|l—_25_

lllT']lll]|lll'lll|llllllllrlﬂllllr1l]|||'llll|IITI‘IIII'!VI

20.

15.

10.

llllllll‘lll]llllll!lll

-5-'180. -150. —120. —90. —60. -30.
AZIMUTH

0. 30. 60.
ANGLE (DEG)

90.

120.

150.

180.

Figure 2.12: Error curve for TCAS III at BB about 378” from nose at —10°.

Engines included in model.
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)
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT 0 DEG. ELEVATION
FORWARD: |MAX| = 25287 AVG. = 10259 STD. DEV. = 0.8021
TCAS Wil AT BB, 378" FROM NOSE, H STAB, ENGINE INCLUDED, NO V STAB
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Figure 2.13: Error curve for TCAS III at BB about 378” from nose at 0°.
Engines included in model.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT 10 DEG. ELEVATION };Z::
FORWARD: |MAX| = 7.5508 AVG. = 34435 SID. DEV. = 2.3285 | ]
TCAS il AT BB, 378'' FROM NOSE, H STAB, ENGINE INCLUDED, NO V STAB
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Figure 2.14: Error curve for TCAS III at BB about 378” from nose at +10°. —=

Engines included in model. -
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FRROR CURVE FOR BOTTOM MOUNTED TCAS AT —10 DEG. ELEVATION
FORWARD: |MAX] = 0.5691 AVG. = 0.1850 SID. DeV. = 0.1289

TCAS Il AT BB, 378" FROM NOSE, ENGINE INCLUDED, NO H STAB, NO V STAB
2—5-180. -150. —-120. -90. -60. —30. 0. 30. 60. 90. 120. 150 1802.
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Figure 2.15: Error curve for TCAS IIT at BB about 378” from nose at —-10°.
Engines included in model, but not the stabilizers.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT O DEG. ELEVATION N
FORWARD: |MAX.| = 25297 AVG. = 1.0267 STD. DEV. = 0.8023 »
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Figure 2.16: Error curve for TCAS III at BB about 378” from nose at 0°.
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Engines included in model, but not the stabilizers.
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ERROR CURVE FOR BOTTOM MOUNTED TCAS AT 10 DEG. ELEVATION

FORWARD: [MAX.| = 7.5508 AVG. = 3.4434 STD. DEV. = 2.3288

TCAS Il AT BB, 378 FROM NOSE, ENGINE INCLUDED, NO H STAB, NO V STAB
-180. —-150. -~120. —SO. -—60. —30. 0. 30. 60. 90. 120. 150. 1802.5
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Figure 2.17: Error curve for TCAS III at BB about 378” from nose at 4+10°.
Engines included in model, but not the stabilizers.
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Chapter 3
Four Element TCAS Studies

3.1 Introduction

This chapter describes the operation of the four element TCAS. First, the
antenna is modelled by four short monopoles located on a circle. The effect
of varying the diameter on the pattern is discussed. A choice of antenna is
made based on closeness of this approximation to the given specifications
of the TCAS antenna. This is used in the aircraft antenna code (7] to
obtain element patterns of individual elements. The results obtained from
the aircraft code are then weighted and added fo obtain the array patterns
of the TCAS antenna in the four directions, ie., forward, left (port side),
tail, and right (starboard side). This data is processed to get error curves
for the four element TCAS. It is found that the performance is not as good

as the corresponding eight element monopulse TCAS system at the same

location on the same aircraft.
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CIr

TYPICAL DIRECTIONAL INTERROGATION BEAM
DESIRED PATTERN OF TCAS ANTENNA
—180. —150. —120. —90. -60. —30. 0. 30.
25. ‘!llIIH|lllllllllllllllllllilllllIIHllllll]IHIIllllll‘llI|Il||||l

60. 90. 120. 150. 180.
25.

MAGNITUDE (DB)

;J_H_LLLLLLL]LLLU—lLUJJJJJJJIlIIl]lllllil‘lllllll-llllllllll]_l_L taly |||—0.
180.

80. —150. -120. —90. —60. —30. ©O. 30 60 90. 120. 150.
AZIMUTH ANGLE (DEG)

0.
-1

Figure 3.1: Desired antenna pattern for TCAS, supplied by sponsor.

3.2 Model of TCAS

The specifications for the TCAS require that the beam have a 3-dB beamwidth
of 90 + 10° and a 10-dB beamwidth of 180 +10° for all elevation angles be-
tween +20° and —10°. A sketch of the desired pattern is given in Figure 3.1.

The TCAS is modelled by 4 short z-directed monopoles on a flat ground

plane with sinusoidal current distributions. This is shown in Figure 3.2.

Let the excitation of the individual elements be given by
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Figure 3.2: Geometry of the 4 element TCAS model.
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I,' = Agej“" (31)

where I; is the complex excitation, A; is the amplitude, a; is the phase of
the it" element respectively where = 0,1,2,3, and j = v/—1. The elements
are counted counterclockwise (ccw) from the X-axis as shown.

The far field antenna pattern Eo(f,¢) is the product of the element
pattern (F(r,9,$)) and the array factor (AF(8,4)) such that

Ey(6, ¢) = F(T,0,¢)AF(9,¢) (32)

where, the element pattern of a dipole of length [ or a monopole of length

1/2 on a ground plane with a sinusoidal current distribution can be written

as (11]
_ jnloe™*" [cos M cos§ — cos Kl
F(r,8,¢) = 2nr sin 6 (3.3)
and
3 -
AF(8,8) = 3 Aeflathasindeo(s=4:) (3.4)
i=0

where, a is the radius of the array, and k is the free space wavenumber,
and k = 2m/). Note that ¢; is the angular position of the i** element with
¢; = 1.90°, 7 is the impedance of free space, and (r, 6, ¢) are the standard
coordinates in a spherical coordinate system.

Since the number of elements is small (four), the amplitudes are set to a
constant value 4; = A, and only the phase of the excitation is modified so
as to get a maximum in any one of the four directions given by ¢; = j - 90°
(j =0,1,2,3), corresponding to nose, left, tail, and right directions respec-

tively. Also, to have a symmetrical horizontal pattern, the two elements
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perpendicular to the axis of beam heading must have the same phase. From
these requirements, for example, for a beam maximum in the direction of

the nose (6 = 8y,¢ = 0°), one must have

ap = arbitrary, (3.5)
a; = oag+ kasinfy

a3 = ag+ 2ka sinéy, and

a3 = og.

The weights were calculated for each beam heading ¢; = 7-90° and 6, = 80°,
because it corresponds to the elevation angle of most interest, namely 10°.
These weights are then kept fixed in all further calculations.

Some resulting antenna patterns for an elevation of +10° are given in
Figures 3.3 and 3.4 for various radii of the array. A comparison of these
designs is found in Table 3.1. It is found that the pattern is sensitive to
the value of ka.

Plots are also provided for the case where the radius a has been fixed
at 2.31 inches and the length of tile monopole is varied from 0.1\ to
0.25). Four antenna lengths, I = A/10,A/6,)/5,and )\/4 were considered
(A = 11.142” at 1060 MHz). This can be found in Figure 3.5 where the
normalized antenna pattern is plotted for various lengths in the horizontal
plane (elevation=10°). The length of the antenna elements affects only the
elevation plane patterns, and the effect is very small for [ < A/4. Note that
all the four azimuth plane curves are virtually identical and indistinguish-
able. The length / cannot be chosen greater than A/4 because of limitations

of the aircraft antenna code. Thus, any length I < A/4 can be chosen.
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MAGNITUDE (DB)

IDEAL ANTENNA PATTERN FOR DIFFERENT RADH

LENGTH=2.78",

—180. —150. —120.

15.

10.

RADIUS=2.25, 2.31"
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Figure 3.3: Antenna patterns for model where a = 2.25",2.31".
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IDEAL CASE ANTENNA PATTERNS FOR DIFFERENT RADH
LENGTH=2.78", RADIUS=2.35, 2.40"
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Figure 3.4: Antenna patterns for model where a = 2.35",2.4".
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IDEAL ANTENNA PATTERN FOR VARYING LENGTHS
RADIUS=2.31", 0.1 A < LENGTH < 025)\

—180. —150. —120. —-90. -60. —30. 0. 30. 60. 90. 120. 150. 180,
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Figure 3.5: Normalized antenna azimuth patterns for length of element

[=X/10,1/6,)/5,)/4 for radius of array a = 2.31".
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MAGNITUDE (DB)

IDEAL CASE ANTENNA PATTERNS IN AZIMUTH FOR ELEVATIONS 20, 1O

LENGTH OF ANTENNA=2.78", RADIUS OF ARRAY—'Z 31"
—-180. —150. —120. -90. -60. -30. 0. 30. 60. 90. 120. 150. 1801.
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AZIMUTH ANGLE (DEG)

Figure 3.6: Variation of azimuth pattern at elevations 20,10° for TCAS
model with ¢ = 2.31",1 = 2.78".

From these results, the radius a and the length l that gives the best
approximation to the specifications was pxcked for further computations
with the aircraft code. Figures 3.6 and 3.7 show the pattern of the ideal
TCAS model at various elevations.

The parameters of the ideal TCAS beam pointing at 0° are given in
Table 3.2. It is found that the beam maxima in the four directions are

no longer identical to each other due to the curvature of the fuselage. In
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IDEAL CASE ANTENNA PATTERN FOR ELEVATION O, —15°
LENGTH OF ELEMENT=2.78", RADIUS=2.31"
—-180. —-150. —120. —-90. -—-60. -—30. 0. 30. 60. Q0. 120. 150. 180.
15‘_IIIII llll'|||ll||llllllll||I[lllli'll||||1]'ll||lll|I||l|||1ll|l|lllll_ 15.
B ELEV=0° 7
T 0.
s |- ELEV=-15 s.
~~ B 1
m " ]
9 oE Jo.
W _ ]
0 - ]
- 5. — ~B.
) 8 ]
= - ]
& —10. b e S
< . ]
=2 N ]
—15. |— — —15.
20 |- - -20.
_25—IIJJ1 Illllllllllljl_ll.]lll]l,llllllll_llll|llllllll|llilllll‘llll llllll-_zs'

Z180. —150. —120. —-80. —60. -—30.

O. 30. 60. 0. 120. 150. 180.
AZIMUTH ANGLE (DEG)

Figure 3.7: Variation of azimuth pattern at elevations 0, -15° for TCAS
model with a = 2.31",1 = 2.78".

Antenna ka Beamwidth (°) | db drop
radius (in) | (radians) | 3db | 10db | at ¢ =90°
Standard — 90 180 10.00

2.25 1.27 105.0 | 180.0 10.0
2.31 1.30 102.0 | 174.0 10.9
2.35 1.33 101.0 | 170.0 11.6
2.40 1.35 | 99.0 167.0 12.6

Table 3.1: Variation of radiation pattern of TCAS antenna model on a
ground plane with increasing radius (f = 1060 MHz).
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MAGNITUDE (DB)

ACTUAL PATTERNS OF TCAS MODEL ON BOEING 737

LOCATION: TC, RADIUS=2.31", LENGTH OF ELEMENT=2.78"
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Figure 3.8: Actual patterns of TCAS model on Boeing 737-200 fuselage at
location TC.
Figure 3.8, the four beams are shown for location TC (see also Table 3.5),
about 378" from the nose, for an elevation of 10°. This was generated by
the TCAS model on the Boeing 737-200 fuselage without any wings etc.
From this, a ch01ce was made for the radius of the circular array. Note
that @ = 2.25" was not chosen because the beam was too broad. Initially,
a = 2.35" was selected and tested on the fuselage model using the aircraft

code. The beam was found to split up in the backlobe region into many
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Location Distance Beamwidth (°) | db fall
code from nose (") [3db| 10db | at ¢ =90°

Standard 378.6 20 180 10.00
TA 618.6 83.0 | 163.0 12.5
TC 378.6 86.0 163.0 12.5
TE 138.6 93.0 | 163.0 13.1

Table 3.2: Parameters of beam pointing at 0° at various locations on Boeing
737-200 fuselage for @ = 2.31" and lnonopote = 2.78".

smaller lobes and an a = 2.31" gave better results on this airplane model.
This model also gave the best results for various locations of TCAS on the
aircraft. After careful consideration of actual requirements, a = 2.31" was
chosen for this study. This was further supported by the supplied measured
pattern for a TCAS antenna [12]. '

3.3 Simulation Algorithm for TCAS

The 4 element TCAS operates by a simple beam switching scheme. As
mentioned in Chapter 1, the TCAS eqﬁipped aircraft transmits a beam
at f = 1030 MHz in any of four preassigned directions, namely, 0°, 90°,
180° and 270°. Other similarly eqruip;r)je’a"ajrcfaft (called ‘intruder’ from
here on) responds with a coded reply while the enquiring aircraft listens
omnidirectionally at f = 1090 MHi. In other words, the four beams are
turned on in ‘receive’ mode. The dB values of the received signal are then
compared and the two largest selected. Note that one also knows which

receiver generated these signals. An estimate of the bearing of the intruder
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is obtained by taking the difference of the dB values of the two largest
received signals and comparing this value against a calibration or lookup
table. Hereon, the difference of the two highest received signals will be
referred to as the difference signal.

The TCAS is mounted on the fuselage without any other structural
components and the four received signals at various bea.riﬁgs are computed.
The azimuthal space is divided into four convenient quadrants namely, 0°-
89°, 90°-179°, 180°-269°, and 270°-359°. Under ideal circumstances, the
two channel numbers of the highest beams in each quadrant are known
and one of these is selected as the reference signal. The other signal is
subtracted from this reference signal to obtain a ‘lookup table’. Since there
are four beam directions, there are four monotonically increasing sections of
the lookup table as shown in Figure 3.9. This table also stores the channel
numbers of the two beams that generated any particular value of the lookup
table. The table that lists the channel numbers and the reference signal for
all possible ¢ is given in Table 3.3

Next, the various scatterers like wings, stabilizers etc., are added to
the fuselage which leads to variations in the amplitudé of the signals being
received. Again, the difference signal is computed and stored along with

the channel numbers in the ‘wing table’.

To calculate the error, one starts with a given difference signal, the cor-
responding set of two highest received signals and their respective channel
numbers for the case when the aircraft is simulated with wings, etc. From

the channel number of the reference beam, one can place the intruder in
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o) Highest Next | Reference
(degrees) | Channel | Channel | Beam
0-44 0 1
45-89 1 0 1
90-134 1 2
135-179 2 1 2
180-224 2 3
225-269 3 2 3
270-314 3 0
315-359 0 3 0

Table 3.3: Reference beams for the TCAS under ideal conditions.

Reference | Section of Lookup
Beam # Table to search
1 0-89
2 90-179
3 180-269
0 270-359
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Table 3.4: Location of intruder from received signals under ideal conditions.
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Figure 3.10: Calculation of bearing error.

one of the four quadrants. This is shown in Table 3.4. That section of
the lookup table is then searched for the same value of difference signal as
illustrated in Figure 3.10. A linear interpolation scheme is used to find the
predicted bearing when the difference signal lies between two points on the

lookup table. The error ¢, is then calculated as
€= ¢dctected - ¢real- (36)

There are two sources of ambiguity /uncertainity that arise here. If the

difference signal lies outside the range of the lookup table; i.e., the two
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highest received signals are a valid combination of beams but the value of
the difference signal is not within the boundaries of the lookup table. Then,
an ‘out of range’ warning is generated as shown in Figure 3.10 and the error
is set to the extreme value of the lookup curve. Another source of error
occurs when two beams that have opposite bearings are received as the
highest signals because of scattering. This leads to an illegal combination
of channels and one cannot calculate a table entry for this ¢. This leaves
the processor with no lookup table to search. Hence, the bearing of the
intruder cannot be estimated. The error is set equal to the previous value
of error and a ‘no lookup table’ warning is given and the plot is marked

accordingly.

3.4 Results and Discussion

In this section, results are provided for the case of a top mounted TCAS (on
a Boeing 737-200) antenna based on the algorithms described in Sections
3.2-3.3. The engines were not included in the model because they are far
from the antenna and are shadowed by the fuselage. These results show the
error in estimating the bearing of the intruder when the TCAS is mounted
on top of a Boeing 737-200 at three locations. The headers in these plots
also contain some useful information for quick reference. The ﬁrsf line
of the header gives the number of elements in the antenna system, the
location of TCAS (i.e., top or bottom mounted), and the elevation angle,
respectively. The second line gives the statistical information about the

forward quadrant, ie, —45° < ¢ < +45° range. Absolute value of maximum
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Antenna | Z coordinate | Distance from
Location (inches) nose (inches)
TA 310.0 618.6
TC 70.0 378.6
TE —170.0 138.6

Table 3.5: Locations of TCAS on top of Boeing 737-200.

detected bearing error in this range, average and standard deviation of
the bearing error are also given. This quadrant is also referred to as the
‘nose’ quadrant. The third line gives information about the location of the
antenna, distance from the nose and any other relevant information about
the model. Notice that the plots are all antisymmetric about 0°. This is
because the antenna is mounted on top of the fuselage at its centerline, and
the aircraft is a symmetric body. The oddness of symmetry is because the
way the error is computed, as explained earlier.

The plots are also marked where the previously discussed error condi-
tions occur. The locations of TCAS used here, labelled TA, TC, and TE
(where the first character T denotes a top mounted antenna) correspond
to A, C, and E in [6], respectively. The details about these locations are
tabulated in Table 3.5 and views of the model are given in Figure 3.11.
Error curves are given for four elevations: +20°, +10°, 0°, and —10°. The
statistics about maximum error, etc., for the antenna at these locations are
given in Appendix A. Note that the parameters given in the appendix, i.e.,
maximum, average and the standard deviation of the bearing error are for

absolute values of the error.
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One notices a surprising similarity in some of the error curves between
the 8 element monopulse system and the 4 element amplitude system. This
is partially due to the fact that the model of the aircraft used was the same
for both locations, even though the antennas and the method of operation
are completely different. One can also see the jumps in some of the error
curves for the four element amplitude system which are not present in the
eight element monopulse system error curves. This seems to be an inherent
problem in the operation of the amplitude system. Figure 3.12 shows a part
of the error curve around a point where there is such a jump. This data
corresponds to location TC, at 20° elevation, around the 80°-100° region.
It is seen in this instance that, the wing table values are always lower than
the lookup table values. Consider two cases:

Case 1: ¢, < 90°.

Say, the difference between the two highest received signals has a mag-
nitude of 10.08 dB (for actual bearing of intruder @,..; = 90°) and the two
highest channels are 0 and 1. This tells that the intruder lies in the 0-90°
quadrant. Searching the corresponding section of lookup table, one finds
that @detected ~ 86.5°. The error is then, €; = Pyetected — Preat = —3.5°.

Case 2 Prear > 90°.

Consider again the case when magnitude of difference between two
highest channels is about —10.03 dB (for actual bearing of ¢reat = 91°)
and the highest channels are 1 and 2. Then, searching the relevant sec-
tion of the lookup table, the detected position of intljudér is determined as

Now, it can be seen that the jump in the error curves is occuring be-
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cause of beam switching and due to the slight change of the beams as a
function of elevation which are depicted in Figures 3.6 and 3.7. This can
be seen more clearly in top picture of Figure 3.13 where two calibration
curves calculated at 10° and 20° are shown. If one calculates an error curve
where the calibration curve at 10° is used as a reference and the calibration
curve at 20° as the received signal, the result is an error curve which is
discontinuous at —90°, 0°, 90°, and 180° as illustrated in bottom picture of
Figure 3.13. A similar calculation also shows that there is no discontinuity
in some of the error curves, especially those close to the elevation for which
the lookup table was created. This is probably the most serious drawback
of the four element system.

At location TA, which is 618.6 inches from the nose, the error curves
for the 4 element TCAS meets the specifications 6nly in the nose quad-
rant; however, its performance in this quadrant is slightly better than the
8 element TCAS mounted at the same location. As expected, the perfor-
mance of the 4 element amplitude comparison system is not as good as the
8 element monopulse system in the left and right quadrants. This result
is due to the fact that the 4 element TCAS antenna transmits beams in
the directions 90° and 270° where they are distorted by the wings. The 8
element monopulse system also transmits a sum beam in these directions,
however, unlike the 4 element TCAS it also transmits a difference beam.
Note that both systems do not perform very well in the tail quadrant due
to the presence of vertical stabilizers. At an elevation of +10° the statistics
show that the TCAS III performs much better in the left and right quad-

rants (collectively called the ‘side’ quadrants from here on). The maximum

45



error of 8 element TCAS III is well within the 2° limit and the 4 element
TCAS juéf so. The maximum error exceeds the 2° limit at many azimuth
angles. In the tail region, both antennas do not meet the specifications.

At 0° reievation, the 4 element amﬁlitﬁde éystem is slightly better than

the 8 element monopulse system in the nose quadrant. However, the 8 .

element TCAS III performs better in the side quadrants. The statistics
of error for the tail region are similar. As expected, the performance at
—10° is unacceptable for both systems. There is a remarkable similarity in
the shape of the two error curves; however the ripples in the error curve
are usually more pronounced for the 4 element amplitude system. Notice
that in both cases, the standard deviation is quite large compared to the
magnitude of average error.

Next, at location TC, which is 378.6 inches from the nose one notices
that the monopulse system of TCAS III is better than the 4 element am-
plitude system in all quadrants at 10°. Even though the average and stan-
dard deviation are within 2°, the maximum error exceeds this number in
all quadrants except in the nose quadrant where both antennas meet the
specifications. Again, one notices the jump in the error curve (for the 4

element array) for an elevation of 20°, which is not present in the 8 ele-

ment system. It is also found that the maximum error is much higher for

the four element TCAS. These observations also hold for elevation of 0°
for both antennas. Again, the 4 element TCAS is somewhat better that
TCAS III in the nose quadrant. One also notices the tendency of the error
curve to be discontinuous at beam switching points. The errors in the tail

quadrant are too great for either system to be of much use. The 4 element
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TCAS also exhibits higher error in the side quadrants. It is interesting to
see that the performance is worse in the side quadrants at —10° than the
tail quadrants due to scattering from wings.

Finally, at TE, which is closest to the nose at 138.6 inches, the 4 element
TCAS does not meet the requirements at 20° elevation. The error curve is
also discontinuous at all beam switching angles. The error curve for the 8
element monopulse system is smooth and the performance of the system is
more acceptable. At 10° however, both antennas perform well in the nose
quadrant. Further, TCAS III meets these specs in the side quadrants also

as opposed to the 4 element TCAS.

Unlike the previous locations, at 0° elevation, TCAS III is better than
the 4 element version in the nose quadrant where its performance is ac-
ceptable. This is not the case for 4 element TCAS whose performance at
this location is the worst among those considered in this report. The error
parameters of both antennas in other quadrants also indicate that the 8
element TCAS III is a better system.

A comparison of various statistical parameters of the error curves for
the four and eight element TCAS at elevations 10° and 0° at location TC
are given below. This is a subset of data in Appendix A. The data for nose
and tail quadrants is summarized in Tables 3.6 and 3.8 respectively. The
statistical parameters for 20° and —10° elevations at location TC are also
presented in Tables 3.9-3.11. It is interesting to find that even though the
magnitude of error is higher, the performance of both antennas is about
the same in the tail quadrant. The error curve data for the left and right

quadrants are averaged and given in Tables 3.7 and 3.10. In this case also,
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Parameter Elevation=10° Elevation=0°

of interest 4 element | 8 element | 4 element | 8 element
Abs. Maximum | 0.106 0.021 0.800 1.279
Abs. Average 0.033 0.001 0.397 0.914
Std. Deviation 0.023 0.004 0.234 0.317

Table 3.6: Comparison of TCAS error curves for location TC in the nose
quadrant at 10° and 0° elevations.

Parameter Elevation=10° Elevation=0°

of interest 4 element | 8 element | 4 element | 8 element
Abs. Maximum 8.252 2.814 2.438 1.904
Abs. Average 0.652 0.467 1.068 0.600
Std. Deviation 0.992 0.571 0.469 0.369

Table 3.7: Comparison of TCAS error curves for location TC in the side
quadrants at 10° and 0° elevations.

the eight element TCAS III perférms slightly better than the four element
TCAS.

The performance of the four element TCAS is generally not as good as
the eight element TCAS III, except in the nose quadrant where it performs
as well as the mondpulse system, and sometimes slightly better. This is
mainly due to the method used for direction finding. The four element
TCAS operates on a beam switching technique which is more sensitive to
the various structural scatterers of an airplane, i.e., wings, engines, tail, etc.
The beam switching technique and the slight variation of the four beams
as a function of elevation also gives rise to the ‘jumps’ referred to above.

In order to minimize these jumps, it is necessary to choose an optimum
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Elevation=10°

Parameter Elevation=0°

of interest 4 element | 8 element | 4 element | 8 element
Abs. Maximum 3.684 3.562 5.200 5.662
Abs. Average 1.353 1.157 1.109 1.169
Std. Deviation 0.979 0.862 1.033 1.014

Table 3.8: Comparison of TCAS error curves for location TC in the tail
quadrant at 10° and 0° elevations.
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Parameter Elevation=20° Elevation=—10°
of interest 4 element | 8 element | 4 element | 8 element
Abs. Maximum 2.466 0.600 3.919 4.529
Abs. Average 1.042 0.280 2.586 3.401
Std. Deviation 0.743 0.160 0.806 1.050

Table 3.9: Comparison of TCAS error curves for location TC in the nose
quadrant at 20° and —10° elevations.

Parameter Elevation=20° Elevation=—10°
of interest 4 element | 8 element | 4 element | 8 element
Abs. Maximum 3.667 2.527 30.16 8.483
Abs. Average 1.424 0.553 2.475 1.471
Std. Deviation 0.860 0.387 2.851 1.237
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Table 3.10: Comparison of TCAS error curves for location TC in the side
quadrants at 20° and —10° elevations.




Parameter Elevation=20° Elevation=-10°
of interest 4 element | 8 element | 4 element | 8 element "
Abs. Maximum | 16.30 6.482 6.425 6.579
Abs. Average 2.987 1.609 3.186 4.280
Std. Deviation 3.323 1.523 1.193 1.245

Table 3.11: Comparison of TCAS error curves for location TC in the tail
quadrant at 20° and —10° elevations.

length of the monopulse radiator such that the radiation pattern does not
change much as a function of elevation within the range —15° to +20°, The
bearing of an intruder is found from the difference of two beams which are
both slowly varying with ¢. On the other hand, the TCAS III operates
on a monopulse principle which utilizes both a maximum and a null in the
approximate direction of the intruder to locate it more 'accura.tely. The
discontinuities seen in the four element system error curve are also absent.
It seems that in directions where there are no scatterers, both systems
perform well; however, in directions where there are scatterers; i.e., right,
left and tail quadrants, the monopulse system performs better.

The performance of the 4 element TCAS is acceptable (|¢| < 2°) in the
forward direction for the locations TA and TC within the elevation range
0°-10°. It is found that in case of location TE, the one closest to the nose,
the error is too great even for 0° elevation. One also notices that the error is
minimum for elevation of 10° because that is the angle at which the lookup
table was created. Thus, as the elevation gets higher or lower, the error
tends to increase.

Another observation is that the tables for the 4-element amplitude sys-
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tem tend to get “out of range” more often when the elevation angle is small
or negative. The errors due to the processor detecting a target but not
being able to locate its bearing in a lookup table due to an invalid com-
bination of the largest two beams is more serious. This usually occurs for
low elevation intruders mostly in the tail region. This can be attributed to
the effect of the tail which distorts the transmitted beam. That is why the
error is oscillatory and large in the tail quadrant.

In summary, it is evident that both antennas are similar in performance
in the nose quadrant and usually meet the specs in the vicinity of 10° ele-
vation. In all cases considered, the 8 element TCAS III is better than the 4
element TCAS in the left and right quadrants. Both antennas are compa-
rable in the tail region though both antennas do not meet the guidelines for
acceptable performance. An advantage of the 4 element amplitude system

is that it is simpler than the monopulse system and therefore less expensive

to build.
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Figure 3.11: Model of Boeing 737-200 for a top mounted TCAS antenna.
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Figure 3.12: Explanation for discontinuities in the error curve. Data cor-
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Figure 3.13: Explanation for jumps in the error curve for 4 element TCAS.
Data corresponds to location TC.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT 20° ELEVATION
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Figure 3.14: Error curve for 8 (top) and 4 (bottom) element TCAS at TA
about 618.6" from nose at +20°.
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Figure 3.15: Error curve for 8 (top) and 4 (bottom) element TCAS at TA

about 618.6” from nose at +10°.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT OO * ELEVATION
FORWARD: [MAX.| = 2.1358 AVG. = 1.3763 STD. DEV. = 0.4512
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Figure 3.16: Error curve for 8 (top) and 4 (bottom) element TCAS at TA
about 618.6” from nose at 0°.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT —10°* ELEVATION
FORWARD: |MAX.| = 7.2120 AVG. = 5.5706 STD. DEV. = 1.1251
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Figure 3.17: Error curve for 8 (top) and 4 (bottom) element TCAS at TA
about 618.6" from nose at —10°.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT 20° ELEVATION
FORWARD: [|MAX.] = 0.6004 AVG. = 0.2802 STD. DEV. = 0.1597
BOEING 737-—200, LOCATION: TC, 378" F'ROM NOSE, MONOF’ULSE SYSTEM

AZIMUTH ANGLE (DEG)

Figure 3.18: Error curve for 8 (top) and 4 (bottom) element TCAS at TC
about 378.6” from nose at +20°.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT 10° ELEVATION
FORWARD: [MAX.| = 0.0210 AVG. = 0.0015 STD. DEV. = 0.0036
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ERROR CURVE FOR TOP MOUNTED 4 ELEMENT TCAS AT 10°* ELEVATION
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Figure 3.19: Error curve for 8 (top) and 4 (bottom) element TCAS at TC ==
" o =
about 378.6"” from nose at +10°.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT 0O

FORWARD: |IMAX| = 1.2785 AVG. = 0.9135 $TD. DEV.
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Figure 3.20: Error curve for 8 (top) and 4 (bottom) element TCAS at TC

about 378.6" from nose at 0°.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT —10° ELEVATION
FORWARD: [MAX.] = 4.5294 AVG. = 3.4013 STD. DEV. = 1.0802

BOEING 737—200 LOCATION: TC, .378' ) F-'ROM NOSE MONOPULSE SYSTEM
—180. —150. —12 -90. —60. 60, 80. 120. 150. 180,
25:FY_IWT'TTIﬂTrTTrr]rlll'||||||||l||||||llll‘luvl,»|||||lrv_25-
20. I __:29. ﬁ
~~ 15 — 1s.
O = - o
L : - ;
Q 10 |- — 10 -
Nt r B
X sF s.
8 - = —
o ofF Jo. =
w s b
(&) =5, E—- -5. s
pd = Z
= - 3 -
% —10. — — —10.
M -1s [ — -15. -
o 3 |
—20. — - -20.
_25‘-Llllllllllllll|IllllllllLllll'lllllllIlllllllllll!lllllllll_'_zsv =
—180. —150. —-120. —90. —60, —30. 90. 120. 1850. 180. i

AZIMUTH ANGLE (DEG)

ERROR CURVE FOR TOP MOUNTED 4 ELEMENT TCAS AT —10° ELEVATION

FORWARD: |MAX.| = 3.9186 AVG. = 25858 &1D. DEV. = 0.8081 =
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Figure 3.21: Error curve for 8 (top) and 4 (bottom) element TCAS at TC =

about 378.6" from nose at —10°.

62




ERRCOR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT 20° ELEVATION

FORWARD: |MAX.| = 1.3708 AVG. = 0.6326 STO. DEV. = 0.4349
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ERROR CURVE FOR TOP MOUNTED 4 ELEMENT TCAS AT 20° ELEVATION

FORWARD: IMAX.] = 4.0685 AVG., = 2.3950 STD. DEV. = 0.8494
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Figure 3.22: Error curve for 8 (top) and 4 (bottom) element TCAS at TE
about 138.6" from nose at +20°.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT 10° ELEVATION
FORWARD: [MAX.] = 0.0212 AVG. = 0.0008 STD. DEV. = 0.0030
BOEING 737—200, LOCATION: T’E 1 38" F ROM NOSE MONOPULSE SYSTEM

—180. —150. —120, —90. -60. 30. 30. 0. 120, 150. 180,
25. lI'll||Ilt|III!lI‘III!“TITI'lil!]IilI'Illl’llll||llT(1111 25,
20. 20.
15. 15.

10.

llllllllllllllllll!]l]

BEARING ERROR (DEG)
( Q
lllllllllllllll!lll[l%
Ol

10.

llIllllIlllllIllIlIlll

-5, -E —5.
—10. — -0
—15. -3 -15.
—20 — -20.
—25_ J NS O | l ) | I 1111 l j I l 111_[_1 J IJ L LI 11 l I 1111 l 1111 l 111 I 14117 —2%

~180. —150. —120. —80. =-60. —30 90. 120. 150. 180.
AZIMUTH ANGLE (DEG)
EFRROR CURVE FOR TOP MOUNTED 4 ELEMENT TCAS AT 10 * ELEVATION
FORWARD: IMAX.] = 0.0436 AVG. = 0.0034 STD. DEV. = 0.0089
BOEING 737—200, LOCATION: TE, 138" FROM NOSE, AMPLITUDE SYSTEM
—-180. —150. —120. —90. —860. —30. o. 30. 50. 90. 120, 150. 1BO.
25-:T"rﬁ_r|—l—|1*r'|'l"r'il"'ll||T|ivll]|||v]Tlll|!|||‘111|||l|||l|||'|||r‘25
- X : NOT IN ANY TABLE 3
20. |- O : OUT OF RANGE — zo.
—~ 15 — 15,
O C 3
L E 3
0O 10— —] 1o0.
= - 3
x s s,
@] - 3
x o 7
x o A o.
Lt ]
¢ -5 — 5.
z - -
% —10. — - -10.
M —15. — -1s.
—z20. _: —20
= ]
—25. (11 b & I 11 £ ¥ l i1 11 l 1t 1 I L1 51 l 1 E 1t I 111 l l i I | 1 1 1) 1 LI 1t l L.t 11 1 11 17] —25.
~180. —1%0. —120. -90. -—-60. —30. 90. 120. 150. 180.

AZIMUTH ANGLE (DEG)

Figure 3.23: Error curve for 8 (top) and 4 (bottom) element TCAS at TE
about 138.6" from nose at +10°.

64

| .. @8l 0 i | I}

i




[

=y
=

EFRROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT 0O ° ELEVATION

FORWARD: [MAX| = 0.8612 AVG. = 0.3658 STD. DEV. = 0.2541

BOEING 737—200. LOCATION: TE, 138" FROM NOSE, MONOPULSE SYSTEM
. —30. 0. 30. &0.

-180. —150. —120. —90. —80 Q0. 120. 150. 180.
25‘ - T I Trr1 1 | T 1171 ‘ LB l UL I Tt ‘ TV 1 ‘ T 10171 ‘ LI I T 1 7 14 ‘ Y117 I T 11 I: 25'
20. E—- -—E 20.
15 E— —i 15
ok EP

BEARING ERROR (DEG)
o]

-5, ] -5,
—10. - — -10.
—~15. - —-: —15.
—20. — —20.
—25. 1.1 1. l 1 111 | T | | J I ‘ 111 1 I | 3 I | l t 111 | 1111 l 11 k.1 l L1 1.1 l L4111 I 11t 7] —25,

>480. —150. —120. —90. —60. -—30. o. 30. 60. 90. 120. 1%0. 180.
AZIMUTH ANGLE (DEG)
ERROR CURVE FOR TOP MOUNTED 4 ELEMENT TCAS AT OO0 * ELEVATION
FORWARD: IMAX.] - 2.3659 AVG. = 1.5020 STD. DEV. = 0.4742
BOEING 737—200, LOCATI ON: TE, 138" FROM NOSE, AMPLITUDE SYSTEM
_180. -1s0. —120. =-90. ~—60. —30. o. 0. 80. 90. 120. 150. 180,
25. [F T ‘ TTFY ‘ LILELIRA ‘ LELELL ‘ T 1 I LU ‘ LI l Tror#t ‘ Tr1rret l Trri I Tri1 l LB 25.
o x . NOT IN_ANY TABLE .
20.H O : OUT OF RANGE — z0.
—~ 15 H - 1s.
O = 3
J l 3
O 104 —{ 10.
~s H 3
o 5. HH o5
®) H 3
[0 » 3
@ o& 4 0.
J E :
O 55 H -
Z - .
% ~10. H —10.
M -5 [ H-1s

20 '__'__ +H —=20

_25'E|II]lI|l|lllllullllIlllll‘l[lllllllJlIIlIlJ__l_,lllllll :_25.
>480. —180. —120. —90. -—60. —30. 60. 20. 120. 150. 180.

B¢ o. 30.
AZIMUTH ANGLE (DEG)

Figure 3.24: Error curve for 8 (top) and 4 (bottom) element TCAS at TE
about 138.6" from nose at 0°.
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ERROR CURVE FOR TOP MOUNTED 8 ELEMENT TCAS AT —10°* ELEVATION
FORWARD: [MAX.| = 0.8656 AVG., = 0.2832 STD. DEV. = 0.2215
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ERROR CURVE FOR TOP MOUNTED 4 ELEMENT TCAS AT —10° ELEVATION
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Figure 3.25: Error curve for 8 (top) and 4 (bottom) element TCAS at TE
about 138.6" from nose at —10°.
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Appendix A

Statistics of Error Curves for 4

Element TCAS

The statistics of the error curves for a four element TCAS system employing
amplitude comparison scheme are given below. Here, the azimuth space
was divided into 4 equal quadrants, each covering 90°. For a top mounted

antenna, the angular sectors covered are as given below in Table A.1:

Quadrant | Range (°)
Nose —45 - 45
Left 45 - 135
Right —45 - —135
Tail —135 - —180
&135 - 179

Table A.1: Definition of sectors for computation of statistics for the error
curves for top mounted antennas.

All the three locations studied in the report on Boeing 737-200 model
for elevation angles 20°,10°,0°,and — 10° are presented. The statistics for

the eight element TCAS III are given separately in Appendix B. These
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statistics were compiled in each quadrant whose central direction is given

by the beam heading. Even though the antenna is placed symmetrically

and everything is symmetric in the aircraft structure, the statistics of left

A.1 Location: TA

A.1.1 Elevation: 20°

quadrant maximum
abs. error

nose : 2.1399
left 5.6485
tail 14.0032
right 5.55692

A.1.2 Elevation: 10°

quadrant maximum
abs. error

nose 0.8637
left 8.6480
tail 6.7940
right 6.8816

A.1.3 Elevation: 0°

quadrant maximum
abs. error

nose 1.5938
left 2.3974
tail 6.53056
right 2.4208

70

and right beams differ slightly due to numerical errors.

absolute

average
1.3911
2.7949
3.0247
2.7693

absolute

average
0.1740
0.7447
2.3327
0.7022

absolute

average
0.7438
1.0772
1.7485
1.0801

standard

deviation
0.5266
1.7974
2.9121
1.7733

standard

deviation
0.2401
1.1490
1.7162
0.9928

standard

deviation
0.3345
0.5881
1.7144
0.5731
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A.1.4 Elevation: —10°

quadrant

nose
left
tail
right

maximum
. error

6.4603
6.7549
7.2708
6.6367

A.2 Location: TC

A.2.1 Elevation: 20°

quadrant

nose
left
tail
right

maximum
. error

2.4655
3.6667

16.3032

3.6356

A.2.2 Elevation: 10°

quadrant

nose
left
tail
right

abs.

maximum
error

0.1062
8.25618
3.6842
6.7313

A.2.3 Elevation: 0°

quadrant

nose
left
tail
right

abs.

maximum
error

0.7999
2.4376
5.2000
2.3412

71

absolute

average
4.6556
2.0409
2.4270
1.9790

absolute

average
1.0420
1.4255
2.9870
1.4219

absolute

average
0.0326
0.6527
1.3527
0.6506

absolute

average
0.3965
1.0792
1.1091
1.0558

standard

deviation
i1.05681
1.2004
i1.8210
1.2063

standard

deviation
0.7426
0.8578
3.3226
0.8613

standard

deviation
0.0228
1.0529
0.9785
0.9319

standard

deviation
0.2339
0.4662
1.0327
0.4715



A.2.4 Elevation: —10°
quadrant maximum
abs. error
nose 3.9186
left 30.1583
tail 6.4250
right 24.1049
A.3 Location: TE
A.3.1 Elevation: 20°
quadrant maximum
abs. error
nose 4,0685
left 5.4521
tail 4.2690
right 5.2660
A.3.2 Elevation: 10°
quadrant maximum
abs. error
nose 0.0436
left 6.3941
tail T.7472
right 5.4898
A.3.3 Elevation: 0°
quadrant maximum
abs. error
nose 2.3659
left 6.4782
tail 28.3948
right 9.9965

72

absolute
average

2.5859
2.5023
3.1857
2.4468

absolute

average
2.3950
1.8278
0.8650
1.8100

absolute

average
0.0034
0.3678
1.7269
0.3404

absolute

average
1.5020
1.6970
3.2146
1.6599

standard

deviation
0.8061
3.1216
1.1930
2.6799

standard

deviation
0.8494
1.4502
0.7366
1.4454

standard

deviation
0.0089
0.8941
1.5266
0.7521

standard

deviation
0.4742
1.2955
4.,0513
1.4137
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A.3.4 Elevation: —10°

quadrant maximum absolute standard
abs. error average deviation
nose 3.1650 1.9535 0.6386
left 19.7826 3.5648 3.3920
tail 66.8649 10.9870 11.0476
right 17.2241 3.4288 2.9966
73



Appendix B

Statistics of Error Curves for 8

Element TCAS III

The statistics of the error curves for the 8 element TCAS system employing

monopulse detection scheme are given below. All the three locations studied

in the report on Boerirng 737-200 model for elevation angles 20°, 10°, 0°, and

—10° are presented. The statistics for the four element TCAS are given

separately in Appendix A. These statistics were compiled in each quadrant

whose central direction is given by the beam heading as given in Table A.1.

B.1 Location: TA

B.1.1 Elevation: 20°

quadrant maximum
abs. error

nose 2.8784
left 4.0674
tail 4.8954
right 4.2650
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absolute

average
1.1011
1.1479
1.9619
1.2296

standard

deviation
1.0214
1.2782
1.1515
1.3324
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B.1.2 Elevation: 10°
quadrant maximum
abs. error
nose 0.9059
left 1.3693
tail 5.7911
right 1.56274
B.1.3 Elevation: 0°
quadrant maximum
abs. error
nose 2.13568
left 1.6834
tail 5.3393
right 1.7413
B.1.4 Elevation: -10°
quadrant maximum
abs. error
nose 7.2120
left 5.2918
tail 5.9656
right 6.9273
B.2 Location: TC
B.2.1 Elevation: 20°
quadrant maximum
abs. error
nose 0.6004
left 2.0376
tail 6.4823
right 2.5270

75

absolute

average
0.2073
0.4475
2.0495
0.4621

absolute

average
1.3763
0.6833
1.5297
0.6702

absolute

average
5.5706
1.6028
3.0817
1.6184

absolute

average
0.2802
0.4949
1.6089
0.6106

standard

deviation
0.2675
0.3514
1.4485
0.3821

standard

deviation
0.4512
0.5298
1.3688
0.5556

standard

deviation
1.1251
1.1102
1.1004
1.2276

standard

deviation
0.1597
0.3501
1.5227
0.4243



B.2.2 Elevation: 10°

quadrant maximum
abs. error

nose 0.0210
left 2.4957
tail 3.5620
right 2.8144

B.2.3 Elevation: 0°

quadrant maximum
abs. error

nose 1.2785
left 1.9035
tail 5.6623
right 1.6856

B.2.4 Elevation: —10°

quadrant maximum
abs. error

nose 4.5204
left 8.4830
tail 6.5789
right 7.7653

B.3 Location: TE

B.3.1 Elevation: 20°

quadrant maximum
abs. error

nose 1.3708
left 3.1210
tail 3.1210
right 3.0283

76

absolute

average
0.0015
0.4709
1.1568

0.4628

absolute

average
0.9135
0.6009
1.1692
0.5987

absolute

average
3.4013
1.4599
4.2795
1.4813

absolute

average
0.6326
1.7626
1.2723
1.4463

standard

deviation
0.0036

- 0.5719
0.8615
0.5691

standard

deviation
0.3168
0.3613
1.0139
0.3772

standard

deviation
1.0502
1.2745
1.2445
1.1987

standard

deviation
0.4348
0.4419
0.7713
0.3861
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B.3.2 Elevation: 10°

quadrant

nose
left
tail
right

maximum
abs. error
0.0212
1.3727
3.3559
1.3450

B.3.3 Elevation: 0°

quadrant

nose
left
tail
right

maximum
abs. error
0.8612
5.2446
7.5368
4.7609

B.3.4 Elevation: —10°

quadrant

nose
left
tail
right

maximum
abs. error
0.8656
11.2865
20.8642
10.5944

77

absolute

average
0.0008
0.1395
1.1726
0.1446

absolute

average
0.3658
1.7227
3.0249
1.5317

absolute

average
0.2832
3.2372
9.9055
3.0594

standard

deviation
0.0030
0.2420
0.7327
0.2292

standard

deviation
0.2541
0.7893
1.2081
0.6981

standard

deviation
0.22156
1.8211
3.8429
1.7933






