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1. INTRODUCTION

The present paper extends a prev rous analysis [ 1] of weak rotating
waves in a centrifugal compression syslem with a vaneless diffuser, shown in
Fig. 1.1 adapted from that paper. Conditions were found for the existence _1"
pemmnent rotating waves of small amplitude. The theory assumed an
inviscid flow process in the vaneless diffuser. Waves of "fast" and "slow"
types were to_md, consistent with experimental experience.

The slow waves (usually called "diffuser stall" in the literature) are

especially interesting in that resonance was found. That is, when flow
coefficient (b is reduced, a value is suddenly reached for which pressure

amplitude may be arbitrarily large, for a given radial-flow disturbance of a
given mode. Fig. 1.2 from [1] shows the real part of a presumed pressure
disturbance, and the corresponding slow-wave speed coefficient. Negative
values of the indicated function presumably represent amplification, but that
could not be proved in the linearized analysis. This predicted resonant
behavior is consistent with experiments, and is quite unlike anything found in

the corresponding problem of axial system stall [2]. The present paper
begins with remarks showing how the results of [1] can be reconciled with
experimental evidence [3] of an effect of diffuser width on the occurrence of

rotating stall.

The weak-wave analysis cannot, of course, predict limit cycles, nor
can it predict what will actually happen when flow coefficient is reduced

through the resonant condition. The wave cannot remain weak and
permanent (the only permitted linear solution); neither can its amplitude be
infinite. It must grow, and yet disturbances must physically remain finite.

Clearly, the next step should be a nonlinear analysis, and the appropriate

approach would seem to be that of [4].

Therefore, the pressure and mass balance equations for the centrifugal

system are first developed, as in [4]. A Galerkin procedure is applied, also as
in [4], for an assumed single rotating mode, and the corresponding dynamic

pressure rise in the diffuser is found to second order in disturbance
amplitude. Subject to certain assumptions to be described, a final set of
equations is derived, which govern a rather general transient comprised of
surge-like and rotating-wave disturbances in combination. In the solution of
these equations, use may be made of the linear solutions for velocity and

pressure disturbance already found in [1 ].

Then, an ideal example problem is solved with these equations, and it is
shown how resonance is traversed when flow coefficient is decreased



(throttled). In effect, a surge transient must generally occur near resonance,
so that the wave amplitudes, though singular, remain finite.

Away from resonant conditions, the possibility of more than one wave
type should be considered, because two families of rotating waves (fast and
slow) are in principle allowed. This problem is discussed.



2. EFFECT OF DIFFUSER WIDTH

The assumption of inviscid flow in [1] and this Report may be
questioned in view of the known effects of Reynolds number on performance
and stability of the machines under discussion [3,4]. In most flow problems,
however, it is important to know what inviscid analysis has to tell; that
knowledge avoids the pitfall of ascribing puzzling flow observations,
especially instabilities, to viscous phenomena such as separation, when the
real cause may lie elsewhere. It is believed that the present study shows an
inviscid basis for rotating instabilities found with vaneless diffusers.

Diffuser width has no effect in the present theory, yet experiments,
reviewed and analyzed in [3], show a clear tendency for increased diffuser
width to increase the critical flow coefficient for instability. Fig. 35 of [3]
indicates that when width l increases from 2 percent to 15 percent of exit
radius rF, the critical flow coefficient increases from about 0.10 to about

0.25. An asymptote of perhaps 0.28 is apparently approached as I is
increased further. Fig. 1.2 (Fig. 10 of [1]), on the other hand, gives a critical
flow coefficient of about 0.3; thus the inviscid analysis agrees with the
asymptotic value for large I suggested by [3]. The influence of radius ratio
will be different in [1] and [3], because the discharge is different. In any case,
a larger radius ratio leads to a higher critical flow coefficient in both theory
and experiment. The variation with width must obviously be an effect of
viscosity, which was not considered in [1].

Fig. 36 of [3] also suggests that the foregoing critical flow coefficients
are valid for Reynolds number (based on l and on impeller exit velocity) of

105, but should be increased by about 0.07 for 104 and decreased a like
amount for 106.

Boundary-Layer Displacement and Diffuser Convergence

To explain these results in terms of the present theory, one should first
consider the displacement effect of the wall boundary layers in the diffuser.
The sketch (Fig. 2.1) shows a narrow and a wide diffuser, each with the same

growing boundary layers and hence the same displacement effects. Clearly,
the narrow diffuser will effectively be more convergent because of the
boundary-layer displacement effect.

Convergence effect was discussed in [1], and was expressed as a power
law (See Fig. 9 of [1])

I = I1 r-n (2.1)



Results shown in Fig. 10 of[l] showed that the critical flow coefficient
(in the first circumferential mode) was lower for a convergent case (n= 1)
than for the parallel-wall case (n = 0). Subsequent calculations give the same
result for the higher modes (3rd and 4th) which are the most unstable. Figs.
2.2 and 2.3 show the pertinent results. Thus, convergence due to boundary-
layer displacement would be predicted to cause a lowered critical flow
coefficient for a narrow diffuser compared with a wide one. Of course,

when the width is much greater than the boundary-layer thickness, further
increasing the width will have no effect. One may consider that the present
inviscid theory assumes infinite diffuser width, in effect.

The foregoing discussion is qualitative; to make numerical predictions,
or to explain the Reynolds number correction also suggested in [3], would
require quantitative knowledge of the displacement thickness and how it
varies with Reynolds num_r. _atlnfo_ati0n cannot readily be inferred
from the literature. _

The theory predicts that a more convergent diffuser will be more
stable, whether the convergence is due to displacement effect or is simply a
geometrical feature of the diffuser. It would therefore appear advantageous
to build the diffuser with a convergent shape. However, pressure rise in such
a diffuser would be more gradual, and to achieve the same final pressure
ratio, its exit radius would have to be larger, A iargerexit radius, in itself, is
destabilizing. For the third circumferential mode and parallel diffuser walls
(n = 0), the critical flow coefficient is 0.180, if rF is 1.6. If the walls are to be

convergent to the degree that n = 1, but the pressure-rise coefficient is kept
the same, then one finds that rF must be 1.89 instead of 1.6. For rF = 1.89

and n= 1, the critical flow coefficient turns out to be 0.175, which is virtually
the same as that for the shorter, parallel-wall diffuser. Therefore, it would
seem that if pressure coefficient is held constant by changing exit radius,
convergence of the diffuser has negligible effect on stability.

Details of Linearized Analysis

Owing to length restrictions, equations and formulas which included
the effects of convergence and mode number were not presented in [ 1]. For
the record, Appendix A of this Report collects those details, thereby
generalizing the Eqs. (9 through 20) which appear in [1]. The relevant
discussions and arguments appear in [1] and need not be repeated in the
Appendix.
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3. TRANSIENT EQUATIONS

Pressure and Mass Balances of System

The overall pressure balance of an axial compression system appears

in Eq. (42) of [4], and is repeated here for reference:

q_(_) + lc O_ = Wc (O + g)- mY_ + 2-_ (2Y_00 + Y00) (3.1)

For the centrifugal system of present interest, shown in Fig. 1.1, the
corresponding equation may easily be derived:

1 [dPI+(P1 Pgsl)] (3.2)q" + Ic O_ = _c(O+g) - mY_ + _a (Y_00 + Y000) -

(a) (b) (c) (d) (e) (f)

The terms of this equation are lettered, and will be discussed in turn, making
reference to the corresponding terms of Eq. (3.1).

(a) The total-to-static pressure-rise coefficient of the entire system is

W = (PF - PT)/P U2 (3.3)

where PT is considered constant, while the plenum pressure PF to which the

diffuser discharges may be a function of time. The rotor tip velocity is

denoted by U.

(b) As in Eq. (3.1), the second term describes flow inertia up to the rotor
exit, based on the coefficient • of circumferentially-averaged radial velocity

there. The dimensionless length lc is now

Afl 1

lc = lI _ + _-_ ; a = rl/'l:U (3.4)

Unlike the axial case, the inlet velocity differs from the rotor exit velocity
used as reference, and, by continuity, goes inversely with flow area AF.

Therefore, the area ratio Afl/Afo now appears. If x is defined as in Eq. (2) of

[4], then a new factor of 1/2 appears in Eq. (3.4) because there is no stator in
the present case, whereas [4] assumed a two-row (rotor-stator) stage. The
time coordinate is _, relative to time for the rotor to travel one radian.
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lC) As usual [4], the axisymmetric, quasi-steady pressure-rise coefficient is
denoted by Wc, stipulated to include the pressure rise in the diffuser, which is

written as - Pqsl)

(d) As discussed in [4], the function Y(_,0) is the potential for any wave-like
velocity disturbance, depending only on _ and 0; such a disturbance is
assumed "straight through", not a function of position along the flow path
from entrance to exit. Corresponding to [4], the disturbance of radial flow
coefficient at exit is denoted by g, and

O=O+g ; g=-Y00 (3.5)

The term (d) specifically refers to the pressure change caused at the entrance
by the appearance of a transverse (that is, circumferential) velocity

disturbance (w) there, which is in turn induced bythe axial disturbance
described by g. Re assumption of [4] is carried over, that w and g are

related as if the flow were potential and harmonic at the entrance. The
applicable relations are

Afl 1 Afl
Wl = U _--_ Y0 ; m = _-F-F (3.6)

Again, the area ratio Afl/Af0 appears, because the disturbance function g is

defined at the rotor exit, while Eq. (3.6) refers to events at the entrance. The

radius ratio rF also appears as a scaling for the potential function at the
entrance, because all distances have been referred to the exit radius.

(e) This term is the same as the corresponding term of Eq. (3.1) with a factor
of 2 omitted. That difference reflects the presence of only one blade row,
while the axial case [4] has two.

(f) The last group of terms is new to the centrifugal case, and refers to the

pressure in the vaneless diffuser. A pressure coefficient in the diffuser is
defined below, and may be assumed to consist of an angle-averaged part

tpcrhaps tmsteady) P and a wave-like part dP (whose angle average is zero).

P-PF
9-1j_ = P = P(r,_) + dP(r,_,O)

6
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Now, the axisymmetric overall pressure rise function _c, presumed known,

includes quasi-steady pressure rise - Pqs! (¢0 from diffuser entrance to exit.
qqaereforethat quantity must appear in the group (f), so that Eq. (3.2) is
satisfied in the axisymmetric quasi-steady case,when q-'= _c and all its other
temps must vanish by definition.

In the postulated system (Fig. 1.1), pressure falls from plenum to
exhaust through a throttle. The throttle has a characteristic performance
function FT, presumed known, just asdoes the compressor:

q" = FT (OT) (3.8)

The flow coefficient _ may differ from ¢_ because mass may accumulate in

the plenum. In fact, with the plenum regarded as an isentropic air spring,
Eq. (36) of [24] applies:

1

lc _ - 4B _g(O - Or)
(3.9)

Eqs. (3.2), (3.8), and (3.9) constitute the goveming equations for
disturbances to be considered. The problem is to Fred permitted solutions for
q'(_), _(_), Y(_,0), and corresponding pressure distributions in the diffuser.
First, of course, the throttle and compressor characteristics must be
specified.

Galerkin Version with Cubic Characteristic

As in [4], the system is greatly simplified by use of the Galerkin
procedure, which represents the periodic functions Y(_,0), and for the
present problem, also dP(r,_,0), as harmonic functions with only their time-

dependent amplitudes remaining unknown. It is assumed that Y(or the
related g) can be well represented by waves traveling at dimensionless speed f
in the positive 0-direction; thus, as in Eq. (58) of [4],

and

g = W A I cos (3.10)
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P = P (r,_) + 1P (r,_) cos 0 + 2P(r,_,) sin 0 (3.11)

where two new functions of radius and time, 1P and 2P have been used to

construct dP, and where

O=O-f_ (3.12)

Two major questions may be raised about this use of the Galerkin
method. First, there may be more than one type of wave represented at a
given time; Ref. [1] shows that there are "fast" and "slow" wave types and
also higher harmonics in the centrifugal, but not the axial, case. These
complications can easily be dealt with in the present analysis, as will be shown
later. The second question is more fundamental; waves in this nonlinear
problem may differ substantially in shape from the simple harmonic form.
Fig. 5 of [4] shows this difference for the axial problem. No such

comparison can be made for the centrifugal case; th e necessary exact
nonlinear solution of the diffuser flow is not available. However, wave

traces measured in centrifugal machmes [3] seem _tolook rather more
harmonic than is usual in axial machines, perhapsbecause of a smoothing

effect of the diffuser. Therefore, one may be optimistic about the accuracy of
the Galerkin method for the centrifugal problem.

The Galerkin method is especially needed in the present problem
because of the need to provide a nonlinear solution for flow in the diffuser,

whereas in the corresponding axial problem, the only nonlinearities arise in
the compressor and throttle characteristic functions.

It is further assumed that the compressor characteristic is well
represented by a cubic function, namely

• -S+g 1 (_4g)3 ]_ffc=_°+H[3 W -2 (3.13)

This function, shown in Fig. 3.1, has one more parameter (S) than the
corresponding cubic for axial systems (Fig. 3 of [4]). Because measured
characteristics for centrifugal machines tend to be very smooth functions, the
assumed cubic representation should be very satisfactory. The throttle
characteristic might be a simple quadratic, also illustrated in Fig. 3.1.

To carry out the Galerkin procedure, one first substitutes Eqs. (3.5),

(3.10), (3.11), and (3.15) into Eq. (3.2), and then performs three
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N

integrations over a cycle of 0, namely of Eq. (3.2) itself, of Eq. (3.2)

multiplied through by cos 0, and then of Eq. (3.2) multiplied through by

sin 0. The results of these operations are, respectively,

3 tt
_P + lc*_ = _gc(q_) - _ (* -S) al2- (P1-Pqsl) (3.14)

H 3 A_ 3 _-S 2 1(m+2-_)Al{+ _ {g -_-[1-(-_-) ]A1} +_lPl({)=0 (3.15)

1 p[(m+la) f- _a ]Al+_2 1(_)=0 (3.16)

These equations are nearly equivalent to Eqs. (59 through 61) of [4]. The
next step must be to analyze the diffuser flow in order to relate the new
pressure terms to velocity-disturbance amplitude.

Pressure Disturbance in Diffuser

Flow in the vaneless, parallel-wall diffuser will be considered inviscid,

just as it was in [1]. The governing Euler equations, written in original
dimensional variables, are

0_r _ w2 wv0vt + [2 (v2 + w2) + ]- (-_-" + WWr--_--) = 0 (3.17)

vw vvo

rl _-00 1 Pl9] + (--)--+ VWr- --_--) = 0W t + [_ (v2 + W 2) + (3.18)

v 1
Vr + r + r w0 - 0 (3.19)

Next, the Galerkin definition of radial velocity disturbance, Eq.
(3.10), is generalized to allow for phase change in the diffuser:

v = U [_r--_ + WA(r, 9) cos 0 + WB(r, _) sin 0] (3.20)

9



Using this equation in the continuity equation, Eq. (3.19), one may integrate
the latter to find circumferential velocity:

w = U [1_ W (A + rAr) sin 0 + W(B + rBr) cos 0 + X(r,_) (3.21)

The first term implies rotor blades are radial at rotor exit. The function X
represents a swirl of unknown intensity, resulting from integration. The
corresponding pressure representation is already in place, as given by Eq.
(3.11), with Eq. (3.7) providing the connection with static pressure. The

pressure in the diffuser, PF, may be a function of time, of course, but will

disappear when differentiated in Eqs. (3.17) and (3.18).

The applicable boundary conditions in the diffuser are as in [ 1]. Radial
velocity is specified at the diffuser entrance:

A(1,_)-AI(_) ; B1 =0 (3.22)

Circumferential velocity disturbance vanishes there, and therefore

XI=0; Ar I=-AI; Brl =0 (3.23)

At the diffuser discharge, the pressure disturbance must vanish:

PF = 1PF = 2PF = 0 (3.24)

Two further assumptions are now made about the diffuser flow, in
order to facilitate solutions; first, that propagation speed f is constant (In
problems involving inlet distortion, f is no doubt a function of time), and

second, that terms of order the cube of the given disturbance A may be

neglected; this means that the square of the unknown swirl X, and products
such as AX, may be neglected. The equations resulting from the Galerkin
substitutions into Eqs. (3.17) and (3.18) and integration after multiplying by

N N

1, cos 0, and sin 0 are six in number:

1 1 (Ar2+B 5+ -- (3.25)Pr- "rl _+(1 + _2) _ + _ rW2 2W 2Xr

1P2 = W{-A_ -_ (Ar- A r-_r r ) + [2rBr + (1 + fr2)B] } (3.26)

10



• B r-_ fr2)A] }2Pr = W{-B_-r (Br-r)- [2rAr + (1 + (3.27)

O
0 = 3(ABr - BAr) + r (A Brr- BArr) + 2 [Xg + _ (rX)r] (3.28)

B A )] (3.29)1P = W [-r(A + rAr)_ - (1- fr2) (Br + r )- • (rAft + 3Ar + r

A2P = W [- r(B + rBr)g + (1- fr 2) (Ar+ r ) -O (rBrr + 3Br+ )] (3.30)

Even with the Galerkin simplification, the foregoing system involves 6
unknown functions (3 for pressure and 3 for velocity) as well as an
eigenvalue (f) to be found.

The desired solution is permitted by a f'mal assumption, namely that
the diffuser flow is quasi-steady. That is, one assumes that surge-like changes
in the overall system will have a much longer characteristic time than the

time required for fluid to traverse the diffuser. For this to be true, Ic must be

much greater than 1. There may be cases when this is not true, of course.
Under this assumption, all derivatives with respect to _ may be dropped, and

three benefits become apparent:

Linear wave. Eqs. (3.26), (3.27), (3.29), and (3.30) are now identical
to those which govern the linear, small-disturbance problem of [1].
Therefore, properly interpreted, the pressure-wave and velocity-wave
solutions of [1], including resonant behavior, can be carried over directly to
the present nonlinear problem, Eqs. (3.14 through 3.16). Nonlinearity
resides only in Eqs. (3.25) and (3.28), which now can be used separately to

find P and X.

Swirl-function solution.
function X. The result is

1
X = _ r2 (BAr - A Br)

Eq. (3.28) can be integrated to find the swirl

(3.31)

A constant of integration vanishes in view of applicable boundary
conditions, Eqs. (3.22) and (3.23). This result is consistent with the previous
supposition that X is second order in velocity amplitude.

11



Mean pressure-rise solution. Knowing A, B, and X, Eq. (3.25) can be

integrated to find the mean pressure rise function P! needed for Eq. (3.14).
One finds

rF

1 (1 1__)_ 1 rj" (A 2 + B2 ) +P=-_(I+O 2) r2-r2 F _W 2 [r

2
(BAr- ABr)]dr (3.32)

Integration limits are chosen to make PF vanish, as Eq. (3.24) requires.

Obviously, in the quasi-steady, axisymmetric limit Eq. (3.32) reduces to

- 1 (1_ 1
Pqs=-_(l+O 2) r2-rF2)

(3.33)

For use in the last term of Eq. (3.14), one may write

rF _ :
1 22

Br)+P1- Pqsl =- _ W 2 f [r (A 2 + (BAr-ABr)]dr
1

(3.34)

Final Equations for Transient

To write the final transient equations, it is necessary to interpret A, B,
1P, and 2P, defined in Eqs. (3.11) and (3.20), in terms of quantities found in

the small-disturbance analysis of [1]. In that treatment, radial velocity was
defined in complex form

v •

U-r
-- - -- + Ae i_ ; A = AR + i AM (3.35)

and, for convenience,

AR1 -- 1 ; AM1 = 0

Therefore, in terms of the known linear solution, Eq. (3.20) should be
written

(3.36)

12
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v • a
0=T+WA1 (A cos 0+ i_ sin 0) (3.37)

with the understanding that
A A

A=AR;B=-AM (3.38)

In [4], and also in the present analysis, it will prove convenient to express A1

in terms of its square:

J=A12 (3.39)

In [1] the complex pressure rise coefficient had the form

dP = (PR + iPM) ei0 (3.40)

and therefore, in terms of the previous linear results, Eq. (3.11) should be
written

A A

dP = WAI(PR cos 0 - PM sin O) ;
A A

PR = PR ; P M = PM (3.41)

Therefore, where one sees A, B, 1P, and 2P in Eqs (3.14 through

3.16), one should write instead W'4-J-_, W_-_, WJ tPR, and -WfJ-P_¢I.

This done, one may write the final transient equations as follows:

+ lc O_ = _c (0) +

rF
2 3 H ,.,._ o,/

1 { W2 I [r (_,r2 + t_r2) + _ (fi,_r ,_]_r)]dr - 2 W Jtq,, ;3) !

1

(3.42)

1) H 3 O-S WpARI} J 0(-_)2] + =(m+ )J_+_ {_J-3 [1- 2-_ (3.43)

-1
FT(W)

W/H • H

qJ_- 4B2g [W -----W--] Ic

(3.44)

13



^(m + ) f- -PM1 = 0 (3.45)

These equations parallel Eqs. (59-61) of [4], but differ in the way wave
amplitude appears. For example, pressure amplitude affects rotation speed f
in the present case. Most notably, Eq. (3.43) shows that a negative value of
the real part of the pressure wave (the part in phase with the radial velocity
disturbance), in itself, causes amplitude (J) to grow with time. This confirms

expectations of [1 ]. As one expects from [4], the same equation, together with
Eq. (3.13), shows that positive characteristic slope also makes wave
amplitude grow.

The most interesting question for these equations to answer is that
posed in the INTRODUCTION, namely, how the known resonance

properties of the linear solution come into play during nonlinear transients.
The section to follow will focus on this issue.

14



4. TRANSIENT SOLUTIONS

Singularities of Linear Solution

A A A

Ref. [1] showed how A, B, and PR have singularities as functions of
flow coefficient _. It can easily be shown that these singularities are all

simple poles in general. For the present purpose of illustration, a particular
case will be considered that is easily analyzed, namely parallel walls (n = 0),
rF = 2.08, and the fundamental mode (b - 1), for which Fig. 1.2 suggests that

propagation speed f vanishes at the resonant condition, _* = 0.15464.

(Asterisks will denote the resonant, or singular condition.) As flow
coefficient is changed, the value of f will also change, but as Fig. 1.2
illustrates, f is minimum at resonance. Thus it is surely accurate to assume f
constant when • is near _*.

For the particular case defined above,

f=0; n=0; b= 1 (4.1)

the solution of Eqs. (9 through 11) of [1] can be written, in notation of [1],

A = cz r1- i/_ + _r -2 + y (4.2)

i
w = i [or(2 - _) rl-i/__ [3r-2 + Y] (4.3)

i
rP = -2_ot(2 - _) rl- i/_ + (i - _) 13r-2 _ (i + _) 7 (4.4)

The boundary conditions

A(1)= 1 ; W(1) =0 ; P(rF)=0 (4.5)

allow [3 and 7 to be expressed in terms of ot , and provide the real and
imaginary parts of cx as follows:

G -2 M
- G2+M 2 • (1+ rF) + G2+M 2 (1- rF2)(_real (4.6)

15



G M
Oqmag - G2+M 2 • (1- rb2) + G2+M 2 • (1+ r_) (4.7)

where these definitions apply:

In rF
1._ to-

O
(4.8)

G = - 4rF sinO - 8 OrF cosO +
1-02 1+302

Or 2 + •
(4.9)

M = 4rF cosO - 8 OfF sinO + 2 (1+ r_:2) (4.10)

Eqs. (4.6) and (4.7) indicate that there is a singularity only when G
and M vanish separately, and solving Eqs. (4.9) and (4.10) gives the
conditions

2
(3 rF-1) 0*2

cosO* - 2(1+40"2)r 3 (4.11)

2 , (3+7r 2)l+rF+O 2

(4.12)
sinO* - 40,r3(1+40,2 )

which in tum can be solved to discover that, for this case (Eq. (4.1),
resonance occurs at

O* =0.15464 if rF= 2.08 (4.13)

The singularity is clearly a s_p-le pole, and one may Use the foregoing
results in Eq. (4.4) to find the real part of the pressure singularity, needed
for Eq. (2.43). Because G and M vanish there, derivatives with respect
to O* will appear:

g
=

.=
=

16



O*G'(O*) = -4 rF [(- _-_ + 2) cosO* - 20*(- ) sinO*

1 _ [1+O .2+ (1-30 *2) r2]

0*2 r F

O* t)*

M' (0*) = -4rF [(- _ + 2) sinO* + 20* (- _-_) cosO*]

(4.14)

(4.15)

In present notation, then, the pressure singularity is

P'_I- 1 1 {G'[(1-30 *2)(l+rF 2) 4(1 rF) ]
0-0* G'2+M '2 " -

M' -2 r_)]}+ _-_ [(1-30 .2) (1- rF) + 40 *2 (1+ (4.16)

It is necessary also to find the singularity of the integral in Eq. (2.42):

rF ^ ^ 2

I= j" [r(Ar2 + Br2) + _ (_ _r- _ ]_r)]dr
1

(4.17)

After arduous but straightforward analysis, one finds the result:

-2 r-F2)20 *2 (1+ rv)2 + (1-

]1

I-(0_0,)2 [ L, 2 + M, 2 1 ( 1__._ 1)+{ _-

r F) (1+ )- (1- rF) + [r F - 0, 2 (rF- _F )] cosO*

, i) }
-2 - _-_ (3rF + rF sire3*

This quantity, it should be noted, is a second-order pole.

(4.18)

Inserting Eq. (4.13) into Eqs. (4.16) and (4.18) gives numerical values

for pole strengths in this particular case: (For simplicity, 4) will hereafter be

measured from the appropriate critical value; that is, O* = 0.)
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1
^ m + 2a l 2lc

PRI = - b* • where b* = 0.020166 (4.19)
2/c _ ' 1

m +2--a

1

I = -2c* O2 ; where c* = 0.0005062 (4.20)

Simplified Example Near Resonance

Reduction of equations. It is now possible to illustrate the behavior of

the transient equations (3.42, 3.43 and 3.44) near the resonant point for rF

= 2.08 (chosen for the analytic simplicity which results). Only the singular

parts of the coefficients of • need be kept. Also, because the focus is to be

on the effect of resonance, the characteristic function _c(_) will be assumed

locally to have a constant slope SL. Zero slope would imply neutral damping

for disturbances. Arbitrarily, one may then choose _c(0) = 0, and also

measure flow coefficient from the resonant value. The three transient

equations then reduce to

J

_P - SL • + lc _{+ c* _-_=0 (4.21)

J

lc J{ - b* _ = 0 (4.22)

1

lc q_- 4B_ (_- _'I') = 0

These equations can further be simplified in appearance by making the

following scaling transformations:

¢b = 2Bgb*q

_Y = b*z

J = 4Bg 2b.3
C*

(4.23)

(4.24)

(4.25)

(4.26)

-= 2Bglc ¢ (4.27)
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SL = ¢y/2Bg

so that the three governing equations become

k

z-oq+q¢+_=O

k

(4.28)

(.4.29)

(4.30)

z¢- (q- qT) =0 (4.31)

At ¢ = 0, initial values of the quantities z, k, and q (which must be near 0, of
course) would be specified, and then would be caused or allowed to change,
perhaps under influence of the throttle coefficient qT.

Small perturbations. Because q must be and remain small for the
governing equations to be valid, it seems reasonable to further transform
variables to reflect a small initial value of flow-coefficient disturbance, a:

q=sQ ; z=sZ ; K=82L (4.32)

The governing equations now are

L

sZ- a(_Q + sQr_ + Q2 - 0 (4.33)

L

sL¢_ _= 0 (4.34)

Z¢- (Q- QT) = 0 (4.35)

with initial conditions

Q(0)=I ; L(0)=Lo ; Z(0)=0 ; QT(0)=QT o (4.36)

It is necessary to specify an initial rotating-wave disturbance level
(L0), which might arise from inlet distortion or some similar cause.
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Although e may be considered much less than 1, the equations do not
thereby become linear, because of the singularities. However, the equations
may be expanded in powers of e, and "inner" and "outer" solutions may be
identified. These solutions will be identified and discussed, and then related

numerical solutions will be presented.

Inner and outer solutions. The appropriate "inner" variable is

_'_ _/e (4.37)

and when this variable is used, the inner small-e solution proves to be

Z =0 (4.38)

1 Q-k 1 _.Q (4.39)+_ln [Q+k =2k

1
L = _- (k 2- Q2) (4.40)

where k is a constant related to the initial value of L :

k 2 = 1 + 2 LO (4.41)

The flow coefficient Q defined by Eq. (4.39) and the corresponding

rotating-wave amplitude L defined by Eq. (4.40) are displayed on Fig. 4.1.

This inner solution provides the most significant result of this paper,
that flow coefficient cannot decrease smoothly through a resonance value of

_. Rather, an abrupt drop must occur, to a level just as far below resonance
as it was above resonance when the transient began. During this drop,

rotating-wave amplitude increases to a finite maximum level

Lmax = lk2 = 1 + L0 (4.42)

and and then decreases. It is noteworthy that this increase is limited to a value
of 0.5 above the initial level.

The beginning of the process just described can be imagined to occur
as the result of a reduction of throttle flow _T, which brings • into the range

=

of negative damping; above that level, the terms involving L would not
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appear. Fig. 1.2 shows that amplification begins, for the case of present
interest, when • is about 0.01 above resonance. Consulting Eqs. (4.24) and
(4.32), and assuming that Bg is about 1 and Ic is about 10, one finds that the
choice e = 0.01 places the beginning of the transient (Q = 1) at the beginning
of amplification. That is the value to be used subsequently. It is interesting
that neither the characteristic slope nor the throttle schedule have any
influence on the abrupt, "inner" process.

The influence of initial wave amplitude L0 may be inferred from Eq.

(4.39) or Fig. 4.1. Especially, the limit as L0 vanishes is of interest. In that

limit, k approaches 1, and the initial conditions Q = 1 and Q = 0 will be met
only at _' = _oo, on the "inner" scale. This reasonable result means that if the
initial wave amplitude is very small, then the time for the wave to grow will
be very long, but only on the short time scale of the drop to follow.

One may question why the singular solution goes only one way; why an
increase of • is not allowed. Apparently, • can increase smoothly

through resonance because it approaches resonance through values of • for
which the relevant wave is strongly damped. Then as it reaches values above
resonance, the amplification has no wave amplitude to amplify, and the

amplitude may remain zero as q_ continues to increase.

The "inner" time scale is very short; if e = 0.01, shorter by a factor of
100 than the "outer" scale which is based on _ itself. The outer solution does

depend on the throttle and the characteristic slope; if one is held constant and
the other set equal to zero, the leading outer approximation is simply a
harmonic surge wave with an amplitude matched to the final (negative) inner
limit for Q, with no rotating-wave amplitude, and with phase determined by

matching to the inner value of Z at _ = 0:

L=0 (4.43)

Q = QT- (Q'r + k) cost (4.44)

Z =- (QT + k) sin_ (4.45)

Further consideration of matching shows that, to leading order, the
outer and inner solutions have the same origin, namely where Q crosses
resonance. To first order in _, a phase shift would apply in the outer
solution.
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Thus, a surge transient must follow the sudden drop at resonance,
triggered by that drop. The subsequent course of the surge transient
naturally depends on the throttle schedule and the characteristic slope. In
principle, however, at any subsequent time when the surge transient carries
downward through resonance, another sudden change with rotating-wave
features could occur.

Numerical Solutions

Eqs. (4.33 through 4.36) can easily be solved numerically, of course, and a
number of such solutions for various parameter choices will next be
described. The foregoing theoretical results show that the "inner", abrupt
changes will depend only on initial conditions of Q and (slightly) L. The
throttle schedule and characteristic slope will have effect only on the "outer"

scale; therefore, the figures will present results on that scale (4)-

Slow throttle closure. Fig. 4.2 shows results (on the "outer" scale) of a

numerical solution of Eqs. (4.33 through 4.36), for the indicated parameter
choices, which correspond closely to the theoretical results just discussed.
Amplification was assumed to occur only in the range 1< Q < 0, and damping
only in the range 0 < Q < -4, as Fig. 1.2 implies. The essential action
indicated on Fig. 4.2 results from a slow throttle closure (K1) from an initial

level (K0), just above the amplification range, where both Q and QT agree.

QT=K0- K1 (4.46)

The results illustrate the "inner and outer" solutions; the flow

coefficient slowly descends, and pressure-rise function Z slowly rises, in
response to QT, until the amplification range is entered at Q = 1. Then a

sudden drop (Eq. (4.39)) occurs, together with a burst of rotating-wave
amplitude (L). Following that drop, a surge process begins and continues
indefinitely (The characteristic slope o is zero in this example.)

As anticipated in the discussion of the "inner" solution, the effect of

changing initial wave amplitude L0 from 0.1 to 0.01 is indistinguishable on

the scale of Fig. 4.1, except for the level of L between _ = 0 and 2, where the

drop appears.

One sees that when Q passes through zero again, at about _ = 7,
another sudden drop occurs, with a reappearance of rotating-wave amplitude
L. The reason for this event is that, following the first drop (at about _ = 2),
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Q is negative, and the rotating wave is damped exponentially to a very small
amplitude; but then the surge effect provides enough re-amplification
(between _ about 3 to 7), so that a non-zero resonance occurs when Q
passes down through the axis again. This second "inner" type of wave is
weaker than the first because the corresponding velocity drop is weaker, as

Eq. (4.40) implies.

It should be emphasized that the strength of the surge oscillation shown
in Fig. 4.2 is due to the resonance. Fig. 4.3 shows how the transient would

develop if there were no resonance effect at all. (In the calculations, L was
held equal to zero.) A very weak surge is indicated, as flow coefficient
follows the changing throttle coefficient.

Effect of throttle closure rate. Figs. 4.4 and 4.5 show the

corresponding results if the transient begins at a much higher flow
coefficient, and the throttle closure is much faster. Qualitatively, the results

are the same for the surge effect, and the resonant drop is quantitatively the
same, as expected, because it depends only on conditions existing just when
resonance occurs.

Figs. 4.6 and 4.7 show results when the throttle is abruptly closed at _=
0, to a level calling for a change of flow coefficient from 1.1 to -1.1, which is
below the resonant value. Fig. 4.6 shows that, again, a surge develops after
the sudden transition, but there is no second resonance, because the surge

does not penetrate into the amplifying range of Q between 0 and 1. Fig. 4.7
shows the contrasting result if the rotating wave L is suppressed. In this

case, the surge is stronger. In effect, resonance gives a weaker surge because
the sudden drop happens to place Q close to the level demanded by the new
throttle setting anyway.

Fig. 4.8 shows what happens when the throttle is abruptly closed again
from 1.1, but only to 0. As might be expected, after the first sudden drop,
the flow coefficient hunts around the resonant value, with an indefinite

succession of weak resonant transitions.

Effect of characteristic slope. Next, the effect of characteristic slope
(_) is considered. One expects that positive values will lead to amplification
of surge, and perhaps of rotating waves as well; negative values typically
damp surge, and they certainly suppress rotating stall in axial machines. So
far, only the neutral situation (o = 0) has been discussed.

First, a small positive (destabilizing) slope of o = 0.2 is considered,
with a slow throttle closure. The result, shown in Fig. 4.9, may be compared
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with Fig. 4.2, for which o = 0. The result is similar, except that the surge
induced be the resonance is amplified, as expected. Also, there seems to be
no secondary resonance, presumably because the rotating-wave damping is
so strong.

Fig. 4.10 then shows the result when the characteristic slope is
negative. The surge motion is indeed damped as one expects, but secondary
resonance events of some strength appear. If the slope is more strongly
negative, as in Fig. 4.11, this tendency is accentuated; a succession of ....
resonant transitions occur which are about as strongas thefirst one, and they
occur in rapid succession. The flow coefficient shows a saw-tooth pattem
with time; a sort of "stick-slip" oscillation about the throttle value. The
pressure-rise coefficient (Z) drifts toward negative values, which is opposite
to the trend expected when the throttle closes and the characteristic slope is
negative. Fig. 4.11 may be contrasted with Fig. 4.12 which is the same
except that rotating waves are suppressed. In the latter case, surge-like waves
are weak, and the pressure rise ultimately begins to rise in response to the
throttle. Clearly, resonance is predicted to produce a dramatically different
transient behavior, even when on the "stable" slope of the characteristic.

The successive surge transients shown in Fig. 4.11 continue until the
peaks of Q become negative; then the rotating waves are no longer
amplified. Fig. 4.13 illustrates this effect for a higher throttle closure rate.
After about _ = 5, the resonance no longer operates, because Q stays below
1. Subsequently, Q follows the throttle more closely, and Z steadily
increases as the characteristic slope requires.

Finally, a still steeper "stable" slope of _ = 1 gives the results of Fig.
4.14, in which the tendencies just described are accentuated.

Resonant capture of surge. If a surge transientoccurs about a throttle

setting which is above the range of amplification, and the surge happens to
carry Q into the amplification range, the sigularity "captures" the
oscillation. Figs 4.15, 4.16, and 4.17 show this effect, for a strongly stable
(_ = 1. The throttle is set for 1.1, 1.4, and 2.4, respectively. In each case,

begins at 2.0. Fig. 4.15 shows successive capture, which presumably recurs
indefinitely; Fig. 4.16 shows capture, but insufficient time in the
amplification range for recurrence; Fig. 4.17 shows a case with the throttle
setting so high that the amplification range is not entered at all, and there is

no capture.
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Resonance for Higher Harmonics

Fig. 1.2 was the basis for the foregoing analysis, and it concemed the
first circumferential harmonic for a traveling wave. The singularity was
associated with the lower branch of the wave-speed (f) versus flow

coefficient (Q) function, and f would be quite stationary at zero, near the

singularity, for the particular case chosen for study. Actually, as explained
in [1], the third or fourth harmonics are more technically interesting; they
would be found at higher flow coefficient according to both theory and

experiment.

The shape of the amplification curve for the third harmonic, for
example, is different from that shown in Fig. 1.2; Fig. 2.2 suggests that the
function f(Q) has a cusp at the singular point, and that amplification occurs
for the upper branch of that function. There is virtually no damping on that
branch; damping is associated with a slightly lower wave speed.
Unfortunately, there is no easy way to evaluate singularity strengths in this

case, because the simplification of f = 0 is not available for any reasonable set
of parameters. Nevertheless, one may speculate that equations similar to
Eqs. (4.33) through (4.35) would still apply, after certain changes are made:
For negative Q, amplification is positive; therefore, the sign of the L/Q term
of Eq. (4.34) is changed. It is assumed that the last term of Eq. (4.33)
remains as written, because it depends on the square of Q. Further, it is

imagined that both those terms apply only when Q is between 0 and -4;
otherwise, they are both taken to be zero.

The solution of the revised equations is quite different from the

previous one. The "inner" solution

It, " 1Q =-_ , Z=O ; L=g_'2 (4.47)

applies even with no initial value of L. The maximum L is 8, whereas it was
only 0.5 in the previous case. Also, because there is no damping, wave
amplitude remains high even though Q may pass below the range of
amplification; previously, L would return to zero. Fig. 4.18 shows a
numerical calculation, on the "inner" scale, for the response to a sudden drop
of throttle flow.

Fig. 4.19 follows the response on the long-term scale (Fig. 4.6 shows a
comparable previous case.) Following the initial transient, a surge develops
as before, but now the wave amplitude does not return to zero; in fact, the

next time the surge comes to Q = -1, a new increment of L appears. As one
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would expect, if the characteristic slope is even slightly positive
(destabilizing for surge), this effect is accentuated (Fig. 4.20), and with each
surge cycle, the traveling wave would be kicked to a considerably higher
level. If the slope were negative, no such kick would occur, and L would stay
at the level of 8.

26



5. TRANSIENTS WITH MULTIPLE ROTATING MODES

Away from resonant conditions, the possibility of more than one wave
type should be considered, because two families of rotating waves (fast and
slow) are in principle allowed. Furthermore, many different slow-wave
modes could possibly coexist. That is, instead of Eqs. (3.10) and (3.11), one
would begin with

g -- W [A_1))cos (0- f(1)_) + A_2)) cos (0- f(2)_) + ...] (5.1)

P = P (r,_) + 1P(1)cos(O - f(1)_) + 2P(1)sin(O - f(1)_)

+ 1P(2)cos (0- f(2)_) + 2P(2) sin(O- f(2)_) + ... (5.2)

It seems clear that the Galerkin procedure can be applied only to angle
variation, not time; the various modes are not orthogonal, and therefore

averages over time cannot be defined. If appropriate expressions based on
Eqs. (5.1) and (5.2) are introduced into Eq. (2.2), and then angle averages
and the cos0 and sin0 moments are derived, a very complex set of unsteady

equations result. They were not solved; however, they imply that one should
expect surge-like beat pulsations depending on frequency differences, and
one should expect some exchange effects between modes. These things would
depend on products of amplitudes, of course, and would therefore be weak
unless both component waves were quite strong.

It seems generally unlikely that two or more circumferential modes

would be present in substantial strength at the same time. The various
possible modes are subject to separate and different rates of amplification,
often with resonance for some particular mode. Thus, it seems that one mode
will almost always be singled out by the amplification process, and will

predominate over the others.

For these reasons, the problem of multiple rotating modes is not

pursued further in this report.
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6. CONCLUSIONS

(1) The previous small-perturbation analysis of circumferential
waves, assuming inviscid flow, does not depend on diffuser width; however,
it does allow for radial convergence of the diffuser. Convergence confers
stability in that the critical flow coefficient for the appearance of waves is
reduced. The observation that narrow diffusers are more stable than wide
ones is argued to be the result of boundary-layer displacement effect tending
to make narrow diffusers re!atively more convergent than wide ones.

(2) The Moore-Greitzer analysis for finite-strength transients
containing both surge and rotating stall in axial machines can be adapted for
the centrifugal compression system. In the axial case, the motivation was to
explain "hung stall". In the centrifugal case, the motivation is to predict
events when flow is throttled through resonance. As previously, a Galerkin
procedure is adopted, and a cubic characteristic shape is assumed.

For a transient, it is assumed that wave speed is constant, that only
squares of wave amplitude need be considered, and that flow in the diffuser,
though time-dependent, is quasi-steady. These assumptions permit non!inear
expressions to be derived for pressure change and for a new, second-order
swirl velocity. Except for this swirl, the diffuser velocity field can be
carried over from the previous linear analysis.

The nonlinear equations confirm that negative values at the diffuser
entrance of the coefficient of the pressure wave make the circumferential
wave amplitude grow with time.

(3) The singularities of interest are simple poles in general. The pole
strengths can be found analytically for a particular case of the fundamental
mode and radius ratio of about 2; for that case,propagation speed happens to
be zero.

Using the nonlinear transient equations, it is shown that throttling
through a resonant value of flow coefficient cannot be smooth; flow
coefficient must suddenly drop through that value in a surge-like transient,
accompanied, of course, by a transient rotating wave. As in the axial
analysis, it is necessary to postulate some pre-existing low initial level of
circumferential disturbance, though the particular value chosen turns out not
to be important.

A simple example shows this sudden drop to be an "inner" solution of
the transient equations, while an "outer" solution on a longer time scale
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governs the surge response to the initial excursion of flow coefficient.
Typically, the long-term surge is much stronger than would be expected
from throttle change alone. In fact, if throttle is set above the critical flow
coefficient, the singularity may "capture" the flow, and a surge would occur

purely as result of circumferential-wave resonance.

Numerical results are shown for various parametric choices relating to
the throttle schedule and the characteristic slope. Especially interesting is the

result of ramping through resonance when the characteristic slope happens to
be negative; a rapid succession of surge excursions occur in a saw-tooth

pattern.

(4) For higher circumferential modes, the simple pole type of

singularity occupies a very narrow range of flow coefficient, and strong
amplification seems to dominate for a range of flow coefficient beginning
just below the critical. No analytical solution is available for such a case.
However, it is suggested that the form of the result will involve strong surge
oscillations, accompanied by rotating waves which do not die out, but rather
accrete strength every time the surge passes through the resonant level.

(5) In principle, a number of circumferential modes should be
considered simultaneously, because they all might be candidates to participate
in a transient. It is shown how such a general Galerkin analysis would

proceed, and it is expected that surge-like beat oscillations and mode-
exchange effects could arise. However, it is argued that modes will probably

appear separately because they are separately amplified, especially if
resonance is involved. Thus, multiple circumferential modes are not treated

further.

(6) To construct exact solutions of Eqs. (3.42)-(3.45), one would first
establish a file corresponding to Figure. 2.2, for example, including velocity
and pressure profiles. That information would constitute the quasi-steady
solution to be used as • varies. Eq. (3.45) would have been satisfied in

forming that solution. Next, one would solve the remaining equations by
marching in time; at each time step, the integral in Eq. (3.42) would be
evaluated. Every time that • descends through a resonant point, the

appropriate "inner" transition would be applied.
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Fig. 1.1 Sketch of centrifugal compression system, schematically comprising
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amplitude (L), as functions of outer time variable (_).
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modes such as 3rd or 4th.

Fig 4.18 ART



J I

II II

_,'oo

II IL II

_ o _

"IV _ I

c0 _ o

0 N

\

/

\

==I

N

/

....I

I
0

.,.=_

0

0

C) •

O _

,4



/

zjII I! II

32_
J ,,. I

0

bJ_
°_._

0

v

°_

C_

r_r



APPENDIX A

In [1], owing to length limitations, the solution of the small-

perturbation equations was presented only for parallel diffuser wails (n = 0)
and the first circumferential mode (b = 1). For the rt.cord, the general

solution for any n and any b is described in this Appendix. The
correspondence with equations in [1] will be noted, and, where possible, the
same notation will be used, with the caret (^) applied to specify quantities
arising in that linear analysis. However, in this report, • rather than V is
used to denote mean flow coefficient. Certain new quantities j, x, y, It, and v

appear only in this Appendix; they are defined in the text below.

The applicable inviscid equations for flow in the diffuser are recorded

in Eqs. (3.17)-(3.19). Small perturbations are assumed, in terms consistent
with Eqs. (3.20) and (3.21), and with Eqs. (6)-(8) of [1]"

v • A W__eib_ Pe ib_ (A.1)
= r + A eib_ ; _- ; dP =

The three Euler equations for small disturbances then become, instead of

Eqs. (9)-(11) of[l],

^ r2_r =Vr n [r_,r- (1- n) A] + ib (1- fr2)_, - 2W + 0 (A.2)

A A A A

Vrn(rWr + W) + ib (1 - fr 2) W + ir P = 0 (A.3)

A A A

r Ar + (1 - n) A + ibW = 0 (A.4)

The boundary conditions corresponding to Eq. (12)-(14) of [1] are now, at
the diffuser entrance (r = 1),

^ ^

A(1)=I ;W(1)=0 (A.5)

and at the diffuser exit (r = rF),

A

P (rF) = 0 (A.6)

_lc foregoing equations reduce to those in [1] ifn and b are set equal to 0 and

l, respectively.
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The solution of this system of equations for P, A, and W has the
following form (only P was given in Eq. (15) of [1]):

^ [I_ ^ ^ ^ pap h A ^ A ^bP- 1P1-K2P2- 1]+i [K2P1 +K1P2- PP2] (A.7)

^

A=r
A

[I_1 (Ylj3 - Y2jl) - K2 (ylj4 - Y2j2)] + (it + 1 -n) ryl
^

+ (! t + 1) r j2 + ir [K-2 (Ylj3 - Y2jl) + K1 (Ylj4 - Y2J2)] (A.8)

^ ^ ^

bW = K1 [(It + 1) ylj4 + (it + 1 - n) Y2J2] + K2 [(It + 1) Ylj3 +

(It+ 1- n) Y2jl] + i { - I_1 [(It + 1) Ylj3 + (It + 1 -n) Y2jl] +
A

K2 [(It + 1) Ylj4 + (It + 1 - n) Y2J2] + r (Y2- Yl) } (A.9)

where, corresponding to Eqs.(16)-(18) of [1], the following definitions
apply:

p1A=bO[cosz^-b2 rn(Ylj3- Y2jl)]- (1 ' fr2) [(It + 1) Ylj4

+ (It+ 1- n) Y2j2]

^ • ^
P2 = _- [sin z- b2r n (Ylj4 - Y2j2)]

+ (1 - fr2) [(It + I) Ylj3 + (It + 1- n) Y2J1] (A.11)

^ •
PP1 =_rnb2 [(it + 1) y2+ (it + 1 - n)yl] (A.12)

^

PP2 = b2(1 - fr 2) (Y2- yl) (A.13)

Two parameters involve n and b:

. .2gt=- 1+_+ b2+ -_- (A.14)

v=n-3-2It
7

and certain functions have the def'mitions which follow.

(A.15)
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A r-n r2-n b

z = (---ff-n+ f 2-_n)_ ifn _e0 (A.16)

^ bz=(Inr+ r2)_ ifn=O (A.17)

rV+_

Yl - - v+l (A.18)

rg-1

Y2 - - v+ 1 (A.19)

A

It may be noted that z is the same as t5 defined in Eq. (4.8) when f = 0.

The following integrals require numerical evaluation, in which x

denotes the variable of integration from 1 to r:

r
A

jl = I x'(g+n) cos z(x) dx (A.20)

r
A

j2 = I x'(g+n) sin z(x) dx (A.21)
I

j3 = I x-(3n-1
A

+ v)/2 cos z(x) dx (A.22)

r
A

j4 = I x -(3n- 1 + v)/2si n z(x) dx (A.23)
1

Inspection shows that the solution just described automatically satisfies

the boundary conditions (Eq. (A.5) at the diffuser entrance. Those

conditions require modification [1] if the rotor blades are not radial at the
A A

rotor exit, of course. The constants K1 and K2 may be chosen to satisfy the

boundary condition at the diffuser exit, Eq. (A.6), with these results:
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A A A A A A A

K1 = [(Pl PP! + P2 PP2)/(P12 + P22)]r = rF (A.24)

A A A A A A A

KI = [(P1PP2- P2 PPI)/(P12 + P22)]r = rv (A.25)

The latter boundary condition is changed if there is any recovery of dynamic

head at the diffuser exit, as explained in [1].
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NOTATION

The notation in this Report is consistent with that in [1] and [4], because

the analysis is, in effect, an amalgamation of those previous two papers.
lengths are in ratio to the radius of the diffuser inlet (rotor discharge).

A

mf

AM

AR

a

B

Bg

b

b*

C*

FT

f

amplitude of cosine part of circumferential wave of radial
velocity disturbance, Eqs. (3.10), (3.20)

G

g

H

I

J

K0

All

effective flow area

imaginary part of disturbance A in [1], Eq. (3.35)

real part of disturbance A in [1], Eq. (3.35)

reciprocal time-lag parameter of blade passage, Eq. (3.4)

amplitude of sine part of velocity disturbance, Eq. (3.20)

inertia parameter for surge ("Greitzer's B")

mode number for circumferentially-traveling wave

pole strength for pressure disturbance, Eq. (4.20)

pole strength for integral, Eq. (4.20)

throttle characteristic function, Eq. (3.8)

coefficient of propagation speed of circumferential disturbance, in
laboratory frame, Eq. (3.12)

function of exit radius and flow coefficient defined in Eq. (4.9)

disturbance of axial flow coefficient, Eq. (3.5)

height parameter of cubic axisymmetric characteristic, Fig. 3.1

integral expression defined in Eq. (4.17)

square of disturbance wave amplitude at diffuser entrance, Eq. (3.39)

ititial throttle setting, Eq. (4.46)
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K1

k

L

Lo

l

li

M

m

n

P

PF

PT

P

rate of throttle closure, Eq. (4.46)

constant in "inner" solution, Eq. (4.41)

amplitude of circumferential disturbance of radial velocity, Eq. (4.32)

initial value of L

diffuser width, Eq. (2.1) and Fig. 2.1; generally a function of radius

length of inlet section before rotor, Fig. 1 of [4]

effective flow length of system up to rotor exit, Eq. (3.4)

function of exit radius and flow coefficient defined in Eq. (4.10)

duct-flow parameter of rotor entrance, Eq. (3.6)

exponent describing diffuser convergence, Eq. (2.1)

static pressure in diffuser

plenum pressure to which diffuser discharges

upstream total pressure

pressure coefficient, Eq. (3.7)

w

P angle-averaged pressure coefficient, Eq. (3.7)

Pqs

dP

1P

2P

PM

quasi-steady pressure coefficient

wave-like part of pressure coefficient, Eq. (3.7)

amplitude of cosine part of pressure wave, Eq. (3.11)

amplitude of sine part of pressure wave, Eq. (3.11)

imaginary part of pressure-wave amplitude from [1]
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PR

Q

q

r

rF

S

SL

t

U

V

W

W

X

Y

Z

z

7

real part of pressure-wave amplitude from [1]

nonlinear disturbance of flow coefficient, Eq. (4.32)

nonlinear disturbance of flow coefficient, Eq. (4.24)

radial coordinate (relative to radius of diffuser inlet)

radius at diffuser exit; radius ratio of diffuser, Fig. 1.1

shut-off parameter of cubic axisymmetric characteristic, Fig. 3.1

local slope of compressor characteristic, (Eq. (4.21)

time

wheel speed at rotor exit (diffuser inlet)

radial velocity in diffuser

width parameter of cubic axisymmetric characteristic, Fig. 3.1

circumferential velocity in diffuser

second-order swirl, Eq. (3.21)

potential for wave-like velocity disturbance, Eq. (3.5)

nonlinear disturbance of pressure-rise coefficient, Eq. (4.32)

nonlinear disturbance of pressure-rise coefficient, Eq. (4.25)

coefficient in analysis for f = 0, Eqs. (4.2)-(4.4)

coefficient in analysis for f - 0, Eqs. (4.2)-(4.4)

coefficient in analysis for f = 0, Eqs. (4.2)-(4.4)

initial small disturbance of flow coefficient, Eq. (4.32)

strength of wave disturbance, (Eq. (4.26)
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flow coefficient based on velocity at rotor exit and wheel speed there

h° actual pressure-rise coefficient, Eq. (3.3)

_c axisymmetric characteristic function, Eq. (3.13)

_co height parameter of axisymmetric characteristic function, Eq. (3.13)

0 circumferential angle coordinate, laboratory frame

angle coordinate in frame of traveling wave, Eq. (3.12)

O function of exit radius and flow coefficient, Eq. (4.8)

p density

o redefined slope of characteristic, Eq. (4.28)

blade-passage lag coefficient

time coordinate; rotor travels one radian in unit time

redefined time coordinate, Eq. (4.27)

_' "inner" time variable, _/e

Superscripts

* at resonance

^ obtained from the linear analysis of [1 ]

O) identifies traveling mode in Eqs. (5.1), (5.2)

(2) identifies traveling mode in Eqs. (5.1), (5.2)

primes denote differentiation in Eqs. (4.14) and (4.15)
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Subscripts

o at rotor entrance

1 at diffuser entrance

F at diffuser exit

T pertaining to throttle (except PT, which means ambient toal pressure)

partial differentiation denoted by subscripts
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