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CHAPTER 1
INTRODUCTION

The high strength-to-weight ratio of composite materials is ideally suited for
aerospace applications where they are already used in commercial and military
aircraft secondary structures and will soon be used for heavily loaded primary
structures. One problem impeding the widespread application of composites,
particularly thermoplastic composites, is their inherent weakness in compressive
strength when compared to the tensile properties of the same material. This
result is not surprising, given that the composite’s tensile and compression strength
comes primarily from long narrow fibers. The effective strength of these fibers
in compression is generally much lower than their strength in tension due to
fiber microbuckling which leads to additional local fiber buckling and/or shear
crippling, delamination, loss of structural stiffness, and macroscopic compressive
failure. Nevertheless, it is desirable to develop composite systems with the smallest
penalty in compressive strength possible.

Previous work!™® on tough matrix composite laminates containing center
holes indicates that the compressive failure of these composites initiates with
microbuckling of the 0° fibers toward an unsupported surface in 0° plies either
in-plane for interior 0° plies or out-of-plane for surface 0° plies. Compressive
failure in the laminates which did not contain surface Os initiated with in-plane
fiber microbuckling into the center hole. Growth of this initial damage to a
critical size at which catastrophic failure occurs required little additional load. This
result suggests that the compression strength is controlled by initiation of fiber

microbuckling, particularly for the PEEK system of that investigation. The in-
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and out-of-plane fiber microbuckling appears to preceed shear crippling damage
in the systems studied in Refs. 1-4. Furthermore, the fiber microbuckling and
shear crippling often lead to local delamination when the local strain necessary
to accommodate the large localized interlaminar shear strains exceeds the resin
ductility of the matrix. These local delaminations apparently do not propagate (to
become macroscopic delaminations) immediately in composites made with tougher
resins. Eventually, final compressive failure occurs when large scale brooming
and/or generalized delamination.

The significant role of local constraints on the initiation of fiber microbuckling
was also indicated in Refs. 1-4. For example, when +45° fibers were used as surface
plies, in-plane fiber microbuckling appeared to initiate at a strain level which is
much higher than the initiation strain when the 0° fibers were the surface plies and
the microbuckling was out-of-plane. These results indicate that one reason most
compression strength models overpredict the actual compression strengths observed
in experiments is that they make no allowance for free surface effects, i.e. these
models implicitly assume infinitely large laminates. It should be noted that the
term “fiber microbuckling” used in the literature and throughout this dissertation,
refers to large lateral deflections of initially wavy fibers leading to fiber breakage,
rather than a bifurcation instability.

Many theories have been proposed and developed to predict the compressive
strength of unidirectional composite laminates. However, few similar investigations
have been conducted for multidirectional composite laminates, even though these
laminates are more widely used than unidirectional laminates in composite struc-
tural components. Furthermore, an uncertainty in the modes and mechanisms of

compression failures in composites remains because of the lack of a clear under-






standing of all possible modes of failure. In order to more accurately predict the
compressive strength of composite laminates, the strain level at which fiber mi-
crobuckling initiates must be determined. Additionally, the factors that affect this
strain level must be studied systematically. Accurate evaluation of this strain level is
important because this process appears to control the strength of ductile composite

systems.

Objectives and Scope

The primary objectives of this dissertation research have been to develop
a better understanding of the factors that affect the semi-circular edge-notched
compressive strength and to identify the associated failure mode(s) of thermoplastic
composite laminates with multidirectional stacking sequences.

The experimental observations' ~* and the detailed literature review (presented
in Chapter II of this dissertation) suggest at least four factors that affect the
determination of the strain levels at which fiber microbuckling initiates and thus,
partially control the composite’s compression strength. These factors are listed as
follows:

(z) the degree of initial fiber waviness,

(7¢) the fiber/matrix interfacial bond strength,

(i27) the effects of the free surfaces, and

(iv) the nonlinear shear constitutive behavior for the composite laminate.
Throughout this dissertation, waviness and curvature are used interchangeably
when discussing the fiber shape.

Two additional independent variables that are also important in the determi-

nation of the strain level at which either in- and/or out-of-plane fiber microbuckling






initiates are listed below:
(v) the ;)rientation of the supporting plies adjacent to the 0° plies through the
thickness of a laminate and
(vi) the thickness of the resin-rich region between plies.

In this dissertation research, specimens containing two semi-circular edge
notches (on opposite free edges) are loaded in compression at a relatively slow
rate to provide more stable development of fiber microbuckling damage. During
loading, the initiation of in- and out-of-plane fiber microbuckling is monitored.
Most specimens are interrupted at the first indication of fiber microbuckling and
subsequently examined in the scanning electron microscope (SEM). The nominal
strain associated with the initiation of fiber microbuckling is measured. Then,
the measured nominal initiation strain is used in conjunction with two-dimensional
finite element analysis (ABAQUS) to determine the local strain at the notch. This
experimental program is used to provide a systematic understanding of the relative
significance of the six variables (previously ment.ioned) on the initiation of fiber
microbuckling, the compression strength limiting step of thermoplastic composites.
Additionally, it provided valuable details about the fiber microbuckling process and
associated damage development.

Geometric and material nonlinear two-dimensional finite element analysis
(implementing ABAQUS) is used to model the initiation of fiber microbuckling
of both the ideal straight fiber and the more realistic initially wavy fiber. The
models with the straight fibers consider the effects of finite size, free surface, fiber
constitutive properties, and provide an upper limit for the fiber microbuckling
initiation strain levels. Wavy fiber models are used to investigate the effects of

matrix constitutive behavior, initial fiber curvature, fiber/matrix interfacial bond






strength, free surface, and fiber constitutive properties on fiber microbuckling
initiation strain levels.

Following this brief introduction, this dissertation contains an extensive review
of the relevant literature in Chapter II. Details of the materials used and the
experimental procedures are presented in Chapter III. The finite element analysis
models and procedures are detailed in Chapter IV. Chapters V and VI contain
summaries of the experimental and finite element results, respectively. A discussion
of the experimental and finite element results is presented in Chapter VII. Finally,
the conclusions from this investigation and recommendations for future work are

summarized in Chapter VIII.






CHAPTER 1I

REVIEW OF LITERATURE

This chapter reviews the literature pertaining to the compression strength of
composite materials. This review covers compression test methods, failure modes,
existing failure models, and microbuckling and kinking. Additionally, the effects
of each of the resin, fiber, interfacial bond, environment and initial fiber curvature
on compressive strength of composite materials are reviewed. Papers encompassing
the areas of delamination/inherent flaws and damage tolerance (compression after
impact studies) are omitted from this review since they are not directly related to the
research herein. For simplicity, the equations and figures cited in this chapter follow
the nomenclature and units used in the corresponding reference. Additionally, the
nomenclature used is explained with each reference and is considered independent
of the list of nomenclature in this dissertation. This nomenclature list pertains only

to the research herein.

Compression Test Methods

Because of the inhomogeneity of graphite/polymeric composites, the mechan-
ical properties measured are more sensitive to testing equipment and procedures
than are those properties for isotropic, homogeneous materials. A brief overview
of compression test methods, fixtures, and specimens is given in Ref. 5. Leonard®
summarized results indicating that more than one test method may be valid, de-
pending on the type of failure being tested. Reliable compressive properties are the
most difficult of all mechanical properties to acquire because of the sensitivity of
compression tests to a range of factors, including test methods, quality of material,

and uneven loading of specimens.® However, accurate prediction of the compression






strength is important because this mechanical property is typically the most critical
and most susceptible to cyclic loading and environmental degradation.® The most
common compressive test methods are reviewed within this section.

Three American Society for Testing and Materials (ASTM) approved standard
test procedures for compression tests of composite materials include Test for Com-
pressive Properties of Rigid Plastics (D695 — 85),7 Test for Compressive Properties
of Oriented Fiber Composites (D3410 — 75),8 and Flexure Test of Flat Sandwich
Constructions (C393 — 62).° Recently, these standard test methods have been com-
bined into one standard, Test Method for Compressive Properties of Unidirectional
or Crossply Fiber-Resin Composites (D3410 — 87).10

Compression test methods currently in use are generally of three types: the
sandwich beam compression test method, the unsupported compression coupon
test methods, and the supported compression coupon test methods. The sandwich
beam compression test method was evaluated by Shuart.!' The ASTM approved
sandwich beam test method is C393 — 62.° The sandwich construction used in this
test method is typical of many composite applications, but the beam is criticized
because of its fabrication cost and the undetermined influence of the honeycomb core
on the mechanical properties of the composite. Shuart’s results indicate that the
sandwich beam in four-point bending is a viable compression test method. However,
laminate orientation, test temperature, and type of honeycomb core material were
shown to affect the type of beam failure.

Many fixtures have been developed and employed to test specimens with an
unsupported gage length. The standard tests are ASTM D3410-87, Procedures
A and B.'® The most widely used fixture of this type is the Illinois Institute of

Technology Research Institute (IITRI) wedge-grip compression test fixture. This






fixture was developed by Hofer and Rao'? to incorporate the better features of
earlier fixtures and also eliminate many of their problems. This fixture incorporates
trapezoidal wedge grips which eliminate the problems of slippage and wall friction
in the Celanese test methods (ASTM D3410-87, Procedure A). The upper and
lower grips are linked together with precision shafts and linear bearings to insure
alignment. Additionally, the fixture is adaptable to elevated temperature tests.!?
The major disadvantage of this test fixture is that the specimen gage length
(12.7 mm) is very short and the failure mechanisms are thus difficult to observe.
Woolstencroft, Curtis, and Haresceugh'® compared test techniques to evaluate the
unidirectional compression strength of carbon fiber-reinforced plastic (CFRP). They
compared five test techniques, all of which had an unsupported gage length. Their
results indicate that the Royal Aircraft Establishment (RAE) specimen was the
optimum configuration. This specimen has a tapered gage thickness with the
specimen ends mounted in relatively large blocks of aluminum alloy. This specimen
gives a failure level indicative of the unidirectional compressive strength (based on
results from finite element analysis) and does not have an induced secondary stress
state through the thickness of the gage section.

Gurdal and Starbuck’® developed a new compression test fixture to incorporate
the useful features of existing fixtures. The new fixture uses an end-loaded coupon
supported by four circular support pins, rather than plates, to prevent out-of-plane
displacement of the specimen. Additional benefits include a reduction of the stress
concentration due to Poisson’s contraction at the grips and better defined boundary
conditions. A combination of experimental data and finite element analysis indicates
that the fixture and test coupons are adequate for the determination of Young’s

moduli in the principal material directions by using specimens with 0° and 90° fiber






orientations. However, the determination of Poisson’s ratio requires the analysis of
the specimen-to include the effects of the end constraints.

Adsit'® evaluated four techniques, an effort undertaken by the ASTM Commit-
tee D-30 on High-Modulus Fibers and Their Composites. The test methods were
the ASTM D695-85, the Celanese (D3410-75), the IITRI, and the sandwich beam.
The first of these techniques introduces load into the specimen by end- loading
while in the other techniques, the specimens are shear-action loaded. His results
indicate that end-loading (D695-85) unidirectional specimens leads to lower com-
pressive strengths than the other methods. This result occurs because the fibers
are not exactly the same length, a consequence of machining the specimen ends.
It should also be noted that the Celanese, IITRI, and sandwich beam methods all
gave similar results and that the modulus of elasticity was not a function of the
loading method.

The supported compression test methods include those procedures in which the
coupon specimen is fully supported in the gage s;:ction to prevent Euler buckling,
end brooming, and splitting during loading. Typically, the gage section for these
tests is ten to twenty times the length of the unsupported gage sections. Ryder and
Black'” present a good description of these test fixtures. A more recently developed
design used in the aircraft industry is the Boeing fixture.!® In Ref. 17 the specimens
were gripped on one end and pressed against a bearing plate on the other, but they
can be gripped on both ends. This test procedure follows the ASTM Standard
D695-85 in Ref. 7.

Compression test methods have been reviewed by many investigators (Refs. 5,
6,11, 12, 14, 16, 19, 20). This brief review in addition to a more detailed survey of

. . 5,6,14,20 «_ q: . . . .
compression techniques” ' *'“" indicates that one specific technique is not sufficient
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to determine compression strength; each of the methods described have certain
advantages and other disadvantages. However, each of the three basic techniques
provide consistent results for specific cases. The results presented in Refs. 6, 16, and
21 indicate the specimens should be end-loaded with some shear loading induced
through the gripped specimen ends. Additionally, the specimen ends should be
tabbed. Tabs help prevent longitudinal splitting and crushing of the specimen
ends.?! However, the tab surfaces must be carefully machined flat and parallel,
relative to each other, to achieve the best possible specimen alignment and thus,
strain uniformity across the specimen, as shown in Ref. 6.

Rehfield et al?? developed a closed-form solution to predict the stress field
at the laminate-tab interface in unidirectional composite specimens. Reasonable
results (compared to finite element analysis) were presented for two end-loaded

unidirectional composite material systems.

Compressive Failure Modes

The common failure modes observed in composite materials loaded in compres-
sion are reviewed in this section. These failure modes include shear and extension
modes of fiber microbuckling, fiber shear, end crushing, longitudinal splitting, de-
lamination, and Euler buckling. It should be noted that several of these failure
modes may occur in the same specimen or component during compressive failure.

Additionally, Ref. 23 summarizes the failure modes of the constituent materials.
Shear and Eztension Modes of Fiber Microbuckling

Compressive strength may be controlled by fiber microbuckling, as shown in
Fig. 1. Such fiber microbuckling will occur either in-phase (shear mode) or out-of-

phase (extension mode). In the shear mode, the matrix material is shear deformed;
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Fig. 1 Failure modes and model of a unidirectional composite sub Jected to
a longitudinal compressive load.
a) Longitudinal splitting due to secondary transverse tensile stresses.
b) Fiber microbuckling out-of-phase (extension mode).
c) Fiber microbuckling in-phase (shear mode).**
d) In-phase fiber microbuckling, including the localized shearing

stresses induced by cutouts or discontinuities.%°
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in the extension mode, the matrix material between the fibers is stretched in the
direction perpendicular to the fibers. Fiber microbuckling may be assisted by
fiber/matrix debonding due to transverse tensile stresses, a process that leaves the
fibers with less support. Furthermore, in-plane microbuckling (contained within
a given ply) may lead to delamination between plies. Generally, extension mode
microbuckling is observed in composites with a lower fiber volume fraction (< 20%)
while shear mode microbuckling is observed in composites with a higher fiber volume
fraction.?*

Factors that may influence the initiation of fiber microbuckling are the initial
fiber curvature, fiber defects, fiber misalignment, yarn twist, voids, and poor

fiber/matrix adhesion. It is suspected that fiber microbuckling leads to fiber kinking

followed by shear crippling of the composite.
Fiber Shear

A second mechanism of failure observed during compression testing is fiber
shear. In this failure mode a sufficiently high compressive stress is applied to the
specimen (or component), without inducing macroscopic or microscopic buckling, to
induce failure in the fibers by shear deformation. This failure mechanism is usually
observed in composites which have a compressive strength similar to their tensile
strength. It has been suggested, as reported for example in Ref. 25, that this failure

mode constitutes an upper bound in compressive strength.
End Crushing

This compressive failure mode is common in composite specimens, particularly
unidirectional composites, that are end-loaded but have insufficient transverse

support within the grips. The result is crushing damage at or near the point of
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end loading. These failures are a result of local stress concentrations due to end
effects and are a function of the compressive test fixture, as reported in Ref. 16.
This type of failure was observed in some of the ultimate compression strength tests

6,19

for multiaxial lay-ups in Ref. 1. The use of tabs and/or greater surface support

in the gripped area will help prevent this type of failure during testing.
Longitudinal Splitting

The difference in the Poisson’s ratio between the matrix and the fibers leads
to differential dilatation (being stretched beyond normal dimensions) during com-
pressive loading. Because the matrix expands more than the fiber when loaded in
compression, a tensile stress develops at the interface between the matrix and the
fibers. If this stress is sufficiently large, fiber/matrix debonding occurs, leading to
failure by longitudinal splitting, a so-called interaction failure. As will be presented
in detail later in this review, this failure is more likely to occur in composites made
with anisotropic fibers (e.g., graphite or Kevlar) rather than isotropic fibers (e.g.,
stainless steel or E — glass).26 Longitudinal splitting may also result from the con-
straint imposed by the grips which prevents the material contained in the grips
from the same Poisson expansion (due to compressive loading) as the material in
the gage section. This Poisson difference results in transverse tensile stresses in the
gage section, adjacent to the grips, and it leads to failure by longitudinal splitting.

This failure is most typically observed in unidirectional composites.
Delamination

Compressive loading may lead to a delamination failure mode in multiaxial
lay-up composite laminates. Although the failure may initiate by either transverse

tension induced longitudinal splitting or fiber microbuckling, these damage modes
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can cause local delamination. If the delamination propagates to a critical size,
a global failu.re (by buckling of the sublaminates) occurs. Furthermore, out-of-
plane microbuckling causes mode I loading between adjacent plies while in-plane
microbuckling causes mode II loading between adjacent plies. In either case,
if a critical local strain level is achieved, delamination is initiated. Localized
delaminations were observed in Ref. 4. If the applied compression load is sufficiently
large, the delamination propagates immediately, resulting in laminate failure by

buckling of the sublaminates (formed by the delaminations).
Euler Buckling

Euler buckling is the only mechanism of compressive failure attributed to a
macroscopic, elastic instability during compression loading. This type of failure
was first analyzed for isotropic materials by Leonhard Euler as a function of the
material elastic properties and the specimen geometry, ignoring microstructrual
details. A large thickness to length ratio in the gage section of test specimens
is necessary to avoid this geometrically induced instability and thus measure the
actual compressive strength of the material. Otherwise, the measured “compressive

strength” is geometry dependent and not a true material property.

Compressive Failure Models

Summary papers describing the numerous compressive failure models appear to
be limited. However, a few authors®3'?4?627=30 have included detailed reviews of the
existing models. Reference 29 is specifically a review of recent (1980 through August
1987) compression research on composite materials including test methods, failure

. . . . . . 28 .
theories and mechanisms, and experimental investigations. Shuart®” includes an
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historical and chronological review of proposed compression failure theories applying
to the short-wavelength buckling (microbuckling) phenomenon.
In this section, mathematical theories pertaining to the failure modes described

in the previous section will be thoroughly reviewed.

Shear and Eztension Modes of Fiber Microbuckling

According to many researchers (in particular, Ref. 28), Dow and Gruntfest®!
first postulated that the compressive failure of unidirectional composites was a
result of one of two phenomena: (i) high tensile stresses perpendicular to the
loading direction, located at the fiber/matrix interface (so-called transverse tension
failure) or (i7) buckling of the fibers within the matrix (so-called microbuckling).
An equation to predict the laminate compressive strength at microbuckling was
derived using Timoshenko and Gere.*? This equation is based on a model consisting
of columns supported by an elastic foundation. An empirical constant was included
in this equation. Reference 31 was the first to associate fiber instability with the
compressive strength of unidirectional laminates.

Rosen’s classic study,®® also referencing results from Timoshenko and Gere,*?
of the compressive failure of unidirectional composite materials focused on fiber
instability in glass/epoxy laminates using a two-dimensional model. The fibers
were modelled as columns supported by an elastic matrix foundation. This model
assumed that the fibers were stiff relative to the matrix and that shear deformations
in the fiber could be neglected relative to those in the matrix. Rosen first suggested

that compressive failure of a unidirectional composite occurred when the fibers

buckled in either of two possible modes, the extension mode (Fig. 1b) or the shear
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mode (Fig. 1c). Using an energy formulation, Rosen obtained
o. =2Vy [

for the extension mode and

Gm 7r2Vfth2

Tc

T1-V 12)?
for the shear mode where
0. = compression strength of the unidirectional composite,
V¢ = fiber volume fraction,
E,., = Young’s modulus of the matrix,
Ef = Young’s modulus of the fiber,
Gm = shear modulus of the matrix
h = fiber diameter, and
A = half-wavelength of the buckling mode shape.

Since the half-wavelength is much larger than the fiber diameter, i.e. A > h,
the magnitude of the second term in Eqn. 2 is much smaller than the magnitude of
the first term. Neglecting the second term, Rosen wrote the approximate, but more

familiar, relationship for the shear mode fiber microbuckling as

.—Gm
1=V

(3)

Oc

Compressive strength was predicted using the lower value from Eqns. 1 and 3.
Equation 3 usually yields the more conservative compressive strength prediction
for composite materials. Rosen’s results for glass/epoxy showed that for low fiber
volume fractions (< 20%) the extension mode is the lower stress, while for high

volume fractions (> 20%) of fibers the shear mode predominates.
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Rosen recognized that Eqn. 3 gave predicted strengths that were two to three
times greater than the experimental strengths when the elastic shear modulus of
the matrix was used. More realistic strength predictions were obtained when the
matrix shear modulus was assumed to vary inelastically as a function of the applied
load, from its elastic value at 1% strain to a zero value at 5% strain. It should
be noted from Eqn. 3 that fiber microbuckling initiated failures are a function of
the matrix shear modulus, the material property which appears to have the most
significant effect on composite compressive strength.

Hayashi®* postulated and confirmed the “shear instability mode” of compres-
sion buckling. He suggested that this type of failure occurred when the material’s
flexural rigidity was much larger than its shear rigidity. This concept of shear insta-
bility type failure for orthotropic materials is the same that described by Rosen®?
for composite materials. Using minimization of potential energy, Hayashi concluded

that shear instability occurs for an arbitrary shear deformation when

o =G (4)
where
0. = compressive strength of the material and
G = shear modulus of the material.

Here, the shear modulus is a function of the applied load, and the shear tangent
modulus usually decreases with the increase of compressive stress beyond the load
level required to give matrix yielding. According to Jones,”® the shear modulus
for a unidirectional composite material is calculated as a function of its constituent

properties from
Gm

G12 =
Vi +(1-Vy)

(5)
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where
Gi2 = in-plane shear modulus of the unidirectional lamina,
also referred to as G,
Gy = shear modulus of the fiber, and
all other variables were defined with Eqn. 2.
Since G, < Gy typically, the first term in the denominator may be neglected.

Equation 5 is then approximated by

__Gm
1=V

G2 (6)

Substitution of Eqn. 6 into Eqn. 4 (G = G2 for composite materials) yields Eqn. 3,
Rosen’s approximate equation for shear mode fiber microbuckling.

In a parallel study, Schuerch®® used minimization of potential energy with
assumptions similar to Rosen’s®? to also derive Eqns. 1 and 3, independent of
Rosen. This analysis does assume that the shear modulus is a function of
the applied strain. Schuerch showed good correlation between experiments and
theory for boron/magnesium unidirectional composites. He considered these results
remarkable, perhaps even fortuitous, considering the relatively crude analysis and
limited experimental data.

For the extension mode of microbuckling against a plastic foundation (i.e.,
elastic-perfectly plastic matrix), Dow, Rosen, and Hashin®" proposed the equation
of inelastic buckling to be given by

where

o. = compressive strength of the material,
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Ef = Young’s modulus of the fibers,
Vi ': fiber volume fraction, and
oym = yield stress of the matrix.
Foye®® concluded that the instability mode of fiber microbuckling failure

appeared to be the most prevalent in compression failures. Foye also proposed
a macrostability model that makes no reference to the reinforcement details and,
in theory, applies to all orthotropic materials. The model produced the following

modified stress-strain law:

T=(G+o)y (8)
where
T = shear stress component,
o = normal stress component,
v = shearing strain, and
G = minimum longitudinal-transverse shear modulus.

When the direction of the tensile stress is reversed, i.e. compressive, and this
stress becomes sufficiently large, the unit element would experience a complete loss
of effective shear stiffness at the point where o. = G. Consequently, the element
would be susceptible to crippling in a shearing mode as described by Eqn. 4,
providing an upper bound for compression strength. Additionally, he uses the
Reuss estimate or “stiffness in series” model (equivalent to Eqn. 5, Jonesss) to show
the upper bound to be the same as Eqn. 3, reported by Rosen. Foye postulated
that the measured compression strengths are lower than analytical predictions
due to premature failures caused by local imperfections (e.g., variations in fiber
volume fraction, fiber waviness, void concentrations, and unbonded areas). Strength

predictions were also modified to include void and filler contents.
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Sadowski, Pu, and Hussain®® assumed a small volume fraction of fibers so that
the mutual interference of fibers is negligible. Consequently, their mathematical
model is an infinitely long single wavy fiber surrounded by an infinite matrix. The
purpose of this analysis is to model the fiber instability caused by processing-induced
thermal stresses. Additionally, they assumed that the fiber is subjected only to
compression, but not twisting caused by the surrounding matrix. Their results
predict high critical strain levels (~ 15% for % = 5000) and show that the same
graphs are applicable for practically all values of v, Poisson’s ratio of the matrix.
Additionally, the graphs indicate that including the effect of shear deformation of
the fiber has a negligible effect on compressive failure strains for large values of g_:.
However, for low values of g—”n (< 20%), including the effect of shearing deformation
of the fiber increases the critical buckling strains by ~ 20%.

Lager and June®’ used boron/epoxy (2 different matrices) to evaluate the
trends of the microstability failure theory suggested in Refs. 33, 36, and 39.
Their unidirectional composites were fabricated with excellent control on fiber
location and volume fraction. These authors measured compression strength values
approximately 63% of those predicted by Eqns. 1 and 3 using initial moduli,
independent of the axial strain level. However, excellent correlations between the
trends of the data and the theoretical predictions were observed. Their justification
for 0.63 as an influence coefficient is that the idealized model assumes that all of
the matrix material is effective in resisting buckling of the fibers. Their influence
coeflicient presumes the matrix material is only 63% effective.

Chung and Testa®' applied Biot’s*? mathematical incremental deformation
analysis to investigate the elastic stability of unidirectional fibers in a composite

plate. Biot’s analysis is modified by the following assumptions:
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) the plate is infinitely large,
(it) L > 2h,,
) 2hy >,

(iv) % > 1, and

(v) A> h,
where
L = fiber length,
hy = fiber diameter,

2hy = fiber spacing,

t = plate thickness,

v, = Poisson’s ratio for the matrix,

E,, E;, = Young’s modulus of the fiber and matrix, respectively, and
‘A = fiber buckling wavelength.

The formal analysis states that the stability of an equilibrium state predicted
by the equations of the classical theory of an elastic medium may be determined
by considering perturbations about the equilibrium state. The equations governing
the perturbations (Biot’s incremental deformations) are superimposed on the initial
equilibrium state deformation). The solutions for sinusoidal modes of buckling are
then found in the form of transcendental equations for the critical values of load
and corresponding wavelengths, which can be solved numerically for fixed values of
three parameters (%, %, v,) appearing in these equations.

Simpler expressions are obtained by introducing several approximations in the
analysis. One simplification was to ignore the incremental deformation in the

matrix. This formulation reduced to Rosen’s®® column on an elastic foundation

analysis, Figs. 1b and lc. Comparison of these results with the formal solution
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indicated that the compressive stress in the matrix has little effect on the stability
of the fibers even as you go above the shear stress required for matrix yielding.
Additionally, approximations reduced the solution to those frequently derived by
energy methods (long-wavelength solution) and by considering a fiber in an infinite
medium (short-wavelength solution), e.g. Ref. 39. Experimental results for low
fiber volume fraction laminates show good agreement with analytical results and
show evidence of the buckling modes described in the analysis.

Guz*? also confirmed the “shear instability mode” of failure, Eqn. 4, as the
limiting value of compression. Reference 43 did not contain any experimental results
or significant new ideas.

Hayashi** modified his previous analyses®* for orthotropic bulk materials to
unidirectional fiber-reinforced composite materials. This author proposed that
failure occurs when the compressive stress in the matrix, o,,, reaches it’s shear
instability limit, o, equivalent to matrix yield strength. At this point shear
deformation takes place in the matrix, and the matrix loses the supporting action
for the fibers. The matrix shear instability limit, rather than the fiber instability

limit as described in previous analyses, is defined as

T = Gm(on) (9)
where
O = shear instability limit of the matrix and
G (o;,)= tangent shear modulus of the matrix when the stress is o,,.

Using the rule of mixtures, the compressive strength of the composite is given by
o =0 Vi 4o, (1-Vy) (10)

where
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o,. = the stress on the matrix at which instability or

yielding first occurs, Eqn. 9,

Vs = fiber volume fraction, and

oy = fiber stress corresponding to oy, , the point

where matrix instability first occurs.

This analysis assumes that the strain in the fiber and the matrix are the same. The
analysis is different from Schuerch®® and Rosen,*® Eqn. 3, by the fact that Eqn. 3 is
singular for Vy = 1 and is different from the result in Eqn. 10. Experimental results
from Lager and June*’ were compared with this analysis. Some agreement between
data and analysis existed, but no explanation was suggested for irregularities
between data and analysis.

Lanir and Fung®® based their model for unidirectional composite compression
strength on the assumptions that the fiber buckles inside the matrix and that
both the fiber and matrix remain in the linear elastic range. These authors
modelled cylindrical columns of matrix, each reinforced with a parallel, straight
fiber. They consider pre-, in-situ, and postbuckling failures. In their analysis for
the postbuckling range, the number of modes of buckling increases with increasing
loads. They also concluded, that in common composites, the buckling of the fiber
has no significant effect on the overall behavior of the composite in the linear elastic
range. However, they predicted that fiber microbuckling significantly affects the
behavior of the composite in the plastic range, particularly for high values of g—;

Suarez, Whiteside, and Hadcock*® appear to be the first researchers to investi-
gate compressive failures in multidirectional laminates. They investigated the com-
pressive strengths of multidirectional boron/epoxy laminates both theoretically and

experimentally. Test specimens included coupons, honeycomb sandwich columns,
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and honeycomb sandwich beams. These authors modelled the composites using a
beam on elas'tic foundation approach. They assumed that the outer ply (always
0° orientation) failed by out-of-plane fiber microbuckling, and then they treated
the remainder of the laminate as an elastic foundation with both extensional and
shearing stiffness. They concluded that laminate initial waviness has a considerable
effect on predicted compression strengths. Consistent assumptions of initial wavi-
ness (0.002-0.004, the ratio of waviness amplitude to lamina thickness) provided
good correlation with some tests. Filament fracture and global instability were also
discussed.

Hayashi and Fujikake®” attempted to predict the ultimate compressive strength
of unidirectional fiber-reinforced composites, assuming that general failure occurs
by fiber buckling or fiber/matrix debonding. The critical loads were computed
considering the nonlinear behavior of the matrix. The fiber microbuckling analysis
presented in Ref. 47 is similar to previous analyses in that the energy method
is applied. However, the analysis is unique beca;use it is the first to consider a
composite of finite size, rather than the infinite plates previously reviewed. This
model is a two-dimensional, semi-infinite plate with the fiber ends simply-supported.
The first fiber is considered to have a free edge, deflecting the most, and the
deflections become exponentially smaller as fibers are considered from outer to inner
locations. The failure strength is theoretically selected as the lower value between
the fiber buckling load and the interfacial failure load. The finite size of the model
leads to lower fiber buckling loads and more continuous behaviors than observed in
previous analyses.

Kulkarni, Rice, and Rosen®® investigated the compressive strength of unidi-

rectional Kevlar 49/epoxy composites. These composites were selected because
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quite often their measured compressive strengths are only 20% of their tensile
strengths. A unique feature that distinguishes Kevlar 49 fibers from other fibers is
their anisotropy. The shear modulus is less than 2% of the axial tensile modulus
of the fiber. Consequently, the fiber axial shear modulus is of the same order of
magnitude as the matrix shear modulus. Kulkarni et al,*® using an energy approach
and assuming that the buckling wavelength is much larger than the fiber diameter,

derived the critical composite buckling stress for the shear mode as

Gm
o, =G2 = 11
- v e ()
where
V¢ = fiber volume fraction,
G.. = shear modulus of the matrix, and
G¢ = shear modulus of the fiber.

For % < 1, Eqn. 11 reduces to Rosen’s approximation in Eqn. 3. However, the
expression for o. in Eqn. 11 is bounded for all values of V5.

Equation 11 is identical to Eqn. 5 with 0. = G, which is also the Reuss estimate
of the longitudinal-transverse shear modulus, G, of a unidirectional composite.
This estimate is a “stiffness in series” model derived using rule of mixtures.

Kulkarni et al*® modified their analysis to include the effect of an imperfect

fiber/matrix bond. Equation 11 becomes

2

e[ ()]

where k is a bonding parameter. The bonding parameter is restricted such that

_(1_Vf)<k<1
Vf -
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where the limits represent no bonding and perfect bonding, respectively. Graphs
presented in Ref. 48 show no quantitative conclusions but do indicate lower strengths
predicted by Eqn. 12.

The most thorough investigation of the compressive strength of unidirectional
composites conducted by one researcher was completed by Greszczuk in Refs. 26,
49-53. In these references, he accomplished a very systematic, but idealistic, inves-
tigation of the variables that influence the compressive strength of unidirectional
composites. These studies are considered idealistic because nearly perfect model
composites (straight metal rods surrounded by resin) are tested. The variables
studied include specimen geometry, constituent (fiber and matrix) properties, fiber
volume fraction, reinforcement shape (flat laminae or circular fibers), reinforce-
ment size, fiber array (square, hexagonal, and arbitrary), internal imperfections
(unbonded fibers, bowed fibers, misaligned fibers), and fiber end configuration.

In addition to failure by microbuckling, the following types of failure were
observed: (7) compression yielding of the reinforcement, (i¢) compression failure of
the reinforcement (45° shear), (¢7¢) transverse splitting of the fibers, (iv) transverse
cracking of the composites, and (v} inelastic microbuckling.

An approximate micromechanics solution for interfiber stresses in unidirec-
tional composites subjected to in-plane shear and transverse normal loadings is
presented in Ref. 49. Although this investigation is not directly related to mi-
crobuckling of unidirectional composites, it does provide a foundation for other
Greszczuk studies. Greszczuk’s solution was shown to be sufficiently accurate for
application-oriented composites (fiber volume fraction ranging between 40% and
75%). The level of accuracy is established by comparison of the results with a rig-

orous elasticity solution and with experimental results. The transverse and shear
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moduli predicted by the approximate theory also show good agreement with the
values predicted by the rigorous elasticity theory.
In Ref. 26, Greszczuk compared many of the existing fiber microbuckling

3% was the most conservative, predicting the lowest

analyses and showed that Rosen’s
failure stress, although still high. Greszczuk’s nearly perfect composite specimens
were designed such that they would not fail by Euler column buckling. Greszczuk

compared Rosen’s shear mode microbuckling equation (Eqn. 2) with the Euler

equation to derive the general relationship between ogyier and Gmicrobuckling as

(w/h)"

OEuler = : 5. (£)2 0 Omicrobuckling (13)
(1-k)n?E; \R&
where
w = width of the composite specimen,
h = fiber diameter,
G, = shear modulus of the resin,
k= fiber volume fraction,
Es = Young’s modulus of the fiber, and
L = length of the composite specimen.

Typical test-theory comparisons by Greszczuk are shown in Fig. 2. The results
in Figs. 2a and 2c show that for composites reinforced with low-modulus resin,
tests and theory show the same trend indicating that microbuckling is a valid
failure mode. Moreover, as Young’s modulus of the resin is increased significantly
(from = 2 ksi, resin A, to = 457 ksi, resin H), the failure is independent of the
length of the composite specimen and is governed by the compressive strength of
the reinforcement.

Figure 2b shows very clearly that the compressive strength of the composites
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was found to increase with increasing resin shear modulus. Below a critical resin
shear modulus, the failure was by microbuckling, and above this level, failure
occurred by compression yielding of the reinforcement.

The results in Fig. 2d show that initial imperfections in the form of bowed
fibers significantly reduce the microbuckling strength of composites. The author
reported that other factors (misaligned fibers and unbonded fibers) were found to
reduce the compressive strength of composites. For example in a composite made
with a low modulus resin (= 2.0 ksi) and aluminum rods (k ~ 50%), a 5° fiber
misalignment decreases the compressive microbuckling strength by 25%.

Greszczuk®® did not observe numerous buckle waves; he stated that numerous
buckle waves form in the specimen if microbuckling is in the extension mode, which,
according to Ref. 50, requires that the reinforcement volume fraction be less than
~ 5%. Additionally, Greszczuk pointed out that Rosen’s®® analysis assumes that
the lamina ends are simply-supported. However, if the laminae are not simply-
supported, then Eqn. 2 becomes

G m2EfVe (R
c — EY 4
=TTy, T 1 (A) (14)

where e depends on the end-fixity of the individual laminae and the variables are
described with Eqn. 2. This analysis is based on Ref. 32. Consequently, when end-
fixity is considered, the second term in Eqn. 14 may not be negligible, especially
for nearly perfect composites. However, for graphite fibers, % & 1, and the second
term in Eqn. 15 will be negligible. Similar results were also presented in Refs. 52
and 53.

The authors of Refs. 30 and 54-58 also completed a very thorough investigation

of the factors that affect the unidirectional compression strength and failure modes
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of carbon-, glass-, and Kevlar-reinforced polyester resins. The details of these results
will be presented in each of the appropriate sections within this chapter.

Guz®? considered a continuum and a piecewise-homogeneous medium approach
to describe compressive failures in unidirectional composite materials. Both analy-
ses yielded Eqn. 4, the same result as obtained by Hayashi®* and Guz.*

Gurdal and Haftka®® recently modified Rosen’s*® beam on elastic foundation
microbuckling model to include the localized shearing stresses that are either
induced by the presence of a discontinuity or as a result of the externally applied
loads, both for anisotropic plates with a cutout. These authors, like Rosen, also
neglected the shearing deformation of the fibers and the extensional deformation
of the matrix. The model is shown, for comparison, in Fig. 1d. Using an energy

approach, the resulting equation for the fiber microbuckling load is

2

P;. = 2¢G (1 AN T E,I 15
e = 2¢Gm +Z>+—lz—ff ()

where

P¢. = critical fiber force,

2¢ = matrix (foundation) width

h = fiber (beam) width

[ = column length

G,, = matrix elastic shear modulus

E; = fiber elastic Young’s modulus, and
Iy = fiber first moment of inertia.

Equation 15 is similar to Rosen’s (Eqn. 2); however, Rosen assumed ! > h and
neglected the second term in Eqn. 2 to obtain Eqn. 3. In Ref. 60, it is assumed

that the wavelengths that lead to failure are small so that the second term in
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Eqn. 15 significantly contributes to the critical load and may not be neglected.
Additionally, this analysis allows lateral displacement of the column end, caused
by the shearing stresses induced at the local discontinuity or cutout, prior to fiber
microbuckling. While Rosen’s analysis assumes the fibers are straight until the
critical microbuckling load is achieved. Gurdal and Haftka assume the strength
failure criteria, rather than microbuckling instability, for the fibers of the principal
load-carrying laminae. High bending stresses developed at the restrained ends (see
Fig. 1d) are believed to cause the fiber breakage that leads to shear crippling. The
analysis is essentially a point stress criterion, applied on a ply-by-ply basis around
the cutout, that compares the resulting shear-compression coupling stresses with
the fiber strength. One problem with the analysis is that the distance from the
cutout or boundary to the failure point needs to be a material constant, considered
to be independent of the ply combinations and laminate stacking sequence. The
fiber-kinking model predicts significant reductions in the load-carrying capacity for
laminates where the 0° plies are critical. Additionally, the model predicted that
rotation of the principal axis of anisotropy of the plate with respect to the loading
direction caused a strength reduction under pure compression, while rotation in
a direction opposite the shearing stresses (in shear compression coupling) inproved
the load-carrying capacity of the plate. However, these predictions were not verified
with experimental data.

Most of the fiber microbuckling models, Refs. 31-60, proposed to date are two-
dimensional models in which neither initial fiber waviness, fiber/matrix debonding,
nor matrix nonlinearity were considered. These idealizations have resulted in
models that consistently overpredict the actual compressive strengths observed

in composite materials testing. However, in Refs. 49-53, Greszczuk illustrated
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that these analyses were valid for ideally straight fibers with good fiber/matrix
bonding. His success with the idealized composites indicates that these equations
fail to predict compressive strength because they do not include the three previously
mentioned.

147

Effects of Matrix Nonlinearity — Hayashi’s and Fujikake analytical work

indicates that the compressive strength of unidirectional composite materials may
be reduced as much as 50% due to the nonlinear, rather than linear, behavior of
the resin.

Effects of Fiber Waviness — In earlier studies, authors’®*® suggested that

both laminate and initial fiber waviness have a considerable effect on predicted
compression strengths. Hanasaki and Hasegawa®' suggested in 1974 that the
compression strength of unidirectional composites is lowered if the fibers are not
straight due to their initial curvature. These authors used a moment equilibrium
approach (the free body diagram contained two fibers, separated by one layer of
matrix) assuming that (i) the deformation is two-dimensional, (¢:) the influence of
the normal strain in the matrix parallel to the fiber axis and that of Poisson’s ratio
may be neglected, and (ii7) neither deflections nor moments exist at each end of
the finite length of fibers.

From the general solution, satisfying the boundary conditions, the buckling

load, and thus, compressive strength (for a straight fiber), of the composite material

becomes
Gm 7r2Efw2 Em
. = V+(1-V)— 16
=y v T 128 H ~1-Vg (16)
where
G = shear modulus of the matrix,

w = width of the fibers,
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W = width of the matrix,

vV = W:‘iw = fiber volume fraction,

Em, Ef = Young’s modulus of the matrix and fiber, respectively, and
I, = half-wavelength of the buckling mode.

As % is considered to be large and %—"’ small, the approximate solution obtained
s

is the same as that of Rosen’s a.nalysis,33 namely Eqn. 3, for shear mode fiber
microbuckling. At loads below this buckling load, assuming the initial curvature
may be approximated by a sine wave, the nominal compressive stress becomes as

follows:

! am Gm 7T'2Efw2 Em
=t via-v)=| qr
7 Ymaz (1 — V)H—mr] [(1 -V T Tap } [ + ) E; (17)

or more simply, assuming %!”- <1,

I

[
g =
ma.:t(l v )l

=g )

-V
where

a = amplitude of the initial curvature,

! = half-wavelength of the initial curvature, and

Ymaez= maximum shearing strain in the matrix, and

the other variables are defined with Eqn. 16.

It should be noted that G, is a function of Yma. in these equations. Addition-
ally, when Ymaez = 0, ¢’ = 0, and when ymq- is large, o' (Eqn. 18) = o, (Eqn. 16).
The compressive strength of the composite material is the maximum value of a'.
At this stress level, the composite material becomes unstable elastically. Figure 3
(Ref. 61) shows this relationship schematically. The decrease in the compressive

stress at higher values of matrix shear strain is attributed to the decreasing value of






Zero curvoture

Fig. 3 Schematical representation of Eqns. 16 and 18,%! the relation
between the nominal compressive stress of the composite material
and the shearing strain of the matrix.
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G, at higher shear strain values. Consequently, the compressive strength becomes
lower than the buckling stress represented by Eqn. 16. From Eqn. 17, it may be seen
that the strength depends on V, %, G, and Ey,, and that the strength decrease
becomes large with the increase of V and §.

Maewal®? developed an analysis of the shear mode buckling as well as the
initial postbuckling behavior of unidirectional composites loaded in compression.
He considered a periodically laminated medium and assumed that the constitutive
equations of the two isotropic constituents are linear relationships between the
Piola-Kirchoff stress of the second kind (refer to undeformed state) and the
Lagrangian finite strain tensor, or equivalently, that the respective strain energy
functionals are quadratic in the strain components. This theory considers only
geometric nonlinearity. Maewal’s analysis is different from most of the other models
described in this dissertation because it considers the instability phenomenon on the
basis of continuum theory (macroscopic behavior explained disregarding molecular
considerations) that includes the composite microstructure rather than a column
on elastic foundation analysis. His results indicate that compressive microbuckling
of the composite can occur at small strain only for those laminates where %
is relatively large. Additionally, his analysis of the initial postbuckling behavior
suggests that the composite is not imperfection sensitive; in other words, the
initial waviness of the fibers is not expected to reduce the microbuckling stress
significantly. It should be noted that this result contradicts other results presented
in this literature review.

Kurashige63 also used a continuum approach, but included internal kinematical
constraints of inextensibility (continuity conditions at the fiber/matrix boundary).

By nature of continuum theory, a distinction between fibers and matrix does not
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exist. Fibers are introduced into this analysis by considering that only portions of
the ends of the continuum are loaded, and thus, these portions represent the load-
bearing fibers. The matrix is assumed only to transfer load to the fibers by shear at
the fiber/matrix interface. Kurashige modelled the dependence of the compressive
strength on fiber buckling wavelength as well as fiber volume fraction. He developed
the buckling conditions as

Vix (/x)  _
tan( c ) - tanh<1_cv’> =0 (19)

for the extension mode and

tan (%) - (%) tanh (1 _Cvf> =0 (20)

for the shear mode where

Ve = % = fiber volume fraction,
¢ = W}co (—;7) — nondimensional buckling half-wavelength,
X = 0
po= o (5)
L
ko= (#5)"
u#,A = Lamé’s constants,
h = fiber radius,
H = matrix half-width, and
! = buckling half-wavelength.

From the root of either Eqn. 19 or 20, the compressive strength, p. 1s determined

by

Pe _ Vs
g (X7 2
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His results are shown in Fig. 4. Additionally, Kurashige included experimental
results of DeFerran and Harris®* in Fig. 4b. The solid circles are the results for the
polyester resin reinforced with hard-drawn steel wires, while the open circles for
that reinforced with fully softened wires of the same steel. However, DeFerran and
Harris did not include a description of the buckling wavelength in their experiment
so the theory and results cannot be compared. Figure 4a indicates that the
compressive strength of unidirectional composites is an increasing function of the
nondimensionalized buckling wavelength, (. In all cases, the shear mode appears to
be more critical. However, this model predicts infinite compressive strength for the
extension mode microbuckling which is not realistic. The results in Fig. 4b indicate
that the compressive strength increases with increasing fiber volume fraction, but
in this case, the strengths are bounded.

Kurashige®® also analyzed the compressive strength of cross-ply composite lam-
inates consisting of fiber-reinforced elastic layers. He assumed that the composite
consisted of three types of layers: (i) axial layers that are load-bearing, incompress-
ible, and inextensible (good approximation for Ef > E,, (i1) cross layers that are
incompressible and isotropic, and (7i:) thin bonding layers made of incompressible
elastic materials that connect the axial and cross layers.

Rather than using the conventional traction continuity conditions, step condi-
tions at the layer interfaces involving singular stresses due to fiber-inextensibility
were applied. The predictions indicate a sharp increase in compressive strength as
the nondimensional buckling wavelength is increased from 0 to approximately 0.3,
at which the compressive strength reaches a plateau. The level of this plateau was
shown to decrease as the resin shear modulus decreased and/or the thickness of the

resin-rich layer between the axial and cross layers increased.
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Chang and Lessard®® used energy principles to develop an analytical model
to predict the fiber buckling strength of unidirectional composites. In particular,
these authors wanted to understand the effect of fiber-matrix interaction due to
nonuniform loading on the fiber buckling strength of these composites. The model
included fiber bending energy, matrix shearing energy, and matrix extension energy
which is attributed to the interaction of the fibers and the matrix. These authors
assumed that (i) the matrix does not support compressive loads, (i) the material
behaves linear elastically. Under a uniform load distribution with straight fibers,
this analysis yielded Eqn. 2, Rosen’s well-known buckling equation. Of particular
interest, these authors considered a [(0/90)s], composite laminate with a center hole
loaded in compression. Nonlinear finite element analysis was used to determine the
normal stress distribution adjacent to the hole in the 0° plies.This distribution is
applied to their infinite array of fibers and matrix. This analysis showed that the
multidirectional fiber microbuckling strength can be 1.79 (lay-up dependent) times
the uniaxial compressive strength. However, this analysis considers only linear
material behavior. It is possible that the stress concentration may be considerably
larger (or smaller) when the nonlinear material behavior is considered. The purpose
of the analysis is to show that the effects of load distribution have a significant
influence on the local fiber buckling strengths.

Piggott®® developed rule of mixtures analyses to model the factors (fiber
strength, matrix yield strength, degree of fiber/matrix adhesion, and degree of
fiber waviness) believed to have an important influence on compression strength.
Six governing equations were developed, and the actual failure stress for a given
situation was determined by the failure process that operated at the lowest stress.

In Ref. 57, Martinez et al showed that the compression strength was approxi-
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mately given by the expression
T1cu =0'0+bR (22)

where o, and b are constants and R is the minimum radius of curvature of the fibers
in the region where they are kinked. These results are shown in Fig. 5.

Piggott58 predicted the stress in a sinusoidal shaped fiber as

222 8Rosm
0f = 3 0m = T (23)
where

d = the fiber diameter,

A = wavelength per unit fiber length,

a = amplitude per unit fiber length,

0sm = transverse stress exerted by the fiber on the matrix,
| o; = longitudinal stress in the fiber, and

R = minimum radius of curvature of the fiber.

Equation 23 indicates that as the composite stress is increased, o will increase,
and thus, 02, will increase. Unless some other failure process intervenes (e.g. fiber
yielding and failure), o2m will eventually become so large that the fiber separates
from the matrix on the inside of the curve, or the matrix yields, so that the fiber
can push it aside. In either case, oy reaches some maximum value, & fmaz, and the

composite fails by

Vi E
Olecu = O fmaz (Vf + m) . (24)
For soft matrices with perfect fiber/matrix adhesion, o5 reaches ofma. when

Oam = Omy, the yield stress of the matrix. In this case, the compressive strength

becomes

mia

2)? VmEm
Oley = —— [Vf + E ] Omy- (25)
f
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Fig. 5 Composite compressive strength as a function of the minimum radius

of curvature for glass fibers in a polyester resin.
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If %’;L is negligible, then o1cy X oy for geometrically similar composites.

The effects of matrix nonlinearity were modelled in the analysis in Ref. 47
while the effects of fiber waviness were described in Refs. 58 and 61-66. Although
including each of these effects made more realistic compression strength predictions,
these analyses are still insufficient since at the limits of 0-1 for V they predict
infinite strengths and no optimum fiber volume fraction. Consequently, both
variables must be considered in one analysis.

Effects of Matrix Nonlinearity & Fiber Waviness — Davis®’ refined the previ-

ously mentioned fiber microbuckling models to include both initial fiber curvature
and matrix nonlinearity. His model consisted of one fiber layer and two half-layers
of matrix analyzed as a multilayered Timoshenko column in axial compression, per-
mitting both bending and shearing deformations in each layer. He measured the
initial fiber curvature in a boron/epoxy composite. The ratio of the initial ampli-
tude of the waviness to the length of the wave, 5*, was measured to range from
0.001875 to 0.003750. Additionally, using compression/torsion tests, Davis observed
that the apparent shear modulus (G — o) decreases as the axial compressive stress o
increases. However, it should be noted that no analytical effort was made to explic-
itly establish this relationship. Using an energy methods approach, Davis predicted
interlaminar shear stresses and the onset of shear instability, which compares with
Eqn. 4. These experimental and analytical results are summarized in Fig. 6. These
results clearly indicate that fiber waviness causes the composite to behave like it
has a reduced shear modulus. Consequently, neglecting fiber waviness effects causes
much larger compressive strength predictions than observed experimentally.

From his energy analysis, Davis showed that small initial deflections, on the or-

der of those measured experimentally, reduce the axial compressive stress at which
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shear instability is expected to occur from approximately 9.308 GPa to approx-
imately 3.275 GPa. Within the region bounded by 0.001875 < 7 < 0.003750,
the maximum computed interlaminar shear stress was approximately 75,842 MPa,
which is less than the interlaminar strength of the boron-epoxy composite and indi-
cates that failure was due to shear instability and not delamination. Neglecting the
initial curvature of the fibers (assuming % = 0 in Fig. 6), as assumed in Refs. 33
and 38 leads to significantly higher compression strength predictions than measured
experimentally.

It should be noted that graphite fibers have a lower modulus and are more
slender than boron fibers; thus, graphite fibers have a lower stiffness. The
consequence of this comparison is that graphite fibers will have larger initial fiber
curvature, and thus, greater strength reductions than that measured by Davis®’ for
boron.

68,69 e s . s
used a moment equilibrium approach, assuming an initial fiber

Wang
curvature and a nonlinear in-plane shear stress-strain relationship, to predict the
compressive strength of graphite/epoxy unidirectional composites. Two additional
assumptions in his analysis are quoted as follows:

(i) that an application of an incremental compressive load amplifies the
deflection of the fibers which causes a rise in the in-plane shear stress;
due to the nonlinear shear behavior, a rise of the shear stress decreases the
shear stiffness, which in turn induces additional fiber deflection under the
same compressive load; and

(i7) that compression failure of the composite occurs at the applied load which

causes an unstable increase in the fiber deflection, or an excessive increase

in the in-plane shear stress.
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His analysis yielded

LT~ [&GT_L%] fT (26)
where
ror = in-plane shear stress of the composite,
Grr= in-plane shear modulus of the composite,
0. = applied uniform compressive stress,
fo = amplitude of the initial fiber deflection (not

infinitesimal in this analysis), and
! = half-wavelength of the deflection.
The incremental increase in composite shear stress, Ar.7, with increasing applied

compressive stress, Ao, is determined by differentiating Eqn. 26 to obtain

—2
G o
ATLT =~ [ _Tr LT 3 fl—AU'C (27)
(GLT - Uc)
where
Grr= tangential shear modulus (local slope) of the composite.

Equation 27 is an approximation for the composite shear stress-strain curve
using piece-wise linear segments. As shown in Fig. 7, successive increases in
the composite compressive stress causes increases in the calculated shear stress.
The composite shear stress-strain relationship was approximated using the method
proposed by Petit,’® utilized by Rosen,” and compared by Hahn.”? In the limit,
the shear stiffness of the composite approaches zero resulting in shear mode
microbuckling. Figure 8 is a hypothetical graph of o. versus f—(;o—‘) where f(o.)
is the amplitude of fiber deflection at the applied stress. Figure 8 schematically

shows this increase in compressive stress (modelled by Eqn. 27) approaching an
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Fig. 7 A hypothetical shear stress versus shear strain curve for a graphite/
epoxy unidirectional composite, suggested by Wang.%®:%®






48

fpmag s DS RY SOFNS 06 A0S FOPES I MPEAS PIIYE PRE 04 PRRSY § DY POSOE AAGES SEEY 904
et ok Hoardatii m‘«wl." FES2T 11253 Fated Bo! sl
1.F1v«;~ —— gy - - besdr it 1+t H e S PO IS4t 2oa04 Rinme % 0l pps
Y H—=-}-4 R B e D e [t Dotnt Anaat LRSI IR I Ra soan) 5!
R e e s L e e b e L T
I < = s faae i 1Y + 3+ ad o T .
ades ! 155953 s s3dne pllod [Fdn panns sonan Fanow yaxyn 3254 330
: Y L i -~p - g B4 v vy efe - 0.4 )
i PEEay IRoas S1521 3355¢ SR 7] SEET1 18211 SRRRY 12224 BIBE] (3231 34211 13: t
r* : 1 v pé ¥ A8 4 LU ﬂft!.! HLﬁ‘ J.T T] v.oYthY ¥
iy 5 el AR T VR T 31T ST RS
: } O 81 11130 + + - + - ) § e - d
bR PR R = R
Tt T .ILUWMIn by B0 il 08
[gosa bau 1 WS §3 puS MDA i i SRoad Suses soe ¢4
1832 sX307 aanad Ratss Cates pasal ERIED RERET RES VS N a6 too B3 Baat e fishis; 153
pFeg sodal qH- e DS § PRGBH P BaY pa: el g 4 31 vk
e : e 23084 Fadgs brged Sagag basqs fnn Jewis o
[Sma: reens tiea] Sas |3 Faaid R231 3 RR251 22201 1RSS4 3] J i
by CHEHIP B3 -HE R v by b4 o
e T sus boe I [oid aodad tdnss § obi 1 1
¥ T L+ v 2 po v
Hrrgr - 1 + s DEpes pu T
4 4 Lol Rk o 4
)R8s| TI: b § g D¢ 64 00 bod 66 . 1810 B
TR lased 4 g paden [ i *
pan B e Pt 1 hat bod Sul HIH
a4 a5 o4 L g T >M= -
neos bunes 10a: § heotq iy ploay depod Koadd pa : L ]
16 848 FR.A 84 5990 § dabgn iy 4 454 2a¢ 98 4
r L - - +
+ SRS o9 — ¥l IR RS R 201 SR £ § pRgpa
14..m2~ i rgd: ¥ eonhid Kb pdd IS5 bodel sehl .m.ﬁ. g
bl ¢ ' e o 3RS + 1 ;
. LEre 4

R B
‘et

Fig. 8 A hypothetical compression strength, o, as a function of lateral
fiber deflection, f(o.), suggested by Wang.®®'%°






49

asymptotic limiting value, which is the compressive strength of the composite for
failure by shéar microbuckling.

In order to determine fT° for the composite, the ultimate o, for the unidirec-
tional composite was measured experimentally. Next, a value for fli was selected
by trial-and-error such that the predicted o. agreed with the experimental o.. This
value of *t& then became a material property of the composite system, regardless
of the test conditions. Wang determined % to be 0.0108 for these carbon fibers.
As expected, this value is larger than that for boron since the carbon fibers are
more compliant. This pseudo-empirical parameter, which should be independent of
temperature, was used to predict the compressive strength over a range of temper-
atures. The changes in the predicted compressive strength at higher temperatures
were then attributed to the shear stress-strain behavior of the composite. His ana-
lytical results were in good agreement with the experimentally measured strengths.

Shuart?®”® investigated compressive failures in multidirectional composite lam-
inates. In Ref. 28 Shuart studied the short-waveléngth buckling of multidirectional
composite laminates. In this analysis, the fibers are modelled as an infinite plate
supported by matrix material which is treated as an elastic foundation. A lami-
nate then consists of a series of plates and elastic foundations. A linear analysis
is derived to determine the short-wavelength buckling response of composite lami-
nates. This analysis was then generalized to a nonlinear analysis to include laminate
short-wavelength initial imperfections. Two shearing mechanisms expected to initi-
ate failure were analyzed. These mechanisms were interlaminar shearing caused by
initial waviness of the plies (geometrically nonlinear behavior) and in-plane matrix

shearing. The in-plane matrix shearing failure mode occurs in angle plies at the

fiber/matrix interface and/or in the epoxy matrix between the fibers.”® In-plane
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shear stresses parallel to the fiber/matrix interface cause this failure mode. These
shear stresses may be a function of both fiber waviness and fiber scissoring. How-
ever, this analysis was not verified experimentally.

In Ref. 73, Shuart improved the analysis of Ref. 28 by adding the matrix
compression failure mode and allowing the in-plane matrix shearing mechanism to
include effects from in-plane fiber waviness and fiber scissoring. Matrix nonlinearity
is introduced into the analysis in the fiber scissoring analysis. Fiber scissoring
1s idealized as a simply supported beam on a nonlinear foundation. Because it
possesses only shear stiffness, the foundation is modelled as a nonlinear shear
spring. This stiffness is obtained from the material’s shear stress-strain behavior
using the method described in Ref. 71. The laminate compressive strength as a
function of ply orientation is shown in Fig. 9 for [+6],-class AS4/3502 laminates.
The analysis results predict that interlaminar shearing initiates laminate failure
for 0° < 6 < 15°, that in-plane matrix shearing (longitudinal splitting) initiates
laminate failure for 15° < § < 50°, and that matrix compression initiates laminate
failure for 50° < 6 < 90°. Experimental results are also included in Fig. 9.
Comparison of the analytical and experimental results show reasonable agreement
for § < 45° and show excellent agreement for 8 > 45°.

Chang, Lessard, and Tang'® performed an analytical and experimental inves-
tigation to study the in-plane failure of laminated multidirectional composites con-
taining an open hole and subjected to compressive loadings. The progressive damage
model consists of a stress analysis and a failure analysis. Stresses and strains in
the plates were calculated by a nonlinear finite element analysis, which is based on
finite deformation theory with consideration of both material and geometric (fiber

waviness) nonlinearities. A plane stress condition was assumed for the analysis.
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Fig. 9 Compressive strength as a function of ply orientation for
[£6],-class AS4/3502 laminates.”
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The types and size of damage were predicted by a proposed failure analysis
which includes a set of proposed failure criteria and property degradation models
for each mode of failure. Matrix cracking, fiber-matrix shearing, and fiber buckling
(kinking) were the three basic failure modes considered in this investigation.

Basically, stresses and strains are calculated at each incremental displacement
step, and these stresses are evaluated by the failure criteria to determine the
occurence and mode of failure. Mechanical properties in the damaged area are
reduced appropriately according to the property degradation models. Stresses and
strains are then recalculated to determine any additional damage as a result of
stress redistributions at the same load. This procedure continues until no additional
damage is found, and the next displacement increment is then pursued. The
final collapse load is determined when the plate cannot sustain any additional
load. Details of the failure analysis and experiments are given in Refs. 76 and
77, respectively.

Typical results from this analysis are shown in Fig. 10. Figure 10a shows an
enhanced X-radiograph of a [(0/90)s], specimen before and after a test to 90% of
failure. From this figure, it is clear that initial damage existed inside the specimen
near the hole boundary before the test. The authors suspect this damage was an
artifact of the drilling methods. The load-displacement data for two [(0/90)s],
specimens are shown in Fig. 10b in addition to the analytical prediction. An
excellent agreement was found between the calculations and the data.

Typical model predictions of damage types and sizes are presented in Fig. 10c
at different load levels. The model predicted fiber/matrix shearing initiated from
the hole boundary near the stress concentration, and then propagated along the

loading direction (parallel to the 0° fibers). Fiber buckling (kinking) was predicted
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at a load of about 50000 psi in the 0° plies and grew in the direction normal to its
fiber directior.l.

Davis and Highsmithm’79 extended Lee®’ to incorporate material nonlinearity
and compression loading. Lee®® modelled fiber curvature with an infinite array of
columns on elastic foundations under tensile loading. The analysis in Refs. 78 and
79 incorporates a closed-form solution for G2, obtained from a curve fit through
the shear stress-strain data.

Hahn and Williams®® developed a nonlinear model including fiber curvature
and matrix material nonlinearity to predict the compression strength of unidirec-
tional composites. This analysis used a free body diagram of only one fiber and
assumed that the local shear stress-strain behavior was linear. In reality, this linear

behavior is not expected. The compressive strength is predicted by

) 1
oc = ViGrr~ T (28)
where
Vs = fiber volume fraction,
vLT = composite shear strain,
Grr= composite shear modulus, approximated as the
secant modulus at a given vy,
fo = amplitude of the initial fiber curvature, and
! = Dbuckle half-wavelength.
If no initial curvature is assumed (i.e., flﬂ = 0) then
o.=ViGrr. (29)

When Gpr is approximated by 1GT'{’/7 (Eqn. 6), Eqn. 29 is different from Eqn. 3 by

the factor V. The difference derives from the selection of the free body. Rosen®®
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used a fiber surrounded by matrix in his free body diagram. Since Eqn. 3 is known to
overpredict the strength and because applying the equilibrium forces and moments
to the fiber is a reasonable model, Hahn and Williams prefer Eqn. 29 over Eqn. 3.

If a bilinear shear stress-strain relation showing elastic-perfectly plastic behav-

jor is assumed, then the compression strength becomes

1

or =ViGrT 30
f 1 + 7;_& ( )
Yy
where
v, = shear yield strain of the composite and

the other variables are defined with Eqn. 28. Equation 30 assumes that the matrix
yields at 4, and no additional shear stress may be supported. Consequently,
yielding spreads over the entire length of the buckled fiber, changing the deformed
configuration to the form of kinking. This change from microbuckling to kinking
occurs with very little increase in the applied load.

Equation 30 indicates that the higher Grr and v,, the stronger the composite
in compression. However, a weak fiber/matrix interface will reduce vy, and possibly
GLr, and cause a reduced compressive strength.

It should be noted that this result is very similar to that obtained by Hanasaki
and Hasegawa.®! The results of Ref. 61 are given in Eqns. 16-18. To show that

these results are similar, refer to Eqn. 30 and let
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and

fo =a.

Thus, the result of Hanasaki and Hasegawa (Eqn. 18), except for the V; in the
numerator of Eqn. 30 is obtained. Again, the factor of V; appears because of the
selection of the free body diagram.

The effect of fiber waviness is to give significantly larger shear stresses (and
thus, shear strains) for a given axial compressive stress level. Consequently,
the composite reaches its shear instability limit at a lower applied stress level.
Unfortunately, the incremental nature of the calculations used to determine this
stress level does not allow the compressive strength to be expressed as a simple
function of the initial fiber curvature. It is clear that the stress level at which
nonlinear shear stress-strain behavior begins directly influences the compressive
strength of the composite. Finally, fiber/matrix debonding causes this nonlinear
behavior to initiate at an even lower applied stress level, resulting in a further

reduced compressive strength.
Fiber Shear

Collings®! investigated the transverse compressive behavior of unidirectional
carbon/epoxy composites. In these tests, failure occurred by interlaminar shear and
was limited by the strength of the fiber/matrix interfacial bond. However, when the
specimen was constrained laterally (to prevent interlaminar shear), failure was by
fiber shear, and the failure stresses were very close (within 8%) to longitudinal
compressive strengths for the same material. Based on these results, Collings
concluded that the shear strength of the fiber is much less than that of the resin

and the fiber/matrix interfacial bond.
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Hancox®? suggested that since the buckling and instability models developed
to date (1975) did not accurately predict the compression strength of unidirec-
tional composites and similarities were observed between compression and tensile
strengths, the compression strength of a composite must be governed by the same
mechanism as the tensile strength, an inherent property of the fiber. It has been
suggested in Ref. 25 that this failure mode constitutes an upper bound for compres-
sion strength.

Greszczuk®® suggested that when a unidirectional composite specimen is loaded
to a stress level where fiber failure occurs by shear (rather than microbuckling) of the

fiber, the compressive strength may be predicted by the following rule of mixtures

relationship,
oc = Fsk + 0. (1—k) (31)
where
F; = compressive strength of the fiber,
k= fiber volume fraction, and
o' = compressive stress in the resin at failure, computed

as the product of the resin modulus and the

fiber failure strain, E €.
This type of compressive strength is only realized in practice when the composite
has a relatively stiff matrix and a good interfacial bond to prevent premature failure
by fiber microbuckling or longitudinal splitting.

Ewins and Ham® investigated the longitudinal and constrained transverse

compression strengths of unidirectional graphite/epoxy composites. They proposed,
based on their results, that if no other potential failure mode occurs at a lower

stress, failure will occur by shear across the fibers and the matrix on a plane of near
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maximum shear stress. Assuming that the matrix carries only a small portion of
shear load, the composite compressive strength will be limited primarily by the shear
strength of the fibers. However, at approximately 100°C the failure mode changed
from fiber shear to fiber microbuckling, probably due to the reduced matrix shear

modulus and the change in the constitutive behavior of the resin.
Longitudinal Splitting

Even though the induced tensile stresses at the fiber/matrix boundary are small
compared to the applied axial compressive stresses, the transverse tensile strength
is also small compared to the axial compressive strength. Thus, it is possible for
the induced transverse tensile stresses to cause fiber/matrix debonding leading
to longitudinal splitting (an interaction failure) and a reduction in the ultimate
compression strength.

Kim®® investigated the static strength of graphite/epoxy off-axis and angle-
ply laminates under uniaxial tension and compression. Experimental data were
compared with the Tsai-Wu tensor polynomial failure criterion. Both theory and
experiment show greater strength in compression than in tension for these laminates.
This phenomenon is explained by considering that the transverse strength in
compression is four times greater than that in tension for this material system. The
agreement between theory and experiment is very good except for angles smaller
than +15°. To understand this behavior, the state of stress within the angle-ply
laminate was examined. When uniaxial compression is applied to the specimen,
oy is compressive for all angles while o, changes from tension to compression at
approximately 40°. Whole fiber tow breaks, sheared matrix, and cleavage indicate
that all three stress components appear to play a significant role in the failure

(longitudinal splitting) of these specimens.
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Greszczuk®® predicted the transverse tensile strength of glass/epoxy, gra-
phite/epoxy,vand graphite/phenolic composites using constituent properties and
microstructure of the composite. The important aspect of this work is that the
analysis accounts for the internal triaxial stress concentrations caused by fibers and
voids individually, the interaction of stress concentrations from fibers and voids,
and the volume fraction of ineffective or unbonded fibers. Good correlation between
predicted and measured compressive strengths were observed.

Greszczuk®® estimated the compressive strength of interaction failures by

. FrcFry
Fre = Frq iCKFLC (32)
where
K=~ — (k — %) (vf —vy) g—z (33)
and
vi,vr, = Poisson’s ratios of the fibers and matrix, respectively,
Er,Er = Young’s moduli of the composite in the longitudinal
and transverse directions,
Fr, = transverse tensile strength of the composite, and
Frc = longitudinal compressive strength of the composite,

calculated according to the rule of mixtures,
Eqn. 31.

It should be noted that a weak transverse tensile strength (e.g., a poor
fiber /matrix interface) yields a compressive failure strength that is much lower than
that for fiber shear controlled failure. On the other hand, a very strong transverse
tensile strength causes Eqn. 32 to give a result identical to Eqn. 31 in the limit.

Broutman®* developed an alternative expression for the compression strength
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of a composite that fails by longitudinal splitting. He concluded that

(EsVy + EnVi) (1- V)

T = Vfo Vo €mu (34)
where
Ef,E,, = Young’s moduli of the fibers and the matrix, respectively,
Vf,Um = Poisson’s ratios of the fibers and the matrix, respectively,
Vi,V = fiber and matrix volume fractions, respectively, and
€mw = ultimate strain of the matrix, measured from a

tensile test of the neat resin.
In Eqn. 34, compressive failure is assumed to occur when the transverse strain
reaches the level required for failure in a transverse tensile test.

Broutman’s?? analysis implies that compression failure occurs by longitudinal
splitting resulting from the Poisson’s expansion in the transverse direction. How-
ever, when the specimen is rigidly supported by the grips, each end of the specimen
is constrained. Consequently, the transverse tensile stresses leading to failure may
be induced by constraint rather than by the Poisson’s contraction difference, as as-
sumed by Greszczuk.”® A comparison of Broutman’s predictions (Eqn. 34) against
Rosen’s*? (Eqns. 1,3) predictions is shown in Fig. 11.

Piggott’s®® results showed that for stiff matrices failure occurred by splitting,
rather than the controlled fiber kinking, though some kinking accompanied the
splitting.>* Even when the fibers are straight, transverse tensile stresses are present.

An estimate of the stress at the fiber/matrix interface is given as
Or = Orm (Um — vg) (0.48 + 0.52V; — 12V7) (35)

where v,, and vy are the Poisson’s ratios of the matrix and the fibers.
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However, large tensile stresses can be introduced by curved fibers, and these
stresses can lead to failure of the bond, especially when the fiber/matrix adhesion
is poor. Piggott suggested that three distinct strengths are involved in splitting
behavior, as shown in Fig. 12. In addition to the adhesive strength, o,, the cohesive
strength of the matrix, om¢s, and the compressive strength of the matrix, omcu
(or the yield strength, o) are involved. The ultimate compression strength for

composites made with hard matrices is given by

Orew = %% (Vf + v’fj’”) Tmeu (36)
where
R = fiber radius of curvature,
d = fiber diameter,
Vm,Vs = matrix and fiber volume fractions, respectively, and
En,E; = Young’s moduli of the matrix and fibers respectively.

The lines for transverse compression failure, shown in Fig. 13, were plotted using
Eqn. 36.

Piggott®® predicted that for debonding to occur, the stress must overcome the
matrix cohesive strength, 0.1y, in the webs of the fibers (see Fig. 12). In this case
the composite strength is predicted by

AR AN Vin Em
cu — —3 a I -2 mtu 37
7 md {M T (Vf) ]a t }{Vf+ Ey } (37)

where Py is the packing factor, equal to % for hexagonal packing and = for square
packing and the other variables are defined with Eqn. 36. The curves for splitting
failure in Fig. 13 were plotted using Eqn. 37. Figure 13 shows the combined effects

of adhesion and fiber volume fraction. Strong nonlinear V; effects are predicted in
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Fig. 12 Stresses involved in the longitudinal splitting failure of a
composite with curved fibers, developed by Piggott.*®
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Fig. 13 Dimensionless plot, developed by Piggott,*® for composite

compressive strength when controlled by transverse splitting
and transverse matrix compression failure.
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this plot. This figure indicates that transverse compression failure (i.e. the sideways
push of the fibers will exceed Omew) controls the strength over a range of Vs until
this line intersects the appropriate adhesion line and then fiber/matrix debonding
controls failure.

In summary, a weak interface, attributed to poor fiber/matrix adhesion may
result in a low transverse tensile strength.u‘m'58 This strength reduction, in turn,
may give a lower compressive strength if failure is due to longitudinal splitting
caused by interaction effects resulting from secondary transverse tensile stresses. A
weak interface combined with secondary transverse tensile stresses may also yield a
local interfacial failure which may eventually precipitate other types of failure such

as fiber microbuckling or delamination.
Micromechanics & Damage Approaches to Compression Strength

Fried,®* Fried and Kaminetsky,”®> and Fried®® studied the influence of the
matrix, the reinforcement, and matrix/reinforcement interface on compressive
failure. Experimental results for unidirectional laminates (steel, glass, and glass
roving fibers embedded in a polyester resin) led Fried to suggest the following
failure sequence. The reinforcement phase in a composite material carries the
compressive load until the rigid matrix phase yields; upon yielding, the matrix
flows and no longer provides support for the reinforcement. Consequently, the
reinforcement buckles and the composite laminate fails catastrophically. From
a micromechanics (rule of mixtures) type approach, the ultimate strength of the

composite was expressed as the following linear function of the matrix yield stress

E
Scu = Sry (R + GE—g) (38)

where
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S.. = ultimate strength of the composite,

S.y = resin axial stress at yield,

R = volume fraction of resin,

G = volume fraction of glass,

E, = Young’s modulus for the glass fiber, and
E. = Young’s modulus for the resin.

This model assumes that (i) the maximum stress in the matrix is its yield stress
and that (i) the strain in the matrix is the same as the strain in the reinforcement.
Equation 38 was not valid for the steel reinforcement, probably due to high ductility
of steel compared to glass.

Budiansky®’ completed a brief survey of the current theoretical studies in the
area of micromechanics — the mechanics of very small things. Topics discussed
include void collapse in metals, transformation toughening in ceramics, fiber kinking
in composite materials, and thermoelastic dissipation in rocks. Of particularinterest
to this review is fiber kinking in composite materials, which will be discussed in the

appropriate section in this chapter.

Euler Buckling

2 . .
with corrections

Chou and Kelly®® used results from Timoshenko and Gere®
for shear deformation to predict the compressive stress required to give macroscopic

buckling.

The Euler buckling equation without shear deformation corrections is

cE .1
e = 12

where

P, = critical Euler buckling load,
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E. = Young’s modulus for compression,

I = moment of inertia,

| = column length, and

¢ = a constant determined by the end constraints of the specimen.

For the idealized end conditions,

¢ = 2.47 for clamped-free,
¢ = 9.87 for hinged-hinged, and
¢ = 20.2 for clamped-hinged.

In highly anisotropic materials such as unidirectional composites, the Euler
buckling predictions without shear deformation corrections (Eqn. 39) overestimate
the critical Euler buckling load. The additional deflections occur because of the
relatively low ratio of shear to axial modulus (= 0.04 for composites compared
to = 0.31 for metals). This effect may cause another significant reduction in the
Euler buckling load (typically by a factor of 4). A suitable correction factor for
the low shear stiffness must be applied. The corrected critical load including shear

deformation is given by

Pp=—"°" (40)

where
n = a numerical factor:
1.2 for rectangular cross-sections and
1.11 for circular cross-sections,
A = cross-sectional area,
= composite shear modulus, and

P, = Euler buckling load, Eqn. 39.
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The critical compressive stress of the column is then given by

cE

_._5.7
Gor = _ﬂﬂ?_ (41)
1+ [
where
r = ,/% = radius of gyration

and the other variables were defined with Eqns. 39 and 40.

Equation 41 can be simplified by considering the limiting case where

— > 1 (42)

This condition is achieved in highly anisotropic composites where %j > 1. Addi-
tionally, the condition in Eqn. 42 is obtained for relatively short specimens where %
is small so that the tendency for Euler buckling is also small. Under the condition
of Eqn. 42,

G.

or = —. 43
Oer = — (43)

Equation 43, apart form the factor %, is the same as Eqn. 4, which assumes the
composite fails in the shear instability mode.

Additionally, Chou and Kelly®® used Eqn. 39 to determine c values of 3.34 and
16.14 for the IITRI and RAE specimens, respectively, both of which are described
in the Compression Test Methods section within this chapter.

Wilkinson, Parry, and Wronski®® investigated the mechanical properties of
fiber-harness sateen (weft- or transverse-faced) and plain weave graphite/epoxy
cloths over a range of gage lengths. Euler buckling analysis was found to be
applicable for gage lengths in excess of ~ 15 mm. The column was the specimen

in the case of the sateen weave laminates and the longitudinal (warp) bundles
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in the plain weave laminates. The failure process involved bundle detachment
and kinking,‘ similar to the mechanism operating in nominally uniaxially aligned
fibrous composites. Their observations indicate that the surface bundles detach
and delaminate.

Lee®® presented an equation similar to Chou and Kelly.®® Additionally, he
stresses the importance of axial alignment; misalignment introduces a bending
moment causing strain divergence on either face. He reported results that an
eccentricity of 2.5% of the laminate thickness (0.095 mm for a 30-ply, 3.81 mm,
laminate) reduces the apparent strength to 87% of the ultimate value.

To summarize, the strength predicted by Euler buckling corrected for shear
deformation should be considered an upper limit for the compressive strength that
can be experimentally measured for a given specimen of thickness, ¢, and column
or gage length, [. In practice, one would expect to see compressive failures at lower
stress levels than those predicted for Euler buckling unless specimens with long thin

gage sections are used.
Related Studies

Whitney and Nuismer®! developed two stress fracture criteria for tensile loaded
composite laminates containing stress concentrations (circular holes and straight
center cracks). These criteria’’ are based on two parameters (unnotched tensile
strength, o, and a characteristic dimension), but do not require Linear Elastic
Fracture Mechanics (LEFM). One criterion (Point Stress Criterion) assumes that
failure occurs when the stress at a characteristic distance, d,, from the discontinuity
reaches the tensile strength ¢, of the unnotched material, while the other criterion
(Average Stress Criterion) assumes that failure occurs when the average stress over

some characteristic distance, a,, reaches the unnotched tensile strength. These
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criteria were subjected to further experimental scrutiny by Nuismer and Whitney.%?
However, due to large scatter in the data, no conclusive statement concerning the
accuracy of the models was presented. Although Whitney and Nuismer assumed the
characteristic distances to be a material property independent of laminate geometry
and stress distribution, it should be noted that these adjustable parameters have
not yet been related to microstructural features and do not result from a mechanics
analysis. In 1979, Nuismer®® extended the average stress failure criterion to
compression applications for countersunk fastener holes (both loaded and unloaded),
with acceptable agreement between experimental data and theoretical predictions.
However, again, no conclusive statements about the accuracy of the models were
made.

Reifsnider, Stinchcomb, Bakis, and Yih®* investigated the mechanics of the
damage development process of notched composite laminates. The three aspects
addressed include the local mechanics associated with the damage development
sequence, global changes in the stress state near the notch that relax the stress
concentration, and the mechanics associated with the residual strength after damage
has occurred.

Two multidirectional graphite/epoxy laminates were used to investigate the
fatigue response of notched composite laminates under fully reversed (R = —1)
cyclic loads. The earliest damage detected in the specimens was matrix cracking
parallel to the fibers in the vicinity of the stress concentration. In regions with
dense matrix cracks in two adjoining plies, small delaminations initiated, grew,
and coalesced along the matrix cracks, particularly where two cracks of different
orientation cross. These authors observed that delaminations generally initiate the

earliest and propagate the fastest at interfaces nearest to the surface of the laminate,
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although they eventually appear in a similar fashion at all like interfaces through
the laminate thickness. Additionally, they observed that laminate failure in all
graphite/epoxy, low-amplitude cycled specimens was by compressive failure of the
interior 0° plies after delaminations reduced the support provided by adjacent plies.
Finally, they concluded that the residual compressive strength appears to be much
more sensitive to damage development around a hole (or notch) than the residual
tensile strength.

Renault, Valentin, Perez®® investigated multidirectional notched graphite/ep-
oxy laminates loaded in tension. Many of the results in this study are similar to those
reported in Ref. 94. Macroscopic damage observed prior to final failure included
matrix cracks parallel to the fibers and delaminations near the stress concentrator.

1,92
for some lay-

A reduction of failure stress, described by Whitney and Nuismer®
ups, was observed when the damage extended form the hole. A similar result
was observed by Guynn' for compressive loading. Additionally, like Guynn' and

Reifsnider et al,**

these authors observed that the presence of significant damage, in
the vicinity of the hole, contributed to modify the stress distributions and diminishes
the stress concentrations near the hole. They propose that including these stress
reductions in failure prediction models should improve the accuracy of these models.

Guz and Lapusta®® assumed three-dimensional linearized theory for a piece-
wise-homogeneous medium to investigate the stability of a fiber in an elastic com-
pressible matrix near a free cylindrical surface under small precritical deformations.
The authors reference other uses of this method for similar stability problems: one
fiber, two fibers, an infinite series, a double-periodic system of fibers in an infinite
matrix, a fiber near a free plane surface, and also a fiber near a free cylindrical sur-

face under finite deformations. However these references are not readily obtainable
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in the United States. Their results indicate that as the fiber gets farther from the
free surface, the critical buckling strain approaches that for a fiber in an infinite
matrix. Although the fiber in a semi-infinite matrix followed the same trend, the
critical strains were as much as 20% lower than those for this cylindrical model.

Burns, Herakovich, and Williams®” used linear three-dimensional finite element
analysis and the tensor polynomial failure criterion (Tsai-Wu) to predict that failure
always initiates at the [+-6] interface at the hole edge for notched angle-ply laminates
loaded in compression. The angular location, around the hole edge, of initial failure
was shown to be a function of 8, the fiber orientation of the lamina. The dominating
stress components initiating failure are the shear stresses 713 and 73.

Lee®® used Euler-Bernoulli beam theory to develop an analysis for predicting
the influence of wavy patterns in the main load-carrying layers or wrinkled fibers
on the laminate behavior under tensile loading. This analysis assumed linear ma-
terial behavior. The main load-carrying layers or wrinkled fibers were assumed to
be corrugated beams embedded in elastic foundations of various spring constants.
Young’s moduli for the different laminate configurations were determined experi-
mentally and compared to the model predictions. The model predictions were in
close agreement with the present experimental results including both extensometer
measurements and moiré interferometry fringe pattern analysis. Furthermore, ex-
perimental results reported by other researchers were compared with this analysis

showed reasonable agreement.

Microbuckling and Kinking

Pattnaik, Koczak, and Rogers®® studied the failure mechanisms of unidirec-

tional metal matrix composite (MMC) cylinders loaded in compression. The normal
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mode of compression failure of these composites appeared to be kinking or multiple
kinking, both in-plane and out-of-plane. The formation of kink bands are shown
schematically in Fig. 14. Figure 14d shows the kink inclination, «, and bound-
ary orientation, 3, for both an in-plane and an out-of-plane simple kink. These
authors postulate that the range of values for « and 3 will be a function of the
post-failure deformation of the kink band, as shown in the graph in Fig. 15. Un-
like graphite/epoxy composites, very few voids or delaminations were observed in
these composites because the matrix is a ductile aluminum alloy. The voids cre-
ated by fiber cracking are filled by metal flow under the high compressive stresses.
However, the presence of voids, fiber waviness, and possible fiber/matrix debonding
yielded compressive strength values much lower than those predicted by the existing
theories of compression failure.

Chaplin®® observed and characterized the shear deformation in unidirectional
glass-reinforced composites as an “elastic instability.” It is therefore not determined
by strength considerations, but involves shear instability in a volume of material,
not failure on a plane due to a resolved stress. The author’s argument is dependent
on the assumption that as the shear deformation increases, the angle of the band
and the length of the fibers in the band do not change. Chaplin showed that the
angle o = 273 if no volume change was assumed within the kink band. Experimental
results for notched compression specimens showed some difficulty was experienced
in controlling the fracture to give stable damage propagation. A strong tendency
existed for interlaminar shear failures to propagate from the tip of the notch.
Chaplin concluded that the mechanisms of energy absorption are readily identifiable
as matrix shear and interfacial failure. The difficulty lies in making allowance for

load carried by the shear band after failure. Additionally, Chaplin argued that in
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the presence of a hydrostatic stress component, the expected effect would be an
increase in compressive strength.

Parry and Wronski'®’studied the mechanisms of deformation and failure of
carbon fiber-reinforced composites tested in three-point flexure. They observed a
significant increase in acoustic output at the onset of nonlinear behavior on the
load-deflection plot. Subsequent microscopic observations showed that the failure
was initiated by fiber kinking near the compression roller. Kink growth with
decreasing load, increasing deflection, and accompanying stress resistribution led
to either flexural or interlaminar failure. In the latter, the growing kink initiated
interlaminar cracks in resin-rich zones. These delaminations were not confined to the
neutral plane. Finally, they suggested that kink initiation, involving microbuckling
of fibers and shear of the matrix, should be associated with the onset of nonlinear
deformation.

Parry and Wronski'®! investigated kinking and compressive failure in unidirec-
tional carbon fiber-reinforced composites. Based on their results, they suggested
that a local surface condition initiates the first buckling and breakage of a group
of fibers, which acts as the kink band. This kink band propagates by the buckling
and failure of fiber groups ahead of it. Additionally, they concluded that the com-
pressive strength properties are related to the strength, ductility, and toughness of
the resin rather than its modulus.

Wronski and Parry'?? evaluated the compressive failure and kinking in unidirec-
tional glass-reinforced composites (GRC). Because the failures were catastrophic,
it was difficult to estimate the size of the microstructural unit (bundle of fibers)
which initially kinked. They postulated that even for straight fibers the role of the

matrix and its effect on fiber microbuckling must be considered. According to these
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authors, the buckling causes lateral displacement of the fiber bundles and causes
pushing against the support of the matrix. If failure is initiated when the matrix
support is lost locally (i.e. matrix yielding), continued loading causes localized gross
deformation leading to longitudinal splitting along the bundle boundary. Based on
this observation, Wronski and Parry believed that d (Eqn. 23) should be the bun-
dle rather than fiber diameter. Additionally, they concluded that bundle buckling
controlled the compressive strength of GRP unless the matrix yield strength was
very high.

In Refs. 100-102, Parry and Wronski observed that in the presence of a super-
posed hydrostatic pressure, the compressive strength of unidirectional composites is
increased. Parry and Wronski'®® observed that the hydrostatic pressure suppressed
interlaminar cracking (delaminations) in three- and four-point bending tests, but
fiber kinking still preceded failure. Additionally, in Ref. 101 they again reported
that in the presence of hydrostatic stress, longitudinal splitting and “shear” failures
(using in-plane shear specimens) were suppressed, and the effect was to increase the
compressive strength. It should be noted that all failures were associated with the
propagation of kink bands. These results agree with Chaplin’s®® postulate.

Evans and Adler'®® used observations of carbon/carbon composites to identify
the modes and morphology of kinking. Kinking has been attributed to three prin-
ciple modes: (:) longitudinal compression, (ii) lateral compression, and (¢::) lateral
displacement or “shear.” The kink morphologies for longitudinal compression and
lateral displacement (or shear) are very similar.

A thermodynamic analysis of kinking has accounted for the observed kink
morphologies in terms of the strain energy and plastic work associated with the

matrix phase. Specifically, minimization of the plastic work dictates the kink
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inclination, o, while the minimization of the elastic strain energy determines the
kink boundary orientation, 3.

The mechanics of kinking were explored using a model for statistical fiber
fracture and matrix stress enhancement. The appropriate fracture and deformation
parameters were determined in-situ, and these parameters were used to obtain the
critical kink formation stress. This expression confirmed that composites should be
designed with a maximum resistance to shear kink formation by increasing the fiber
fracture strength level and enhancing the matrix yield strength.

104,105 . . . . .y
investigated the compressive failures of multidirec-

Potter and Purslow
tional composite laminates containing center holes. They reported that the first
sign of damage (at 60%-70% of failure load, depending on lay-up) was protrusion
of the discontinuous 0° plies into the hole. This damage gradually became more pro-
nounced as the loading was increased. Additional associated and necessary damage
included in-plane cracks running parallel to the 0° fibers and an area of interlaminar
shear failure (localized delamination) at the ply interfaces. Further loading yielded
in-plane and out-of-plane fiber microbuckling in the 0° plies. This microbuckling
appeared to initiate at locations where splits or cracks, parallel to the fibers, existed
in the adjacent 45° plies.

Marom, Davidovitz, Mittelman, and Roman'’® and Davidovitz, Mittelman,
Roman, and Marom'®” investigated fracture mechanisms and failure modes of
unidirectional Kevlar-reinforced epoxy composites, loaded in three-point bending.
They reported the development of diagonal kink (shear) bands in the vicinity of
the loading roller. The source of the kink bands is the compressive stress in that

side of the specimen near the loading roller. The mechanism for their formation

in Kevlar fibers is different than for graphite fibers. In graphite fiber composites,
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the kink bands consist of broken pieces of fibers, and in Kevlar fiber composites,
they consist ;)f an assembly of kink bands in the individual filaments caused by the
unique compression behavior of Kevlar fibers.’*

Rajendran, Rogers, and Koczak'®® studied the failure mode of alumina/alumi-
num composites under two loading conditions, an Instron testing machine (displace-
ment-control) and dead-weight loading (load control). Both solid and hollow
cylindrical specimens were tested. The typical failure mode, when tested in
displacement-control, was kink band formation. These authors proposed that local
fiber buckling, initiating at a local stress concentration (e.g. inclusions,voids, and
resin-rich areas), and consequent shear deformation of the matrix leads to kinking.
As expected, the specimens were crushed catastrophically when loaded in load-
control. The experimental compressive strength was compared with theoretical
predictions, all of which overpredicted by at least a factor of 2. The largest
overprediction was by a factor of 22.

Waas and Babcock!®® completed a detaile;d experimental investigation to
understand the initiation and propagation of failure in laminates in the presence
of a stress raiser. They studied damage initiation and propagation throughout the
entire load history via real time holographic interferometry and photomicrography
of the hole surface. Post-failure examination of the damaged specmens was
accomplished using ultrasonic inspection and an optical microscope. From this
study, they concluded that the damage was found to initiate by a combination of
fiber microbuckling and kinking, and delamination buckling was determined to be
the mechanism by which damage propagates to catastrophic failure.

It should be noted that these authors observed much more out-of-plane buckling

and delamination formation than reported in in Ref. 1. However, G, for the
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materials tested in Ref. 1 is much higher than that for the BP907 system in
Ref. 109. This greater resistance to delamination may explain why local instability
was more in-plane in Ref. 1 and more out-of-plane for Ref. 109. In the absense
of delamination, in-plane fiber microbuckling requires only resin shear while out-
of-plane fiber microbuckling requires out-of-plane displacement of the adjacent ply,
which may be simpler or more difficult depending on the ply orientation and depth.

A very detailed study of the effects of fiber microbuckling and shear crippling on
the compressive strength of composite materials has been completed in Refs. 110~
114.

110 : . _— .
studied the failure characteristics of compression

Starnes and Williams
loaded graphite/epoxy structural components. Their results indicate that the strain
concentrations near a circular hole in a graphite/epoxy laminate can cause the
highly strained fibers near the hole to buckle locally. The paper does not wtate
whether the buckling is in-plane or out-of-plane. However, from his micrographs,
it appears to be in-plane. These buckled fibers can fail, and the resulting local
damage propagates by a combination of shear crippling and delamination to fail
the laminate. Good failure predictions were obtained when the Whitney-Nuismer®!
approach was applied to their data.

Williams'!! summarized results similar to Ref. 110. He concluded that fiber
microbuckling is governed by the stiffness properties of the matrix, the fibers, and
the fiber/matrix interfacial bond.

Rhodes, Mikulas, and McGowan''? observed a sequence of failure events
for multidirectional laminates slightly different from that previously described in

Ref. 110. To determine the sequence of failure events, these authors microscopically

examined plies in several panels loaded to different percentages of the estimated
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failure load. The first failure was observed in panels loaded to = 85% of the ultimate
compressive load and was an interfiber matrix failure in the 0° plies (similar to
longitudinal splitting in unidirectional laminates), an addition to the sequence of
failure events in Ref. 110. It is anticipated that this failure is a shear failure of the
matrix due to the high stress gradient in the vicinity of the hole. Specimens loaded
to a higher percentage of the predicted failure load had regions of shear crippling
in the 0° plies near where the interfiber matrix failure terminated. An estimate
was made of the distance from the edge of the hole to the point where the shear
crippling failure was initiated. This distance was approximately equal to d, used
in the Point-Stress Failure Prediction technique for the laminates. However, no
attempt was made to accurately determine and correlate this distance with d,.

Sohi, Hahn, and Williams'*? investigated the compressive failure mechanisms
of quasi-isotropic graphite/epoxy composites, and their results are very similar to
those reported in Ref. 1 from a parallel study. They concluded that these failures
were triggered by the kinking of fibers in the 0° plies. The kinking was followed
by delamination and subsequent sublaminate buckling. Additionally, they reported
that the kinking usually initiated at the specimen free edge and quite often in the
vicinity of the tab ends. They proposed that kinking initiation at the free edge may
be a result of the free edge effect or less lateral support provided for the 0° plies at
the edge or a combination of these two effects.

Quasi-isotropic laminates were shown to have considerably higher failure strains
than the corresponding unidirectional laminates. This improvement was attributed
to the better lateral support provided for the 0° plies by the adjacent off-axis plies
in quasi-isotropic laminates. Additionally, they observed that the in-plane kinking

in the quasi-isotropic laminate was influenced by the stiffness of the off-axis plies
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normal to the loading while the out-of-plane kinking was retarded by these off-axis
fibers bridging over the kink band.

Hahn and Sohi''* investigated the buckling of a fiber bundle embedded in an
epoxy resin to gain insight into compressive failure mechanisms in unidirectional
composites. The fibers were embedded in two different resins, one relatively
compliant and one relatively stiff. In both resins, the failure mode was found to be
microbuckling of the fibers for the E-glass, T300 graphite, and T700 graphite fibers;
however, the high-modulus P75 fibers failed in shear without any microbuckling.
Buckling induced failure was most evident for the E-glass fibers, while the kinking
type of failure (fibers are broken in only 2 locations) was most common for
the T300 and T700 graphite fibers. Additionally, Hahn and Sohi observed that
fiber fracture occurred immediately after fracture and that fiber/matrix debonding
follows fiber buckling. Their observed failure strains and segment lengths of the
bundle specimens followed the trends predicted by Lanir and Fung®® for a single
fiber embedded in an infinite matrix.

Hahn''® improved and combined previous models describing fiber microbuck-
ling?! and kinking into one unified model for the compressive strength of unidirec-
tional composites. He suggested that failure is the result of a sequential occurrence
of fiber microbuckling, kinking, and fracture. Consequently, kink bands are fre-
quently observed on failure surfaces.

Hahn suggested that when a fiber microbuckles, it pushes or pulls the neigh-
boring fibers, and hence, a group of fibers will likely microbuckle in-phase with one
another. As a result of in-phase or shear mode microbuckling, the matrix between
fibers experiences shear deformation which provides resistance to further microbuck-

ling. Eventually, with additional loading, the matrix yields, and the microbuckling
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changes to kinking. When the matrix cannot support any additional shear, the
fibers collapse, and the composite fails, usually catastrophically.

Hahn notes that this process is very localized, and quite often, initiation occurs
at a free edge where the support of neighboring fibers is reduced. Once initiated,
it then propagates inward. This result is consistent with the results of Guynn and
Bradley in Refs. 1, 3, and 4.

The compressive strength for fiber microbuckling predicted in Ref. 21 was given

in Eqn. 30. The assumption of fiber kinking at & leads to

2T
a=—1 (44)
7f
where
o = c{—/? = fiber stress and
T, = shear stress level corresponding to v,.

Additionally, the shear strain in the kink band is given by
¥* =sina — (1 — cosa)tan 3. (45)

It should be noted that any kink band formation caused by fiber failure rather
than matrix yielding cannot be described by this analysis. He applied this analysis
to data in Ref. 116 with reasonable results, although they could not be verified
experimentally because of measurement difficulties. Hahn’s analysis qualitatively
predicts the effects of constituent phases, including interface and defects on the
compressive failure of unidirectional composites.

Kulkarni et al*® also observed kink-band formation in the longitudinal and
transverse planes, inclined at 55°-60° to the horizontal axis. Lateral restraint pro-
vided by the addition of glass fibers in the 90° direction prevented the longitudinal

slip plane, but involved a slip in the transverse plane.
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Budianski®’ reviewed the application of kink band theories to the compression
failure of cor'nposite materials. Three of the theories presented yielded 3 = 0 as the
critical kink angle (see Fig. 16). He concluded from the results of these theories
that the most important factors affecting the kink strength of composites are high
composite stiffness in strength and shear. The sensitivity to fiber misalignment
is large. One problem concerning Budianski was that experimental observations
by different researchers have shown that the kink angle, 3, varies from =~ 10° to
=~ 40°. Budianski showed that localized deviations from the ideal fiber alignment
having no particular geometrical bias induce patterns of angular misalignment due
to elastic distortion that arrange themselves into inclined domains. These rotations
then induce plastic kinking into similarly inclined kink bands.

Failure follows rapidly after plastic deformation begins, so that it is reasonable
to identify the failure stress, o, with the kinking failure stress, o,. The consequent

correlations between o, and the kink angle, 3, are

, 1 -0, G 7
tang = + E—T/é——} (46)
for long wave imperfections and
1
- 2
tang = i(\/§—1) [I—E;/—C/;—G} (47)
for short wave imperfections where
o, = stress perpendicular to the fiber direction,
G = elastic shear modulus of the composite, and
Er = transverse modulus of the composite.

Equations 46 and 47 predict kink angles between 10° and 35° as shown in Fig. 16.
From the literature on compression failures, it is easy to get the impression

that fiber microbuckling and kinking are competing mechanisms. However, recent
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work has indicated that fiber microbuckling occurs first, followed by propagation
of this local damage to form kinking.!"'°***'® Fiber microbuckling and the resultant
kinking may form in-plane or out-of-plane. It typically initiates at free edges at the
perimeter of the laminate or at an internal hole where local support to resist fiber
microbuckling is reduced.

In summary, it has been shown that fiber waviness, fiber/matrix interfacial
bonding, and the composite shear yield strength are all important parameters
in determining the stress level at which fiber microbuckling initiates. The shear
modulus of the matrix, which esssentially controls the shear modulus of the
composite, was also shown to be an important factor in the determination of the

compressive strength of composite materials.

Effects of Matrix Resin Properties on Compressive
Strength of Composite Materials

The shear modulus and the nonlinear constitutive behavior are both important
in determining the compressive strength of a composite material when the failure
mode is fiber microbuckling or macrobuckling, as indicated by Eqns. 1-18, 24-30,
and 39-43. Hahn and Williams®' illustrated the increase in compressive strength
that accompanies an increase in resin modulus (see Figs. 17 and 18). Although the
compressive strength in Figs. 17 and 18 is presented as a function of the resin tensile
modulus, the shear modulus would show the same trend since it is proportional to
the tensile modulus. Similarly, a high resin modulus usually correlates with a high
resin yield strength. In contrast, the tensile strength is relatively insensitive to the
resin modulus. The consequence of the sensitivity of the compression strength to
resin modulus and the insensitivity of the tensile strength to resin modulus is that

the ratio of compressive strength to tensile strength increases as the resin modulus
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increases.

Althouéh the unidirectional compressive strength of graphite/epoxy and metal
matrix composites has been shown to correlate with the matrix modulus,*® the re-
sults by Cha,ng117'118 for thermoplastic matrix composites show no such correlation.
Chang states that the matrix modulus is not the key determinant for compressive
strength of unidirectional carbon/thermoplastic matrix composites. He suggests
that other factors such as fiber/matrix adhesion, matrix penetration, fiber align-
ment, and shear stability are more important.

Mabson, Wharram, Tennyson, and Hansen''® investigated the effects of mois-
ture content and elevated temperature on the compressive strength of graphite/ep-
oxy composites. The sandwich beam test method yielded compressive stiffness
values consistently higher than the “pure” compressive data (IITRI type fixture)
for all environmental conditions studied. Elevated temperature (= 100°C) com-
bined with high moisture content (= 1.7% H;O) resulted in no significant change
in compressive stiffness but a large reduction in ;:ompressive strength (21%-43%),
relative to ambient condition strengths. This compressive strength reduction may
be attributed to a degradation in the shear modulus and/or shear yield strength of
the matrix.

Sternstein, Yurgartis, and Srinivasan’?’ studied the out-of-plane bending fail-
ure of thermoplastic matrix composites, including the effects of the graphite fibers
on the ability of the matrix to deform and yield. These composites were evaluated
using a four-point bending jig that allowed observation of the edge failures in the
light microscope.

For these thermoplastic matrices, they observed time dependent fiber fracture

which occurs in buckles or kink bands. Additionally, all failures initiated on the
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compression side of the bending sample. It appeared that the enhanced ductility of a
thermoplastic (relative to a thermoset) composite resulted in ply buckling instability
as a dominant failure mode. This result indicates that compressive properties are
critical for thermoplastic and thermoset composites. However, thermoplastic matrix
composites are more vulnerable due to their lower modulus and/or yield strength
of the resin.

1'2% observed large scale yielding as evidenced by shear bands

Sternstein et a
and crazes or relatively large displacements of fibers only in resin-rich regions of the
specimens. Observation of the delaminations indicated that matrix deformation
was limited to a small interfacial region and that the crack propagated by shear
(mode II) rather than tension (mode I).

Bishop'?! reported slightly different failure modes for carbon fiber/PEEK
(APC-1) composites, compared to carbon fiber/epoxy composites. The failure
mechanisms are slightly different because of the lower shear modulus, the lower
compressive strength, and the greater shear strength of the carbon fiber-reinforced
PEEK. Compressive failures of fibers or shear failure across the fibers is likely to
occur in PEEK composites, and failure modes due to shear forces parallel to the
fibers are less likely to occur.

122 investigated the fracture strength of

Miyano, Kanemitsu, Kunio, and Kuhn
unidirectional CFRP for various directions and modes of loading over wide ranges
of temperature and strain rates, in conjunction with similar investigations on the
epoxy resin matrix. Additionally, the role of the matrix resin on these fracture
strengths, based on SEM observations of the fracture surfaces, was discussed. Time

and temperature dependence of tensile, compressive, and flexural strengths in the

CFRP for both longitudinal and transverse directions exhibited the same viscoelas-
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tic behavior as the matrix epoxy resin. However, the longitudinal compressive and
flexural fracture strengths of unidirectional CFRP was dominated by the deforma-
tion properties of the matrix, wheras the transverse tensile, transverse compressive,
and flexural fracture strength of unidirectional CFRP was strongly affected by the
fracture strength of the matrix.

These authors observed that for transverse tension, compression, and bending,
the resin adheres to the fracture surfaces at 60°C while much less resin adhered
to the fracture surfaces at 180°C. Additionally, they confirmed, using Dow’s3!
equation, that the microscopic mode of failure is fiber microbuckling in both
longitudinal compression and flexural in every case.

Greszczuk’s?® results presented in Figs. 2a-2c show that increasing Young’s
modulus or the shear modulus of the resin significantly increases the composite
strength, and if increased enough, the failure mode is then governed by the compres-
sive strength of the reinforcement rather than microbuckling of the reinforcement.

Lee’® conducted an experimental study of compression properties of a number
of reinforced thermoplastic composites to determine the effects of these matrices
on compression strength and to provide a direct comparison with carbon reinforced
epoxides. His results indicate that unidirectional APC-2 gave similar compression
strength to both epoxide (XA-S/Fibredux 914C and XA-S/MY750) systems tested.
However, no comparison is given regarding the matrix moduli of these materials.

Hahn and Sohi'®® observed that fiber microbuckling is more uniformly dis-
tributed in a very soft resin, but quite localized in stiff resins. The results of
Williams'!? indicate that a higher shear modulus resin should also increase the
strain at which microbuckling initiates.

Recall that in 1963, Fried®* proposed that in the limit the point at which the
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resin “yields,” or flows, determines the load carrying capacity of the composite. He
also hypothesized that resin physical characteristics (stiffness, shear strength, shear
rigidity, and tensile strength) and content affect the stability of the reinforcement.
Experimental results in a subsequent study®® supported these initial hypotheses.
In particular, the compressive strength varied directly with the resin compressive
yield strength for unidirectional filament wound materials. Results from an even
later study®® showed that resin yield will be the failure mode only in laminates with
low void contents and good reinforcement/matrix interfaces. Piggott and Harris™*
showed that the matrix yield stress is an important factor controlling compression
properties of fiber-reinforced composites. However, beyond a certain limiting matrix
yield stress, the compressive strength remains constant or declines. They postulated
that this phenomena may indicate a change from matrix control to interface control
of compressive strength.

The results of many researchers (Refs. 26, 33, 54, 65, 84-86, 111, 117-122)
have shown that the matrix shear modulus is the matrix property with the most
significant effect on compressive strength. However, it is difficult with experimental
correlations to determine whether resin initial modulus, tangent modulus, or yield
strength controls fiber microbuckling since it is essentially impossible to vary these
mechanical properties independently.

The reduction in the compressive strength of a composite material that results
from the nonlinear consititutive behavior in the shear stress versus shear strain
relationship of the resin has been noted by many investigators (Refs. 26, 67-69, 73~
79). Hahn and Williams®® observed that although the elastic moduli of the resin
varied significantly, the tangential moduli at failure were relatively consistent. This

observation implies that the tangential modulus at failure, rather than the initial
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elastic modulus, controls the compressive failures in composite materials. Wang’s®’
results support this argument. The analytical work of Hayashi and Fujikake*’
indicates that the compressive strength of unidirectional composite materials may
be reduced as much as 50% due to the nonlinear behavior of the resin. Kurashige’s®
analysis predicted a decrease in the ultimate compressive strength as the resin shear
modulus decreased and also as the thickness of the resin-rich layer between the axial
and cross layers increased.

Shuart and Williams'* observed in-plane shearing between the fiber and matrix
(i.e., matrix shearing) as the primary compression failure mechanism for an all
+45° laminates with a hole. However, the matrix shearing contribution to failure
appeared to be reduced and delamination observation increased as the percentage
of 90° plies in the laminate thickness was increased.

Sohi et al''® investigated the effects of resin toughness and modulus on the
failure modes of graphite/epoxy composites. They observed that tougher, and thus
more ductile, resins resisted delamination following fiber kinking better than the
more brittle resins, even though the tougher resins allowed fiber kinking at lower
strains. Regardless of the resin, failure initiation in all seven systems studied was
believed to be governed by the same mechanism, fiber kinking in the 0° plies. The
mode of propagation following the initial fiber kinking changed with resin ductility.
For brittle resins, delamination immediately follows fiber kinking initiation. On
the other hand, tougher resins allow more stable fiber kinking and resist any
delamination growth.

In summary, a high compressive strength in a composite material may only
be obtained when microbuckling and macrobuckling are inhibited. Both analytical

and experimental results indicate that a large shear modulus and yield strength are
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necessary to obtain a high compressive strength.

Effects of Fiber Properties on Compressive
Strength of Composite Materials

The tensile strength of the fiber is always the limiting factor when determining
the tensile strength of a composite material. However for compressive loading, the
compressive strength of the fiber is significant only when fracture is initiated by
fiber shear failure. In this section, the effects of the mechanical properties of the
fiber, the volume fraction of the fiber, and the waviness of fiber on the compression

strength of composte materials is explained.

Mechanical Properties of Fibers

25,81,82

Three investigations, cited in this review of the compressive strength

of composite materials indicate fiber shear as the failure mode. However, more

1:4,68,69,115 ndicate that fiber microbuckling is the limiting factor in

recent studies
compression strength, even when a relatively stiff epoxy matrix is used.

Van Dreumel'?® indicated that aramid fibers, compared to carbon fibers, may
be very attractive, especially for compression loaded structures. He noted that
the Young’s modulus, Ey¢, for a unidirectional carbon fiber laminate is a linear
function of the applied stress while it is constant for aramid fiber laminates. The
data presented, considering specific stiffnesses and strengths, showed that carbon
fibers are favorable for stiffness critical designs while aramid fibers are preferred for
strength critical designs. However, when considering buckling behavior, structural
stability is governed by stiffness. In particular, V'E is the important parameter.

Although the compressive strength ratio of carbon to aramid fiber unidirectional

laminates is 6, the Euler buckling strength ratio is only 1.3.
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Turner and Cogswell'?* reviewed the mechanical property data base for a range
of continuous fiber/PEEK composites to demonstrate the diversity of thermoplastic
composite materials that may be produced. It is important to note that with most
of the fibers, high efficiencies (80-90%) of fiber property utilization are observed.
Experimental results indicate that the on-fiber nucleation of crystallization explains
the very close physical proximity of the resin molecules to the fiber surface.
Although this is a necessary condition for good adhesion, it is not a sufficient
guarantee of good bonding.

Piggott and Harris’® measured the unidirectional compression strength of hy-
brid composites reinforced with carbon, Kevlar, and/or glass fibers. All of the hy-
brid composites showed interactions, deviating from rule of mixtures behavior. The
observed interactions were beneficial for the case of strength and detrimental for the
case of stiffness. Microscopic examination of compression tested specimens showed
highly localized transverse failure surfaces for carbon/carbon hybrids. Kevlar com-
posites failed by a highly localized shear kinking band with no longitudinal splitting.
In carbon-glass hybrids, the kinking in the adjacent glass-rich regions appears to
inhibit the progress of cracks that have initiated in the carbon.

Williams,'!! based on his results, hypothesized that the higher bending strains
in a buckled fiber initiate local failure. His results showed that composites made
with higher tensile strain fibers exhibited higher laminate strengths.

Hahn and Sohi''* observed that low-modulus fibers (e.g. E-glass) are more
susceptible to fiber microbuckling (probably due to greater fiber waviness), while
intermediate-modulus graphite fibers are more likely to fail by fiber kinking. High-
modulus fibers (P75) failed by fiber shear.

DeTeresa et al*!® studied the mechanical anisotropy of an aramid polyamide
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fiber, Kevlar 49, in tension, compression, and torsion. Ratios of tensile-to-
compressive strength, tensile-to-shear strength, and tensile-to-shear modulus of 5:1,
17:1, and 70:1, respectively, were measured for Kevlar 49. The high anisotropy
of mechanical behavior for Kevlar 49 is illustrated by the measured 70:1 ratio of
tensile-to-shear modulus. After compression loading, they observed lateral shifts of
fiber segments, similar to slip bands in metals, called fiber kinking. No sinusoidal
microbuckling instabilities were observed for these fibers. This observation implies
that the microbuckling theories of unidirectional composites which satisfactorily
predict the compressive strengths of composites based on isotropic glass fibers may
have no bearing on the compressive strength of Kevlar composites.

The relatively low values of shear strength and modulus for Kevlar 49 may
account for the relatively low in-plane shear modulus, strength, and interlaminar
shear sfrength of Kevlar composites. For composites having a strong fiber/matrix
interfacial bond, failure may occur within the Kevlar fiber, rather than in the matrix
or at the interface. Therefore, any analysis of mechanical performance for Kevlar
composites should consider that the fiber shear modulus and strength are in the
range of matrix shear properties.

In Refs. 126, 127, and 128, DeTeresa et al modelled straight, highly oriented
polymer fibers as a collection of chains that interact laterally. The critical stresses
to buckle this fiber or collection of chains are calculated using a shear instability
analysis (similar to those in Refs. 33, 34, and 36) developed to predict the compres-
sive strengths of fiber-reinforced composites. This buckling stress is predicted to be
equal to the shear modulus of the fibers, similar to Eqn. 4 for composites, and is
the limiting value of fiber compressive strength. It should be noted that stresses to

initiate shear instability are dominated by properties of the elastic foundation and
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not the column. As with composites, the theory overestimates the fiber compressive
strength, but a correlation of shear modulus with axial compressive strength is pre-
dicted. The authors consider it remarkable that this simple analysis, disregarding
defects and inhomogeneities, predicts within an order of magnitude of the measured
compressive strengths.

Based on their results, DeTeresa et al'*® suggest a possible hierarchy for
compressive failure of composite materials. On a macroscopic scale, failure may
occur by a global elastic instability first analyzed by Leonard Euler. At a smaller
scale, namely the lamina, failure may occur by fiber microbuckling, modelled with
an elastic instability analysis in Refs. 33, 34, and 36. Finally, the authors have
shown that the microstructure of polymer fibers undergoes an elastic instability
that manifests itself as kink banding.

Hahn and Williams*® summarized the reported compressive fiber failure modes
as shear, kinking, and bending. High modulus graphite fibers fracture in shear
along a maximum shear plane. These shear failures are typically observed only in
a composite with a very stiff resin and minimum fiber waviness, two factors that
inhibit fiber microbuckling. When these fiber shear failures occur, the composite
compressive strength is very nearly equal to its tensile strength. Fiber strength
dominates compressive strength in both of these cases. In this particular case, the
compressive strength is predicted using Eqn. 31, and a linear relationship between
compressive strength and fiber volume fraction should be observed. Kevlar fibers,
on the other hand, fail in a kink mode because of Kevlar’s characteristic weak bond
in the radial direction that permits individual fibers to split into fibrils. Both shear
failure and fiber kinking are characteristic failure modes for fibers with well-aligned

fibrillar structure. However, the low ductility for graphite fibers leads to shear
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fracture or microbuckling while the development of fibrils for Kevlar fibers results
in kinking. These kinking failures are indicative of a low compressive strength fiber
and thus, a low compressive strength composite. Brittle fibers with amorphous
structure (e.g., glass) usually fail in bending, starting from the tension side. Medium
to high-strength fibers can also fail in bending. Bending failures occur after fiber
microbuckling in which case the fiber strength does not play an important factor in
determining the compressive strength.

It has been established from this review that fiber tensile modulus is not a
particularly significant variable in the determination of the compressive strength of
composite laminates. The fiber tensile modulus appears explicitly in Eqns. 1, 2,
7, 13-17, 24, and 25, which give the compressive strength for fiber microbuckling
failures. The fiber shear modulus is explicit in Eqns. 5, 11, and 12 which also predict
the compressive strength for fiber microbuckling failures. However, the contribution
of the fiber modulus to the calculated compressive strength in each case is small,
unless the fiber shear modulus is the same order of magnitude as the matrix shear
modulus and/or the microbuckling wavelength is less than or equal to ten times the
fiber diameter.

Indirectly, the fiber modulus may be more important in the determination
of the composite’s compressive strength if it reduces the fiber waviness, which
would increase the compressive strength (see Eqns. 16-30). However, fiber waviness
ultimately depends on fiber stiffness which is more sensitive to fiber diameter than

fiber modulus.
Fiber Volume Fraction

All of the models for compressive strength described previously in this review

indicate that the fiber volume fraction, Vy, is an important variable in determining
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compression strength. When V; does not appear explicitly in the equations, it is
present implicitly through the composite shear modulus G, as shown in Eqn. 5. The
monotonic increase in compressive strength with increasing fiber volume fraction has
been observed by a number of investigators (see Refs. 47, 51, 54, 53, 23, 63, 81, 84,
85, and 88).

The results from Hayashi and Fujikake,*” showing the variation in compression
strength as a function of fiber volume fraction, are given in Fig. 19. The results
shown in Figs. 192 and 19c indicate that an optimum fiber volume fraction (= 50%—
60%) yields a maximum compressive strength for polyester composites. The results
in Ref. 47 suggest that the fiber distribution is also important. A heterogeneous fiber
distribution facilitates interfacial failures at a lower average fiber volume fraction
than a homogeneous distribution. The fiber volume fraction results shown in Fig. 19
are more continuous than those presented by Rosen.*®

Piggott and Harris®* tested unidirectional Kevlar-, carbon-, and glass-rein-
forced composites. The results indicate that bloth strength and modulus are a
linear function of volume fractions for moderate volume fractions, <30% and <45%,
respectively. It is interesting to note that beyond these fiber volume fractions,
both the strength and modulus appear to decrease and that deviations from the
rule of mixtures type behavior increase. At 30% fiber volume fraction, the Kevlar
fiber composites behaved as though their compression modulus and strength were
significantly smaller than their tensile values, while carbon fiber composites were
only slightly more compliant and weaker in compression than tension.

Piggott and Wilde®® concluded that the compressive strength of fibers play a
very important role in the compressive strength of steel-reinforced composites when

failure occurs at strains that are less than the matrix yield strain. They observed
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a linear relationship, sufficiently predicted using rule of mixtures (Eqn. 31), for
the variation of the composite compressive strength as a function of fiber volume
fraction.

Martinez et al®’ also showed that both the composite compressive strength
and modulus are very linear functions of fiber volume fraction, as shown in Fig. 20,
up to a limiting V;. The limiting fiber volume fractions for strength and modulus
are =~ 40% and ~ 50%, respectively. Beyond these limiting values of V¢, both the
strength and modulus decrease. They attributed these maximums in compressive
strength at intermediate V; values to interfacial bond failures (see Eqns. 32-34).
This result also suggests (like Ref. 47) that fiber distribution is important. A
heterogeneous fiber distribution would facilitate interfacial failures at lower V;
values than a homogeneous fiber distribution.

Ku‘rashige63 predicted increasing compressive strength with increasing fiber
volume fraction (see Fig. 4).

Hancox®? observed a very linear increase in unidirectional compression strength
as the fiber volume fraction of the carbon/epoxy composites was increased, as shown
in Fig. 21. The results shown in Fig. 21 would be predicted by Eqn. 31 for a fiber
shear failure mode, which was the fracture mode described by Hancox.

Fried®® concluded that the effectiveness of the reinforcement is influenced by
the nature and physical characteristics of the basic material (compressive modulus
and strength, shear characteristics, and degree of ductility or brittleness) and by
geometric factors (straightness, distribution uniformity, and cross-sectional shape).
A later study®® showed that the compressive strength was maximized when the fiber
volume fraction was optimized.

Chou and Kelly®® found that compressive strength increased with increasing
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fiber volume fraction in a manner consistent with Eqn. 41 for fiber microbuckling
as shown in- Fig. 22. The solid lines (IITRI) and broken lines (RAE) are the
predictions for the upper and lower limits of the slenderness ratio. Greszczuk®®
observed a similar trend, shown in Fig. 23. In both cases, the trend in the
experimental data was well described by Eqn. 41, although the absolute values
of the experimentally determined strengths were lower than the predictions. The
theoretical values probably overpredict because Eqn. 41 neglects the effects of initial
fiber waviness and resin nonlinearity at the higher stress levels.

Lager and June*® varied the fiber volume fraction from 0.05 through 0.46 for
boron/epoxy laminates. They observed excellent correlation between the trends of
the data and the theoretical predictions from Eqns. 1 and 3. However, measured
3

compressive strengths were only 63% of those predicted. As postulated by Rosen,’

the shear mode failure dominated the higher fiber volume fraction composites.
Fiber Waviness

Models that attempt to describe the effect of fiber waviness on compression
strength have been reviewed in two sections of this chapter (see Eqns. 16-30, and
Refs. 26, 57, 61-66, 67-80.

Woven fabrics are attractive materials for load-bearing structural applications
for many reasons. Two-dimensional woven fabrics provide more balanced (com-
pared to unidirectional tape) in-plane material properties, provide excellent impact
resistance because of the 2-D reinforcement, handle easily, and have relatively low
fabrication costs.!? Fabrics may be made using many types of weaves.'*® Each 2-D
weave consists of two sets of yarns. By definition, warp corresponds to the length
direction of the fabric, and fill or weft corresponds to the width direction of the

fabric.
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Yau and Chou'?® evaluated the open hole strength of carbon/PEEK and
carbon/epoxy composites with drilled and molded holes. Molded holes were formed
in the prepreg layer-by-layer, prior to curing. These holes were made by allowing the
woven fiber bundles to wrap around a steel pin. Different hole diameters were formed
by using different diameter steel pins. The authors attribute the strengthening
mechanisms in the molded holes to an increase in local fiber volume fraction and
the maintaining of fiber continuity. The molding process forces the fibers to have a
higher local in-plane fiber waviness. However, this curvature is convex away from
the free surface, which should inhibit local in-plane fiber microbuckling into the
hole. Their results indicate that the molded hole, compared to the drilled hole,
greatly increased (up to 47%) the open hole tensile and compression strengths of
woven fabric composites (epoxy and PEEK). Considering the normalized strength
(Tnoteh/Tunnotched)y PEEK composites exhibited higher tensile and compressive
strengths than epoxy composites.

! attributed a 10% increase in the tensile secant modulus for

Schapery!?
AS4/3502 composites to the straightening of initially wavy fibers.

Greszczuk’s?® results, presented in Fig. 21d showed that wavy fibers signifi-
cantly reduce the compressive strength of composites.

Martinez et al®’ used a fixture to deliberately kink fibers (induce fiber waviness)
during the processing of the composite. This kinking process increased the fiber
curvature, and they expressed the waviness using the radius of curvature. Smaller
radii of curvature corresponded to larger amplitude waviness. These results are
shown in Fig. 5 and indicate that fiber waviness significantly reduces the compressive

strength.

. 63 . . . . . .
Kurashige’® predicted that increasing fiber waviness caused a reduction in
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compressive strength (see Fig. 4). However, his strength results were not bounded
for the extension mode of fiber microbuckling.

Kurashige®® predicted a sharp increase in compressive strength as the nondi-
mensional buckling wavelength was increased from 0 to approximately 0.3, at which
point the compression strength reaches a plateau.

Davis®? observed primarily in-plane fiber waviness for boron/epoxy composites.
The ratio of the initial amplitude of the waviness to the length, %, was measured
to range from 0.001875 to 0.003750. His calculations indicate that this magnitude
of fiber waviness caused the compressive strength to be reduced by 65% from the
ideal strength expected for a composite with perfectly straight fibers.

Wangm’69 back calculated, using an iterative technique, 3> to be 0.0108 for
AS1/3501-6 graphite/epoxy composites. As expected, this value is larger than that
for the boron®” fibers since the carbon fibers are more slender and more compliant.
Wang’s observed compressive strength (1.2 GPa) is less than 20% of the G2 value
(7.1 GPa),125 indicating the significant degradation in compression strength that
results from fiber waviness.

It is generally noted that composites made with thermoplastic matrices have
a compressive strength that is a smaller fraction of their tensile strengths than
composites made with thermoset matrices. This difference is generally attributed
to a weaker fiber/matrix interfacial bond in thermoplastic composites. However,
it is quite possible that another contributing factor is the greater tendency for
fiber waviness in thermoplastic composite materials. These composites are more
susceptible, compared to thermosets, to fiber waviness because they are processed
at higher temperatures, pressures, and viscosity levels. The results reviewed in this

section and compared with the models clearly indicate that fiber waviness leads to
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premature fiber microbuckling due to larger matrix shear stresses at a given applied

compressive stress.

Effects of Interfacial Bonding on Compressive
Strength of Composite Materials

The characteristics between the fiber and the matrix control the properties
of the final composite. Thus, the effects of the interfacial bond on compression
strength is important and is reviewed in this section.

32 accurately evaluated the shear strength at the

Landro and Pegoraro'
fiber/matrix interface for two materials, polyethersulphone (PES) and polyether-
imide (ULTEM), using a statistical method based on the measurement of the mean
critical fiber length. Postmortem SEM examination showed bare fibers, indicating
that the chemical bond between the fiber and matrix was weaker than the ma-
trix strength. However, the experimental data showed that the limiting interfacial
shear strength was approximately equal to the matrix shear yield stress. They at-
tributed this interfacial strength to the differential thermal shrinkage of the fiber
and matrix which gives rise, at the interface, to a pressure that increases the Van
der Waal’s forces. Additionally, t};ey concluded that this shrinkage phenomena
was most important because of the high transition temperatures (softening) of the
thermoplastics investigated.

Lanir and Fung*® showed that the prebuckling separation of the fiber and the
matrix, debonding, decreases the buckling load and may affect the postbuckling
behavior of the fiber.

The interfacial failure analysis by Hayashi and Fujikake*” assumed that the

composite fails when the maximum tensile stress at the fiber/matrix interface (77.,)

reaches the interfacial bonding strength. Figure 19c is a comparison of experimental
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data with the fiber buckling and interfacial bonding failure theories developed in
Ref. 47. These authors have indicated that the flattening of the compressive stress
versus fiber volume fraction curve (see Fig. 19c) is a result of poor interfacial
bonding.

Additionally, Hayashi and Fujikake*" and Greszczuk®' have indicated that both
fiber arrangement and fiber volume fraction are important in the determination of
compression strength. Different arrangements result in different nearest neighbor
distances between fibers which influences the magnitude of the interfacial stresses.
Consequently, fiber arrangement is more critical in composites containing relatively
weak fiber/matrix interfaces. This result also suggests that a homogeneous fiber
arrangement, which maximizes the distance between fibers (for a given fiber volume
fraction), will make composites less susceptible to longitudinal splitting.

Kulkarni et al*® developed a fiber microbuckling model that included the effect
of an imperfect fiber/matrix interfacial bond (Eqns. 11-12). The results of this
analysis are shown in Fig. 24. Although no quantitative conclusions are made, it is
clear that the significance of the interfacial strength increases with increasing fiber
volume fraction. For the case of poor adhesion, increasing the fiber volume fraction
is actually detrimental to the composite compressive strength.

Greszczuk®' predicted the transverse tensile strength of glass/epoxy, gra-
phite/epoxy, and graphite/phenolic composites using constituent properties and
microstructure of the composite (Eqns. 32 and 33). This analysis indicates that
a reduction in the transverse tensile strength (e.g., a poor fiber/matrix interfacial
bond) causes a reduction in the compressive strength.

In Greszczuk’s®® nearly perfect composites, he observed fan-shaped internal

helical cracks initiating at the fiber/matrix interface. The failure appeared to
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initiate at the fiber/matrix interface, to propagate along the interface, and then
terminate in a helical crack. These experimental observations led to an additional
study on the effect of the fiber/matrix interface on compressive strength. As a first
approximation, Greszczuk assumed that the shear modulus of a composite with
unbonded fibers was equal to the shear modulus of a solid containing cylindrical
voids in the amount equal to the amount of unbonded fibers. Experimental data
did not correlate well with this analysis. The test/theory ratio of strengths ranged
from ~ 0.84-0.92.

Greszczuk’s explanation for the mechanism that causes fiber/matrix debonding
is as follows. Because of the differences in Poisson’s ratios between the fibers
and the matrix, transverse stresses are induced when a composite is subjected to
compressive loading in the fiber direction. Even though the induced tensile stresses
at the fiber/matrix boundary are small compared to the applied axial compressive
stresses, so is the transverse tensile strength compared to the axial compressive
strength. Thus, it is possible for the induced transverse tensile stresses to cause
fiber /matrix debonding leading to longitudinal splitting (an interaction failure) and
a reduction in the ultimate compression strength.

Martinez et al®’ varied the interfacial bond strength of unidirectional glass-
polyester composites by using different fiber surface treatments. These results are
shown in Figs. 5 and 25. The results in Fig. 5 show that poor fiber/matrix adhesion
has a detrimental effect on the compressive strength of composites. Figure 25 shows
the compressive strength as a function of fiber volume fraction for composites with
good and poor fiber/matrix adhesion. Again, a significant reduction in compression
strength is observed for composites with poor fiber/matrix interfaces. These trends

are similar to those reported by Hayashi and Fujikake.47
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Hancox®? also observed a flattening of the compressive stress versus fiber
volume fract.ion curve (see Fig. 21) for composites made with non-surface treated
fibers. He reported that the fracture mode for these specimens was usually massive
delamination. Poor interfacial bonding, associated with non-surface treated fibers,
probably caused the flattening of the data in Fig. 21 which is very similar to
that reported by Hayashi and Fujikake*’ (shown in Fig. 19¢c). He concluded that
poor adhesion between the fibers and the matrix produces composites weaker in
compression than those produced with strong fiber/matrix interfaces.

Fried®® studied filament wound [0/90], laminates. In this study, he observed
that orthogonal materials fail in shear and compression by debonding at the
reinforcement/matrix interface. Experimental results showed that the laminate
compressive strength was inversely proportional to the void content.

The trends presented in this section indicate that poor interfacial bonding may
degrade the compressive strength in two ways. First, it allows failure to occur by
longitudinal splitting due to differential Poisson’s‘contraction between the fiber and
the matrix.2#*1*3 Poor interfacial bonding may lead to a reduction in the transverse

13 . . . . . . .
h°3'132 or the matrix ultimate strain®* which results in a reduction in

tensile strengt
the compressive strength, as calculated in Eqns. 32-34. Second, it can effectively
reduce the composite shear modulus, G, and allow fiber microbuckling at a lower

compressive stress level, as indicated in Eqns. 4, 5, and 11 (Refs. 24, 51, 68, 69).

Environmental Effects on Compressive
Strength of Composite Materials

It has been reported that elevated temperature causes a reduction in compres-

19

sion strength of composites by degrading the shear modulus of the resin’!® and

the fiber/matrix interfacial bond.??? Thus, a brief survey of the literature, describ-
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ing the effects of temperature on the compressive strength of composite materials
follows.

Ewins and Potter'®® illustrated the effects of temperature and humidity (see
Fig. 26) on the unidirectional compressive strength of carbon fiber-reinforced
plastics (CFRP). They postulated that if the fiber shear failure mode remains
dominant, the compressive strength will decrease only slightly with increased
temperature, probably due to a decrease in the matrix contribution to strength.
However, as temperature increases, the matrix shear modulus and fiber/matrix
interfacial bond strength decrease, and at some critical temperature the failure
mode changes to one governed primarily by fiber instability (see Fig. 26a.).

The absorption of moisture causes matrix plasticization, a reduction in the
matrix modulus, and a reduction in the fiber/matrix interfacial bond strength.
Again, following a failure mode change to one of fiber instability, further moisture
absorption and a corresponding reduction in shear modulus are likely to result in
a rapid reduction in compression strength. The hypothetical combined effect of
temperature and moisture absorption is illustrated in Fig. 26b.

Malik, Palazotto, and Whitney'®* investigated graphite/PEEK (APC-1) quasi-
isotropic composites at 21°C, 121°C, and 149°C in tension and compression. These
authors reported a rapid reduction in moduli at the glass transition temperature
(135°C) of this material and reduced fiber/matrix adhesion at the higher tempera-
tures.

Ramey, Palazotto, and Whitney'®® continued the test program of Ref. 134
to compare the notched strength (tension and compression) of quasi-isotropic
graphite/PEEK (APC-2) and graphite/epoxy composites at 21°C, 121°C, 135°C,

and 149°C. This discussion is limited to the results for APC-2 composites. The
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results indicate that APC-2 composites are less resistant to compression loading
than tensile loading over the entire range of temperatures. For a given hole diameter,
both the tension and compression strengths are reduced as the temperature is
increased. However, the tension strength does not illustrate a strength reduction
until very near the glass transition temperature, Ty, and this strength reduction is
smaller than that for the compression strength. For the graphite/epoxy laminates,
the notched tensile strength increases with temperature. This result is attributed
to a reduction in the local stress concentrations at the notch, caused by the higher
temperatures, that allow the laminate to become tougher than at room temperature
where the matrix is brittle.

The compression specimens tested at room temperature broke into two pieces
at failure, while those tested at the higher temperatures remained in one solid
piece. This failure pattern supports the idea that the room temperature matrix
supports the fiber more efficiently than the elevated temperature matrix. The room
temperature system stores more energy and thus, releases more energy at failure,
large enough to cause catastrophic failure of the specimen.

Postmortem examination of the failure mechanisms indicates that fibers in
the 0° surface ply have failed in-plane into the notch and also out-of-plane of the
laminate, an intra-laminar failure. Matrix deformation between the 0° crippled
fibers and the adjacent 90° ply was attributed to inter-laminar stresses.

Observation shows that the matrix fails in at least a partially cohesive mecha-
nism. Although the fiber/matrix adhesion is reduced at elevated temperatures, the
matrix failure was more ductile and also more cohesive than adhesive. Examina-
tion of the matrix deformation at the previously mentioned 0/90 interface indicates

that at elevated temperatures, the matrix flows, providing less fiber support and
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less load transfer as it becomes more fluid. The consequent inter-lamina strength
reduction and reduced fiber support are believed to account for the compression
strength reduction for APC-2 composites at elevated temperatures.

Kar, Herfert, and Kessler'®® investigated AS1/3501-6 multidirectional com-
posites and also found a breakdown of the fiber/matrix bond, leading to reduced
compressive strengths, under conditions of elevated temperature and high humidity.

Ewins and Ham®® reported a change in the failure mode from fiber shear to
fiber microbuckling at approximately 100°C. They attributed this mode change to
a reduced matrix shear modulus and an altered matrix constitutive behavior, thus
providing less support for the fibers.

104105 shserved a reduction in fiber/matrix interfacial bond

Potter and Purslow
strength due to hot-wet conditions. In the room temperature-dry specimens, failure
occurred within the matrix while in the hot-wet specimens, failure occurred at the
fiber /matrix interface. They concluded that hot-wet conditions cause a massive loss
of interlaminar shear and axial compressive strengths because of the reduced bond
strength and modulus.

In conclusion, the results presented in Refs. 25, 104, 105, and 133-136 indicate
that environmental conditions (elevated temperatures and moisture content) cause a
reduction in compressive strength of composite materials. This strength reduction

d122

has been attributed to degradation of the fiber/matrix interfacial bon and a

. . . . 119
reduction in the matrix moduli.
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CHAPTER 1II
EXPERIMENTAL PROCEDURES

This chapter describes the materials and experimental techniques used in this
dissertation research. The materials description also includes the numerous stacking
seqgences chosen for this investigation. In the methods section, specimen geometries,
test methods, damage progression investigation, x-radiography, scanning electron
microscopy (SEM), sectioning studies, and material property characterization are

described in detail.

Materials

The primary material selected for this investigation is APC-2, an Aromatic
Polymer Composite manufactured by Fiberite Corporation — An ICI (Imperial
Chemical Industries) Company.'®*” ~'*> APC-2 is an advanced structural composite
composed of continuous carbon fibers and “Victrex” PEEK (Polyetheretherketone)
semi-crystalline thermoplastic matrix. Compared with other types of thermoplastic
resins, PEEK has a potentially higher service temperature, =~ 121°C, and is
unaffected by solvents.

The glass transition temperature, Ty, for PEEK is 143°C, and the melting
temperature, 7T,,, is 335°C. A compatible high strain carbon fiber (AS4) has
been chosen for this composite system. The carbon fibers are well dispersed and
thoroughly wetted in the PEEK matrix to give a fiber content of 61% by volume
and 68% by weight. APC-2 is recognized for its specially developed interface science
to provide effective stress transfer between the fibers and the matrix, and thus, the
full properties of the carbon fiber are realized. This thermoplastic system was

selected for this investigation because the compression strength of thermoplastics
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in general is a primary concern for industry applications. Typically, thermoplastics
have compression strength values approximately 50% less than the observed tensile
strength, compared to 75-80% for graphite/epoxy systems.

Literature regarding the mechanical property data base for the thermoplas-
tic composites, in particular APC-2, includes mechanical property characterization
(Refs. 117, 118, 123, 137, 138, 139), the effects of processing variables on me-

117,137,140,141

chanical properties, the effects of fiber characteristics on mechanical

2 117,118

properties,'?® and the effects of matrix properties on mechanical properties.
The effects of the crystallinity on the mechanical properties is described in Ref. 140.
The morphology of the PEEK resin is described in Refs. 137 and 142. A second
material, AU4U/PEEK, was designed by Hercules and ICI for this investigation.
AU4U/PEEK is an experimental poor interface material. The AU4U/PEEK used
the Hercules non-surface treated /unsized fiber batch 707-4D. This fiber is equivalent
to AS4 in mechanical properties, but does not have any surface treatment. Although
the AU4U fiber did not run as well as the AS4 fiber in the ICI impregnation unit,
the prepreg had the standard resin content of 32 + 3% by weight.

To evaluate the factors that affect the initiation of fiber microbuckling, the
laminate stacking sequence has been varied systematically. A relatively simple
baseline stacking sequence, [(£45/02)3/ = 45/0],, has been selected. Two 0° plies
were stacked together to facilitate observation of fiber microbuckling initiation.
Systematic variations of this stacking sequence allow for a detailed study of
the effects of supporting fiber orientation, initial fiber waviness, interfacial bond
strength, and resin-rich regions between plies. For consistency, these variations

143

were made through the laminate thickness. Experimental results’™" indicate that

the strength of symmetric composite laminates containing identical ply orientations
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may be strongly dependent on the detailed stacking sequence. Consequently, the
Pipes and Pagano analysis'*® was used to verify that the interlaminar peel stresses
for each stacking sequence were not unusual values.

The complete test matrix, including all variables (supporting ply orientation,
initial fiber waviness, interfacial bond strength, and resin-rich regions) is shown in
Table I. The following discussion summarizes the laminates tested to determine
the effects of each of the previously mentioned independent variables on fiber
microbuckling initiation. The laminate identification letters (LID) are included on
each table. These LIDs are used throughout the dissertation for shorthand reference
to the various laminates and stacking sequences.

Table II details the laminates used to study the effects of the local constraint
(supporting ply orientation) on fiber microbuckling initiation. Five stacking se-
quenceé of APC-2 were used to vary the support to the 0° fibers. The +45° plies
in the baseline stacking sequence ( A) were replaced with either £15°(C), £75° (D)
plies, or 90; (E) plies. Additionally, the 45s and Os were interchanged in one lami-
nate (B) to establish the effect of the free surface (and consequent reduced support)
on fiber microbuckling initiation.

Table III lists the three laminates designed to evaluate the effects of initial fiber
curvature on fiber microbuckling initiation. Note that the baseline lay-up has been
altered slightly for this study. The APC-2 baseline lay-up has become [£45/0/90]s,
(K) so that the theoretically straight 0/90 tape plies in this stacking sequence may
be replaced with Quadrax (0/90) interlaced plies, where ( } designates one interlaced
ply. Quadrax Unidirectional Interlaced Tapes'** were formed by interlacing ribbons
or strips of APC-2 prepreg. Ribbons may vary from 3.175 mm to 12.7 mm in width.

Ribbons for this investigation were 3.175 mm wide. The Quadrax process is different
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Table I. Composite Laminate Material Test Matrix.

LID Stacking Sequence Variable Investigated
A [(£45/02)s/ £ 45/0], Baseline APC-2
B [(02/ £45)3/0/ £ 45], Interchange 0’s and 45’s to observe sur-
face 0’s
K [£45/0/90]3, Theoretically “straight” fibers
KQs8 (£45/(0/90) ], Replace 0/90 with Quadrax (0/90), 8-
harness, compare fiber waviness effects
KQ1 [£45/(0/90)]s, Replace 0/90 with Quadrax (0/90), 1-
harness, compare fiber waviness effects
F [(£45/0,)s/ £+ 45/0], Use non-surface treated AS4 fibers in
PEEK to provide a poor interface
C [(£15/02)3/ £ 15/0], Vary support to 0’s
D ((£75/02)3/ £ 75/0], Vary support to 0’s
E [(902/02)3/90,/0], Vary support to 0’s
G | [(£45/f/02/f)s/ £45/f/0], | Vary resin rich region: f = 0.0254 mm,
one layer of PEEK film
H |[(£45/f3/02/fs)s/ £ 45/f3/0],| Vary resin rich region: f = 0.0254 mm,
one layer of PEEK film
I [£45]2, Measure G,3, tension tests
J (£45]s, Measure G,,, compression tests
0G [024] Measure Gy, Gr, and IFSS, commercial
APC-2
opP [024] Measure G, Gy, and IFSS, experimen-

tal AU4U/PEEK
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Table II. Effects of Supporting Ply Orientation.

LID| Stacking Sequence Variable Investigated

[(02/ £ 45)3/0/ £ 45],| Vary support to 0’s

[((£15/02)3/ + 15/0],| Vary support to 0’s

[(£45/02)3/ £ 45/0], | Baseline lay-up

[(:f:75/02)3/l:i: 75/0], | Vary support to 0’s

T IR N IO B v

[(902/03)3/902/0], | Vary support to 0’s







Table III. Effects of Initial Fiber Waviness.

LID | Stacking Sequence] Variable Investigated
K [£45/0/90]3, | Theoretically “straight” fibers
KQ8 [+45/(0/90)}3s |Replace 0/90 with Quadrax (0/90), 8-
harness, compare fiber waviness effects
KQ1| [+45/(0/90))ss |Replace 0/90 with Quadrax (0/90), 1-

harness, compare fiber waviness effects
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from traditional weaving in that the fibers are impregnated first and then interlaced
rather than weaving the fiber tows and then impregnating the resin. Consequently,
the process is only applicable for thermoplastic composites. Two degrees of waviness
and thus, interlacing, were selected: (i) 8-harness Quadrax and (i¢) plain weave,
1-harness Quadrax.

The interfacial bond strength was varied by using two different materials,
both with the baseline stacking sequence, [(+45/02);/ = 45/0],. One panel was
made with APC-2 which has a strong interfacial bond, and the other panel was
made with AU4U/PEEK, an experimental poor interface material designed for
this investigation. Because the AU4U fibers are equivalent to the AS4 fibers in
mechanical properties but do not have any surface treatment, the only difference
between the two systems was the level of interfacial adhesion between the fiber and
the PEEK matrix.

The effect of the resin-rich regions (Table IV) was evaluated by adding
layers of PEEK resin film at each -45/0 interface through the thickness of the
baseline stacking sequence. Due to cure temperature and pressure, it is difficult
to distinguish ply boundaries in unidirectional APC-2; thus, it is assumed that
the thickness of the resin-rich regions between plies in the baseline laminate are
negligible. In the stacking sequences, the addition of the resin film is denoted by
“f.” Two different thicknesses, 0.025 mm (f) and 0.075 mm (f3), of resin film were
added to the laminates; these resin-rich regions were the consequence of the addition

of one (i = 1) and three (z = 3) layers of resin respectively.

Methods






Table IV. Effects of Resin-Rich Regions.
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LID

Stacking Sequence

Variable Investigated

[(£45/02)s/ £ 45/0],

Baseline APC-2, no PEEK film added

G | [(£45/f/02/f)s/ £45/f/0],

Vary resin rich region: f = 0.0254 mm,

one layer of PEEK film

H |[(£45/f3/02/f3)s/ £ 45/f3/0],

Vary resin rich region: f = 0.0254 mm,

one layer of PEEK film
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Compression Specimen Geometry

The compression specimen was 2.54 cm wide by 10.16 cm long with a semi-
circular notch (3.175 mm diameter) at each free edge, centered along the gage
section. The gage length for this specimen was 2.54 cm. A schematic of the
notched compression specimen is shown in Fig. 27. Preliminary experimental
results, detailed in Ref. 145, indicate that reducing the gage length from 5.08 cm
(used in Refs. 1-4) to 2.54 cm does not introduce significant end effects but does
minimize specimen bending and the incidence of Euler buckling. It should be noted
that for the end-loading type test methods, the effects on the stress field in the
test section are less pronounced than stress concentrations that are a consequence
of the shear loading mechanism inherent in the IITRI fixture. The notch was
polished with jeweler’s files to facilitate the observation of fiber microbuckling
initiation. These specimens were strain-gaged front and back (at the specimen’s
center) with longitudinal strain gages to monitor any specimen bending and to
provide accurate measurement of the global or remote strains associated with fiber
microbuckling initiation. For the room temperature tests, 21°C, the strain gages
were bonded to the specimens using M-Bond 200 adhesive and catalyst, and for the
high temperatures tests, 77°C and 132°C, M-Bond 600 adhesive was used. Both

adhesives and the catalyst were manufactured by Micromeasurements Group, Inc.
Compression Test Methods

Although many compression test methods for composite materials are summa-
rized in Chapter II of this dissertation, the author suspects that a large percentage
of these methods inhibit the natural failure mode for a laminate by supporting the

specimen’s test section in a manner that suppresses or prevents fiber microbuckling.






Fig. 27
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Schematic of compression specimen.
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Ambient Temperature Test Methods — Compression tests were conducted in a

specially designed ultra high axial alignment Material Test System (MTS) machine
in the Materials and Structures Laboratory of Texas A&M University. The
specimens were loaded in compression to fiber microbuckling initiation in the servo-
controlled hydraulic test stand at three relatively slow rates in displacement control
to provide more stable growth of the damage zone. The displacement rates, based
on experience, were 0.127 mm/min for the initial =~ 50% of the test, 0.074 mm/min
for the next ~ 30% of the test, and 0.018 mm/min for the remainder of the test.
The fiber microbuckling process, occurring in the radius of the semi-circular edge
notches, was monitored by a colleague, Mr. David L. Crane, using a Wild M8 Zoom
Stereomicroscope. Various video cameras and monitors, used in conjunction with
the stereomicroscope, were tested as devices for monitoring fiber microbuckling
initiation. However, all of these systems were found to be inadequate when
compared to the combination of the human eye and the stereomicroscope. Accurate
observation of fiber microbuckling requires threé-dimensional visualization (some
depth of field), which is lost with conventional video and photography. This testing
system is shown in Fig. 28. Data from load, displacement, and strain channels were
transformed through a 16-channel simultaneous sample and hold analog-to-digital
converter with 16-bit resolution. The digital data was then down-loaded from the
PDP11/23 to an IBM compatible personal computer. Most tests were interrupted
at the first indication of fiber microbuckling and subsequently observed in the SEM.
In the other tests, a small fiber microbuckling damage zone was allowed to form
before interrupting the tests.

Elevated Temperature Test Methods — High temperature tests were con-

ducted at 77°C and 132°C to provide variation in the constitutive behavior of
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the PEEK matrix, and thus, additional variation in the support provided to the 0°
fibers.

To provide easier observation and access to the specimen, a forced-air heat gun
(also used in Ref. 135) with a controller, rather than an environmental chamber, was
used to heat the specimen gage section. In addition to easier access, the heat gun
heats the specimen to the test temperature much more quickly (20 min. compared
to 1 hr) than the traditional environmental chamber which also must heat the
massive MTS grips. The high temperature test set-up is shown in Fig. 29. These
tests were also conducted in displacement control at the same three rates previously
mentioned. Data acquisition and fiber microbuckling initiation observations were
accomplished in the same manner as the 21°C tests. It should be noted that
General Dynamics in Fort Worth, Texas uses the forced-air heat gun because it
more realistically, compared to an environmental chamber, simulates the heat spikes
typically experienced by aircrafts.

For these elevated temperature tests, it was necessary to establish an accurate
method to control specimen temperature. The small control specimen, shown
in Fig. 29c, contains a thermister to provide user-control of the heat gun air
temperature. The specimen temperature was monitored with thermocouples on
both specimen surfaces. The thermocouple on the specimen surface closer to the
heat gun (designated front surface) read ~ 8°C higher than the thermocouple
on the back specimen surface. However, when the heat gun was turned off,
the temperature of the front specimen surface rapidly equilibrated with the back
surface. Additionally, a thermocouple was embedded in two trial specimens. In
both cases, the embedded thermocouple read the same as the thermocouple on the

back specimen surface for the range of temperatures in this study. It was concluded
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that the heat gun provided constant temperature through the specimen thickness,
and thus, the specimen temperature was accurately controlled by monitoring the
thermocouple on the back specimen surface.

Specimen Preparation — The specially designed MTS (previously described)

contains a collet-type grip arrangement. The collet inserts which grip the specimen
are machined for an ideal specimen thickness, e.g. 5.334 £ 0.025 mm. However, due
to the nonuniform thickness of laminated composite panels, most specimen ends
in previous compression research at Texas A&M University (Refs. 1-4, 145) were
shimmed symmetrically with layers of precision brass shims to properly fit into the
MTS grips.

To further improve the alignment and gripping support provided during the
compression tests, a fixture has been designed to allow homogeneous resin shims to
be cast symmetrically onto the specimen ends. The resin shim casting fixture,
including appropriate component labels, is shown in Fig. 30. The composite
specimen (A) was centered in Teflon (annealed prior to machining) molds (B) using
two Mitutoyo micrometer heads (C) with nonrotating spindles. Set screws (D) held
the micrometer heads in the fixture. Each Teflon mold contains a 3.175 mm diameter
resin injection port (E). Steel end caps (F) are pulled tight against the specimen
ends using a set screw and dovetail arrangement (G) to prevent the resin from
covering the already machined specimen ends and to prevent leakage. Additionally,
Teflon tape was used to seal the interface between the steel end caps (F) and the
Teflon molds (B). After the specimen was properly centered in the fixture, resin
was injected into the bottom mold until the mold was completely filled. To prevent
leakage, a 3.175 mm diameter Teflon rod was inserted into the injection port. After

the resin was cured, the fixture was turned upside down and resin shims were
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cast, by the same method, onto the other end of the specimen. Consequently,
the thickness of the specimen ends with the cast shims was within the thickness
tolerances required by the collet inserts, and the shims were uniformly bonded to
the specimen ends. This specimen design reduced the global bending significantly

. 1-4,145
when compared to previous test results.

The epoxy used as shim material consisted of an all-purpose resin, D.E.R. 31,146
and a curing agent or hardener, D.E.H. 24.'*% supplied by The Dow Chemical
Company,'*” Freeport, Texas. The epoxy was mixed using the recommended ratio
of 13 parts by weight (8.22 cc) of hardener per 100 parts by weight (50 cc) of resin.
The cure schedule for the epoxy was one hour at 100°C.

Determination of Fiber Microbuckling Initiation Strains — Two types of fiber

microbuckling, in- and out-of-plane, were considered in these notched compression
tests. In-plane fiber microbuckling occurs in the plane of the laminate (z-y in
Fig. 27), and the fibers buckle into the notch radius. Out-of-plane fiber microbuck-
ling is characterized by fibers buckling out of the laminate plane toward the free
surface. The nominal strain associated with the initiation of fiber microbuckling
was measured with the strain gages at the specimen center, as shown in Fig. 28. It
should be noted that this value is the global or remote strain at which either in- or
out-of-plane fiber microbuckling is sufficiently general at the notch root radius to be
observed with the stereomicroscope. For consistency, fiber microbuckling through
the thickness of the 0° ply (or 0, plies) is defined as sufficiently general. At the ini-
tiation of fiber microbuckling, the specimen was unloaded, manually using the MTS
controller, to prevent catastrophic failure. The 0° ply in which fiber microbuckling
occurred and the associated global strain levels (gages on both specimen surfaces)

were recorded. To include any bending effects, a linear strain distribution was as-
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sumed through the specimen thickness. Using this distribution, the actual strain in
the 0° ply in' which fiber microbuckling initiated was calculated. This strain level
was defined as fiber microbuckling initiation, ¢;. Two-dimensional finite element
analysis was used to convert the measured nominal initiation strain to the local
strain at the notch. Within each of the independent variables tested, 2-4 spec-
imens were tested (defined by the scatter) for each variation. The average fiber
microbuckling initiation strains are reported in Chapter V (Experimental Results)

of this dissertation.
Ezamination of Fiber Microbuckling Damage

Both in- and out-of-plane fiber microbuckling were examined in the SEM to
search for differences between the failures of laminates from the different variables.
The damage was examined from one of two viewpoints. Primarily, the viewpoint
was from the notch center (into the hole) so that damage in the notch and through
the thickness of the laminate may be examined. This viewpoint is designated the
“notch view” in Fig. 27. Less often, the specimen surface and near surface damage
surrounding the notch were examined. This viewpoint is designated the “surface

view.” In this case, the z-y plane in Fig. 27 was examined.
Damage Progression Investigation

An incremental damage study was conducted to evaluate the progression of
damage in the notch. The purpose of this investigation was to characterize damage
growth observed in-situ in the stereomicroscope. This study was conducted in
conjunction with Mr. David L. Crane. The material used was the baseline stacking
sequence, [(£45/03)3/ + 45/0],. One notched compression specimen was loaded to

five different strain levels. The local incremental strain levels 1 through 5 were, in
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percent, 1.0, 1.5, 2.0, 2.5, and 2.54, respectively.

Initially, and on completion of each strain increment, the specimen notches
were examined in the SEM. These results were compared with the stereomicro-
scope observations to “calibrate” the fiber microbuckling observations made in the
stereomicroscope. This process insured proper interpretation of these observations
made at a magnification (= 20X) where resolution of individual fibers is barely

adequate.
X-radiography

Dye-penetrant enhanced X-radiography was the nondestructive technique used
to monitor matrix crécking. A zinc iodide solution was applied to the surface
damage to infiltrate to the connected interior damage to act as an enhancing agent.
The zinc iodide solution consisted of 60 grams of zinc iodide, 10 ml of water, 10 ml

of isopropyl alcohol, and 10 ml of Kodak “Photo-Flo 600” to act as a wetting agent.
Scanning Electron Microscopy

Most nonconductive specimens examined in the scanning electron microscope
(SEM) need to be coated with a thin film of conducting material. This coating
is necessary to eliminate or reduce the electric charge which builds up rapidly in
a nonconducting specimen when scanned by a beam of high-energy electrons. to
eliminate any difficulties with charging, each specimen surface for SEM examination
was sputter-coated with a thin film of gold palladium approximately 1004 thick, and
then it was examined in a JEOL JSM T330A. Delamination fracture surfaces and
unpolished fiber microbuckling zones were examined at a relatively long working
distance (48 mm) to provide a greater depth of field, and thus, facilitate the

observation of the topography of the fracture surfaces. Polished specimen surfaces,
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specimen cross-sections, and sectioning surfaces were examined at a shorter working
distance (20 mm) to increase the resolution and contrast highlights of the damage.
Additionally, a low accelerating voltage of 5 kV was used to further increase the

contrast of the specimen surfaces.
Material Property Characterization

Material Data — The mechanical properties for the constituent materials,

PEEK matrix and AS4 fibers, are given in Table V. The fiber diameter was 7 um.
Additionally, the 21°C lamina material properties are summarized in Table V.
Note that in Ref. 144, the lamina elastic properties for Quadrax were assumed
to be the same for both 8- and 1-harness weaves. Furthermore, no real study
has been conducted to determine the mechanical properties of the experimental
AU4U/PEEK. However, data from Refs. 149 and 150 indicate that elastic modulii
and Poisson’s ratio were not significantly affected by the poor interface; the
strengths and mode [ interlaminar fracture toughness were severely reduced. Thus,
the APC-2 elastic properties were assumed to be valid for this material. The 21°C
laminate engineering constants, E,, Ey, Gy, and vy for each stacking sequence
were computed, using the lamina properties in Table V, with a basic laminate
theory program. These constants are summarized in Table VI. Based on the lamina
property assumptions, the 8- and 1-harness Quadrax laminates have the same elastic
properties. Additionally, the baseline stacking sequence made of the poor interface
material was assumed to have the elastic properties as the APC-2 baseline lay-up.

Determination of Lamina Shear Constitutive Behavior — The constitutive be-

havior for shear loading was determined from tensile and compressive tests of a
(+45],, laminate where n is 2 for tension and n is 8 for compression tests. These

tests were conducted at the same temperatures (21°C, 77°C, and 132°C) as the






Table V. Mechanical Properties (21°C) of Constituent Materials.

Material E,,, GPa | E3,;, GPa | G,3, GPa | vy,
PEEK Resin'®’ 3.60 3.60 1.30 |0.42
AS4 Fiber'?" 235 14.0 28.0 10.20
APC-2 Lamina'®"| 134 8.90 510 |[0.30
AU4U/PEEK® 134 8.90 510 ]0.30
Quadrax’® 70.7 70.7 6.10 |[0.03

. . .1 149,150
?Experimental poor interface material.

5 Assumed same for both 8- and 1-harness.

144
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Table VI. Laminate Engineering Constants (21°C).

LID | Stacking Sequence | E.., GPa|E,,, GPa|G.y,, GPa| v;y | vy:
A, F|[(£45/07)s/ £45/0),°] 72.7 22.8 20.8 0.69|0.22
B |[(02/ £45)3/0/ £ 45], 72.7 22.8 20.8 0.69]0.22
K [£45/0/90]3, 51.7 51.7 19.8 0.310.31
R @8, [+45/(0/90)]3., 53.6 53.6 19.8 0.27|0.27
KQ1 8-&1-harness
C | [(£15/02)3/ = 15/0], 121.6 9.2 9.0 0.69(0.05
D | [(£75/02)3/ £ 75/0], 67.5 66.9 9.0 0.10(0.10
E ((902/02)3/90,/0], 67.5 75.8 5.1 0.04(0.04

“Elastic properties assumed same for APC-2 and AU4U/PEEK.'**"**

143






144

notched compression tests. The elevated temperature tests give a considerable re-
duction in tHe yield point on the 7-v curve.

The specimens for the tensile tests were 2.54 cm wide by 22.9 cm long with
two 2.81 cm long glass/epoxy tabs bonded to each end of the coupon.'*® The
specimens for the compression tests were prepared in a manner similar to the
notched compression specimens except without the edge notches. High-strain (5%)
longitudinal-transverse strain gages were bonded onto both types of specimens using
M-Bond AE-15, a high strain (15%) adhesive manufactured by Micromeasurements
Group, Inc. The tests were conducted in displacement control at a rate of
1 mm/min.

Two specimens, one compression-loaded and one tension-loaded, were moni-
tored for matrix cracking with nondestructive examination, namely dye-penetrant
enhanced X-radiography. Each of these tests was paused at every one percent incre-
ment of longitudinal strain. The dye-penetrant was applied, allowed to soak, and
then the X-ray was taken. |

The nonlinear shear stress-strain relationship for these laminates was calculated
using the method described by Refs. 70-72, 150. From the remotely applied axial
stress (02 ), longitudinal strain (e, ), and transverse strain (¢, ), the in-plane shear
stress (712) and shear strain (¥;2) in each lamina were computed by the following

equations:

Tia = —— (48)

and

Y12 = €z — €y = lfz’ + ‘5y| (49)
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so that the in-plane shear modulus of a lamina, G2, was computed by

(50)

from the linear portion of the shear stress-strain data. Using Eqns. 48 and 49, the

nonlinear shear stress-strain behavior of the lamina was determined.

Initial Fiber Waviness — A digitizing technique, described in Ref. 152, has
been developed for systematic measurement of the amplitude and wavelength of the
fiber waviness. This technique employs a Hewlett Packard 7475A plotter equipped
with a fiber optic sight, instead of a pen, and a personal computer. Points are
digitized along multiple fibers to track the waviness. Based on these measurements,
a best-fit sine wave is assumed for the shape of the fiber waviness. This technique is
considered for comparison of the degree of fiber waviness of the laminates listed in
Table III. The waviness ratio is defined as the initial amplitude of the sine wave (a,)
divided by the wavelength (L), and it is used for comparison of degrees of waviness.

Determination of Fiber/Matrix Interfacial Bond Strength — Numerous exper-

imental techniques, primarily single- or multiple-fiber pull-out tests, to measure the
shear strength of the fiber/matrix interfacial bond were summarized in Ref. 153.
Mandell, Grande, Tsiang, and McGarry'®* developed the modified microdebond-
ing test for direct in-situ fiber/matrix bond strength determination. In a sequence
of steps, a compressive load was applied to individual fibers oriented normal to a
polished surface, and the interface was observed microscopically between loading
steps, until debonding occurs. The direct result of a test was the force to produce
debonding of a particular fiber. The data were reduced to a nominal interfacial
shear strength through a two-dimensional finite element analysis using a simpli-

fied model of the fiber, surrounding matrix, and homogeneous composite properties
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beyond the matrix. The finite element solution incorporated the fiber diameter,
spacing to the nearest neighbor fiber, and the elastic (orthotropic) properties of the
fiber, matrix, and far-field composite. The finite element analysis indicates that
the maximum interfacial shear stress occurs at a distance that is a fraction of a
fiber diameter below the free surface. It was assumed that debonding initiates at
this point due to the shear stress. However, there is no experimental confirmation
of the position where debonding initiates, as it quickly spreads over an area of the
circumnference of the fiber and up to the surface, and the actual debonding process
(during loading) cannot be observed. According to Ref. 147, measurements from
the microdebonding test compare (within 5%) with single-fiber pull-out results.

In this investigation, the interfacial shear strength (IFSS) of the fiber/matrix
bond was determined in a semi-quantitative way using the Interfacial Testing
System >(ITS)155_157 developed at The Dow Chemical Company in Freeport, Texas.
The ITS test operates in principle like the previously described microdebonding test.
However, the ITS is a totally integrated system that is fully automated to reduce
user-induced error and thus, increase repeatability of the results.

To date, only unidirectional laminates have been tested in the ITS to avoid any
complications caused by residual cure stresses. However, in this study both unidi-
rectional and multidirectional laminates were tested. Due to different batches of ma-
terial and residual cure stresses, it is possible that the IFSS will be different for the
unidirectional and multidirectional composites. The 24-ply unidirectional laminates
of APC-2 (good fiber/matrix interface) and the experimental AU4U/PEEK (poor
fiber/matrix interface) were tested as control specimens. Additionally, 0° fibers in

the [(£45/0;)3/ + 45/0], laminates, both APC-2 and AU4U/PEEK, were tested

since these plates were used to study the effects of the interfacial bond strength
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on fiber microbuckling initiation. In each sample, ten fibers were tested. These
interfacial bond strength results were compared qualitatively with the mode [ and
II fracture toughness results and were used to establish the effects of the interfacial
bond on fiber microbuckling initiation.

Delamination Fracture Toughness — Delamination involves the separation of

adjacent plies in the thickness direction of the composite for which the material
is not reinforced. Delaminations may occur under three primary modes, mode I
or opening mode, mode II or shearing mode, and mode IIl or tearing mode.
Any combinations of these modes may also cause delaminations. Delamination
initiation and propagation are affected by many factors including the fiber/matrix
interfacial strength. Poor fiber/matrix interfaces prohibit full utilization of the
matrix toughness, particularly for mode I delamination.'*®

The delamination fracture toughness, or the resistance to fracture in the
presence of a crack, is typically expressed in terms of the strain energy release rate,
G. The analysis assumes that all available energy is used to create a new crack
surface; that is, the material is elastic. According to Ref. 158, this assumption
is valid, in general, for unidirectional composite laminates. Williams'*® extended
linear beam theory analyses (e.g. Refs. 160, 161) to include geometric nonlinearities.
Geometric nonlinearities include the large displacements and rotations that develop
within thin, highly compliant lay-ups or within tough composites that require large
loads to delaminate. In this investigation, data is acquired and reduced following
the procedures in Refs. 158 and 159.

Both the mode I and mode II fracture toughnesses of two composite materials,
commercial APC-2 and experimental AU4U/PEEK, were evaluated in this portion

of the investigation. The purpose was to provide a comparison of the fracture
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toughness values and fracture mechanisms for the good and poor interface materials.
Unidirectional, [04], laminates were tested. Three specimens from each material
were tested in each of the two fracture modes. The specimens were 2.54 cm wide and
25.4 cm long. The delamination starter crack at the midplane of each specimen was
a Kapton insert 7.62 cm long and 0.1524 mm thick. The edges of the specimens
were painted silver so that the crack tip could be easily detected, and the crack
length measured. Magnification of the crack tip also aided this measurement.
Aluminum and brass tabs (to introduce loading) were bonded to the cracked
end of the specimens using M-Bond 200 adhesive and catalyst, manufactured by
Micromeasurements Group, Inc.

The experimental set-up used for mode I fracture toughness testing is shown in
Fig. 31a. This set-up includes the double cantilever beam (DCB) specimen, a 445 N
load cell, and a digital caliper for crack measurements. The crack measurement
fixture and procedure are described later. A precrack was introduced with a razor
blade (used as a wedge, not a cutting tool) into all DCB specimens to sharpen
the initial crack created by the Kapton insert. The DCB specimens were loaded
at a relatively slow rate of 1.27 mm/min to provide stable crack growth. Three
unload loops at different rates on one specimen were taken to verify that the load-
displacement curve returned to zero after each unload. This exercise verified the
linear elastic material behavior and the absence of rate effects. Thus, the unload rate
was increased to 25.4 mm/min, and the mode I fracture toughness was computed,

Y . . . . cp 159 .
assuming linear elasticity and geometric nonlinearity, > using

2 2
Pap

~ BE,I,

Gy (51)

where






Fig. 31 Fracture toughness test configurations.
a) Mode I.

b) Mode II.
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P = applied load,

a, = load-line to crack tip distance or the projected crack length,
B = specimen width,

E, = axial modulus of the beam (E;; in this case), and

I,, = moment of inertia of the cracked leg.

The experimental set-up used for mode II fracture toughness testing is shown in
Fig. 31b. This end-loaded split laminate test (ELS) fixture prevents the uncracked
beam end from rotation, while allowing free longitudinal movement (through rods
and linear bearings) to keep the concentrated load perpendicular at the loaded
end. This fixture is noted for its usefulness to study stable crack growth. As with
mode [, this set-up includes the 445 N load cell and the digital caliper for crack
measurements. Again, the crack measurement fixture and procedure are described
later. The ELS specimens were clamped so that the gage length was 20.32 cm. Also,
a mode I precrack was introduced with a razor blade (used as a wedge, not a cutting
tool) into all the ELS specimens to sharpen the initial crack created by the Kapton
insert and to provide an initial crack length to beam length ratio of approximately
0.55. At this ratio and larger ratios, stable crack growth is expected for this test
configuration.!*® This crack extension made the initial crack length 11.18 cm long
for the ELS specimens. The ELS specimens were loaded at relatively slow rates of
2.54 cm/min for the APC-2 and 0.254 cm/min for the AU4U/PEEK laminates to
provide stable crack growth. Multiple unloads at different rates on one specimen
again verified the linear elastic material, and the absence of rate effects. Thus, the
specimens were unloaded at 25.4 cm/min. Assuming linear elastic material and

geometric nonlinearity,'*® the mode II fracture toughness was computed using
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o 6P2a;"’J 55
" BEI: (52)
where

I* = moment of inertia of the uncracked leg and

the other variables are explained with Eqn. 51.

Crack length measurements for the DCB and ELS tests were made using the
digital caliper fixture (Ref. 158) shown in Fig. 31. First, the crack tip was located
visually on the painted specimen edge. The position was then marked with a fine
pencil. The load-line to crack tip distance was then measured. The measuring
device consists of a digital caliper mounted on the ram below the lower loading grip
and a transparent plastic piece scribed with a sighting line (see Fig. 31b). During
the test, after the crack tip was marked, the sighting line was moved to the crack
tip. The load-line to crack tip distance is directly read from the caliper. To avoid
parallax error, the device is adjustable so that the sighting piece may be moved
close to the specimen edge. Due to fixture interactions, a razor blade was used for
the sighting line in these mode I tests (Fig. 31a).

During the course of the DCB and ELS tests, the load and corresponding
projected crack length were measured periodically based on the load-displacement
behavior of the specimen. Measurements were made during stable crack advance,
except for some instances just after a sudden increment of crack growth followed by
arrest. Arrest values are specially noted in the presentation of the results.

Load-displacement data was recorded on an X-Y recorder to provide real-time
observation of the load-displacement record. Additionally, load and displacement
data were transformed through an analog-to-digital converter. The digital data was

then down-loaded from the PDP11/23 to an IBM compatible personal computer.
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CHAPTER 1V

FINITE ELEMENT ANALYSIS

Geometric and material nonlinear two-dimensional finite element analysis is
used to model the initiation of fiber microbuckling of both the ideal straight 0° fiber
and the more realistic initially wavy 0° fiber. The models with the straight fibers
show the effects of finite size, free surface, fiber constitutive properties, and provide
an upper limit for the fiber microbuckling initiation strain levels. Wavy fiber models
are used to show the effects of matrix constitutive behavior, initial fiber curvature,
fiber /matrix interfacial bond strength, free surface, and fiber constitutive properties
on fiber microbuckling initiation strain levels.

This chapter contains a brief review of the theory for both the straight and wavy
fiber problems followed by a description of the different model geometries. Model
implementation contains a succinct description of the procedures and a summary
of the model constituent properties. Finally, the cases, combinations of constituent

properties and model geometries, for each of the models are presented.

Theory

The Straight Fiber Problem

The buckling analysis of perfectly straight fibers embedded in matrix (bifurca-

162,163
)

tion instability is the classical Euler column analysis which has the form of

the generalized eigenvalue problem

[Al{v} = A[Bl{v} (53)
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where [A] and [B] are symmetric matrices, A is a scalar, and {v} is a vector. When
A; and v; satiéfy Eqn. 53, they are called an eigenvalue and eigenvector, respectively.
The main objective of an eigenvalue formulation and solution in instability analysis
is to predict whether small disturbances, imposed on the equilibrium configuration,
increase substantially. The load or strain level at which this situation occurs
corresponds to the critical load or strain of the system.

In a stability problem, a load may be reached where deflections increase more
rapidly than predicted by linear solution. It is even possible to reach a state where
the load carrying capacity decreases with increasing deformation. Consequently,
for accurate determination of the displacements, geometric nonlinearity (finite
rotations) must be considered. The two-dimensional Lagrangian nonlinear strain-
displacement relations (displacements are referred to original configuration) are of

the form

w1 <8u)2 (v )®
“: =%z 2 |\or +(a—)
v 1 [70u\? ov\?]
w=5+:(5) *(5) o

1jou, o0 duow o
2y = 3 dy Oz Ozxz0dy Oz0y

The generalized eigenproblem to be solved in the classical Euler problem described

is of the form

((Ko] + A[Kq[) {u} =0 (55)

where [K,| represents the usual, small displacements or linear stiffness matrix, [K]
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is the initial stress matrix or geometric matrix, and {u} is the displacement vector.
The initial stress matrix represents the change in stiffness going from the initial
state to the applied load state and is proportional to the change in load. In the
solution of this problem, A denotes the increase factor on applied strains necessary

to achieve instability.
The Wavy Fiber Problem

Once the fibers are no longer considered perfectly straight, as typically observed
in composites, the problem to be solved is not the classical Euler problem. Recall
that the term “fiber microbuckling” has been defined to refer to large lateral
deflections of initially Wavy fibers leading to fiber breakage, rather than a bifurcation
instability. Compared to bifurcation instability, fiber microbuckling is a gradual
process. In the wavy fiber case, instability is defined as the point at which additional
applied displacement no longer gives an increase in the load carried by the column.
This point defines the initiation of fiber microbuckling in the wavy fiber problem.
Although geometric nonlinearity (Eqn. 54) is still considered, the problem solution

is an incremental inelastic stress-strain analysis.

Model Geometries

Two-dimensional finite element analysis was used to model fiber microbuckling
in two different configurations: (i) straight fibers surrounded by matrix and
(it) wavy fibers surrounded by matrix. The straight fiber problem was modelled
to illustrate the upper limit in ideal composites, investigating the effects of finite
size, free surface, and fiber constitutive properties. The wavy fiber was modelled to

show the effects of matrix constitutive behavior, initial fiber curvature, fiber/matrix
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interfacial bond strength, free surface, and fiber constututive properties on fiber

microbuckling initiation.
The Straight Fiber Problem

Four types of configurations were modelled for the straight fiber problem. In
these models, symmetry was utilized, so that only one-half of the column length
was modelled. Nodal displacements were applied at the column symmetry line.
The four configurations were the infinite plate, the semi-infinite plate, the finite
plate consisting of ten fibers and matrix, and an infinite series of fibers and matrix.
Schematics (not to scale) of these geometries are shown in Figs. 32 and 33. It should
be noted that the descriptive names for the three plate models (Fig. 32) are meant
to imply that the model is sufficiently wide so that the interior fibers are not near
a free surface; these names do not imply that the model is infinitely wide, as in
Fig. 33.

Infinite Plate — The infinite plate (Fig. 32a) consisted of ten fibers (cross-hatch
regions) separated by matrix (white regions) with support provided on each side
by an equivalent homogeneous material (dotted regions). The equivalent regions
replace the heterogeneous unidirectional lamina and effectively represent a set of
smeared elastic properties. Note that since these equivalent properties were from
a unidirectional lamina, they include any effects from the initial fiber curvature.
The purpose of these regions is to simulate the stiffness of adjacent material in the
lamina. Each of these regions are the same width as the ten fibers and matrix. A
half-matrix layer exists between the outer fibers and the equivalent regions.

Semi — Infinite Plate — The semi-infinite plate (Fig. 32b) is similar to the

infinite plate, but contained only one equivalent region. Consequently, a fiber and a

half-matrix are located at the free surface. Additionally, for this plate, a symmetry
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Fig. 32 Models for straight fiber problem.
a) Infinite model.
b) Semi-infinite model.
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line is used along the vertical axis at y = 0.

Finite Piate — The ten fiber/matrix model (Fig. 32c) consisted of ten fibers
separated by nine layers of matrix with half-matrix layers at both outer surfaces.
In this case, two free surfaces exist.

Infinite Series — The unit cell, shown with an initial curvature in Fig. 33, is
used to represent an infinite array of fibers embedded in matrix. The unit cell
consisted of one fiber (shaded region) with half-matrix (white regions) along each
side. Multi-point constraint boundary conditions were used to make the unit cell
behave as an infinite series of fibers and matrix regions. For clarity, an axis, s, is
defined to traverse along the column length, following the contour of the unit cell.
The origin of this axis is defined at £ = 0 and y = 0, the base of the column at
the center of the fiber width. Using this axis with u = u(s,y) and v = v(s,y), the

multi-point constraint boundary conditions are as follows:

u(s,—-g) :u(s,%) and v (s,—%)z”v (s,%) (56)

where w is the width of the unit cell. Because the fiber length, L, is much larger

than the initial amplitude of the curvature a,, the z and s axes are nearly collinear.
The Wavy Fiber Problem

Two types of configurations, semi-infinite plate and infinite fiber/matrix series,
were modelled for the wavy fiber problem. As with the straight fiber, symmetry was
utilized to reduce computer computations, and nodal displacements were applied at
the column symmetry line (see Fig. 33). The fiber waviness was approximated with
a sine wave. The initial fiber curvature is defined as the ratio of the initial amplitude

of the sine wave to the original length of the sine wave, 5, the fiber waviness ratio.






160

In addition to the straight fiber, three assumed initial fiber waviness ratios were
modelled: (i) %= = 0.0025, (i7) % = 0.0050, and (i2t) % = 0.0075. Arbitrary initial
fiber curvatures were assumed because the technique to measure fiber waviness was
not fully operational at Texas A&M University at the time of this analysis.

Semi — Infinite Plate — The model for the semi-infinite plate was very similar

to that for the straight fiber shown in Fig. 32b. However, this model was generated
with an initial waviness (% = 0.0050) buckling toward the free surface, the most
critical situation. One edge of the smeared region follows the contour of the half-
matrix at at the matrix/smear boundary. The other boundary of the smear region
is again a vertical symmetry line as shown in Fig. 32b.

Infinite Series — The repeating unit for the infinite series model with an initial

curvature is shown in Fig. 33. Except for the initial fiber curvature, the model is

identical to the corresponding straight fiber model.

Implementation

The finite element analysis was accomplished using ABAQUS Version 4.7-25.1%¢
PATRAN, Release 2.3A-1,'%° was used for mesh generation and post-processing.
Data were translated between ABAQUS and PATRAN using PATABA: The PAT-
ABAQUS Application Interface, Release 3.0A,'°® ABAPAT: The ABAQUS-PAT
Application Interface, Release 3.0A,'% and a translator, written by the author, to
extract the global and elemental stress-strain data from the model for x-y plotting.
A flow chart summarizing this activity is shown in Fig. 34.

The straight fiber eigenvalue problems were modelled using ABAQUS S8R5
elements, shown in Fig. 35. These elements are doubly-curved shells with eight

nodes and 2X2 reduced integration, primarily used for thin shell applications. The
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Fig. 35 Nodes, integrations points, and local coordinates for
S8R5'** and CPS8R'®* elements.
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elements allow five degrees of freedom (three displacements and two in-surface
rotations) per node at all nodes except those with specified boundary conditions. At
nodes where the boundary conditions are specified, these elements allow six degrees
of freedom per node. However, for the incremental inelastic stress-strain analysis,
these elements were computationally time consuming. The author realized that u.,
¢z, &y, and @. were zero for all elements in these analyses. Consequently, plane
stress elements were used for the incremental analysis. These biquadratic elements,
designated in ABAQUS as CPS8R (see Fig. 35), are plane stress continuum elements
with eight nodes and 2X2 reduced integration. The elements allow two degrees of
freedom, u and v, per node. Trial tests with the straight fiber infinite series indicate
that these elements predict the critical buckling strain =~ 10% higher than the S8R5
shell elements. This stiffer solution is a consequence of fewer degrees of freedom.
For the purpose of these analyses, 10% difference is acceptable.

Interface elements were used in conjunction with the plane stress continuum
elements to model the poor fiber/matrix interfacial bond strength. These elements
model the interaction between two deformable structures, along “slide lines,” where
separation and sliding of finite amplitude, and arbitrary rotation of the surfaces may
occur. The surface of interaction was defined by prescribing appropriate interface
elements on the surface of one of the bodies (fiber) and associating these elements
with a set of nodes on the other surface (matrix), called the “master surface.” The
slide line elements, ISL22, are three node interface elements that are compatible
with second order planar elements and have two degrees of freedom, u and v, at the
nodes.

The slide line elements require two parameters: (i) the coefficient of friction,

and (i) the “stiffness in stick.” The coefficient of friction is the proportionality
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factor in classical Coulomb friction (Amonton’s law). This theory assumes that
the surfaces ao not slip until the shear stress tries to exceed the friction limit,
which varies proportionally with the normal compressive stress between the surfaces.
Because the theory is implemented by a stiffness method, the “stiffness in stick” is
required. This parameter is an elastic stiffness that transmits shear forces across
the element as long as these forces are below the friction limit. This stiffness is a

“penalty” to simulate zero relative motion between the surfaces prior to slip.
ABAQUS Procedures

ABAQUS contains a capability for estimating elastic buckling by eigenvalue
extraction. This estimation is typically useful for “stiff” structures, where the pre-
buckling response is almost linear. The buckling load estimate was obtained as

a multiplier of the applied loads. The nontrivial solutions to Eqn. 55 provide

A q

the estimated buckling strain as 7

(¢ is the magnitude of the applied nodal

[+

displacements), while the corresponding eigenvector {u;}; gives the associated
buckling mode. ABAQUS only provides an eigensolution for symmetric systems,
which means [K,] and [R,] must be symmetric, implying that the system has
real, positive eigenvalues only. ABAQUS provides the Modified Riks Algorithm
for effective solution of nonlinear static equilibrium problems. This algorithm is
particularly useful when the load and/or displacement may decrease as the solution
evolves, as long as sudden bifurcations do not occur.

The finite element models presented herein do not contain ultimate strength
limits to define failure. However, in the incremental analysis of the wavy fiber, the
initiation of fiber microbuckling is defined by an instability in the system. The
increment following the maximum stress and strain of the system was flagged by a

warning that the system matrix contains negative eigenvalues. This warning means
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that the system matrix is no longer positive definite; for example, a bifurcation
(buckling) load may have been exceeded. The maximum stress and strain, located
at the increment prior to this warning, were defined as the initiation of fiber
microbuckling in the wavy fiber problem. It was assumed that fiber failure by
bending occurred at this point. Additionally, the stress-strain data presented in

this dissertation are shown only to the fiber microbuckling strain.
Constituent Properties

For all of these models (both straight and wavy fiber), the fiber volume fraction,
V¢, was 60% and the diameter of the fiber, df, modelled was 7.6 ym. The width of
the modelled matrix regions were equal and were determined to be 5.1 pm, based on
ds and Vy. These properties were determined from the material data sheets.’®” The
length of the fiber, L, was selected based on measurements from SEM micrographs.
The ratio 31;7 was measured from the micrographs to be x 87.

Resin — Four different resin constitutive behaviors were used. The behaviors
were (i) linear, using given material data,'®’ (ii) 21°C data, (1) 77°C data, and
(iv) 132°C data. The 21°C, 77°C, and 132°C data were measured experimentally.

The equivalent stress-strain behavior of the resin was derived from the lamina
T12—Y12 data (Fig. 36). The yield points are indicated with arrows. For the
analysis it is assumed that the resin is isotropic, homogeneous, and has constitutive

behavior which can be expressed in the form of the Ramberg-Osgood equation.

Additionally, it is assumed that G§ > G, (gl = 0.046), and thus, the shear is

G, T
primarily transferred by the resin. Using these assumptions, T2 = 7125 = Ti2m
and Yi2m = ;%: The subscripts f and m correspond to the fiber and matrix,

respectively. Once the shear constitutive behavior of the resin was derived, the

equivalent stress-strain (7—€) behavior of the resin was computed using
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) 3
o= [5 {(Uz—ay)z+(Uy‘0z)2+(az—az)2] +3{szy+7-:z+7-=22] , (87)

and for proportional loading (the components of applied stress remain in constant

ratio to one another throughout the straining process) only,

2 1 L

e e e O Rl R LSRR A AL

Proportional loading may be assumed because these data are derived from tensile
tests. For the stress state in the [+45],, specimens, the equivalent stress-strain

behavior is reduced to

and

1
—\/13_723;-

The nonlinear constitutive behavior of the resin is fit using the Ramberg-

€ =

(60)

Osgood stress-strain relation

— —i1n—1
av [ |7
+"E‘H (61)
where
a = yield offset,

o, = Yyield stress,

E = Young’s modulus, and
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n = the hardening exponent for the plastic term.

Assuming a = 1, the values determined for E, 0,, and n for the best fit through the
data are given in Table VII. The equivalent stress-strain data, using the parameters
from Table VII, are plotted in Fig. 36. These data (Table VII and Fig. 36) are used
to describe the matrix constitutive behavior in these analyses. The axial modulus
for the Ramberg-Osgood fit is 8.3% stiffer than the given matrix Young’s modulus
(Table V). The stiffer modulusis attributed to some fiber contribution in the [+45],,
specimens. Figure 36 shows that as the temperature is increased, the stress and
strain corresponding to the yield point on the curve are decreased. This trend is
derived from the resin shear constitutive behavior presented in Chapter V.

Fiber — Three types of fibers were used in these analyses. First, the fibers
were assumed to be transversely isotropic, having the properties of the AS4 fiber
given in Table VIII. For the other two cases, the fiber was assumed to have the
isotropic behavior shown in Table VIII. Two types of isotropic fiber properties were
assumed for this analysis. In one case (Type 4), E1; (E2; = Eq1) and vy, were the
actual values for the AS4 fiber and G, necessary for isotropy was computed. In
the other case (Type B), G12 and vy, were the actual values for the AS4 fiber and
E1, (E;; = E11) necessary for isotropy was computed. However, in shear instability
models (Refs. 33, 34, 36, 126-128), the researchers have shown that the resistance
to failure is controlled by the shear properties of the foundation and the column.
Additionally, the results of Hayashi** and Kulkarni et al,*® analyses that neglect
cé—’;‘ indicate that as Gy is increased, the compressive strength of the composite
is increased. Consequently, the Type B properties were used for the wavy fiber

models. For these fibers, %f— = 0.046.

Fiber/Matrix Interface — The models with perfect fiber/matrix interfacial
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Table VII. Ramberg-Osgood Parameters for Resin
Nonlinear Constitutive Behavior.

Temperature, °C | E, MPa | s,, MPa n

21 3899 114.2 [8.0748
77 3899 82.65 |[5.8676
132 3899 34.11 |3.2625
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Table VIII. Measured and Assumed Mechanical Properties
of Constituent Materials.

Material E,1, GPa| Eq2, GPa | Gy3, GPa] vi2 |G /Ey
PEEK Resin 3.60 3.60 1.30 0.42 —

AS4 Fiber 235 14.0 28.0 0.20| 0.0153
APC-2 Lamina 134 8.90 5.10 0.30} 0.0269
Quadrax® 70.7 70.7 6.10 0.03| 0.0153

Type A Isotropic Fiber 235 235 97.9 0.20} 0.0153
Type B Isotropic Fiber 67.2 67.2 28.0 0.20| 0.0536
Isotropic Smear Region 13.3 13.3 5.10 0.30| 0.2714°

® Assumed same for both 8- and 1- harness.'**

®In this case, %’L
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bonds do not require any additional parameters. However, the poor fiber/matrix
interfacial bond models require both the coeflicient of friction and the “stiffness in
stick” for the slide line elements along the interface. In these models, portions of the
interface were completely degraded by assuming that both parameters were ideally
zero, implying no friction and no shear stress transfer between the fiber and matrix
in the debonded region prior to slip.

Unidirectional Lamina — Two types of properties were used for the equivalent

homogeneous regions in the analyses. First, the orthotropic unidirectional lamina
properties for APC-2, given in Table VIII, were used. Second, a set of isotropic
properties, designated isotropic smear, were derived. Since the resistance to failure
is controlled by the shear properties of the foundation and the column, G;2 and v,
were the actual values for the unidirectional lamina and E;; (E;; = Ey;) necessary
for isotr-opy was computed. These properties are also included in Table VIII. With
either set of properties, the equivalent regions were assumed to be linear elastic and

in a state of plane stress, consistent with laminate theory.

Convergence Studies

Mesh convergence studies were conducted on the infinite array of fibers and
matrix (Fig. 33) for both the straight and wavy fiber problems. The selected mesh,
shown in Fig. 33, contains 196 elements. The half-matrix is 2 by 28 elements (aspect
ratio is = 9.3) and the fiber is 3 by 28 elements (aspect ratio is = 4.6). In addition
to this selected mesh, two other meshes, one coarser and one finer, were attempted.
In the coarser mesh, both the half-matrix and the fiber were each 1 by 14 elements.
In the finer mesh, the half-matrix was 4 by 56 and the fiber was 3 by 56 elements.

Mesh refinement had no effect on the eigenvalues/buckling strains determined for






172

the straight fiber bifurcation buckling problem because of the global nature of an
eigenvalue analysis. To evaluate the effects of mesh refinement on the wavy fiber
analysis, the global axial stress and the local elemental shear strains were plotted
as a function of the applied axial strain. Also, as expected, the global stress-strain
behavior was identical for the three meshes. The average localized shear strains
determined with the finest mesh were ~ 20% different from those computed with
the coarser meshes. However, when considering the fringe patterns (color contour
plots) for the strain distributions in the model, the coarsest mesh did not provide
the same strain distributions as the other two meshes. Consequently, the mesh

shown in Fig. 33 was selected as an acceptably refined mesh.

Model Details

Already described within this chapter are the model geometries and constituent
properties for the materials in the straight and wavy fiber problems. Within this
section, the various combinations of model geometries and constituent properties

are summarized.
The Straight Fiber Problem

Five different cases (Cases 1S-5S, S = Straight) were examined for the straight
fiber problem. Case 1S is a comparison of the models for the perfect composite with
orthotropic properties. Cases 25 and 3S compare the two types of isotropic fibers
with orthotropic fibers for the same model in Case 1S. Cases 4S and 5S provide
straight fiber models with the same isotropic properties as similar geometries in the
wavy fiber analysis. Refer to Tables V and VIII for the constituent properties.

For the straight fiber problem, only linear-elastic constitutive behavior was

assumed for the resin. Two reasons, one physical and one mathematical, for this

:i..) i
e
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assumption exist. First, because the fibers were perfectly straight, no shear exists
in the resin until after bifurcation buckling, and thus, including nonlinear shear
stress-strain behavior would not affect the results. Second, the eigenvalue analysis
of all straight fiber problems with nonlinear resin behavior yielded hourglass modes.
ABAQUS does not provide automatic hourglass control for nonlinear materials
for the elements used in this analysis. Consequently, the author did not show
numerically that the finite element analysis would yield the same result for the
straight fiber problem, regardless of linear or nonlinear constitutive behavior for
the resin.

Case 1S — The infinite, semi-infinite, and finite plates (Fig. 32) and the infinite
array of fibers and matrix were each modelled with linear matrix, transversely
isotropic fibers, and orthotropic lamina properties for the smear areas.

Case 25 — The finite plate (10 fibers and matrix), Fig. 32¢c, was modelled with
linear matrix and Type A isotropic fibers.

Case 3S — The finite plate (10 fibers and matrix), Fig. 32¢, was modelled with
linear matrix and Type B isotropic fibers.

Case 4§ — The semi-infinite plate, Fig. 32b, was modelled with linear matrix,
Type B isotropic fibers, and isotropic smear properties.

Case 55 — The infinite series of fibers separated by matrix was modelled with

linear matrix and Type B isotropic fibers.
The Wavy Fiber Problem

Fifteen different cases were examined for the wavy fiber problem. The indepen-
dent variables in these analyses include matrix constitutive behavior (Cases 1C-4C,
C = Constitutive), initial fiber curvature (Cases 1W-5W, W = Wavy), interfacial

bond strength (Cases 1D-4D, D = Debond), free surface effects (Case 1W), and
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fiber constitutive properties (Cases 1F-2F, F = Fiber).

Effects of Matrix Constitutive Behavior — The infinite array of fibers embed-

ded in matrix (Fig. 33) was modelled with Type B isotropic fibers. One initial
fiber curvature, % = 0.0050, was used. Four different matrix behaviors were mod-
elled: (¢) linear, (i¢) 21°C, (di7) 77°C, and (iv) 132°C. The models are designated
Cases 1C, 2C, 3C, and 4C respectively.

Effects of Initial Fiber Curvature — The semi-infinite plate (Fig. 32b) was

modelled with an initial waviness %= = 0.0050. The model contained 21°C
nonlinear matrix, Type B isotropic fibers, and an isotropic smear region. This
model (Case 1W) is compared with the straight fiber model in Case 4S.

The infinite series of fibers embedded in matrix (Fig. 33) was modelled with
21°C nonlinear matrix and Type B isotropic fibers. Four arbitrary values of initial
waviness (%) were modelled: (i) 0.0000, (ii) 0.0025, (:iz) 0.0050, and (iv) 0.0075.
These models are designated Cases 2W, 3W, 4W, and 5W respectively. Note that
Case 4W is the same as Case 2C. ‘

Effects of Interfacial Bond Strength — The infinite series, shown in Fig. 33,

was modelled with 21°C nonlinear matrix and Type B isotropic fibers. The analysis
assumed that at the poor interface, the surfaces were frictionless and zero shear
stress was transferred between the matrix and the fiber. Two comparisons, debond
location and debond length, are made in these models. For this discussion, refer
to Fig. 33 for element numbers and geometry. Note that because the geometry in
Fig. 33 is a repeating unit, every fiber in the infinite series is debonded along one
edge.

To evaluate the effects of debond location on the initiation of fiber microbuck-

ling, debonds that total 10.7% of the fiber length were placed in two different
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locations along the fiber, near the symmetry line (Case 1D) and in the region of
the localized maximum shear strains (Case 2D). The debond in Case 1D was placed
between the fiber elements 168-166 and the corresponding matrix elements 56-54
respectively. In this case, one continuous debond existed. The debond in Case 2D
was placed between the fiber elements 157-155 and the corresponding matrix ele-
ments 45-43. Because of the symmetry line, two debonds (each 5.35% of the fiber
length) existed in this case. Each debond was along the region of maximum shear.

To evaluate the effects of debond length on fiber microbuckling length, three
different debond lengths (10.7%, 25%, and 50% of the fiber length) were modelled.
In each of the three cases, one continuous debond existed. The 10.7% debond
(Case 1D) was again between the fiber elements 168-166 and the corresponding
matrix elements 56-54. The 25.0% debond (Case 3D) was between the fiber
elements 168-162 and the corresponding matrix elements 56-50. The 50.0% debond
(Case 4D) was between the fiber elements 168-155 and the corresponding matrix
elements 56-43.

Effects of Free Surface — The semi-infinite plate (Fig. 32b), described as

Case 1W, was used to illustrate the effects of the free surface on fiber microbuckling
initiation. Recall that the model had an initial fiber waviness, %= = 0.0050, 21°C
nonlinear matrix, Type B isotropic fibers, and an isotropic smear region.

Effects of Fiber Constitutive Properties — To illustrate the effects of fiber

constitutive properties and thus the limitations of this analysis, the infinite series
was modelled (Fig. 33) with Type A (Case 1F) and Type B (Case 2F) isotropic
fibers. Note that Case 2F is the same as Cases 2C and 4W. The matrix is 21°C

nonlinear and the initial fiber curvature is “T" = 0.0050.
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CHAPTER V
EXPERIMENTAL RESULTS

This chapter contains a complete description of the experimental results of this
investigation. As a basis, the material property characterization is presented. These
properties include the lamina constitutive behavior, the initial in- and out-of-plane
fiber waviness, the fiber/matrix interfacial shear strength, and the modes I and II
delamination fracture toughnesses. Next, the results from an incremental damage
progression study are presented to establish credibility of the observations of fiber
microbuckling initiation. Finally, the effects of supporting ply orientation, initial
fiber waviness, interfacial bond strength, resin-rich regions between plies, and resin
constitutive behavior on fiber microbuckling initiation are discussed. Note that the
absolute values of all fiber microbuckling initiation strains, nominal and local, are
used for comparison throughout this chapter. The sample standard deviation (5)

of €; for each of the variables is included in the text for comparison.

Material Property Characterization

Lamina Shear Constitutive Behavior

The shear stress-strain curves obtained from both tension and compression
testing of the APC-2 laminates, derived from Eqns. 48 and 49, are shown in Fig. 37.
Radiographs, shown in Figs. 38 and 39, indicate that matrix cracking has initiated
in the tension-loaded specimens (Fig. 38) by the 2% axial strain level while the
radiograph of the compression specimen (Fig. 39) shows no signs of damage at axial
strain levels up to 9.7%. At 21°C, the flatter plateau in Fig. 37, obtained from

tension testing, is attributed to matrix cracking in the laminate. Consequently,
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Fig. 38 Dye-penetrant enhanced radiographs of a tension-loaded
[£45]2, specimen.
a) Virgin specimen, prior to loading.
b) Applied axial strain level is 2%.
c) Applied axial strain level is 8%.
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Fig. 39 Dye-penetrant enhanced radiograph of a compression-loaded
[+45]s, specimen. Applied axial strain level is 9.7%.
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compression testing of [+£45]s, specimens was selected for determination of the
lamina constitutive behavior. Lamina shear constitutive behaviors obtained from
compressive loading, derived using Eqns. 48 and 49, for 21°C, 77°C, and 132°C tests
are shown in Fig. 37. The shear stresses and strains associated with the composite
yield points in Fig. 37 are approximately 29 MPa and 6300 pe at21°C, 25 MPa and
5300 pe at 77°C, and 5 MPa and 1200 ue at 132°C. The corresponding resin shear
constitutive behaviors (derived in Chapter IV) are shown in Fig. 40. Additionally,
an assumed theoretically linear behavior has been added to the figure. From this
data the elastic shear modulus of the resin, G,,, was measured to be 2.0 GPa,
significantly higher than given in Table V13" The higher PEEK shear modulus is
attributed to the fiber contribution and the fiber/matrix interaction. These curves
indicate that at 77°C and 132°C, there is a significant reduction in the shear stress
and strain associated with the yield point on the 7,,—y,, curve. The shear stresses
and shear strains associated with the resin yield points in Fig. 40 are approximately
18 MPa and 9000 ue at 21°C, 15 MPa and 7700 pe at 77°C, and 2 MPa and 1200 pe
at 132°C. It is anticipated that this reduction decreases the amount of support for

the fibers and reduces the strain level at which fiber microbuckling initiates.
Initial Fiber Waviness

The laminates designed to evaluate the effects of initial fiber waviness on fiber
microbuckling initiation are summarized in Table III, and their cross-sections are
shown in Fig. 41. The 0° fiber direction is marked with an arrow on this figure. The
purpose of the Quadrax laminates was to build some initial fiber waviness into the
laminates. However, comparison of the tape laminate (Fig. 41a) with the Quadrax
laminates (Fig. 41b and 41c) shows that interlacing caused a global out-of-plane ply

waviness rather than a localized fiber waviness. The out-of-plane waviness ratio,
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measured with a scale accurate to 0.254 mm, is very near zero for the tape laminate
and approximately 0.082 and 0.093 for the 8- and 1- harness Quadrax laminates,
respectively.

Figure 42 shows the representative in-plane waviness in the [034] APC-2 com-
posites. The 0° fiber direction is marked with an arrow on this figure. This figure
shows that the in-plane fiber waviness ratio is very small, particularly when com-
pared to the out-of-plane ply waviness ratios for the Quadrax laminates {Fig. 42).
Two observations discourage the use of the measuring technique in Ref. 152. First,
it is very difficult to find continuous fibers with complete wavelengths in Fig. 42
because the fiber waviness ratio is very small. Second, and more important for
this investigation, the in-plane fiber waviness of the unidirectional composite is not
representative of the actual local fiber waviness in each ply at the notch. In this
study, it is expected that the in-plane fiber waviness at the notch has a more sig-
nificant effect on fiber microbuckling initiation than the representative waviness of
the unidirectional laminates. However, at the present, it is not possible to measure
the in-plane waviness at the notch and then test the same specimen. Consequently,
the in-plane waviness at the notch or in a unidirectional laminate was not actually
digitized.

Fiber/Matriz Interfacial Bond Strength

In the initial 10 fibers selected from the multidirectional APC-2 laminate, two
fibers gave exceptionally high IFSS values (the highest values reported to date) of
136.9 MPa and 121.1 MPa. Because of the skewed distribution of the IFSS values,
an additional series of 10 fibers was tested. The average IFSS value for this second
series is reported. Evidently, the surface treatment of the fibers is not uniform.

The ITS interfacial shear strengths for the unidirectional and multidirectional






Fig. 42 Representative in-plane fiber waviness in [0,4] APC-2 laminates.
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APC-2 and AU4U/PEEK laminates are summarized in Table IX. The average
IFSS values r.neasured were 95.87 MPa and 79.86 MPa, respectively, for the APC-
2 and AU4U/PEEK unidirectional laminates. For both materials, the [024] and
[(£45/05)s/ + 45/0], stacking sequences yielded the same (within 4.0%) IFSS
values, indicating that the residual cure stresses do not affect the interfacial shear
strengths for these particular materials and lay-up. These results indicate that when
compared to the commercial APC-2 material, the IFSS for the experimental poor

interface material is reduced by 16.7%, regardless of the stacking sequence.
Delamination Fracture Toughness

As an introduction to the fracture results, Fig. 43 contains representative
micrographs showing cracks from mode I and mode II delamination fractures
for both material systems. The cross-sections in Fig. 43 were cut parallel to
the specimen length, near the crack tip, to observe matrix deformation and
fiber/matrix adhesion. Figures 43a and 43b are the mode I cracks for the APC-
2 and AU4U/PEEK materials, respectively. Figure 43a shows large amounts of
matrix deformation, including fibrils and matrix drawing in the opening mode,
for the APC-2 laminates. However, for the poor interface AU4U/PEEK material,
Fig. 43b shows very little matrix deformation with bare fibers, indicating that the
crack grows at the fiber/matrix interface. The mode II cracks for the APC-2 and
AU4U/PEEK materials are shown in Figs. 43c and 43d, respectively. The amount of
resin deformation and fiber/matrix bonding for the mode II laminates is similar to
the results reported for mode I, but as expected, the type of deformation is different.
Again, the crack in the APC-2 laminate (Fig. 43c) is in the resin while the crack
in the AU4U/PEEK laminate (Fig. 43d) grew at the fiber/matrix boundary. The
fibers in Fig. 43d are bare, as with Mode I (Fig. 43b).






190

Table IX. Interfacial Strength and Fracture Toughness Data.

LID| Stacking Sequence Material |IFSS,* MPa| G;®, J/m? | G;®, J/m’
0G 0]24 APC-2 95.87 1458¢ 2500
OP (0]24 AU4U/PEEK  79.86 729 1150
OG|[(£45/05)s/ = 45/0],]  APC-2 97.28 — —
OP|[(+45/05)s/ + 45/0),| AU4U/PEEK®|  79.90 — —

?ITS interfacial shear strength.
®Average steady-state values.

“Experimental poor interface material.
4Specimen OG5 (not included in average) had multiple
crack surfaces and Gy = 2130 J/mz.
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Mode I — Typical load-displacement curves for the APC-2 and AU4U/PEEK
mode 1 DCB tests are presented in Fig. 44. These two curves indicate that both
the good and poor interface materials behaved linearly-elastic and exhibited stable
delamination growth in mode I loading. The curves show that much more energy is
absorbed for crack growth in the APC-2 material. It should be noted that frequent
of popping noises were heard prior to the maximum load, although growth was not
observed. Because of the difficulty in detecting the initiation of crack growth, true
G . values were not determined. The strain energy release rate, G, is computed
using Eqn. 51 in conjunction with the load and crack length measurements described
in the Methods section of Chapter III. This instantaneous or steady-state G is
plotted as a function of crack length in Fig. 45 for the APC-2 and AU4U/PEEK
specimens tested. Initial crack lengths are ~ 23-25 mm for APC-2 and ~ 17-
21 mm for AU4U/PEEK. For the commercial APC-2, the average steady-state Gt
of specimens OG3 and 0G4 is ~ 1458 J/rn2. This steady-state value is reported
in Table IX. However, the steady-state G for specimen OG5 is ~ 2130 J/rnz.
The critical strain energy release rate, G, for APC-2 is reported as 2680 J/m2
in Ref. 149 and 2890 J/m’ in Ref. 167. According to Ref. 150, values have been
reported between 1500 J/m2 and 3000 J/rnz, depending on processing techniques.
For the experimental AU4U/PEEK material, the specimen average is a steady-state
G of = 729 J/mz. The average values are indicated on the graph in Fig. 45. This
steady-state G value is included in Table IX. During these tests, a small amount
of fiber bridging was observed for both material systems.

Micrographs of the representative mode I DCB fracture surfaces are shown
in Fig. 46. In this figure, the direction of crack propagation is from the top of

the micrographs to the bottom of the micrographs. Figure 46a is an overview of
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the APC-2 mode I fracture surface showing the severely drawn PEEK matrix well-
adhered to the fibers. This result is also confirmed by the higher magnification
micrograph in Fig. 46b, a detail from Fig. 46a. Figure 46¢c is an overview of the
AU4U/PEEK mode [ fracture surface showing essentially bare fibers with little
resin deformation. An additional detail of the bare fibers is shown in Fig. 46d.
The bare fibers in Figs. 46c and 46d indicate that the crack is growing at the
fiber /matrix interface, rather than in the resin-region between plies. Notice that
the fracture surface of the poor interface system (Fig. 46¢c) contains many loose
fibers compared to APC-2 in Fig. 46a. Considering the lack of resin deformation
and the crack location at the fiber/matrix interface in this material, loose fibers are
not surprising. The loose fibers in this micrograph (Fig. 46¢c) indicate that more
fiber bridging occurred in the AU4U/PEEK system than in the APC-2 system
(absense of loose fibers in Fig. 46a).

To explain the difference between the two steady-state G values for the APC-
2 laminates in Fig. 45, cross-sections were cut perpendicular to the specimen
length to observe the fracture path of the crack. Figure 47 shows these fracture
paths. Figures 47a and 47b are the fracture paths of specimen OG5 (higher G).
These micrographs indicate that multiple crack paths exist for this specimen. The
consequent increase in fracture surface area causes an increase in G;. Although it
is difficult to distinguish the ply boundaries in this specimen, careful observation
indicates that the cracks are growing within the ply (intraply). Typically, intraply
cracking occurs at lower fracture energies because of the reduced resin volume
fraction within the ply, compared to between the plies. Figure 47c shows one
intraply fracture path in specimen OG3 (lower G). Considering the micrographs

in Fig. 47 and comparing the steady-state G'; values with the critical values reported
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in the literature, it appears that intraply cracking causes a significant decrease in
the fracture energies (specimens OG3 and OG4) of APC-2 laminates. However,
the multiple intraply crack paths (specimen OG5) caused an increase in the energy
absorbed and thus G. The specimens in this study did not realize the maximum
toughness of the PEEK resin since the cracks did not grow between the plies
(interply). If the cracks had grown interply, it is expected that the steady-state
G; would have been closer to the values in Refs. 149 and 167. Although cracks in
the APC-2 laminates grew intraply, observation of the micrographsin Figs. 43a, 46a,
and 46b indicate that the failure is of cohesive type in the PEEK matrix. Similar
observations were reported in Ref. 149. Figure 47d shows the fracture path of
specimen OP4, a representative micrograph from the experimental material. Again,
the fracture path is intraply. Because of the poor interfacial bond, the crack grows
intraply- at the fiber/matrix boundary revealing bare fibers and without deforming
the matrix, as seen in Figs. 43b, 46¢, and 46d. The poor interface in conjunction
with the reduced resin volume fraction in the ply (compared to between the plies)
causes a signiﬁcant decrease in G, as shown in Fig. 45.

Mode II — Typical load-displacement curves for the APC-2 and AU4U/PEEK
mode II ELS tests are presented in Fig. 48. These two curves indicate that
both the good and poor interface materials behaved linearly-elastic and exhibited
stable delamination growth in mode II loading. The crack for the APC-2 material
grew under the clamp. This portion of the load-displacement curve is indicated
with an arrow in Fig. 48. The curves show that much more energy is absorbed
for crack growth in the APC-2 material. It should be noted that crack growth
was detected prior to reaching the maximum load in these tests, yielding critical

initiation strain energy release rates, Gysc, as low as 1250 J/m® (APC-2) and
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