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2 EBPVD Coating Constitutive Tests

2.1 Specimen Design

The EB-PVD coating material has ahighly columnar microstructure, and as aresult it was expected
to have very low tensile strength. To be able to fabricate the required compression and tensile specimens,
a substrate was required to provide structural integrity for the specimens. Substrate and coating
dimensions were adjusted, based on data previously generated under NASA Contract NAS3-23944 for
plasma sprayed thermal barrier coating, to provide sufficient sensitivity to resolve the projected loads
carried by the EB-PVD coating.

The use of two distinctively different strain transducer systems, for tension and compression
loadings, mandated two vastly different specimen geometries. Compression specimens were of a short
tubular configuration, as shown in Figure 1', with 0.705 or 0.660-inch inside diameters, 0.022 or
0.045-inch substrate wall thicknesses, and 0.085 or 0.075-inch coating thicknesses, respectively.
Specimen length for all compression specimens was 0.874 inch.

The tensile specimen geometry used in the program is shown in Figure 2. The long, tubular
configuration was required to accommodate internal mounting of the biaxial, capacitive transducer
shown mounted in a cutaway biaxial specimen in Figure 3. Offset of the gage section from the center
of the specimen was necessary to provide appropriate space for the sensing element (body) of the
transducer, as it should not be exposed to elevated temperatures. Substrate wall thickness for all tensile
specimens was in the 0.0050 to 0.0067-inch range with an EB-PVD coating thickness range of 0.050
to 0.105 inch. Although thinner substrates would be desirable, machining and coating practices did not
permit further reduction.

2.2 Test Setup

2.2.1 Compression Setup

Testing of the tubular compression specimens was performed using the setup shown in Figure 4.
The compression load train consisted of two loading anvil assemblies mounted on the stationary load
cell and the hydraulic actuator shaft of a 22 KIP capacity MTS, servo hydraulic test machine. The
loading anvil assemblies were composed of 1-inch diameter SiC and AD995 rods mounted in tandem
with the SiC rods positioned in the hot zone, at the specimen-anvil interface. The AD995 rods were
supported in water-cooled, flanged collets. Parallelism between the SiC anvil faces was adjusted to
better than 0.0005 inch.

Heating of the test specimens was accomplished using an Instron Model 3118-008 high
temperature short furnace with a 1.13-inch diameter by 3 1/2-inch long cylindrical working hot zone.
The specimen was sandwiched between the two SiC anvils, and the assembly was centered in the hot
section. Temperature deviation from the nominal within the specimen gage section was measured to
be less than +5°F.

Strain measurements were made using an Instron Model 3118-151 capacitive strain transducer
with a working range of 0.080 inch. The transducer employs two, small diameter, alumina reachrods
to transfer the generated displacement to the sensing elements. The reachrods penetrate the high
temperature furnace through small, strategically located ports, creating minimal thermal disturbance.

! Figures and tables are given in Section 4.
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Contact by the reachrods to the load train was made on the loading anvils immediately next to the
specimen/load anvil interfaces, thereby minimizing measurement of extraneous strains. In addition to
the use of the extensometer, the room temperature tests were instrumented with strain gages to obtain
additional data on coating behavior.

Loading of the specimens took place under appropriate crosshead displacement control, which
produced an average strain rate of 2x10* sec.

2.2.2 Tension Setup

Testing of the tubular tensile specimens was performed using the test setup shown in Figure 5.
The setup utilized the 22 KIP MTS servo hydraulic test machine used in the compression tests. The
specimens were coupled to the test machine through plug type, pinned, superalloy extension rods, which
in turn were attached to pinned couplings at both ends of the specimen, as shown. Use of the pinned
couplings facilitated final alignment of the specimens.

Heating of the tensile specimens was again accomplished with the Instron high temperature short
furnace used in the compression test setup. The specimen gage section was centered in the hot zone of
the furnace, and the shanks of the specimens extended to the outside of the furnace, where they were
coupled to the extension rods. Additional insulation was provided around the extension rods to reduce
heat loss through the rods and thereby enhance generation of a more uniform temperature profile within
the gage section of the specimen. The maximum observed deviation from the nominal test temperature
within the gage section was + 11°F. Water cooling of the upper extension rod at its connection to the
pinned coupling was required to prevent heat conduction to the load cell of the test machine.

Strain measurements were made using a high temperature, biaxial, capacitive strain transducer
developed by SWRL The transducer consists of two sets of capacitive sensing elements housed in the
body of the transducer. These elements are capable of measuring axial and torsional strains
independently. In these tests the transducer was used in the axial mode only. The transducer is mounted
inside the tubular test specimen with two sets of three mounting arms equipped with knife edge type
contact points, as shown in Figure 3. The arms are internally water cooled, permitting their use at high
temperatures. The arms exert sufficient contact force to support the transducer inside the specimen in
a stable, vertically suspended position. Initial positioning of the supporting knife edge contacts
establishes the starting gage length for strain measurements. The small water cooling lines and the
miniature electrical cables of the transducer are routed through appropriately sized holes in the lower
shank of the specimen located above the pinned, extension rods. The biaxial transducer was used on
all tensile test specimens for strain measurements. On two of the tensile specimens, supplemental strain
measurements were made using the reachrod type Instron extensometer utilized in the compression test
setup. In addition, some of the room temperature tests were instrumented with strain gages to obtain
additional information regarding the behavior of the EB-PVD coating. This attempt appeared to be
unsuccessful because of premature debonding and possible localized reinforcing effect of the bonding
agent used in the installation of the strain gages.

2.2.3 Test Matrix

The test program was comprised of 15 compression and 18 tensile tests. All the tests were
conducted at an average strain rate of 2x10™ sec”. The test temperature range was between 75 and
2200°F. Identification numbers of the specimens tested, the type of specimen construction, such as
substrate, coated, etc., test modes and test temperatures, and relevant dimensional data for the
compression and tension specimens are summarized in Tables I and 11, respectively.
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As evidenced by the test matrices, baseline (substrate) data, in both compression and tension
modes, were generated for nearly all test temperatures, as permitted by specimen availability. Testing
of the coated specimens was divided between standard, monotonic compression and tension tests and
optional tests. Optional tests covered modulus probing, stress relaxation behavior, creep, and multiple
unloading and reloading paths, as shown in Tables I and II.

2.2.4 Correlation of the Strain Measurements

To verify the accuracy of strain measurements using the high temperature Instron extensometer,
two of the compression specimens, No. 20 (thin wall substrate), and No. 18 (thin wall coated), were
instrumented with foil type strain gages in a half bridge configuration. Strain data obtained with the
two measurement methods on the substrate specimen were in good agreement. The coated specimen
exhibited a slightly diverging trend until the substrate reached plastic values. Subsequent readings
tracked in good agreement.

During performance of the tensile tests, attempts were made to measure the relative strain behavior
of the substrate and the EB-PVD coating. Two tensile specimens, 652801 and 652805, were instrumented
with foil type strain gages. On specimen 653801, the strain gages were mounted with a light coat of
M-Bond 200 adhesive. The strain gages prematurely debonded during the test, and no useful data were
obtained.

On specimen 652805, the intended sites for the strain gages were prepared by filling the voids
between the columnar structure of the coating with AE-10 bonding agent until an even area was
established for gage mounting. The strain gages were again mounted with M-Bond 200. Relatively
early debonding was again observed during the loading process.

Strain values generated by the strain gages were approximately a factor of two lower than those
obtained by the extensometers. This difference in amplitudes may imply a localized reinforcing effect
by the additional bonding agent applied. .

A custom built "spider" like clip gage was also mounted on the coated surface of the specimen.
This extensometer was selected over the high temperature Instron extensometer used on the compression
specimens because of its ability to measure larger strains. Readings between the biaxial extensometer,
mounted on the substrate, and the "spider” gage were in good agreement below the 0.005 in/in strain
amplitude. At approximately 0.005 in/in strain amplitude, the clip gage trace shows a sudden change
in continuity, implying a possible partial debonding of the coating.

The high temperature Instron extensometer was used on specimens 652803 and 653704 to monitor
strain behavior of the EB-PVD coating. As in the case of the strain gage measurements on specimen
1652805, the strain values obtained on the coatings were approximately a factor of two lower than those
measured on the substrate.

2.3 Data Reduction

2.3.1 Composite Specimen Model

In order to deduce the mechanical response of the ceramic from the test data of the
ceramic/substrate bimaterial system response, an analytical procedure was developed. Typically, the
response of the substrate may be considered as elastic - perfectly plastic. In compression and in tension,
the bimaterial response is generally bilinear. In the compression tests, the onset of the bilinear response
is assumed to occur when the substrate becomes plastic, as shown schematically in Figure 6. However,
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in the tension tests, the bilinear response is attributed to cracking and debonding of the ceramic, after
which the load is assumed to be carried by the substrate. A schematic of the tension test behavior is
shown in Figure 7.

The deduced ceramic response when the substrate is perfectly plastic or the ceramic debonds is
trivial. Static equilibrium is sufficient to determine the loads in both components. When both materials
are linearly elastic, however, the system is statically indeterminate. Thus, it is necessary to apply
compatibility conditions, in addition to static equilibrium, to solve for the individual loads in the ceramic
and substrate. As this solution is non-trivial, the purpose of this subsection is to describe the development
of the formula necessary to deduce the loads and hence the response of the ceramic. A detailed description
of this development is given in Appendix A.

The assumptions are that (1) both materials are linearly elastic, (2) the axial strains in the ceramic
and substrate are equal, (3) no debonding occurs, (4) the specimen does not buckle, and (5) the measured
loads and strains are not influenced by end effects. Note that in the following analyses and discussions,
all loads are taken as tensile and all pressures are considered to be positive. The mathematical symbols
used in the derivations are defined in Appendix A.

The test specimen, shown in Figure 8, is subjected to an axial load, Py, and the corresponding

axial strain, ¢,,, is measured. To deduce the individual stress state in each material, the ceramic and
substrate were considered to be closed-ended, thick-walled cylinders [1,2]° whose state of stress is
described by

%= 1r(ciJf b * (cff :72) (1a)
e A2
0= cf-b; rzg:izf;) (1¢)
and
O = 1c(bfi o (bf-l-) ::2) @a)
) b_fib;’ rzﬁﬁziz) )
o = -pb®> _pb’a’ 2c)

bz_az rz(bZ_a?.)

for the ceramic and substrate, respectively.

2 References are given in Section 3.
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The elastic modulus and Poisson’s ratio of the ceramic, denoted by E. and v, are generally
different from those of the substrate, denoted by Es and vs. The result of these differences in the
mechanical properties is an "interfacial" pressure, p, which comes about with the application of an axial
load, shown schematically in Figure 9. During a compression (tension) test, the substrate tries to expand
(contract) radially more than the ceramic. Thus, there is a pressure (suction) at the ceramic/substrate
interface. This interfacial pressure is related to the material properties (see Appendix A) through

_ VcEsAsP C—VSECACP s
 R{EAS[(1 - 2vo)b? + (1 +Vo)e?] + EcAcl(1 - 2vs)b* + (1 +vs)a®])

P €)

The pressure results in a triaxial state of stress for the ceramic and substrate, as is seen from Equations
(1) and (2).

Because the system is statically indeterminate when both materials are linearly elastic, it is
necessary to apply compatibility conditions, in addition to the equilibrium condition, to solve for the
individual loads in the ceramic and substrate. While the details of this work are given in Appendix A,
it can be shown that the load in the ceramic is related to the total applied load through

Pc=K(Ec)Pr 4
where, for convenience, K(E.) is defined as

bYEcAc(] —2Vs) + EsAs(1 = 2Vo)V.EcAc + DEcAc
DEA; + bHEAc(l - 2v5) + EsAg(1— 2V¢)] (VsEcAc +VcEsAs) + DEcAc

K(E:)= (&)

where
D =EAg[(1-2v)b + (1 +Ve)e ]+ EcAc[(1 = 2v)b® + (1 +V)a’] (6)

It is possible (see Appendix A)to relate the ceramic modulus used in Equation (4) to the measured
axial strain and applied load by

S,C, - EP ; { K(EJ)+ b{ VcEsAsK(Ec) ~VsEcAc(1-K (Ec))j| a- 2VC)} o)
cfc D

Although Equation (7) can be reduced to directly solve for the ceramic modulus, it was more convenient
to solve for the modulus by iterating on the ceramic modulus until the right-hand side of Equation (7)
agreed with the corresponding axial strain.

Thus, for a given axial strain and applied load, Equation (7) can be used to determine the ceramic
modulus, knowing the substrate modulus, Poisson’s ratios for both the ceramic and the substrate, and
the specimen geometry. The ceramic modulus can then be used to calculate the axial load in the ceramic
by Equation (4). Equation (1) is used to calculate the triaxial stress state in the ceramic.

The technique described above is only valid when both materials remain linearly elastic. During
the compression tests, the substrate becomes plastic (taken to be perfect-plasticity). Conversely in the
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tension tests, the substrate remains elastic, but the ceramic undergoes severe damage in the form of
cracking and/or debonding. In either situation, the linear elastic approach is not valid and an additional
technique is required to analyze the test data.

For the compression tests, the substrate is assumed to become perfectly plastic for strains greater
than a critical strain, €., after which the substrate is assumed to carry no further load than the load,
Py corresponding to flow in the substrate. The system is then statically determinate. From static
equilibrium, the axial load in the ceramic is simply the difference between the total applied load and
the load in the substrate, Pj,,. Thus, -

PC=PT—Pﬂaw )]

Further, the interfacial pressure is assumed to be nonexistent. As a result, the state of stress becomes
uniaxial, as seen from Equations (1) and (2).

As was noted previously, cracking in and/or debonding of the ceramic occurs in the tension testing.
Because damage is not accounted for in the analysis, the linear elastic analysis is valid only to the onset
of severe damage to the ceramic. Presently, no technique is used to analyze the bimaterial response
beyond this point.

2.3.2 Data Reduction Procedure

The previous discussions described the development of the analytical technique used to deduce
the ceramic response from the ceramic/substrate bimaterial response. The following discussion describes
how to exercise the analytical technique to systematically reduce the experimental data (i.e., applied
load and corresponding axial strain data). A flow chart of this analytical procedure is shown in Figure
10.

In order to reduce the bimaterial response, specimen geometry and substrate material property
data are required. The substrate modulii in tension and compression were determined as a function of
temperature from tests conducted at SWRI. The data are shown in Figure 11. An "eyeball" fit to these
data is used to interpolate to intermediate temperatures. The substrate modulii are compared to apparent
modulii data derived from dynamic modulii data [3]. Poisson’s ratios for the ceramic and substrate
were taken as 0.25 and 0.4, respectively. It i i ’s rati
second-order effect on the deduced response.

The applied load and corresponding axial strain are also required inputs. If the axial strain is less
than the critical strain denoting the onset of plastic behavior in the substrate, an initial estimate of the
ceramic modulus is made. From this estimate, the right-hand side of Equation (7) is used to compute
an axial strain. If the computed axial strain does not reasonably agree with the measured strain, the
ceramic modulus is adjusted, and this iterative process is repeated until the strains agree. Once the
ceramic modulus is determined, the triaxial stress state is computed using Equation (1).

Should the axial strain exceed the critical strain denoting the onset of plasticity in the substrate,
the axial load in the ceramic is simply calculated by taking the difference between the applied load and
the load corresponding to plastic flow of the substrate. The uniaxial stress state is computed by ignoring
the interfacial pressure, as previously discussed.
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Hooke’s law

1
e§=;5;[of,—vc(cf,+c€9)1 ©)

is used to relate the stress state of the ceramic coating to the axial strain. As it is convenient to plot
Hooke’s law so that the slope of the plot is identically equal to the elastic modulus, o, —v(OE +65) is
plotted against the axial strain in the ceramic. ’

2.3.3 Compression Data

The results of the compression testing of the exposed and unexposed ceramic/substrate bimaterial
specimens are shown in Figures 12-19. These datainclude the assumed and measured substrate response,
the measured bimaterial response, and the deduced ceramic response. The substrate and bimaterial
responses are for uniaxial compression along the tube axis. It should be noted that the small dip in the
deduced ceramic response comes about from the difference between assumed and actual substrate
responses near the onset of yielding in the substrate.

The compressive ceramic modulus of the exposed and unexposed bimaterial specimens is given
as a function of temperature in Table IIl. Figure 20 shows these data as a function of test temperature.

2.3.4 Tension Data

The results of the tension testing for the unexposed ceramic/substrate bimaterial specimens are
shown in Figures 21-31. These data include the measured bimaterial response and the deduced ceramic
response. The bimaterial response is for uniaxial tension along the tube axis. As was previously noted,
the ceramic begins to crack and/or debond prior to yielding of the substrate. Thus, both materials are
assumed to be linear elastic throughout these calculations. The computations were carried only to the
point where the ceramic was thought to undergo severe damage.

The ceramic modulus in tension of the unexposed bimaterial specimens is given as a function of
temperature in Table IV. Figure 32 shows these data as a function of test temperature.

2.4 Data Interpretation

2.4.1 Compression Data

The substrate modulus test data are plotted in Figure 11, along with Pratt & Whitney-supplied
dynamic modulus data. Static data for the tension and compression tests were in good agreement with
each other at the various test temperatures, and slightly higher than the dynamic data. The test values
for the compression modulus at 1000°F are quite low, indicating a possible misalignment of the single
crystal axis relative to the test direction.

The ceramic modulus is inferred from the test records plotted in Figures 12-19 by taking a single
point fit to the bimaterial test curve at a point in the perceived lincar regime. The analysis method of
Section 1.3 was then applied to derive the ceramic reponse below the yield strain of the substrate. The
resulting linear value of modulus is shown against each of the ceramic curves, As will be discussed for
each case, this approach was not always successful due to nonlinear behavior of the composite specimen
at low strains. Figure 20 plots the resulting ceramic modulus results versus temperature. Shifting lines
for some of the data occur as a result of applying engineering judgment to some of the test results. These
judgments will be presented below, for each test case.
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The apparent ceramic modulus at room temperature seems exceptionally high compared to the
trend line through the rest of the data. The RT test record has an anomaly, seen in Figure 12, when
compared with the other test records. The bimaterial stress-strain curve appears to be trilinear, rather
than the expected bilinear form. The yieldpoint of the substrate is set in this figure to the second break
point in the bimaterial response curve. The result using the first break point was visibly less satisfactory
in terms of the deduced ceramic response, resulting in an increase in the modulus of the ceramic after
the break. The modulus fit used the two segments below the knee, as indicated. The resulting stress-strain
curve for the ceramic indicates a continued linear response, rather than a softening response. The second
linear region seems implausible. Most likely, the substrate modulus is far off, and the ceramic response
should be linear over all three of the linear portions of the test record. Use of only the last segment of
the ceramic stress-strain curve indicates a modulus much more consistent with the extrapolated value
from Figure 20, as shown by the shifting arrow on the data point.

This RT data interpretation is more consistent with the ceramic response at 1400°F in Figure 13,
where the tangent to the ceramic curve does not show a pronounced bilinear break from elastic to inelastic
response. If a straight line is fit to the deduced ceramic response below the cusp, this slope is still valid
above the cusp, for a limited amount of further straining. The 1400°F data in Figure 14 contains a much
longer cusp effect, and it seems that the initial low slope is not valid. Superimposing the two 1400°F
curves gives a better feel for the gradual loss in linear elastic response starting at about 1% strain.

The test data at 1800°F (Figure 15) are linear above the cusp, although the response is offset in
the stress direction, due to the data interpretation system. This is best seen by parallel shifting a
straight-edge below to above the cusp. The linear behavior appears to extend to about 2% strain. The
1800°F data in Figure 16 indicate that the ceramic did not take up load until after about 0.8% strain. If
the two curves are superimposed but shifted in the strain direction, one can again see a reasonable sense
of an initial linear portion of the curve, to about 2% strain, before the ceramic shows nonlinear softening.
The data in Figure 20 for 1800°F have been corrected by taking the fitting point for the data reduction
model to be above the indicated cusp level.

The exposed specimen at 1000°F in Figure 17 is fitted by a high initial elastic slope (see Figure
20). However, if we use the trend from the earlier figures, we might take the modulus to be the fit from
about 0.5% strain out to about 0.1% strain. This value of slope is more consistent with the trend line
drawn in Figure 20, again shown by a shift in the original interpreted test point.

The initial modulus of the exposed 1800°F data (Figure 18) appears low, compared with the trend
line. However, again consistent with the other 1800°F test data, if we take the elastic response from
about 0.9% strain for fitting a linear response up to about 2% strain, the modulus agrees with the
unexposed data. The exposed specimen response at 1800°F (Figure 18) may be very easily superimposed
on the unexposed data (Figure 16). The negligible difference between these two is a strong
contraindication of any effect of exposure, at least at the test temperature of 1800°F.

The 2000°F test data were limited to a very small strain range. The test record was linear. If the
bimaterial response model is applied, the data point shown in Figure 20 predicts a very low modulus
for the ceramic. However, if we assume, consistent with other high temperature test results, that the
ceramic is not active over this range, the test record modulus is reasonably close to the substrate modulus
at 2000°F data. Thus, we recommend using the trend line for this test condition.
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The 2200°F data (Figure 19) also indicate a considerable strain in the bimaterial specimen before
any effect of the ceramic can be seen. After about 0.8% strain, the response is nearly elastic with a
slight effect of softening, due to creep in the bimaterial system (both constituents creeping). If the data
after 0.8% strain are used to fit a modulus result, the data point appears quite consistent with the
extrapolation of the trend line in Figure 20.

The ceramic response in compression is judged to be linearly elastic up to strain levels of about
1-3% strain with an onset of strain softening at that point, up to 1800°F. Beyond that temperature, the
linear strain limit drops again to about 2%, a possible indication of rate effects due to creep. The actual,
detailed results show considerable scatter at low strain levels, and engineering judgment is required to
get consistent modulus results.

The onset of strain softening is seen to increase with strain level, from about 1% strain at RT to
about 3% strain at 1800°F, prior to the onset of significant rate effects. A possible explanation for this
could be the reduced notch sensitivity of the material at the higher temperatures (seen in plasma sprayed
TBC), leading to less fracture sensitivity of the microdefects, in compression.

No effect of residual stress can be seen in the compression data. The strain at which the break
in the substrate response is used for the bilinear curve is shown as an arrow head on the strain scale.
Except for the RT test, the break point is on the order of 0.7-0.75% strain. If we use the likely explanation
of the high breakpoint for the RT test, this breakpoint is consistent with the others.

No conclusion should be drawn regarding the existence of a residual stress for the actual
component condition. The compressive specimen is relatively short, and the substrate is quite thin
(flexible) compared with the component. We believe that the residual stress effect for these conditions
is likely to be too small to detect, given the level of crudeness necessary in this data reduction system.

2.4.2 Tension Data

The tension testing was qualitatively more difficult to interpret than the compression testing data.
The simple reason, of course, is the lack of any significant tensile strength in the ceramic. However,
unlike the expectation prior to test, the ceramic does have some apparent tensile strength. The following
discussion will attempt to provide some interpretation of the tension test results.

In general, the tensile behavior of the ceramic was seen to be elastic, up to a fracture strain. At
that point the ceramic ceased to have axial load carrying capability, but did actto reinforce the substrate.
In fact, the substrate single crystal material was found to exhibit absolutely simple, pure slip at RT
without any indication of slip localization. The strain capacity of the substrate was enormous under
these conditions. While of little design importance, the phenomenon of reinforcement was very striking.
The reinforcement may affect the response of the substrate above the point of fracture of the ceramic.

The tensile testing procedure was changed from the original proposal to better evaluate some of
the unique phenomena of the ceramic’s tensile behavior. Based on the compression test results, we
concluded that exposure had negligible, if any, effect on the ceramic response. We also deduced that
above 1400°F, the ceramic indicated an increasing creep rate. This behavior would also be expected in
tension, but is not judged to be of great importance, given the very limited tensile strength of the ceramic.
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The deduced ceramic response is only meaningful out to the point of maximum predicted load.
Atthat point, the ceramic does fracture (physical evidence during testing), and the load carrying capacity
of the ceramic decreases, probably quickly as the strain is further increased and more cracking occurs.
The test design did succeed in minimizing the effect of the substrate on the tensile bar stiffness, and the
bulk of the inital stiffness response is due to the tensile stiffness of the ceramic.

The RT testing resulted both in pronounced, ideal slip in the bimaterial specimen data (Figure
21), and in sudden fracture of the substrate (Figure 22). The deduced RT tensile modulus was judged
to be higher than the trend line (shown for the compression specimen data fit in Figure 32). The ceramic
fracture strain in Figure 21 is about 0.2% strain. In the Figure 22 result, the substrate may have fractured
prior to achieving fracture of the ceramic. After fracture of the ceramic, the tensile bar load is all being
carried in the metal substrate. Due to ceramic load shedding during fracture, the substrate quickly
acquires enough load to yield.

The first test result at 1400°F (Figure 23) shows linear substrate response following failure of the
ceramic at about 0.2% strain. The second test record (Figure 24) indicates about the same general level
of strain tolerance (0.2% strain), but considerably less stiffness. Vertical shifting of the test results for
superposition indicates significant variability in substrate elastic response. The variability in the test
results in tension, shown for these two specimens and the others, may be due both to thickness variations
in these very thin metal substrates and to the possible effect of the thinness on elastic response of the
single crystal.

The 1600°F data (Figure 25) clearly indicate linear substrate response with the fracture strain of
the ceramic at about 0.1% strain. However, the substrate modulus indicated in the extended elastic
response curve shows a value well below that expected for 1600°F. The low substrate modulus is
consistent with overpredicting the ceramic response.

The 1800°F data in Figure 26 indicate the point of ceramic fracture to be about 0.08% strain. The
second test result (Figure 27) probably has no ceramic strength in spite of what the data reduction system
shows. The modulus of the substrate is again probably too low, resulting in an inference that the ceramic
is carrying load. However, the linear response all the way to about 0.8% strain indicates that this is the
response of the substrate, not the ceramic.

The fracture strains of the ceramic at 2000°F and 2200°F are probably positive, but so small that
they are hard to record reliably (note that Figure 28 is plotted at a very high sensitivity). The data
interpretation problem is compounded by the increased creep effect in the substrate at these temperatures.
The best estimate in the fracture strain comes from the 2200°F record, where the maximum tensile
ceramic strain seems to be about 0.025% strain. The creep in the substrate results in an apparent ceramic
hardening above the fracture strain as deduced by the data reduction model, but this result is not judged
to be real.

The reducing trend in the tensile fracture strain of the ceramic is probably an effect of the residual
stresses. As manufactured, the tensile specimens will lock in a tensile stress in the substrate and a
compressive stress in the ceramic. Due to the very thin substrate used, the load sharing between the
two is significant. If we take the stress-free temperature to be above 2200°F (assuming zero tensile
strength of the ceramic), the predicted residual strain in the ceramic is about 1.4%.
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The tensile testing program included planned load reversals at various strain levels to evaluate
whether the ceramic fractures would close, causing a re-stiffening of the bimaterial specimen. The full
cyclic test records for these tests are shown in Appendix C. The conclusion from reviewing these test
records is affirmative, in that as the strain is reduced to the range of the apparent ceramic fracture strain,
the specimens exhibited higher stiffness, consistent with the stiffness prior to ceramic fracture. The
data also indicate, as expected, that creep in the substrate negates this closure effect unless one were to
drive the specimen into compression (this was not possible in the current loading arrangement). We
therefore conclude that the mechanism of ceramic failure is consistent with reducing the stiffness to
zero above a critical strain level, but requires a bilinear model to account for closure effects as strain is
reduced below the critical value. Creep growth of the substrate must be included to obtain the correct
interaction with ceramic crack closure.

The tensile modulus data have considerable scatter, owing to the extreme sensitivity of the data
acquisition system for the bimaterial specimen. However, the data indications are consistent with the
data obtained in compression. The failure mode in tension appears to be brittle fracture above a small
strain, and the fracture strain may be strongly dependent on the stress-free temperature effect and creep
of the substrate.

2.4.3 Creep Data

Three compressive, sustained load, creep tests were performed on Specimen 21, at three
temperatures: 1400°F, 1600°F, and 1800°F. All three tests were performed at load levels below the
proportional limit of the compression tests performed at the respective temperature levels. Using the
fitted ceramic elastic modulus data from Figure 20 and the applied load value, the elastic stresses in the
ceramic were 11037 psi, 8880 psi, and 7611 psi, respectively.

A viscoplastic model for the composite system is recommended to obtain the correct flow stress
in each material. The reason is that the creep strain in each material is the same as the composite creep
strain. The stress in each material is then that stress which will produce the resulting strain rate and
satisfy equilibrium with the applied load. It can be expected that this stress will not be the same as the
elastic stress, given above. Therefore, before final use of the strain rate versus stress for the ceramic,
it is recommended that Pratt & Whitney apply the viscoplastic model for PWA 1480 at the strain rates
given in Table V, predict the PWA 1480 stress level, and determine a corrected ceramic stress that
satisfies equilibrium with the applied load.

The creep tests show a clear primary creep transition and approach a steady creep rate for each
temperature. The creep rate data in Table V were obtained by a simple, estimated linear fit to the final
portion of the strain versus time plot for these tests, for which the data are given in Appendix D. A
preliminary comparison of the EB-PVD creep rate at 1800°F with that for plasma sprayed coating
(PWA264) indicates that the current TBC is more creep resistant than the plasma sprayed coating.
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TABLEI

COMPRESSION TEST MATRIX

Specimen Substrate P
Inside Ceramic Wall
Specimen Specimen Diameter Thickness | Thickness
Number Type (Inch) (Inch) (Inch)
17 Substrate Compr 1400 0.7046 -- 0.022
18 Coated Compr RT 0.7060 0.085 0.022
19 Coated Compr 1400 0.7061 0.085 0.022
20 Substrate Compr RT 0.7040 - 0.022
21 Coated Str Relax 1400 0.7056 0.085 0.022
Creep 1400
Creep 1600
Creep 1800
Compr 1400
24 Exp-Coated Compr 1800 0.6598 0.069 0.045
25 Coated Compr 1800 0.6598 0.082 0.045
26 Coated Compr 1800 0.6598 0.082 0.045
27 Coated Modulus 400 0.6599 0.074 0.045
Modulus 800
Modulus 1000
Modulus 1200
Modulus 1600
Modulus 2000
28 Exp-Coated Compr 2200 0.6597 0.076 0.045
30 Exp-Coated Compr 1000 0.7060 0.077 0.022
31 Substrate Compr 2200 0.6596 - 0.045
32 Substrate Compr 1800 0.6599 - 0.045
33 Substrate Compr 1000 0.6590 - 0.045
34 Substrate Compr 1000 0.7005 - 0.022
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TABLE II

TENSILE TEST MATRIX

Specimen
Inside Interface Outside
Specimen Specimen Temp | . Diameter Diameter Diameter
Number Type (°F) (Inch) (Inch) (Inch)
B P L —
653601 Substrate Standard RT 0.7506 N/A 0.7632
653605 Substrate Standard 1400 0.7518 N/A 0.7652
653701 Substrate Standard 1800 0.7515 N/A 0.7649
653702 Substrate Standard 2200 0.7524 N/A 0.7652
652801 Coated Standard RT 0.7510 0.7636 0.8690
652805 Coated Standard RT 0.7505 0.7637 0.9620
652902 Coated Standard 1400 0.7507 0.7641 0.9510
653503 Coated Standard 1800 0.7502 0.7630 0.9535
653504 Coated Standard 2200 0.7517 0.7647 0.9495
653602 Coated Standard 1400 0.7499 0.7633 0.9530
653603 Coated Standard 2000 0.7527 0.7655 0.9520
653704 Coated Standard 1600 0.7517 0.7641 0.9422
652802 Coated Optional 1800 0.7525 0.7659 0.9752
652803 Coated Optional 2200 0.7510 0.7636 0.9525
653502 Coated Optional 1400 0.7530 0.7630 0.8635
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CERAMIC MODULUS IN COMPRESSION VERSUS TEMPERATURE
FOR UNEXPOSED AND EXPOSED TBC

TBC-FIN1.DOC

TABLE III

Specimen Temperature Ceramic Modulus
ID ('F) (x10° psi)
Unexposed Il
18A 75 6.96
27A1 400 3.50
27B1 800 2.82
27C2 1000 2.44
27D2 1200 2.52
19 1400 2.31
21D 1400 2.50
21E 1400 5.40"
27E2 1600 2.12
25 1800 2.48
26 1800 0.373
27F2 2000 0.544
Exposed
30 1000 3.79
24 1800 0.957
28 2000 0.®

(1) Specimen was a second test of 21D.
(2) Ceramic modulus is very small.
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TABLE1V

CERAMIC MODULUS IN TENSION VERSUS
TEMPERATURE FOR UNEXPOSED TBC

Ceramic Modulus.

Teme

(°F) (x10° psi)
652801 72 6.15
652805 72 6.12
653502 1400 4.92
653602 1400 0.770
652902 1400 0.874
653704 1600 4.10
653503 1800 4.28
652802 1800 0.607
652803 2200 2.08
653504 2200 2.03
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TABLE YV

CREEP RATE DATA
COMPRESSION TESTS
Temperature Load Strain Rate
)] (Pounds) (in/in/sec)
1400 6110 2.4E-8
1600 5020 5.6E-8
1800 4250 8.3E-8
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FIGURE 3. BIAXIAL TRANSDUCER
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FIGURE 4. COMPRESSION TEST SETUP
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FIGURE 5. TENSION TEST SETUP
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FIGURE 7. SCHEMATIC TENSION TEST RESPONSE
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FIGURE 8. COMPRESSION TEST SPECIMEN

FIGURE 9. SCHEMATIC OF TEST MODEL
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5 Appendix A: Elastic Bimaterial Model

The following is a detailed derivation of the linear elastic model used to deduce the ceramic
response from the ceramic/substrate bimaterial system. Table A-1 defines the mathematical symbols
used in the derivation that follows.

Table A-1
Definition of Mathematical Symbols

a,b,c Inside, interfe d tsie‘ r, scy )
Ac,As Cross-sectional area of the ceramic and substrate, respectively
Uc, Us Radial displacement of the ceramic and substrate, respectively |
e, e Axial strain in the ceramic and substrate, respectively j
) Total applied load and corresponding axial strain

n Pc,P;s Axial load in the ceramic and substrate, respectively

'L Ec,E; Elastic modulus of the ceramic and substrate, respectively
Ve, Vs Poisson’s ratio of the ceramic and substrate, respectively jl
o5, 0 Axial stress in the ceramic and substrate, respectively “
o, 0, Radial stress in the ceramic and substrate, respectively

|| G, Ooo Circumferential stress in the ceramic and substrate, respectively

|| Ecrits P fiow Critical strain denoting plastic substrate behavior and the corresponding}l

axial load

Figure 8 defines the cross-sectional area of the ceramic and substrate which are given by
Ao =1(c*~b?) (A-1a)
Ag=m(b*-a?) (A —1b)

From the thick-walled cylindersolution {1,2], the radial displacements of the ceramic and substrate
are given by
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—r la- 2, A4V a0 Fe _
uC—EC(c’—bz)[(l 2vo)pb©+ 2 cbp Ve (A —-2a)
I S PP Coa.) FE TS | _
us—Es(bz—az)[(l 2v)(—pb)+ 2 b a’(-p)—vs 1t (A-2b)

The radial displacements at the ceramic/substrate interface are given from Equations (A-2a) and (A-2b)
by taking r =b. Thus,

__ b _ 2 2y Fe -

uC—EC(c’-bz)[(l 2vo)pb®+(1+v)pe” =V 1:] (A-3a)
" =———b——[(1—2v)(— bY)+(1+Vs)(-pa’)-v ﬁ] (A4 -3b)
s Es(bz—az) s)—P s)(—P Sk

Assuming no debonding at the ceramic/substrate interface, the radial displacements must be equal.
Equating Equations (A-3a) and (A-3b) and solving for the interfacial pressure, p, gives

VcEsAsPc—VsEcAcPs

= A-4
P T EsAs[(1 - 2ve)b* + (1 + Vo)) + EcAcl(1 —2vo)b2+ (1 +vs)a®l) ( )
The axial strains from 3-D Hooke’s law are given by
1
ef,=E;[of.—vc(of,+o§e)1 (A-5a)
1
& =Es[of, — V(G5 + T3] (A-5b)
The normal stresses in the ceramic are given as
P b?
c c pP
= A —-6a
o" 1C(C2—b2)+(cz"b2) ( )
b? pcib?
R A —6b
m c2_b2 r2(c2_b2) ( )
2 22
ot =pb_, pCcb (A —6¢)

+
CZ_b?. rZ(CZ_bZ)

Similarly, the normal stresses in the substrate are given as
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Py pb?

o = + A-Ta

=" wbt-ad) (b*-ad) ( )
—-pb? pb*a®

o =2 A-Tb

Led b2_a2 r2(b2_a2) ( )
bl 2,2

Osse= pb pb a (A —7C)

p:-g*> ri(b*-a?d)
Substituting Equations (A-6) and (A-7) into Equations (A-5a) and (A-5b), respectively, gives
1

=g g Pt ™1~ 2vcpb] (4 -8a)
1
& =g (P~ 1 - 2vpb’) (A-8b)

Noting that the axial strain in the ceramic must equal the axial strain in the substrate, equating
the axial strains given in Equations (A-8a) and (A-8b) and solving for the load in the ceramic yields

P.= (EcAC ) [Ps— (1 - 2v5)pb*1—n(1 - 2vo)pd’ A-9

Substituting Equation (A-4) into (A-9) and simplifying gives

P.= —D-EIEZ;{DECACPS +b*EA(1-2Vs)

+ EgAg(1 - 2V (VsEcACPs —VcEsAsP o)} (A -10)

where, for convenience, D is defined as
D = EsA (1 - 2vob® + (1 +ve)e’1+ EcACl(l —2vb2+(1+Vg)a’] (A-11)

From equilibrium,
Pr=P.+P; (A-12)
Or, equivalently

Pg=P;,—P. | (A-13)

Substituting Equation (A-13) into (A-10), it can be shown that
P.=K(E:)P; (A-14)
where

K(E,)= bHEA(1—2Vs) + EsAs(1 = 2Vo)V,EcAc + DEcAc
e DEsAs + bz[EcAc(l - 2VS) + EsAs(l - 2VC)] (VSECAC + VCESAS) + DEcAC

A-15)
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Finally, substituting Equations (A-4), (A-13) and (A-14) into Equation (A-8a) yields

G:C: _ P {K(EC)+ b}{ VcEsAsK(Ec) —VsEcA(1 ‘K(Ec))} (1- 2Vc)} (A -16)
E-Ac D
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6 Appendix B: Failed Specimen Photographs
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COMPRESSION SPECIMEN NO. 18, PHOTO NO. 40669
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COMPRESSION SPECIMEN NO. 20, PHOTO NO. 37271
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COMPRESSION SPECIMEN NO. 21, PHOTO NO. 40671

COMPRESSION SPECIMEN NO. 24, PHOTO NO. 37271
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COMPRESSION SPECIMEN NO. 25, PHOTO NO. 31770

COMPRESSION SPECIMEN NO. 26, PHOTO NO. 37269
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COMPRESSION SPECIMEN NO. 27, PHOTO NO. 40672

COMPRESSION SPECIMEN NO. 28, PHOTO NO. 40673
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COMPRESSION SPECIMEN NO. 31, PHOTO NO. 40675
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COMPRESSION SPECIMEN NO. 33, PHOTO NO. 40676
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COMPRESSION SPECIMEN NO. 34, PHOTO NO. 40677
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TENSION SPECIMEN NO. 652801, VIEW NO. 2, PHOTO NO. 40732
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TENSION SPECIMEN NO. 652801, VIEW NO. 4, PHOTO NO. 40734
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TENSION SPECIMEN NO. 652801, VIEW NO. 6, PHOTO NO. 40735
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7 Appendix C: Computer Plots of Compression Tests
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8 Appendix D: Computer Plots of Tension Tests
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9 Appendix E: Computer Plots of Creep Tests

TBC-FIN1.DOC Page -103-



(738) IR

00008 « .oo_ oF odm 124 o.omo_ 00

0°0

-0

" -
. ' :
' ¢ + .
' H ' :
' ' . ’
: . H ‘
H . ] :
3 ‘ : :
‘ . . .

............... deemcnen e cmmesemeasmme e o e mmmmmma i rmenrsm e mmanmmmme e m e mmmmmmememanmmmmmm e e eian de o a e n s e e m———
} I ]
H i H
' . '
' . .
i ' . «
' : '
H . .
' . .
¢ . ' '
H : 1
....................................................................................................... T
' . i
. . .
H ' :
. . .
' ‘
. ' 1
' 1
' . '
.............................. g U R UGNy —a et sna e cae—
' i
. ' :
' . .
. i
. . s
' H
. . .
i i .
. ' .
i H
‘

i
’
PO R, -
v
‘
'
‘
‘
'
'
s
'
1
1
'
'
'
'
'
v
'
]
'
'
'
’
'
'
i
T
v
]
1
'
'
'
'
i
'
'
'
'
1
'
.
i
1
1
H
'
'
'
1
H
i
)
1
1
i
.
i
- cremen
v
'
i
1
'
v
'
'
'
1
i
i
)
.
.
v
i
i
.
.
'
i
'
»
.
v
¢
'
'

:
_l S s i e NIV Ve S (I SN T
~— v H v
H H H H
[ : ' :
. H H .
. . N .
H ' N .
: ! H '
............................................................................................................................................................
N N .
H H
: H
H H
v
'
H

S S R

Q3IvOJ * {IVIMALVA

et ORISR |

viZ NANIDIJS
84/0—-90 123rodd
| #ewnyy T)-X1ddlA 67/0 06—-AvH—$Z

0’8

(NIAND NIvALS

cDla

Page -104-

TBC-FIN1.DOC



00008

{(938) INIL

o.oo_n.n o.omo.n

o.on_S_ o0

0’0

-0

02

.......... e e e oo s V) LT E I T
m - QIVOD ¢ VI3V

-0'9

AlZ NFWIDEAS
BL/1—90 133r0dd
| #ewWoy TI=XIdHIA 6570 06—AVW-C

o8

(NLAND NIvALS

cDls

Page -105-

TBC-FIN1.DOC



000408 o.o_m_ow o.ﬁ_.mon 0°0009 o.O.wow D'00LF 3°000¢ o.,_v_wow G ool

{DIS) INIL

o'

.....................................................

e e et L .................

e e e

m i ,
h_ oo.wP..-..”_w_Eéum_zE -
8?.8 ._4;9% m
e
] SRR SEUS: S e b
et e N m m

-0°C

T

-Q°F

N 4

Y

. o9

<
.
re

IE NINISIAS
BL—390 103r0dd

#owny =Xl 9850 O6—AYW—HZ

-8

-

(NIZMD NIwHLS

E_Cﬂt

Page -106-

TBC-FIN1.DOC



10 Appendix F: MS-DOS ASCII Data Files (Floppy Disks)
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