NMASA-CR-4340)

VALTDAT [N

NV IRON

fo)

TNT T

AIPS/ALS: IMPLEMENTATION AND RESULTS Final

Report, Nov. 1983 - Nov.
(Carnejie-Mellon Univ.)

1990
77 p

CSCL 098

7 Hi/62

NFL=-13530

unclas
0311984

NASA Contractor Report 4340

Validation Environment
for AIPS/ALS:
Implementation and Results

Zary Segall, Daniel Siewiorek,
Eddie Caplan, Alan Chung,
Edward Czeck, and

Dalibor Vrsalovic
Carnegie-Mellon University
Pittsburgh, Pennsylvania

Prepared for
Langley Research Center
under Grant NAG1-190

NASA

National Aeronautics and
Space Administration

Office of Management

Scientific and Technical
Information Division

1990

Contents

1 Executive Summary 1
2 Validation 3
2.1 System Specification L e e 3
2.2 Validation Methodologies 4

3 Implementation of a Validation Environment on AIPS 8
3.1 Architecture of the FIAT Validation Environment 8
3.2 Architecture of the PIE Validation Environment 10
3.2.1 PIESCOPE . . . i i i it e e e e e e e e e e e e e e e e 12

3.2.2 PIEMON . . .t it e e e e e e e e e e e 13

3.2.3 Setting Up an Experimentin PIE 14

3.3 Architecture of the AIPS Validation Environment, 20
34 PIE Software . . . v i v i i i e e e e e e e e e e e e e e e e e e e 23
3.4.1 PIE Softwareonthe AIPSFTP., 23

3.4.2 PIE Softwareonthe AIPSHost., 25

3.4.3 Workstation Software i e e e 26

4 Experiment Design and Results 28
4.1 LoopTest o o o i e e e e e e e e e s 28
4.2 MemTest . . v v i v e e i e 30
4.3 ActTest . . . i e 33

5 Summary 38

iidi

tes_ |1 INTENTIONALLY BLIKE PRECEDING PAGE BLANK NOT FILMED

References 40

A PlEscope Figures of the Experiments 42
A.1 Low Priority LoopTest 42
A.2 High Priority LoopTest 45
A.3 Low Priority MemTest 49
A4 High Priority MemTest 53
A5 Low Priority ActTest e 57
A.6 High Priority ActTest 65

iv

1 Executive Summary

This is the final report of work done under contract NAG-1-190. This document presents the
work performed in porting the FIAT and PIE! validation tools, developed at Carnegie Mellon
University, to the AIPS[1] system in the context of the ALS application, as well as an initial
fault-free validation of the available AIPS system. The PIE components implemented on ATPS
provide the monitoring mechanisms required for validation. These mechanisms represent a
substantial portion of the FIAT system. Moreover, these are required for the implementation
of the FIAT environment on AIPS. Using these components an initial fault-free validation of
the AIPS system was performed.

This report describes the implementation of the FIAT/PIE system, configured for fault-free
validation of the AIPS fault tolerant computer system. The PIE components have been modified
to support the Ada language. A special purpose AIPS/Ada runtime monitoring and data
collection has been implemented. A number of initial Ada programs running on the PIE/AIPS
system have been implemented. The instrumentation of the Ada programs was accomplished
automatically inside the PIE programming environment. PIE’s on-line graphical views show
vividly and accurately the performance characteristics of Ada programs, AIPS kernel and the
application’s interaction with the AIPS kernel. The data collection mechanisms were written
in a high-level language, Ada, and provide a high degree of flexibility for implementation under

various system conditions.

Beyond the demonstration of the success of the implementation of the FIAT/PIE, we have
characterized some of the critical components of the ATPS/Ada kernel. We paid special empha-
sis to the performance of Ada task management functions, communication, synchronization,
and memory management. Given the real-time ALS application requirements we stressed the
need for performance predictability. The collected data have pointed out a number of anoma-
lies. Some of these anomalies are due to the Verdix implementation of the Ada runtime library,
while others may be related to the implementation of the monitoring tools. Further work is
needed to calibrate and fine tune these tools.

The results of this work point in the following directions:
1. The PIE systems provides an automated fault-free validation environment for AIPS. Also,
we demonstrated the value of PIE as an architecture independent performance evaluation

and program development tool.

2. PIE functionality is required for the FIAT system for fault-injection based validation of

IFIAT and PIE are described in Section 3.

the AIPS for ALS.

3. With the FIAT/PIE tools in place substantial insights of the performance intricacies of
AIPS are available.

4. Initial fault-free validation of the AIPS shows a number of anomalies in the critical areas of
task management, memory management, communication, synchronization, and runtime
overhead. Additional work is needed to eliminate or account for any anomalies in the
monitoring itself. Moreover, the discovery of these anomalies demonstrate the benefits of

the fault-free validation methodology applied to a system under development.

5. Once fully explained, those anomalies could either become user considerations or could be
fixed in future versions of the AIPS. In either case, the system will become substantially

more predictable and hence suitable for the real-time requirements of ALS.

6. Due to the concurrent development of AIPS and FIAT/PIE on AIPS, the FIAT/PIE
system have not been yet fully exploited for AIPS validation. (It is difficult to validate a

system under development ~ a moving target.)

7. There is a distinct opportunity with the PIE environment on AIPS and also the need for
a fault-free validation to be performed on the final version of AIPS. The validation suite
for the final version of AIPS must be biased towards the critical (or unknown) portions of
the system to avoid uncovering “known” limitations such as the poor memory allocation

performance.

8. After the completion of the fault-free validation, we are strongly suggesting the critical
need for Fault Injection based Validation of AIPS. Of special concern are the common
mode failures (most of which occur in the software component of the system), commu-
nication protocols and multiple single mode failures. For this purpose an opportunity
exists in using the proven methodology of FIAT/PIE and the availability of these tools
on ATPS.

This report is organized as follows. Section 2 motivates the need for a validation environment
based on a validation methodology which requires monitoring the system, as well as injecting
faults into the system. Section 3 describes the FIAT and PIE environments developed at
CMU, and presents the architecture and implementation of the FIAT/PIE environment on
the ATPS/ALS system. Section 4 presents experiments and results of the fault-free validation
experiments conducted on AIPS. Section 5 summarizes the report. Several appendices contain

data results with annotations highlighting relevant abnormalities.

2 Valhidation

Validation is the process of substantiating, through demonstration, that a given system meets
its specification[2, 3). For highly dependable systems, the specifications contain extreme re-
liability requirements which necessitate the ability to function under faulty conditions. To
demonstrate or validate the system operation, prediction methods must be used to determine
the system “operation point” before the system is committed to use. Methods of determining
the “operation point”, or the nominal behavior, include simulation, modeling, and analysis.
Complimentary to these methods are experimental methods, such as program instrumentation
and fault injection, which are well suited for areas in which modeling and analysis fail to capture
the needed detail.

2.1 System Specification

System specifications can be divided into two domains, with the validation effort directed to
demonstrate that both are fulfilled[4]. The first domain includes functionality and the second
is the bounds within which correct functioning must occur. Functionality is by far the easier of
the two domains to validate; metrics, such as throughput and real-time deadlines, are readily
defined. The bounds of correct functioning typically are associated with dependable computing

and include metrics such as reliability, maintainability, and fault tolerance.

A functionality requirement includes performance measures where performance is measured
in functions per unit time or in the time needed to complete a specific task[5]. The notion
of performance exists throughout the digital design hierarchy, from the circuit level (switching
times), to the system level (application execution time). With this definition and a validation
methodology, a performance evaluation matrix can be created, as depicted in Table 1. The
vertical axis is the design hierarchy, while along the horizontal axis are definitions or charac-
terizations of performance. Elements in the matrix are not singular and evaluation measures
can overlap. The area of concentration for the measures is dependent upon the needs of the
validation in measuring the “operating point” and also the level of instrumentation? available

in the validation environment.

A typical reliability requirement for a life critical application is 107'° failures per hour. The
basis for this failure rate can be justified through the following life-cycle model. Assume a 30
year life, with 8 hours operation per day; this yields approximately 100,000 (10°) operational

2Instrumentation, as used in the FIAT and PIE environment is the process of adding measuring devices or

software “hooks” into a workload to monitor its execution and report the occurrence of events.

3

Behavior Throughput Utilization Delay
Correct Function | Application] Variation Caused
Application | in Integrated Task Times (e.g. | Idle Time by Shared Data,
Environment flight control) Increased Load
Executive, " Correct Operation | Operating System | Operating System | Variation Caused
Operating | of Scheduler, Primitive Frequerncy of by Hardware and
System Dispatcher, etc. Times Use Data Contention
Instruction | Correct Oix;ération Instruction, Hardware Variation Caused
Set, of Interrupts, and Resource Frequency of by Hardware
Hardware | etc. Times Use Contention

Table 1: Performance Evaluation Matrix

hours per unit. If 100,000 (10°) copies are produced and one failure is acceptable over the life of
all copies, then the failure rate must be less than 10~ 1° failures per hour. This translates to one
failure per 1 million years per unit or several orders of magnitude greater than the reliability
of todays systems. This stringent reliability requirement yields two observations. The first
is that non-redundant systems are at least six orders of magnitude less reliable than the goal,
necessitating the use of redundancy and its ability to function correctly with faults present. The
second is that life testing (monitoring) for confirmation of reliability is impossible, necessitating

the need for accelerated testing.

In characterizing and testing any system, it is necessary to apply a sample of the input space
into the unit under test. The approach for a fault-tolerant system is the same: in a fault-tolerant
system part of the valid input space is faults. Hence faults must be injected to test the system,
as are data values. Thus the goal of fault injection is to emulate the behavior of a system with
faults present. Once a fault injection methodology is developed, the problem becomes one of
testing; namely what set of faults is needed to test and validate the fault tolerant aspects of
the system.

2.2 Validation Methodologies

Much work has been done in validation methodologies, especially in aerospace and other life-
critical applications. These methodologies include formal proofs, analyses, and tests to as-
sure the system meets its specifications. Although there is no commonly accepted validation
methodology, a generalized methodology may be extracted from procedures presented in the
literature[4, 6, 7, 8, 9, 10, 11, 12]. The approach is to build confidence in the system by a thor-
ough and systematic methodology of proofs, analyses, and tests. Proofs are formal arguments

supported by deductive inferences. Analyses employs models of the system, and testing uses

Development Abstract = Concrete
Level Design Proofs Analyses Tests
Architecture Prove Architecture Reliability and Error Design Reviews
Against Requirements Rate Markov Models Simulations
Implementation | Prove Implementation Fault Tree Analysis Simulations and
Against Architecture Emulation of Hardware
Realization Prove Realization Fallure Modes and Support Assumptions from
Against Implementation Effects Analysis Analyses, Fault Injection

Table 2: Validation Activities throughout the Design Space

statistical inference. These three methods are complementary: proofs and analyses use abstract
models of the systems; testing uses the actual system to substantiate the models and results

generated in the analyses.

These three processes (proofs, analyses, and testing) are applied throughout the system de-
velopment as depicted in Table 2. During the architecture development, proofs are generated
which specify the conditions necessary to achieve the requirements. Analyses of the architecture
include reliability and error rate Markov models, while the testing comprises activities such as
high level simulations and design reviews. At the implementation level, the conditions required
in the architecture proofs are verified, leading to more conditions for the realization. The
analyses includes further refinement of the Markov models developed in the architecture anal-
yses, and in-depth analyses such as Fault-Tree generation. Testing begins to involve concrete
methods such as simulation and emulation of the design. In the final level realization, proofs
of the hardware and software structure are continued from the implementation level. Analy-
ses includes exhaustive Failure Modes and Effects Analysis, refinement of Fault-Tree analysis,
and the inclusion of specific failure rates into the reliability and error rate analyses. Testing
at the realization stage measures the assumptions and requirements used in the proofs and
analyses. The assumptions involve error rates, fault latency, and coverage, as well as concrete

measurements such as throughput, utilization, and error recovery time.

Two possible methods exist for validation of highly reliable systems under faulted conditions.
The first method, life testing, monitors actual running systems awaiting the natural occurrence
of faults. The behavior of the system, when faults occur, can then be analyzed and used to
support validation assumptions or conditions. The second method, fault injection, induces
faults into the system and analyzes behavior under these conditions. Life testing offers realism,
but due to the current level of component reliability, faults can be expected at a rate of one in

10 hours per system. This failure rate is prohibitively slow for the completeness required in

thorough testing. Fault injection speeds up the rate at which synthetic faults occur. The use
of synthetic faults is necessary given the large number of fault types, fault locations, and times
of occurrence. For example, a small board consisting of 50 packages each with 20 pins, has a
fault space of 1000 pin-level faults without considering any time dependencies. Additionally,
software faults must be considered as the majority of system complexity moves into software.
The software-fault space is also large — consider the amount of code present in even the smallest

of operating systems.

Underlying any methodology, there must be a set of guiding philosophies. Over the last
decade, CMU has dedicated over 100 man-years of effort in the design, construction, and vali-
dation of multiprocessor systems. A partial list of the experimental guidelines developed during
the last decade include:

* The experimental validation methodology is successively refined as experiments uncover

new information and the methodology is applied to new multiprocessor systems.

» Experiments are designed to validate behavior that is documented, as well as behavior

that is not documented.

» Experiments are conducted in a systematic manner; since the search is for the unexpected,

there are no shortcuts to thorough testing.
¢ Experiments should be repeatable.

¢ The feasibility of performing various experiments is tempered by what is available in the
experimental environment. More sophisticated experiments may have to be postponed

until the experimental environment is provided with more tools.

* A building block approach should be used wherein one variable is changed at a time, so

the cause of unexpected behavior is easy to isolate.

¢ Testing should take advantage of the structural (abstract) levels used in the design of the

system.

With a fault-tolerant, ultra-reliable system other problems arise which make the validation
task increasingly difficult. Some of these problems are:

¢ Life testing is inappropriate, due to large mean-time-to-failure of the system.

¢ System design complexity makes it difficult to perform failure effect analysis, instrument
and measure all relevant parameters, and use exhaustive testing approaches, since there

are a large number of states and failure modes possible.

¢ Large scale integration makes access to control and observation points difficult as well as

determining a confidence level for fault coverage.

6

NASA held several workshops to determine validation procedures. One [11] in particular
produced a detailed outline of a validation procedure. The procedure is based on a building
block approach. Primitive system activities are characterized first. Once these activities are
understood, complex experiments involving the interaction of primitive activities, as well as
complex activities built from the basic primitives, may be conducted. This orderly progression
insures uniform, thorough coverage and maximizes the ability to locate the cause of unexpected
phenomena. The steps in the methodology include:

1. Initial checkout and diagnostics.

Programmer’s manual validation.

Executive routine validation.

Multiprocessor interconnect validation.

Multiprocessor executive routine validation.

Application program verification and performance baseline measurements.
Simulation of inaccessible physical failures.

Single processor fault injection.

© @ NS¢ s

Multiprocessor fault injection.

o
i

Single processor executive failure response characterization.
11. Multiprocessor system executive failure response characterization.
12. Application program verification on multiprocessor system.

13. Multiple application program verification on multiprocessor system.

The first six tasks in the list validate the fault-free baseline functions of the system, items
seven through eleven characterize the fault-handling capabilities of the processors, and the last
two validate the total integrated environment of the system. This report presents fault-free
baseline performance measurements. In general, the methodology follows two parts, a fault-
free validation followed by a fault handling part. The importance of the fault-free validation has
been shown in previous reports[13, 14], and the methodology presented in this report follows

the same line.

3 Implementation of a Validation Environment on AIPS

The validation process is difficult in that it requires observability and controllability of the
system under investigation. The observations include measure of performance and behavior
while the controllability includes adjusting the workload, as well as injecting faults. To aid
in the validation process a validation environment is implemented. The environment combines
work done on FIAT and PIE at CMU. This section describes both FIAT and PIE architectures,
the combined validation architecture for AIPS, and its implementation[1].

3.1 Architecture of the FIAT Validation Environment

FIAT, Fault Injection-based Automated Testing, is a prototype experimental environment used
to explore validation methodologies for fault-tolerant systems. The goals of the FIAT project are
to develop the requirements for an automated software-implemented fault injection environment

and to gain an understanding of software-implemented fault injection methodologies.

Validation requires the ability to monitor the system under test, the ability to control the
system to induce faults and other operating conditions, as well as the ability to repeat tests to
identify the source of system deficiencies. These requirements imply a test environment capable
of automatically inducing faults and monitoring system behavior. The underlying methodology
guiding the FIAT validation process is as follows:

1. Specify a system architecture, including hardware and software. FIAT allows the user

to specify the architecture through a combination of emulation, where actual software
tasks or hardware components are represented by a software task emulating the actual

behavior, or through the use of FIAT software on the actual hardware /software structure.

2. Profile the fault-free behavior of the system to determine a nominal “operation point”.
Profiling gives general information regarding the execution of the systems, such as task

execution order, execution time, memory usage, and possibly bounds for data variables.

3. Select a set of faults and profile the system behavior with these faults present. The fault
set is chosen to represent actual faults which the user is interested in studying. These
can represent faults occurring in either the hardware or the software of the system and

are used to gauge the effect of actual faults on the system.

4. Analyze experimental data and use the results to support validation requirements and
other experiment goals. Measures, such as fault latency, error recovery probability, and

the like, can be extracted through experimental analyses and used to support validation

requirements such as parameters for Markov models. Given the goals and the desired

validation methodology, FIAT was designed to support the following functions.

Architecture Development: The target architecture is divided into portions which are to be
emulated and portions which will use the implementation employed by FIAT. This allows
the user to design and evaluate a system without customized hardware, software, or a large
initial effort. The hardware, software, and communications structure of FIAT is general,
so it may emulate a variety of architectures or be applied to an actual implementation.
FIAT is oriented towards a message-based, replicated structure, where messages are passed
via the FIAT communication channels and the replicated structure is emulated by FIAT

hardware and software tasks.

Fault Injection: The goal is to insert data representative of “actual” faults into the system
to gain an understanding of system operation under abnormal conditions. The injected
faults may be “actual” faults under study or the manifestation of faults - errors. FIAT,
through software-implemented fault injection, induces faults or the appearance of faults
in a system by modification of the software image or through the execution of special
software designed to emulate faults. Software-implemented fault injection was selected
for the following reasons:

1. Systems to be validated have a substantial software component. Software fault injec-
tion allows penetration into the software portion of the system as well as exploring

the interaction of software with hardware.

2. Software-implemented fault injection is less expensive, in terms of time and effort,

than hardware-implemented fault injection.

3. Software-implemented fault injection is functionally complementary to hardware-

implemented fault injection and does not exclude it.

4. There is a need for a testing methodology to validate software-implemented fault

tolerant strategies.

Software-implemented fault injection has its limitations, mainly in its inability to force
low-level errors, such as gate output stuck-at faults. However, designers are interested in
the behavior of the whole system (hardware and software) rather than the manifestation
of individual faults. Furthermore, a large amount of the hardware functionality is visible

through software.

Automation and Unity: The quality of experimentation is a function of the fidelity of the
fault injection method and of the capability of the system to inject (test) as many faults

as possible per unit time. Automation includes both experiment development time and

9

experiment runtime processes. To be effective, the various components of the system
(e.g. workloads, fault classes, experiments and data analysis) must be integrated under
one comprehensive environment, which supports the process of preparation, debugging,

runtime control, and data analysis.

The FIAT methodology, like the validation methodologies presented earlier, include profiling
of the fault-free behavior followed by the fault behavior of the system. The application of the
FIAT validation methodology on AIPS includes both parts. The fault-free validation process
was Initiated by the integration of the PIE environment on AIPS. The integration of PIE on
AIPS allows the characterizing the fault-free behavior of the systemn as well as instrumenting
the system for future fault injection work. Within the FIAT methodology, PIE provides the
Architecture Development and the Automation and Unity support and PIE is especially useful
for the first two steps in the validation methodology.

3.2 Architecture of the PIE Validation Environment

The need for a validation environment stems from the complexity of today’s systems and the
difficulties which arise in the application of the validation methodology. Moreover, the ability
to predict and model the behavior of a system, especially a dependable real-time system such
as AIPS, first requires an understanding of the behavior. Two parts to the understanding
are typically needed: the first is the understanding used in the design and implementation of
the system, while the second is the understanding and modeling of actual implementation to
support the design assumptions. The second part requires the observation of the system in its

actual environment.

The process of observing a system in its actual environment is the goal of the PIE, Program-
ming and Instrumentation Environment, project at CMU. PIE is a powerful, general purpose
tool which supports the monitoring and visualization of programs during execution. This re-
port describes the PIE system as configured for monitoring the AIPS fault-tolerant computer
system[1].

The PIE system, depicted in Figure 1, comsists of a set of integrated tools for automated
performance characterization of a real-time, parallel/distributed, fault-tolerant system. Cen-
tral to this environment is the concept of performance degradation prevention, detection, and
avoidance. Performance degradation prevention is the process of predicting, before completlon
of the xmplementatlon process, the performance of a parallel algorithm on a specific parallel

architecture. Performance degradation detection are the set of techniques applied after the cod-

10

ing process. Performance degradation avoidance is a run time process consisting of dynamically

restructuring the application or the system in the presence of predicted or detected performance

degradations.

PIE

v v v

Prevention Detection voidan
' PIEsco
- Permod] PlEmacs P - Hardware
Roadmap
- Contention - Special purpose
- Decomposition § ADA
FORTRAN [PiE Use-map
.| ctHREADS man - Software
- Synchronization MPC o
-Avoidance
- Imbalance Sensmap algorithms
Runtime - - & policies
- Advisor Y RDB Barscope
PIEmon —

Y 2

Mach

Hardware Platforms
(SUN, DECstations, Encore Multimax, Warp, Aips)

Figure 1: Organization of the PIE System

In this context we will discuss mainly the performance degradation detection, as being the
process of fault-free validation. The PIE environment consists of several subsystems for assist-
ing a programmer in developing computations and observing their run-time behavior. These
systems are:

PIEmacs: an editor with special features for inserting monitoring hooks into a computation,

PIEmon: aperformance and correctness monitoring facility including the AIPS context-switch

monitor,

PIEman: a database manager which correlates the text of a computation (development-time
information) with information about the execution of the computation (run-time infor-

mation), and

11

PIEscope: a graphics package for presenting the run-time and development information to

the programmer.

In PIE, a programmer edits a computation using PIEmacs, an extension of Gnu-emacs3.
PIEmacs automatically marks program constructs for affixing sensors later using a special
compiler preprocessor. In addition to the automatically marked constructs, the programmer
is permitted to mark a computation in places of special interest. The development-time infor-
mation which PIEmacs generates as it marks a computation is delivered to PIEman, the PIE
database manager. PIEman builds a database from this prdgram development information and
later merges this compile-time information with data retrieved at run-time. The run-time infor-
mation is retrieved by PIEmon, the PIE performance monitor. The information is presented to
the programmer via PIEscope, a graphics package which displays several views of the structure

of a computation as well as how the structures were executed.

3.2.1 PIESCOPE

This paragraph describes PIEscope, the current graphical user interface for the PIE system.
PlEscope provides graphical views of the development and execution of a user’s program, using
the X-Windows, Version 10, windowing system. PIEscope provides three development-time
views and three execution-time views. The development views are:
1. roadmap: a tree-like display of the definition structure of the user’s Program.
2. use roadmap: a tree-like display of the instantiation and static invocation structure of
the user’s program. 7 7
73. sensmap: similar to the roadmap but also includes the user’s explicitly-placed sensors.
The user uses the sensmap view to enable or disable the sensor firing during the program

execution.

The execution-time views are:
1. barscope: a bar graph of the execution of the user’s program.
2. cpu barscope: a bar graph depicting processor utilization of the user’s prograins.
3. animation tree: a tree-like display which replays the dynamic invocations (and destruc-
tion) of the structures in the user’s program.
4. max-animation :tregz similar to the a;limation tree except that the destructions are not

shown, so the user can see the maximum amount of resources used by the program.’

’Gnu-emacs is a screen-oriented text editor supported by the Free Software Foundation.

12

Each view has many features for zooming in and filtering the viewed data which are not de-

scribed here.

3.2.2 PIEMON

The PIE performance monitor is a facility for observing computations. It is multi-level, con-
sisting of user, run-time and kernel levels. A monitor observes and records events. An event
is an observable, time-stamped object occurring during the execution of a computation; it is
the basic unit of information for observability. Events consist of two basic types, control-driven
and data-driven.
e A control-driven event designates a specific logical point (state) in a computation’s control
flow and includes the time when that state was reached. Examples of control-driven events
are the inception and termination of processes or the start of an iteration of a program

loop.

o A data-driven event is a time stamped modification of, or demand for, computation data.
Data-driven events do not contain direct information about computation states, but they
describe data access patterns. Although inferences can be made about what computation
states are possible for a specific data-driven event, they can be made only after comparing
the event to where the data are used in the computation’s text and with an analysis of

the execution history provided by control-driven events.

Sensors detect the events of a computation and prepare them for retrieval by collection
instrumentation. This instrumentation is a software systemr which appends an event to the event
record of the computation. After an execution terminates, PIE selects and filters the events in
the event record using a relational data base, constructed at development time, containing the
static structures of a program as well the semantic and temporal relations between them. The
structures contain sensor marks so the events collected during execution can be mapped onto

their corresponding computation.

Events are observed by a monitoring environment which extracts development and run-time
information about sequential and parallel structures of a computation, and about its execution.
The assemblage of mechanisms and protocols that make up this monitoring environment is

called the monitor.

13

3.2.3 Setting Up an Experiment in PIE

Because PIE is the vehicle for fault-free validation, it is important to be comfortable with
frequent references to the environment later in this report. The following brief example of using
PIE is condensed from paper in IEEE Computer|[15] and should be read if greater familiarity
with PIE is desirable.

A Problem Application Assume a user desiring to fault-free validate a matrix multiply ap-
plication on a 16-processor shared-bus machine. The basic structure of the application consists
of passing well-partitioned parts of two matrices to several child tasks. Each process first exam-
ines the parts of matrices it is passed and decides whether they are small enough to operate on
without partitioning them further and passing them on to its own child process. After making
the decision, each process iterates through its matrix parts, multiplying each pair of row and

column and writing out the result.

Figure 2 depicts parts of the text of the application via three windows of PIEmacs. The -
top window in Figure 2 shows a part of the definition of the application’s multiplier procedure,
multproc. It includes a variable declaration of the type multiply, an instance of an activity
or act, as shown in the middle window. Activities or tasks are process-like units of parallel
work which, when spawned from the same application, are able to share and operate on global
memory. Notice that multiply contains a call to multproc. Multproc implements the basic
matrix partitioning and multiplying functions described above. After the value of a matrix
element is calculated, it is written out using put, shown in the lowest window. It is an instance
of an software object called opr, used to operate on global memory. Entities of this type may
be shared by several activities. The only feature of put that ought to be understood here is the
sync, a synchronization function that enforces mutual exclusion on global operations. Here,

sync ensures that only one result may be written back to global memory at a time.

Figure 3 is an automatically generated PIEscope roadmap visualization of the application’s
principal constructs. The roadmap view is the first step in PIE for bridging the roadmap
(Figure 3) to a corresponding textual entry (Figure 2). When a box is touch-selected by a
mouse, as is shown by the enlarged border surrounding the box labeled [¢] multproc, the
PIEmacs window automatically moves its cursor to the head of the corresponding textual

construct, in this case, a call to the multproc procedure as shown in Figure 2.

Having visualized the structures of the application, it is time to gather performance infor-
mation. PIE can generate performance views such as histograms, but these are ancillary to a

more informative format which will be shown shortly. When an application, with a potential

14

Qultproc(xd, =2, yl, 4o, mx, wd, =z)

3 int x1, x2, yl, 42, wx, 6y, <=3
i."lt» ex, €4, i, 'j: ks
flast t, tup, tepe:
uultiply subtask:
ex = %2 - x1 + 1:
ey = 42 -yl + 1
if Cex > ey £
if (ex > mxd £

subttask (d, xd + ex /7 2 - 1), yl, 4Z, mx, wy, =203
multproc(dxi + ex / 2), xZ, ui, 42, wx, n4, =2);
Joinlsubitaskys
return;
%
if Cey > wmyd £
i3

subtask (1, %2, yl, Yl + ey 7/ 2 - 1), i, tiy
rultproc <x1, x2, (4l + ey /7 2V, 42, @, my, <
JoinCeubtaski:

returr:
¥
*--xx-PIEmabs: matsunc.mpe
act
multiplyixd, xz, yl, 4z, mx, w4y, <23
int x1, x2, vy, 42, ux, w4, =z

.
<
multperoc(xd,x2,4l, 42, 0%, ny,52) 3

¥

*-—xu-PIEmacs: e (HPC)——31%¥~—{ Normal }—-—————=—-
opr float putdx, 4
int X, Y2
i

sunc(put) £
exportCuatrix_datalxIfyl):

¥
3
[~=¥¥%=PIEmacses matsync.mpc CHPCY—-238——% Normal

Figure 2: Part of a Matrix Multiply Program Text

parallelism of four, runs only two or three tasks simultaneously, the programmer knows that

they should investigate any program construct that might force a multiplier to wait, namely the

sync (just discussed) and the join (an example is shown in the top window in Figure 2) which

a multiplier executes when it wishes to join its children. To get this information with PIE is

simple. Figure 4 shows a number of darkened boxes, [A] multiply, [S] Sync and several cases of

(3] Join. The [A] multiply represents the multiplier tasks and [S] Sync is the synchronization

function in the put operation discussed earlier. Each [J] Join represents an instance of a join

function. The darkening of these boxes indicates that the programmer, using a mouse-click,

has selected them to be automatically observed during execution.

15

GeTnl [3iiY) Eeors) [onfold) [re¥resnl (Cievs) Ferd lerep [exg)
Fiegcope vieu! ccadmap
Program Litle! Zuscl/LFl /testdir/matsunc, mpc

fentors by tsee: BOBREMEGEY

[D[q oelrix

o r (et)
Jé

ey

Ouject rame=Hhile type=C inamelB parinem=32

Cul]l namesmultEroC tyre=S (NMneB parinem=?, inste-1
O ject name=Jluin typre=? inen=13 parinan=9

€81] NErEmUlLProt tupe=E {Aan=g pacriname?, fnst=-1

Figure 3: Part of Visual Representation of Computation

Examining the Results PIE’s foundations for instrumenting computations includes soft-
ware event sensors, hardware event sensors, and hybrid event sensors. Currently, however,
computations in PIE are instrumented using only software sensors. During run-time PIE en-
sures that when a selected construct executes, important information is automatically collected
about the construct. An example of PIE’s principal formats for visualizing performance data
is shown in the upper two views of Figure 5. The top view of Figure 5 is called the execution
barscope view. Time is measured in seconds (with micro-second resolution) on the horizontal
while the tasks of the computation are ordered on the vertical. Although it is possible to show
any part of a computation, this particular view shows only the tail end of the execution from

about 2.6 to 2.8 seconds.

The execution of each task is depicted by the concatenation and occasional “overlap” of
several textured rectangles, each representing a particular episode in the task’s history. A
rectangle is “in front of” another rectangle if the entity represented by the rectangle in the
forefront is contained within the entity represented by the rectangle behind it. In the top view

of Figure 5, for example, waits due to a sync show up as dotted rectangles alternating with

16

(e [emnTe) (5Tp) (579 (reas) (Tl [Feean) (iewn) (Fod [erog) (283

Fiescope vieul roddmac

program title: susrl/tf]l testdir/matsunc .eeC

sersors by tyee: [HQEHNLHMEEEN
f— |

T 0lo} e«t

m[;j sty ‘ 4 “!Io Jeatput]
' N gEE] >

mmz_—*m

1y

f

= B EEE
b H
r; 3g3gs
£

5
;
1

&5
z
i

L}

erocess 1r(kerne]l data. dore

click to indicate left hand edge of x00m range, or typve “x to
click to indicate right hand edge of new range, or type g to
retrieving progran’s daty from Plemsn... received.,

abort,
abort,

Figure 4: Using the Visual Representation to Enable Sensors

several dark rectangles. The dotted rectangles are actually in front of of a single dark rectangle
representing the generic body of the task. The slashed rectangles at the end of tasks zero, two

and three are instances of parents waiting to join a child.

The middle view of Figure 5 is called the cpu barscope view. It shows the task-to-processor
assignment of the computation during the same execution period shown in the top execution
barscope view. Time is along the horizontal axis and the machine’s processors are ordered on
the vertical. Opposite each cpu are alternating sets of textured rectangles representing identifi-
able tasks. White rectangles are periods when none of the computation’s tasks are running on
the associated cpu. When any rectangle in either barscope view is selected by the mouse, the
cursor in the PIEmacs window is automatically moved to the head of corresponding construct
in the program text. In Figure 5 for example, a sync-wait rectangle has been clicked on in
the execution barscope. The semantic gap is now bridged allowing the programmer to ana-
lyze the computation’s performance using data automatically projected onto the computation’s

structures. In addition, the visualization helps the functional gap: the gap between the extent

ja—y

7

to which performance monitoring merely reports how computations behave and the extent to
which it helps guide users to the source of their problems.

18

T8 oy freees [mireey e g [(eem) oty et B2
Plesoope View: SWELUR1ONBArLO0pe
orparinect Litle: sencte.v

T o e I ER FSEF OB T8 TN 8 FA £8 03 £3 D £1 G e

o= _—v=]]
O Secones: 2,980 2. 76 TEE
= natn [Baaarvae ~-\: w e
= 2 multiely —D-D—c-m@— S
[= | ETITIT 0o, e N -)
o s{aitiply T
O A[EoitirTy e — O — Y —— | ———— TN

Farning on CVU § (artiguows)i & tivity “aultiply’. anems o= 2. bliae o= Z.24720), etine == 2 75ETE, ttime == O SAITT
Running on O 4 Cenbiquous)i sclivity “sultisly’, fasme o= S, btine — 2,.36034%, . ov 2,745020, ttine == ©. 300C74
Funing on CAU 29 (ambiguout): acUIvity “sultiply’, Iname oo &, btise = 2 ATONTY, ettms ow 2, 701536, Llime o= ©,381493
funing on CFU € tambiquou)t sctivity “sultiely”, fnime o= 7, Stine == 2.2917T7, etime « I, TEAREE, tlime = 0.43011E

=78 9 o] e s s
F1ez00pe VIeuD oputarslond

experiment title: Sencre.k

ertions: B =2,

X
e b,

0008

-
.
o R
29 A('-‘)

activity, inemé a= 1, oline =« Z.4%173€, oting o= 2. 6Li44AE, ttine o= ©.1%1416
HUIvitly, Sname o= £, otine ms 2410730, etine = 1.620TZ0, ttine = & OC20EL
sctivity, N = 4, otine == 2.600674, atine == 2.6174(4, TUing & 6,17
activity, fnaes a= 2, atine o= 2.6005%8, etime mm 2. 41T%1. tline o= &, 0T

opr fleoat putOx, wd
int X, Y:

Byric(put) {
export(natrix_datalx1lyld;

wt

ar

¥ a(SIZE, SIZ2EH[31;
act
multiply(xl, %2, yl, 42, mx, wy, £I)
int xi, x2, yi, 42, wx, my, sz;
multproc(xl,x2,41,Y2,mx,w4,5203
3

l-=3%-F]Emacs? mats

YHC . Mpe (HPCY==208=—% HNormal -

Figure 5: Top: Part of a Parallel Execution of the Computation on 16-

Processor Machine MippLE: Corresponding Thread to cpu Assignments
Bortom: A PIE Editor Window

19 ORIGINAL PAGE I8
OF POOR QUALITY

3.3 Architecture of the AIPS Validation Environment

The implementation of PIE on AIPS is a first step in the implementation of the FIAT environ-
ment on AIPS. FIAT requires the instrumentation of the software system to achieve controlla-
bility of the fault injection and monitor the activities of the system. This instrumentation is
provided by the sensor mechanism used in PIE[16]. Additionally, the prior implementation of
PIE on AIPS provided a data collection method to be used with FIAT, and the Aufomation

and Unity desired for a validation environment.

The integration of PIE and FIAT is presented in Figure 6. The left half of the figure is
the PIE instrumentation, while the right half is FIAT fault generation and experiment devel-
opment. The joining of the two environments is with the database and the execution unit.
The database merges information regarding the workload structure from the PIE side with the
fault information from the FIAT side. This joint information is then used for the experiment

execution and subsequent data processing.

Figure 7 shows a general overview of the hardware and software configuration of this system
and the continued extension for the FIAT requirement for AIPS/ALS. The hardware configura-
tion of the system is extremely simple, because PIE is a software based monitoring system. The
hardware components consist of one or more AIPS FTP nodes, the ATPS VAX host, and the
PIE workstation. The FTPs are connected to the AIPS VAX via a serial communication link.
This link is used to load system and user programs into the FTPs, and to retrieve monitoring
data collected during program execution. The connection between the AIPS VAX and the PIE
workstation can be implemented in several of ways. If the PIE workstation is to be located
near the FTPs and the AIPS VAX, a local area network or a fast serial line can be used. If
the PIE workstation is not within physical reach of the ATPS VAX, remote modems have been

used successfully to operate the system.

The software components of the PIE ATPS monitoring system can be divided into three
groups. The first group is comprised of code for use on the AIPS FTPs, which includes the
kernel monitor and the user monitor. The kernel monitor gathers information about context-
switches performed by the Ada run-time, while the user monitor collects information about
Ada language constructs in the user’s program, such as rendezvous, task creations, or simple
procedure calls. The second group is the DCL (Digital Command Language), which runs on the
AIPS-VAX host and interfaces with the ATPS VIPS debugger program; its function is to read
data from the FTP’s memory and reformat it for transmission to the PIE workstation. The
last group of software components are the PIE tools which reside on the workstation, including
PIEmacs, the PIE Instrumentor, and the PIEscope.

20

Experiment
Description

PIE Fault FIAT

Fault L .

Preprocessor Libraries Instance o
g Generator

Y

Experiment

Description
Compller

Attachment
Librarles

Compller

Database

Postprocessor Workload

Ibraries

Runtime Experiment
Controller

Execution Data Collection

Data Analysis

Figure 6: Integration of PIE and FIAT

This report concentrates on initial work to instrument and monitor the functionality of the
AIPS fault-tolerant distributed real-time system using PIE, the Programming and Instrumenta-
tion Environment. Near-term extensions include exploring the bounds of the correct functioning
through fault injection and the integration of the FIAT, Fault Injection and Automated Testing

Environment, software.

21

AIPS Fault Tolerant Processors

AIPS
Run Time

Syst
Application ystem

Monitor

Run Time

Monitor

N ¥
4 AIPS Vax N
Serial PIE
. DCL
Comm Link Program
\— J

Local Network

PIE Workstation

Qo
)

Remote Modemh

Figure 7: Overview of Configuration for the PIE-AIPS Monitoring System

22

3.4 PIE Software

In this section, the design and the implementation details of the PIE software system onto the
AIPS/FTP are presented.

3.4.1 PIE Software on the AIPS FTP

The PIE monitoring run-time system usually has two main components. The component for
generating data is called a sensor, while the other component is the collector which processes
and writes the generated data to a file for later analysis. However, the ATPS system used in
the laboratory for the deveiopment of the prototype AIPS model lacks external data storage.
Thus, in this implementation, all data collected are stored in memory and retrieved at a later
time by a DCL script executing on the AIPS VAX host. Other possible implementations are

discussed below.

The design of the user sensor, which generates system monitoring data, is straightforward.
When a user sensor is executed, it records information about the associated Ada language
construct and the time at which this event occurred into a memory buffer. However, the labo-
ratory prototype AIPS system has only 2 Megabytes of memory, with only about 50 Kilobytes
available for the storage of user sensor data, so priority has to be given to efficient usage of this

resource. For this purpose, a simple memory manager is incorporated into the user sensor.

First considered was a memory manager design where each Ada task in the user’s program is
given an equal share of the 50K of memory and normal data collection for each task continues
until the task exhausts its private memory buffer. Clearly, this is not an efficient use of this
scarce resource, because different tasks might have different sensor firing rates, and some tasks
may not have any sensors. On the other design extreme, each task’s sensor data could be written
into a single common buffer achieving the most efficient use of memory, but the synchronization

overhead incurred to prevent race conditions on sensor operation would make the system useless.

The implementation of the PIE user sensor on AIPS is a compromise, balancing efficiency
and speed, and is known as the fast bucket-switching memory manager. The basic idea is every
task has a private memory buffer called the bucket. All sensor data from the task is saved by
the sensor into this bucket. When the bucket is full, the sensor will check-in the full bucket to a
full bucket queue and check-out an empty bucket from an empty bucket queue. The queue used
for holding the full buckets is a FIFO queue in order to preserve the temporal ordering of the
buckets, while the empty queue is implemented with a LIFO queue for simpler operation. Both

queues are controlled by a single lock to prevent any race conditions. The size of the buckets in

23

this system is kept relatively small, so the memory manager can adopt to the different sensor
firing rates of the user tasks. With synchronization occurring only when buckets are switched,

the system performance is maintained at an acceptable level.

One issue regarding this bucket-switching system, which needs to be addressed before being
used for the monitoring of the AIPS system, is: what does the monitoring system do when the
empty buckets have all been exhausted? With only 50K of memory allocated for user sensor
buckets, running out of empty buckets during execution is the norm rather than the exception,
regardless of the efficiency of memory utilization. A great deal of power and flexibility are built
into the mechanism for handling the event when no empty buckets are available. The system
offers two options: the monitoring system can lose some sensor data or the system can block
further execution using the AIPS halt feature to allow the ATPS VAX host to empty all memory
buffers. The user select can switch between the two options during run time under program

control. Figure 8 shows the data collection management system.

The second option, halting the system is only intended for use during testing of application
programs when loss of monitoring data would make it harder for testing and debugging. For
a deliverable FTP control system, other solutions need to be explored, such as (1) losing data,
(2) configuring the FTP with external storage, (3) moving the data to another computer that
has an external storage device, or (4) storing the data in non-volatile memory. These other

solutions are not further explored here.

However, the current implementation of the PIE monitoring does support two different meth-
ods for losing data which can be selected to add additional flexibility to the AIPS user sensor.
In the first method, all further sensor data will be lost for tasks which cannot obtain an empty
bucket, allowing the user to record a complete picture of the beginning of the execution until
memory is filled. In the second method, the oldest full bucket is recycled, which allows for
a good view of the end of the computation®. This method is especially useful for diagnosing
conditions inside the AIPS system just prior to some type of failure.

On the kernel sensor side, one 5K buffer is used to store context-switching information.
The more complicated mechanism, used to manage the user memory buffers, is not needed here
because the kernel is a single task with a fairly steady firing rate of about 40 ms between context
switches. When the buffer is full the same options available in the user sensor, dropping data,

blocking further execution, off-loading the data, etc., are also available in the kernel sensor.

*The last two buckets of every task are protected from recycling to prevent a highly active task from domi-

nating all the memory buckets.

24

User
Sensors

Muttiple user
tasks

Context switch

sensor
Data

Kernel Buffer

Empty Queue

Full Queue

The bucket
recycling option

AIPS Vax
DCL script

Figure 8: The User and Kernel Sensors on the AIPS FTPs

3.4.2 PIE Software on the AIPS Host

The only PIE software residing on the AIPS VAX host is a DCL script, serving as the data
transfer agent between the AIPS FTPs and the PIE workstation. As described above, the data
collected by the the monitoring sensors on the FTPs are kept in memory. When the AIPS
FTPs are halted®, either under program control or when execution has been completed, the
DCL script will retrieve the sensor data to the VAX host through the use of the memory dump
facility of the VIPS debugger. Additionally the DCL performs some data compaction to speed
the data transfer to the PIE workstation.

51t should be pointed out that halted here means that the ATPS monitor is invoked and the real-time clock
and two of the three interval timers are stopped. The FTP itself is not halted, and the processor continues to

execute instructions. This feature is particular to the laboratory prototype.

25

The use of the interpreted DCL script language has made the memory retrieval process fairly
slow. As part of a future enhancement, the functionality of the VIPS memory dump and
other relevant commands could be incorporated into a compiled program dedicated to the PIE

memory retrieval task.

3.4.3 Workstation Software

The PIE workstation software is a complete program development environment. The AIPS
Ada program which is monitored must first pass through the PIEmacs editor. This modified
gnu-emacs program provides a complete editor for program development, plus it also parses and
extracts important Ada syntactical information from the user’s Ada program. This information
will later enable the PIEscope tool to interpret the data collected during execution and present
the information clearly. After the program has been developed to the satisfaction of the user, the
program is then automatically modified by the PIE Instrumentor. The Instrumentor inserts the
software sensors into the proper place in the user’s program. This modified source code is ready
for compilation on the VAX host and execution on the AIPS FTPs. Finally the data returned
from the FTPs is analyzed by the PIEscope and graphical views of the data is presented to the
user. It is not within the scope of this report to detail the complete design and implementation

of these tools; several references give detailed information[15, 17].

26

Ada
Instrumentor

Instrumented Ada code

Ada Compiler
on AIPS Vax
2
f . VD
2
@ RDB
FTP Executable @

Figure 9: PIE Workstation Software Diagram

27

4 Experiment Design and Results

This section contains the description and experimental results of three Ada test programs. Each
of these test programs are designed to exercise and test one or more functions of the ATPS fault-
tolerant run-time or the Ada language run-time. All the experimental data presented below

has been verified by repeated trials.

Two versions of each program are presented. The first versions were run at no specified
priority, which is priority zero by default. The second versions were run at the highest user
priority possible (96). The only higher priority task is the fast FDIR (Fault Detection Isolation
and Recovery) routine. The priority-setting mechanisms require that the high-priority tasks be
subtasks to the program’s main task. Thus, the second versions of the test programs have been
rewritten to reflect this necessity. Both versions begin with a delay of 10.0 seconds to allow the
AIPS run time to initialize itself. Appendix A provides raw data and pictorial images from the
PIEscope package. Data presented in this section are taken from the PIEscope images in the
Appendix.

4.1 LoopTest

The LoopTest is conceived to test the AIPS run-time system overhead. The Low priority
LoopTest program is simple: consisting of two loops, one inner loop and one outer loop, each
iterating a fix number of cycles to act as a synthetic workload. The complete program is listed
below.

procedure looptest is

NUM_TLOOPS: constant integer
NUM_OLOOPS: constant integer :

1000;
10;

fred: integer;

begin
delay 10.0;
for i in 1..NUM_OLOOPS loop —- outer loop
for j in 1..NUM_ILOOPS loop -- inner loop
fred := 3; -- fake work

fred := fred * 4 + §5;
fred := fred + j;
end loop;
end loop;

end looptest;

Using the PIE kernel monitoring feature,r all context-switches during the execution of the

28

test are recorded. The PIE system can identify the task which corresponds to the body of
the test program. The context-switching data collected reflects an accurate measurement of
the total cpu cycles available to the user’s program running at a non-specified (that is, zero)
priority. Since there are no requests of system services in the program, extra context-switches
are not caused by the test program. Hence, the user’s program will be time-sliced with all the
AIPS priority 0 tasks (self test, the three CRT display tasks, and the MAC display task). By
comparing the total time the looptest task is switched-in against the total time of the program
execution, one can see the total percentage cpu utilization for the user’s program. The data

collected for LoopTest show the utilization is only 60.61% under these conditions.

In the high priority version of LoopTest, the low priority test is placed in a subtask set at
priority 96. The complete program is listed below.

procedure looptest is
TASK type looptest_task is
PRAGMA priority(96);
ENTRY start;
END looptest_task;

TYPE looptest_task_ptr is access looptest_task;
a_loop: looptest_task _ptr;

TASK body looptest_task is
NUM_ILOOPS: constant integer
NUM_OLOOPS: constant integer

1000;
10;

fred: integer;

BEGIN
for i in 1..NUM_OLOOPS loop -- outer loop
for j in 1..NUM_ILOOPS loop -- inner loop

fred := 3; -- fake work
fred := fred = 4 + §5;
fred := fred + j;
end loop;
end loop;
END looptest_task;
BEGIN
delay 10.0;
a_loop := new looptest_task;

a_loop.start;
END looptest;

As before, PIE’s kernel monitoring feature records context-switches during the execution of
the program. However, the high priority results are much different. Now, the looping task
runs mainly uninterrupted, except for the steady 40 ms execution rate of the redundancy

management task, FDIR, which is run at highest priority. Each context switch takes about 1.5

29

ms, which is equal to the time for a context switch to the FDIR, the execution of the FDIR, and
the context switch back. These interruptions account for a total switched-out time of 9.28 ms,
or about 3.86% of the looping tasks computation. That is, the looping tasks’ cpu utilization is
96.14%; this is in approximate agreement with LoopTest.

4.2 MemTest

The MemTest is designed to demonstrate the characteristics of the current memory manager in
the Ada run-time system. The memory manager is implemented using an unordered linked-list
to maintain the free memory blocks. An allocation for a new block is done by searching down
the linked-list until either the end of the list or an element with a block of memory greater than
the requested allocation is found. The sequence of allocations and deallocations in this test is
designed to create a free list with many small memory blocks at the head of the list, before

measuring the performance of a large block allocation.

The program first allocates a large block of memory, the size of 300 integers, and deallocates
it to obtain a reference time for later comparison. Next the program allocates storage for a
single integer and repeats the allocation 300 times. Then the 300 integers are freed. Finally,
a large block identical in size to the first large block is allocated and freed. Once again this
program is running at the default priority (zero), and has an initial delay of 10 seconds. The

program is listed below.

with unchecked_deallocation;
procedure nmemtest is
NUM_ALLOC: constant integer := 300;

type int_array is array(1..NUM_ALLOC) of integer;
type int_array_ptr is access int_array;
type integer_ptr is access integer;

fred: integer;
my_int: array(1..NUM_ALLOC) of integer_ptr;
my_int_array: int_array_ptr;

procedure free_int

is new unchecked_deallocation(integer, integer_ptr);
procedure free_array

is new unchecked_deallocation(int_array, int_array_ptr);

begin
delay 10.0;
for i in 1..1 loop -- allocate and free first big block
my_int_array := new int_array;
end loop;

30

free_array(my_int_array);

for i in 1..3 loop -- allocate lots of little blocks
my_int(i) := new integer;

end loop;

for i in 4..NUM_ALLOC-3 loop
my_int(i) := new integer;

end loop;

for i in NUM_ALLOC-2..NUM_ALLOC loop
my_int(i) := new integer;

end loop;

for i in 1..NUM_ALLOC loop —- free all the little blocks
free_int(my_int(i));
end loop;

for i in 1..1 loop —- allocate the second big block
my_int_array := new int_array,
-- should take much longer than first
end loop;
end nmemtest;

The data collected from this test show the memory manager takes a constant time to perform
an allocation if the memory request can be handled with the first free block in the linked-list.
The allocation time of the first large block is identical to the time for allocating the subsequent
small blocks, each operation taking about 1.5 ms. However, if the memory manager has to
traverse the list to find a large enough block to fulfill the request, the time needed to perform
the allocation is dependent on the number of links it needs to travel. In the case of the MemTest
program, the number of links is 300, and the time required to allocate the second large block

is over 14.5 ms, almost a 10 fold increase, or approximately 43us per link traversed.

Examining the context switch behavior, we see that no context-switches occurred during the
first or last memory allocations, so we can expect that the memory allocation times under high
priority to be similar. More generally, the total switched out time was 218.6 ms, or about
49.98% of the execution.

The complete listing of the high-priority version of MemTest is listed below. The task is
subtasked to allow for a priority of 96.

with unchecked_deallocation;
procedure nmemtest is
NUM_ALLOC: constant integer := 300;

type int_array is array(i..NUM_ALLOC) of integer;
type int_array_ptr is access int_array;

type integer_ptr is access integer;

fred: integef;

my_int: array(1..NUM_ALLOC) of integer_ptr;

31

my_int_array: int_array_ptr;

procedure free_int

is new unchecked_deallocation(integer, integer_ptr);
procedure free_array

is new unchecked_deallocation(int_array, int_array_ptr);

TASK type mm_task is
ENTRY start;
PRAGMA priority(96);
END nm_task;
TYPE nm_ptr is access nm_task;
nm : nm_ptr;

TASK body nm_task is

begin
ACCEPT start;
for i in 1..1 loop -- allocate and free first big block
my_int_array := new int_array;
end loop;

free_array(my_int_array);

for i in 1..3 loop —- allocate lots of little blocks

my_int(i) := new integer;

end loop;

for i in 4..NUM_ALLOC-3 loop
my_int{i) := new integer;

end loop;

for i in NUM_ALLOC-2..NUM_ALLOC loop
my_int(i) := new integer;

end loop;

for i in 1..NUM_ALLOC loop -- free all the little blocks
free_int(my_int(i));
end loop;

for i in 1..1 loop -- allocate the second big block
my_int_array := new int_array;
—— should take much longer than first
end loop;
end nm_task;

begin
delay 10.0;
nm := NEW nm_task;
nm.start;

end nmemtest;

As expected, the memory allocation test results are mainly unchanged under high-priority.
Here, the initial memory allocation took 1.7 ms, and the final allocation ran for 14.7 ms for an
8.5 increase in time, or again 43us per link traversed. Further analysis is needed to determine
code portions which use this allocation routine, (hence are subject to this behavior) and how

this behavior may affect the performance of hard-deadline real-time tasks. The collected data

32

indicates that the total switched out time was much improved with only 7.7 ms spent switched

out or about 3.43% of the total execution.

Draper Laboratories concur with the assessment of unpredictability and poor performance
for the Ada memory allocation routine. They state the cause as an inefficient Verdix implemen-
tation, and do not consider it an important problem. Their basis, for the lack of importance,
is that “... in most real-time systems, dynamic task (and therefore memory) allocation is not
performed during critical portions of the code. Most memory allocations are done during elab-
oration or during specific initialization modes. If a requirement for dynamic memory allocation
were to be specified, the memory allocation routines would have to be modified.”[18] With PIE
and the fault-free validation methodology uncovering this normal behavior, the usefulness of
the methodology in uncovering poor performance is demonstrated and moreover, areas which

need further investigation are defined.

4.3 ActTest

The ActTest is designed to test the efficiency and real-time characteristics of the Ada task
creation and rendezvous mechanism. The program first creates seven identical tasks. Then the
main task will perform a rendezvous with each of the seven tasks. The task finishes and exits
after the rendezvous. The main task runs at priority zero, since no priority is specified; all
seven of the created sub-tasks have priority of 96. The program again has the 10 second delay
built in at the beginning.

The low priority test is

PROCEDURE acttest IS
NUM_TASK : CONSTANT integer := T7;

TASK TYPE activity IS
ENTRY start ;
pragma PRIORITY(96);
END activity;
TYPE activity_ptr IS ACCESS activity;

fred : integer;
my_act : ARRAY (1 .. NUM_TASK) OF activity_ptr;

TASK BODY activity IS
j : integer;
BEGIN
ACCEPT start DO
FOR i IN 0 .. 1000 LOOP -- Do some fake work in rendezvous
j o= 1i;
END LOOCP;
END start;

33

END activity;

BEGIN

DELAY 10.0;

FOR i1 IN 1 .. NUM_TASK LOOP -- allocate tasks
my_act (i) := NEW activity ;

END LOOP ;

FOR i IN O .. 1000 LOOP -- dummy delay loop
fred := i;

END LOOP;

FOR i IN 1 .. NUM_TASK LOOP -- rendezvous with each task
my_act (i).start;

ERD LOGP;

FOR i IN O .. 3000 LOQP —- dummy delay loop again
fred := i;
END LOOP;
END acttest;

The collected data from this test show the impact of one low-priority task. After each subtask
is initialized, it takes about 30 ms for the main task to “wake up” from its context switch, reloop
and start the creation of the next subtask. It takes even longer for the main task to recover
from each rendezvous. Qur collected data shows that these long recovery times are not due to

“the execution of the other subtasks, which remain switched out during this period. However,
the long recovery times are attributable to the other system tasks which run at priority zero®.
These system tasks must be switched in and executed each time the main task is preempted,
this is due to the ordering of all equal-priority tasks on the run queue. Note that this behavior
is not seen in the reverse when the subtasks need to be switched in, (i.e. as soon as the low-
priority main task calls the new statement to create a high-priority subtask, the subtask runs
immediately.) A similar behavior occurs when the subtasks are called on to execute their accept

statements.

Since each subtask is dependent on the performance of the main task, the total execution
time of this test is seriously degraded. Measurements indicate that the total switched-out time

was 395.8 ms, or about 50.8% of the execution time; thus the cpu utilization is 49.2%.

However, the recorded results show that both the task creation time and the rendezvous time
have an upward trend. The cause of this behavior is not clear from the experimental data, but
further experimentation (by Draper) has indicated that it may be due to the sensor monitoring.

Further experimentation would be needed to accurately calibrate the influence of the sensors.

®The influence of the system threads shows that it might be beneficial to monitor the system tasks so a

complete picture of the system’s behavior can be seen.

34

The graphs and the raw numbers for the low priority execution can be seen in Table 3 and

Figure 10. Although the high priority numbers are smaller, the trend is similar.

Time for starting a task | Time for starting a rendezvous
(milli-seconds) (milli-seconds)
8.085 3.407
10.931 3.976
9.029 4.104
9.227 4.236
9.426 4.372
9.821 4.636

Table 3: Task Starting and Rendezvous Times from ActTest

The complete listing of the the high-priority version of the ActTest follows.

PROCEDURE acttest IS
NUM_TASK : CONSTANT integer := 7;

TASK TYPE activity IS
ENTRY start ;
pragma PRIORITY(96);
END activity;
TYPE activity_ptr IS ACCESS activity;

TASK TYPE enclose_task IS
ENTRY starttask;
pragma PRIORITY(96);
END enclose_task;
TYPE enclose_ptr is access enclose_task;

fred : integer;
my_act : ARRAY (1 .. NUM_TASK) OF activity ptr;
enclosure : enclose_ptr;

TASK BODY activity IS
j : integer;
BEGIN
ACCEPT start DO
FOR i IN 0 .. 1000 LOOP -- Do some fake work in rendezvous
j = i,
END LOOP;
END start;
END activity;

TASK BODY enclose_task IS
BEGIN
ACCEPT starttask;

FOR i IN 1 .. NUM_TASK LOOP -~ allocate tasks
my_act (i) := NEW activity ;
END LOOP ;

35

FOR i IN 0 .. 1000 LOOP -- dummy delay loop
fred := 1;
END LOOP;

FOR i IN 1 .. NUM_TASK LOOP -- rendezvous with each task
my_act (i).start;
END LOOP;
FOR i IN 0 .. 3000 LOOP -- dummy delay loop again
fred := i;
END LOOP;
END enclose_task;

BEGIN
delay 10.0;
enclosure := NEW enclose_task;
enclosure.starttask;

END acttest;

The collected data from this test show that all the negative impact of the low-priority task in
the previous example has been eliminated. The main task wakes up from its context switches
immediately, and the total switched-out time is only 17.1 ms, or about 3.62%. That is, the cpu
utilization is 96.38%, again in agreement with LoopTest and MemTest. However, the upward
trend of the task creation and rendezvous times has persisted, indicating that this trend is not
priority or context-switching related. This strengthens the belief that the monitoring may be

a possible source of these trends.

One intriguing phenomenon in the high-priority version of ActTest is that three of the sub-
tasks do not exit immediately after completing their work. Activities number 3, 5, and 6 (in the
accompanying screen snapshots, Figures A.18 through A.23) take one or two context switches
before they exit. Strangely, the time spent by these activities, switched in and running, after
they have completed their rendezvous is about 2-3 times longer than the activities which do
not take a context switch before exiting. We can deduce that the extra execution time is not a
result of the task exiting since the context switches occur before the activity-end sensor fires.
Therefore, suspicion for the source of this extra execution is cast on the context-switch itself
or perhaps cast on the expense of recording the context switches’ occurrences in the kernel’s
monitoring mechanism. Further, this may not be an anomaly of neither AIPS nor PIE, but the
normal action of an asynchronous, preemptive priority based scheduler. This behavior of the
scheduler and how it affects the performance of hard-deadline real-time tasks must be explored

in the validation methodology, as listed on page 7, steps 3, 5, and 6.

36

Time required to start an Ada task (second)

0.012

0.010 /.\\————*‘—’—"‘H
/ ,

0.008
Time 0.006
0.004
0.002
0.000 . { + 4 + —
1 2 3 4 5 6 7
Task number
Time required to start a rendez-vous (second)
0.005
0‘004//—.”*/*%
0.003
Time
0.002
0.001
0.000 + — 4 § 4 —
1 2 3 4 5 6 7

Task number

Figure 10: Task Starting and Rendezvous Times for ActTest

37

5 Summary

This report described the implementation of the PIE system, configured for fault-free validation
~ of the AIPS fault-tolerant computer system. This functionality is required for the implementa-
tion of the FIAT environment onVVAVIVISS; tixePIE components implemented on AIPS represent
a substantial portion of the FIAT system. Using these components, a fault-free validation

methodology was applied to the AIPS system.

The PIE system has been modified to support the Ada language and a special purpose
AIPS/Ada runtime monitoring and data collection implemented. Initially, several Ada pro-
grams running on the PIE/AIPS system have been instrumented automatically using the PIE
programming environment. PIE’s on-line graphical views show vividly and accurately the per-
formance characteristics of the Ada programs, the AIPS kernel and the application’s interaction
with the AIPS kernel. The data collection mechanisms were written in a high-level language,
Ada, and provide a high degree of flexibility for implementation under various system condi-

tions.

Beyond the demonstration of the success of the implementation of the FIAT /PIE, we have
characterized some of the critical components of the AIPS /Ada kernel. We paid special empha-
sis to the performance of the Ada task mé.ﬁag:éﬁent functions, communication, synchronization,
and memory management. Given the real-time application requirements of ALS, we stressed
the need for performance predictability. The collected dzrxrtiéwhave pointed out a number of
anomalies. First, the MemTest example indicates the unpredictability of the Ada memory al-
locator’s implementation which uses an unordered linked-list to maintain free memory blocks.
Second, the ActTest program shows that the starting and rendezvous times increase linearly
with the number of tasks in existence; further investigation is needed to locate the source of
this behav:ior, as it méy an érﬁfact of the monitoring itself. Third, the ActTest pointed out
a phenomenon wherein context switches seemed to have caused longer execution time. The

collected data also show the profound effect of task priority on context switching and runtime

overhead.

The Table 4 summarizes the timing results from the experiments. These results point in the

following conclusions:
L. The PIE systems provides an automated fault-free validation environment for AIPS. Also
we proved the value of PIE as an architecture independent performance evaluation and

program development tool.

2. PIE fungtidﬁélity is required for the FIAT system for Fault Injection based Validation of
the AIPS for ALS.

38

Test total total cpu first last
execution | Speedup | switched out [utilization | allocation allocation
Low Priority LoopTest | 449.840 - 177.192 60.61% - -
High Priority LoopTest 240.722 46.49% 9.280 96.14% - -
Low Priority MemTest | 446.441 - 218.662 51.02% 1.543 14.574
High Priority MemTest | 227.030 49.15% 7.777 96.57% 1.733 14.763
Low Priority ActTest 777.958 - 395.870 49.11% - -
High Priority ActTest 473.086 39.19% 17.108 96.38% - -

Table 4: Summary of Results (times are in milli-second)

. With the FIAT/PIE tools in place, substantial insights into the performance intricacies
of AIPS are available.

. Initial fault-free validation of the AIPS shows a number of anomalies in the critical areas
of task management, memory management, communication, synchronization, runtime
overhead, and the monitoring itself. Additional work is needed to eliminate or account
for any anomalies in the monitoring itself. Moreover, the discovery of these anomalies
demonstrate the benefits of the fault-free validation methodology applied to a system

under development.

. Once discovered, those anomalies could either become user considerations or could be
fixed in future versions of the AIPS and PIE monitoring. In either case the system will
become substantially more predictable and hence suitable for the real-time requirements

of the ALS program.

. Due to the concurrent development of AIPS and FIAT/PIE on AIPS, the FIAT/PIE
system have not been yet fully exploited for AIPS validation. (It is difficult to validate a

system under development — a moving target.)

. There is a distinct opportunity with the PIE environment on AIPS and also the need for
a fault-free validation to be performed on the final versio;l of AIPS. The validation suite
for the final version of AIPS must be biased towards the critical (or unknown) portions of
the system to avoid uncovering “known” limitations such as the poor memory allocation

performance.

. After the completion of the fault-free validation, we are strongly suggesting the critical
need for fault injection based validation of AIPS. Of special concern are the common
mode failures (which include most “bugs” in software), communication protocols and
multiple single mode failures. For this purpose an opportunity exists in using the proven
methodology of FIAT/PIE and the availability of these tools on AIPS.

39

References

[1] Advanced Information Processing System (AIPS) Proof-of-Concept System I&E Facility,

User’s Guide, Charles Stark Draper Laboratory, 1987.

[2] W. Richards Adrion, Martha A. Branstad, and John C. Cheriavsky. Validation, verifi-

[3]

4]

(5]

16]

(9]

cation, and testing of computer software. ACM Computing Surveys, 14(2):159-192, June
1982.

Algirdas AviZienis and Jean-Claude Laprie. Dependable computing: From concepts to
design diversity. Proceedings of the IEEE, 74(5):629-638, May 1986.

W.C. Carter. System validation - Putting the pieces together. In 7th AIAA/IEEE Digital
Avtonics Systems Conference (DASC), pages 687-694, 1986.

Danie] P. Siewiorek, C. Gordon Bell, and Allen Newell. Computer Structures: Principles
and Ezamples. McGraw-Hill Book Company, 1982.

Yves Deswarte, Khadija Alami, and Oliver Tedaldi. Realization, validation and operation
of a fault-tolerant multiprocessor: ARMURE. In 16th International Symposium on Fault-
Tolerant Computing, pages 8-13, 1986.

Gary L. Hartmann, Joseph E. Wall, Jr., and Edward R. Rang. Design validation of fly-
by-wire flight control systems. In AGARD Lecture Series No. 143, Fault Tolerant Hard-
ware/Software Architecture for Flight Critical Function, pages 9.1-9.17. NATO Advisory

Group for Aerospace Research and Development, 1985.

H.M. Holt, A.O. Lupton, and D.G. Holden. Flight critical system design guidelines and
validation methods. In ATAA/AHS/ASEE Aircraft Design Systems and Operating Meeting,
1984. Paper: ATAA-84-2461.

P. Michael Melliar-Smith and Richard L. Schwartz. Formal specification and mechanical
verification of SIFT: A fault-tolerant flight control system. IEEE Transactions on Com-
puters, C-31(7):616-630, June 1982.

Validation Methods for Fault-Tolerant Avionics and Control Systems: Working Group
Meeting I, NASA Langley Research Center, March 1979. ORI, Incorporated, Compilers.
NASA CP-2114.

Validation Methods Research for Fauli- Tolerant Computer Systems: Preliminary Working
Group II Report, NASA Langley Research Center, September 1979. System and Measure-

ments Division, Research Triangle Institute.

- 40

[12] SAE Committee S-18A. Fault/failure analysis for digital systems and equipment.

13]

[16]

[17]

18]

Aerospace Recommended Practice ARP-1834, Society of Automotive Engineers, Warren-
dale, Pa., August 1986.

Frank Feather, Daniel Siewiorek, and Zary Segall. Fault-free validation of a fault-tolerant
multiprocessor: Baseline experiments and workload implementation. NASA CR-178075,
Carnegie Mellon Univ., April 1986.

Edward W. Czeck, Frank E. Feather, Ann Marie Grizzaffi, Zary Z. Segall, and Daniel P.
Siewiorek. Fault-Free Performance Validation of Fault-Tolerant Multiprocessors. NASA
CR-178236, Carnegie Mellon Univ., January 1987.

Ted Lehr, Zary Segall, Dalibor Vrsalovic, Eddie lCaplan, Alan L. Chung, and Charles E.
Fineman. Visualizing Performance Debugging. IEEE Computer, 22(10):38-51, October
1989.

Edward W. Czeck, Zary Z. Segall, and Daniel P. Siewiorek. Predeployment Validation of
Fault-Tolerant Systems through Software-Implemented Fault Insertion. NASA CR-4244,
Carnegie Mellon Univ., July 1989.

Zary Segall and Larry Rudolph. PIE - A Programming and Instrumentation Environment
for Parallel Processing. IEEE Software, 2(6):22-37, November 1985.

Roy Whittredge. Draper Laboratories Internal Memo, To: Linda Alger, Subject: Com-
ments on AIPS’ Anomalies in CMU Document. May 31, 1990.

41

A PlEscope Figures of the Experiments

This appendix contains graphical views of the execution of the three test programs, run at both
low and high priority. Each figure has been annotated to highlight the area of interest and each
set of figures is preceded by a page of explanation. The views were drawn by PIEscope using

the X window system.

All of the views follow the same general form: the experiment name is displayed at the top
(see notation 1 in Figure A.1); time is displayed on the X-axis (notation 2 in Figure A.1);
and each Ada task is displayed as a horizontal bar (notation 3 in Figure A.1) which is colored
in from its beginning time to its ending time. Figure A.12 is a clear example of multiple
tasks running over different time frames. Different kinds of events that occurred are colored in

different patterns. These will each be explained as they are encountered.

Figures A.17 and A.23 are somewhat different, in that they graphically display the CPU
utilization. The notations for those figures will explain the meaning of the pertinent parts of

those views.

A.1 Low Priority LoopTest

¢ Figure A.1, notation 1: The name of the experiment is displayed at the top of the view.

s Figure A.1, notation 2: Time runs along the X-axis, displayed in seconds. Here, we see
that the total execution time was 0.452204 seconds.

o Figure A.1, notation 3: Only one Ada task was executed, shown with the name main.

This task executed completely from beginning to end, thus the entire bar is colored in.

¢ Figure A.1, notation 4: Each block represents one iteration of the outer loop in LoopTest.

Each loop was executed from the beginning to the end of its drawn block.

¢ Figure A.2, notation 1: This is the same view as in Figure A.1, but now context switch
information has been overlaid. Here, a white block indicates that the task was switched
out. From this information we determine that the CPU utilization for this experiment is
60.61%.

42

1591 doo fjuoug Mo T'V

v[1e U} PEIU SIOSUIT £T
“3583000] UEOS O3 Suyuutlag
Nn*R3 390 Tud MO T35 dRc00]

@/@

T TR O TR T PTG A TR R I | utew Jo
500000070 i5pUOd3S =

s NTRYTUOT AT MO

O,

—
[<ix [R (e T
»0Z28P°0

sou ie) 3 [90 S0 @01 A) 0 B0 M B 5 MO 030 <=9 P hog) oo
N AR FUOTUd MO~ 3583d00T 91313 FUIUTUBIXS
2d00$IG-UO|INOIXS IMITA 2d00S3Td

@ E [pacues] [zo14d] [woez] [ucy] [sma34] [Gsaa394] [2doos] [A1rk] [d1ey}

43

' o L Y T) il I A]

uoyewroyu] SUNYMNIMg
X2u0) Sumoyg 3531 doo Aol MO JO MILA TV

BUOP ** e8P [IUUd JUTSSI0O0U
SUOR *°Ta[Ty SJ0LUDS [dUUIN Bulsuwd
H*RYTUOfud™ MO~ 35 @30l00]

L9113 aJ0UBS [IUUIAN ey

K D I O e i i]
PO22G4° 0 : i utew |o =
000000 0 {SpU0des

(92 (1) B0 (o7 B7S) 00)) (7D) 570) 0 B3] M) (30 29Rs R aooras
N*ARIFIOTUd™MOT"35a3d00T 10317 FIUSW]uddxs
20008 IRG-UDIINIAXD IMATA 3d0ISBTY

[xe] [p30ues] o14] [wsoz] [ucy] [fmatn) [azeuyeq] [sdo0s] [31rik] [A1o4]

44

A.2 High Priority LoopTest

o Figure A.3, notation 1: The scrollbar shows that we are viewing only the end of the
experiment. The first ten seconds of the experiment are used in the DELAY statement
in LoopTest.

o Figure A.3, notation 2: This experiment now has two tasks. The first is main whose
only function is to allocate and spawn the subtask that does the real work. This second
task looptest_task then performs the exact same work as main did in the low priority

example.

o Figure A.3, notation 3: Each block represents one iteration of the outer loop in LoopTest.

Each loop was executed from the beginning to the end of its drawn block.

o Figure A.3, notation 4: When the user clicks the mouse button on each of these blocks
then precise information about the execution times of those events is displayed in the

window at the bottom of the view.

e Figure A.4, notation 1: This is the same view as in Figure A.3, but now context switch
information has been overlaid. Here we see that the Ada task main was switched out for

the entire time that looptest_task was doing work.

o Figure A .4, notations 2-7: The squiggles indicate that there is not enough screen resolution
to display the event. Under each of the squiggles is a very short context switch. The
precise times for these switches are displayed in the window at the bottom of the view,
and have been marked with the corresponding notation numbers. From the context switch

information we can calculate that the CPU utilization for this experiment was 96.14%.

o Figure A.5, notations 2-4: PIEscope allows the user to zoom-in on a particular area of the
experiment. This view is the same as Figure A.4, but has been zoomed-in so the context

switches for notations 2-4 are now large enough to be visible.

45

[N WY P el bl bl

159 .doo] Kjouy ySiyy :¢v

ot e

T8CEGPO'0 == SWIYY ‘TIEBLZ°OT == SW]QD ‘OBLZEZ OT == WG ‘L == SuRUT “,d00T, UOFIBUBIT i¢snon3ique) 0 NdD Uo Jupuuny
6E£92G0"0 == BWIY “9OPTEZ*OT == duUTRe ‘LILBLETOT mm WG ‘9 mx BUEUT 7, 4007, UOI®UBIT I(SNONIIquwe) O NdD UC Iujuuny
899GH0°0 == BWIIF ‘9GLOET'OT =m Bwije ‘889¥80°0T == WG ‘p == Sweu] “,d400T, UOjEJazY I¢snondique) 0 Ndd U0 Sujuuny
2£9GP070 == BWIY ‘GTEEBO°0T == BWIId ‘G6EILFOOT == SW[Iq ‘f =a dweuy ‘,dO0T, UOTIRJAIT I(sSnon3iqued o 4D Uo Juyuuny

i M i)
<io i

8

DO T TR T [Lininiii

LECBZOT

NE-5eq"1503doot [T c

uiew o o

6¥SOE0*OT ispucces o

|]

]

@

(uey] [1Te) B3} [C1) 659 N0 @3 A) M) B0} Wl K) 5.3 WG} () fo0dAs Aq qoeras
N R0 TUd"YITY 3s93doo] 121313 U dodXd
#d00SIeq-UC|IN0IXE IMaTA adoosIly

E [p30ouss] E fwooz] [3uoy] [smaya] fiseuzel]

wmoon E _o:o..._

46

ON

UOHBULIOJU] YIIIMS
xa3u07) Summoyg 3531 doo 1o Y3IH Jo MIAA HV

) w133 “OGGBZZ 0T == SWIID ‘LIPLTZ°OT == SWIIA ‘L mm SuEU] T,403INS IXBFUCD, [SUUdq 10 NdD O3 O NdD WU PIUIIINS
G0LT00°0 == SWI3) ‘OGOGHT 0T == SWiId ‘TGELHPTIOT == ouila ‘G =x dutul ¢ uOTIMS 3XBUCO, TBULBA IO NI 03 O NdD WOUF PIUSIINS
116700°0 == W} ‘ZBOGOT OF == OWIId ‘TPGLOT QT == owila ‘p == Bueuj 2 403N IX83U00, T8UUd} 30 NdD OF O NI WOU3 PAUIING

¥ /26100°0 == 9w}I1_‘890690°0T == dW1Id ‘TPGL90°OT == 84F3q 4 == SWEU] Y,U03INS IXBIUQO, [BULax 10 NdI O3 O NdI woid PaYO3INS

AN
$26100°0 ==

rd

®

i Wi

i W id>

WEPiSE3-3523dool |T
i ureu |o

0o

8L£282°0T

6PGOLO QT SPUCOIS O

-

H

@ \ fusa) (1) @3

o B35 S0 E5 Ba EX I Ko B4 B B2 BT (5] 10983 Ra aoaes

n*R3 0 THd"YIFyT3sgdoor 21313 FUSW | dddXD
20l00S UEQ-UOJFNOIND IMATA ddoOsatd

5] [ioa] r51a)) (i) (mea) Eaweasso) oloos] k] Birsy

47

® 159 doo] Lyoug YSIH Jo M3IA URWO00Z Y

>

T TTGT00%0 == WII3 ‘ZGOGOT OT == SWIIS ‘THGLOT'OF == SWIIA ‘P wm SWEU] *,UOIINS INGIUOO, 10U4SH 30 NdD O3 ¢ NdD WOJF PAYIIINg

B99GP0°0 x= SWI] ‘OGEOLT OT == WA “BEIPEO’OT == WA “p mm SWEUT “,d00T, HOFIEURIT 10 NdD WO Iujuuny

£28T00°0 == W3} “BI0690°0F == WIS ‘TPGLI0°0T == WY ‘L ww SWEUT “,LOJIAS IXSIUCO, [SUUBN 10 NdI O3 O Md] WOJS PAYDIINS

\\mq 9499P0°0 =x BW}3} ‘GTEEBO°OT == QWIS “‘GEILFO‘OT == WA ‘f == SWEU] *,d007T, UOTIEUBIT 30 NdI WO SuTuuNy
e

&

® ® ®@

i W o> EEEEEEH—EDEEHEEEEE-_________..______._______._.:______.____:___:____u_________ [Se3 ™ 3503do0| v e |
i m ix]L 1 uieuw [0 o
££809T°0T 6PSOEQ*OT spuUcoes I
[]

(uey] [11¢] B3] [Es) Nd @0 A B2 1) B50) Gl) B3} Mel [51) :odfa R 3oatos
N*AIF0TUd"YITY IS0 101353 Fudwidddxe
8d00SURG-UOIINOIXS IMATA 8dOOSIId

E [o30uas] E fwooz] [3uoy] [smaya] [useuzad] [sooos)] [ink] FTEN

48

A.3 Low Priority MemTest

o Figure A.6, notation 1: The scrollbar indicates that we are viewing the early part of the

experiment.

o Figure A.6, notation 2: The striped block indicates the period of time when the allocation
of the first large block of memory was done. The execution time for that block is displayed

in the window at the bottom of the view and is shown to be 0.001543 seconds.

o Figure A.6, notations 3-5: Here, the striped blocks indicate the periods of time when the
first three allocations of small blocks of memory were executed. The execution times are

displayed at the bottom window as each being 0.001555 seconds.

o Figure A.6, notation 6: The other small allocations were not monitored and therefore do

not appear in the view.

o Figure A.7, notation 1-3: The striped blocks indicate the periods of time when the last
three allocations of small blocks of memory were executed. Their execution times are
displayed as being 0.001556, 0.001555, and 0.001555 seconds, respectively.

‘o Figure A.7, notation 4: This last block indicates the period of time when the last large
allocation of memory was executed. Its execution time is displayed as being 0.014574
seconds. Note that this is nearly ten times longer than the execution time of the first

large allocation as seen in Figure A.6, notation 2.

o Figure A.8, notation 1: The blocks which indicate the execution of the first large block
and the subsequent small blocks of memory are too small to be displayed with the given

screen resolution. The last large allocation of memory was large enough to be displayed.

o Figure A.8, notation 2: This is a view of the entire execution but now context switch
information has been overlaid. We can see that large blocks of time during the execution
of this experiment were spent switched out. From this data we can calculate that the
CPU utilization for this experiment is 51.02%.

49

199 WA K301 M0 Jo SupumSag 9y

AN

GOGF00 0 == BWII} ‘BOFTTOC == SU[ID ‘£GGGO0° 0 mm WG ‘P mm SwWEUL ‘, JOQT, UOIRIRUIS}T

SSATO0 0 =m BWEF] ‘EILBOO°O mwe WD “P18900°0 wm MIIY ‘E mm SuRU] ‘.d007, uUoljeaayy
SGTO0 0 mm PFWEIY ‘929G00°0 wm WP “TLOPOO'O mm SWIQ “Z == SwWRUI ‘4007, UOEIRIIYL
2EPGTO00°0 == SWIIY “222200°0 m=m WD ‘6LTT00°0 mw JUTIQ ‘T wm dweuy “, 40077, UofIeUeIy

1960£0° 0

EEIEE':EEEIEEEH_ utew o
000000°0 ISPUCDSS

[|

E@@-@-lglaﬁw

IFLOT

| B B3] W6l 5 509m3 A\ 30108
MOTT3IS3JWoOWU 181319 JUBUN uddxd
3dOOSIRG-UO T INOBXS SMAIA addosaery

(2] [s30u%) [r574) (Eoez] usy] [smetal fueenyod) [sdo5s] ol]

50

159 LWIJAl AJLI0U] MO JO pug L'V

PLGPTOTO mm SWERY “QZILPY O mm IWFR ‘QPOELP O mm SWEIQ ‘8 mm= BwWRUL ‘,JOQ7, UOTIRJAI]
GGGTO0 0 w= 2WIYY “TGITZE O == WIS 19BO0ZE"O mm WYY ‘¢ mm BwRUL ¢, 007, UOEIRUAI}
GGGTO0'0 mwm JWIFF ‘B06BTE O == IW}IP TEGELTETO mm PWEIY ‘9 =mm BWeUL ¢, dO0T, UOIIRIIY
\\\\\Mwwmmdoo.o - W3 ‘GOTOTEO mm W32 ‘STIPTE’Q == SWIIA ‘G == dweU} ‘,d007, UoTjeddrf

® @ @

"~

<i_r_i > | MIEEIEITD
©€088pP° 0

LVVE-I. uiew |0

51

T6ZZTE 0 IspuUOdas I

- ==

E a E E [ucy] [sra1n) [ysoagad) [adoos] [31nbk] [d1ay]

2

ol Ed B3] Wol (3] :29f3 Ra 308198
FUOTUd MO~ 3SajWawU ([} JuUBW.SdxS
00D IEG-UO[INOAXS IMITA SdoOsald

UOHBULIOFU] YDIIMG JXIJUO))
Suimoyg 353 T WAy KILIOLIJ MOT JO MATA 8V

PLGPTO O mm JUWERY “OZULPP O mwe SW}RS OPOLEP O mm PWIYQ ‘D mm IWQUT ‘/d007, UOTWUSIT 20 NgD UO Sujuuny
SUOP *CreyEp [IULSH FUTSSIOOUd

SUOR *°**3LF4 30ULE [FUUSH Jufsued
A R3ITI0T1Ud™ MO ["3 SS3Weuu

G) mi S ee——c—— 35 I LT

€0B8YP "0 000000°0 tspuooag

2] (1351 B2 (ol 759 00 B9 WA 730 () Q))) 5] (31 0o i oo os
B

IO 4d™ MO T sewawu $9[313 JUAW]uadxe
OV UG- U0 F 3NOIXD IMAIA adovsary

E 930U g _EOON_ E _u..::>_ E _we_oou_ _:.,.r_ _o:tx_

52

A.4 High Priority MemTest

e Figure A.9, notation 1: The first allocation of a large block of memory is too small for
the resolution of the screen. The execution time is displayed below as 0.001733 seconds.

This is quite close to the execution time when MemTest was run under low priority.

o Figure A.9, notation 2: The last allocation of a large block of memory is displayed, and
its execution time is displayed as 0.014763 seconds. This, too, is close to the execution

time under low priority.
o Figure A.10, notation 1: The first allocation of a large block of memory is too small.

o Figure A.10, notations 2-6: This is the same view as in Figure A.9, but now context switch
information has been overlaid. The Ada task main was switched out while nm_task did
useful work. In nm_task, each context switch is too small to be displayed, but switch-out
times for 2-4 are displayed in the bottom window as 0.001523, 0.001511, and 0.001709

seconds respectively.

o Figure A.11, notations 1 through 4: This is a zoomed-in view of the first large allocation
block and the first three context switches in nm_task. The blocks’ execution times are

displayed in the bottom window.

53

1S9 LUy Ajuoud ySiH 6y

2LFTO'O == WYY “GIBLGZ 0T == SWII® ‘2GOLPZ’OT == WYY ‘9 == dweuy ‘, 40071, UoT3eU]

£ELT00°0 == Wi “BELLEOTOT == WIS “GOIGFO"OT == SWI ‘p == sweu| ‘.d007, uoijeudy|
A\\\\\\MMN?VN.O == SWI13} ‘PBTGOE 0T m= WD “906HT0°0T == W[FA “T == Sweuy “oMsRYTwu, Rjjagaoe

2T8042°0T == dWI3Y ‘2TG0LZ°0T == BUWID ‘000000°0 == ®WIIq ‘O == sweui ‘ utew, R3jajjoe

hd

<l w Q> Lintigpiinoni] 3] Hse3"wu |y o
i W i> ujew [0 oM
ZTG0L2° 0T 969800°0T ispucoes
=]

Egglaﬁmggﬁﬁg B3l WY (3] 94”3 Aa 300108

SO UdTYITYTITIWIWG 1R FUIWYUdcxe
#O0S I8Q—UO | INOIXD IMITA adoosayjy

E [230ues] [3o1d] jwooz] [3ucy] [smet4] [yseagad] [sdoos) hirk] [d1ay]

54

UOHBULIOJU] YIIIMS
® Xo3u0)) SUIMOYS ISILWIN AILOHJ YSIH JO MIIA 0TV
N

N
Y60.700°0 == SWIIF ‘EPOLPT OT ==
——3TTGTO0 O == BWERY “6E0LOT'OF ==
£2GT00°0 == dWlId “Ep0LIO°OT ==
\¥ £££700°0 ==

wiye ‘PEEGPT’OT == wWi3lq
Wi ‘8ZYGOT QT == dWilq
QWIS “0ZGE90TOT == AWilq
w3y} ‘BELLEQ’QT == WIS

“9T == GWEU| ¢, U0} INE XSO0, [UUD} 10 NI OF O NdD WOJUS PIUDIINS
‘QT == SwWEU] ‘,UOTIMS AXSIUCO, [BUUY 10 NdD O3 0 NdD WO PAYIIINS
‘bT me SWERUL ¢,4O}IME IXOJUCO, [SUUSH 10 NdD O O Mdd WOJS PIUCRINS
1GO9GEO 0T == 2WIA ‘p == SWEU] ‘., 4007, UOIIEUS3| 10 Nd) U0 Bujuuny

7

@

N4 v /ﬁ
<l owod> +3 3 (IIIED Hsej3-wu | D
i ow > atew |0 ©
2150L2° 07 LT6ZE0° 0T (spuUodeg O
N]

) i) B3 (80) 0 9 W) 0) B0 M 530 W 0 <o o oo o

WO FdTYI Y TISRIMAINU 12213 AUdu | Uddxe
2dOOSIRQ~UO | IN0IXD M3 A ddOOSald

[cxs] [#30uas] {ao14d] jwooz] [uos] Erein) [seaged] [sdoos] F1nk) E

55

182 LWdA 11011 YSIH JO MIIA UL-WO00Z [’V

et
At

60LT00%0 == dWIIY ‘EPOLPT OT == AW[IB “HEEGHT OT == BWEIQ ‘9T =z SWeUJ ‘,HOJINT INSJUO00, [3UdH 10 NdD O3 O NJD WOU3 P3Ol Ing
TTIGT00 0 == JWEIY “H6L£OLOT 0T == W32 ‘BZYGOT 0T == SWliq "GT == SWEU| *,YOJINS IASJUCO, [SUUISH 10 NdI 03 O [IdI WOU3 PIYO3 NS
£TSTO0"0 == dWEIY “£POLIO 0T == WIS “OZYGI0 0T == oW “pT == SWEU] * UYOJINS IASIUCD, [JUUdX 10 NdD OF 0 NJD WOUS POYo3Ing
N LELTO00 == W33 “BFEFLFQ QT == W]Id “GO9GFO°QY == JWIIQ ‘p == WeU] ‘, dJO0T)., UOIeUdI] 10 Nd) U0 Bujuuny

®

i > | I) i 0 0 it] HSeI"WU IT
S | urew [0 m
G90BST OT LT62E0° 0T ispuocdeg o
| S]]
leuey] [11e) B9 () 551 & gﬂwgﬂ_ﬁg B3] Wl] :99R3 Ra j0e(as
NYAJ IO YIF Y~ Isequwenu 1o[31% FUAW | Uddx

#dOOFIG-UO [INVIXE (M2TIA BdOOSETY

E [#30uss]) [jo1d] [wooz] [Ruoy] [smaa] [usa.jyed] [sdoos] [Fink] diay)

56

A.5 Low Priority ActTest

o Figure A.12, notation 1: The first seven striped blocks indicate the times when main was

allocating the seven subtasks.

o Figure A.12, notation 2: The seven cross-hatched blocks (one executed in each subtask)

indicate the times when the subtasks were within the ACCEPT statement in ActTest.

o Figure A.12, notation 3: The seven cross-hatched blocks running in main indicate the
times when main was making a call to my.act.start, but before the ACCEPT was
taken.

o Figure A.13, notation 1: This view shows a zoom-in on the first four task allocations in
ActTest. The timings indicated by notation 1 are for the amount of time it took between
when the main task called NEW and before the subtask actually began. Note that except
for the allocation of the second subtask, each allocation took more time than the previous

allocation, increasing in linear fashion.

e Figure A.13, notation 2: The recovery timings indicated by notation 2 are for the time it
took between when the subtask was context switched out (after entering its ACCEPT)
and before the main task “woke up” from its context switch, which would be the indication

to the main task that the subtask had been created and main could proceed.

o Figure A.13, notation 3: The precise times are shown for the events used in the timing

calculations in notations 1 and 2.

o Figure A.14, notation 1-3: This view shows a zoom-in for the last three task allocations

in ActTest. The timings were calculated the same as in Figure A.13.

o Figure A.14, notation 4: Note the large context switch that occurred in main during
neither the task allocation nor recovery part of the execution. Here, the main task was

context switched out in favor of a non-application job on the system.

o Figure A.15, notation 1: This view shows a zoom-in of the first three rendezvous in
ActTest. The timings indicated for notation 1 are for the amount of time it took from

the main tasks call to ACCEPT until the ACCEPT as taken in the subtasks. Note that

each rendezvous took an linearly increasing amount of time.

o Figure A.15, notation 2: The recovery timings indicated by notation 2 are for the time it
took between when the subtask was context switched out (after finishing its ACCEPT
and completing its work) and before the main task “woke up” from its context switch,
which would be the indication to the main task that the subtask had finished its rendezvous

and main could proceed.

57

¢ Figure A.15, notation 3: The precise times are shown for the events used in the timing

calculations in notations 1 and 2.

¢ Figure A.16, notations 1-3: This view shows a zoom-in for the last three task allocations

in ActTest. The timings were calculated the same as in Figure A.15.

¢ Figure A.17, notations 1-2: This view is somewhat different than all the previous views.
Here, the CPU utilization is being graphically displayed. Time is still on the X-axis in
seconds, but here a black area indicates that one of our application’s tasks is switched in
and and a white area indicates that none of our application’s tasks is switched in. In this
way it is easy to visualize the overall CPU utilization as it applies to the test application.
From this data the calculated CPU utilization was 49.11% for the low priority ActTest.

58

1S9 LY Qjuond Mo TL'V

lie Ul prSU SJUOSUST /8

st TR FUO U T MO T 3527308 UROS 03 Sutuuldag
N*R 140 1ud MO Tas93730@

(@l ls djouas

'

" 1> 10 1////////////////////////ﬂﬂ..ﬂﬂﬂ//‘/ﬂ.h/\/c/ﬂ.////lﬂ./l/ﬂ/ﬂ.///A \ RatAtaot ¢ o
" 1> [T ,//////////////I//////ﬂﬂd%.//, \ R31AT39% (9 =D
"B / E AN N 2 2 I’////////’//./////////////.//.I///////’//////////////./////////////////I / ”H ny -1] [
SEIES e —— 150 SO O A A RN AN, \ RIIAII0¥ | D
% i) 1 —— 10200 SN T A A TR AR AR AR ARAARAANNNAAARY, \ RalAIR0€ if ©3
. > T —— SO T RN R RN RN, RytAlaoe |2 =
- 1> R T SESSSESESSSOSSSN RrtAlo® [T
Moi> urew |o ==}

£L9986°0 tspu00ds 3

sy 9 83 S SD K ___ﬂ_ﬁl&ﬂmm!@@“&? Ra 3de1ew

AFHOT 4 MO 50T 2BLIEY AUBW | Sk S
BAOOEMQ-UOFANOOXS 1MBTA dOOTLTJ

EE:E&E&E_S:&EEE@

59

IS3LPY Ajuouyg mo
O'h U} SUOHEIO[IY SiSe [, IN04 ISILY 3Yj JO MIIA UI-W00Z €'Y

8TBGLE O wm BWIY

9rB2QE°0 ww
OBI0OBE 0 == i3]
y CAEPZE"Q ==

‘TPPZIPTO mw WIS ‘E£T9Z60°0 we SuiIq
BWIIY TGALIGETO mu WIS ‘PTEENC'O wa
‘96TEZP'O wa JW[ID ‘IIGZHO°O =m BWI3q
JUIIY TGELYEETO sa WIId ‘28FOTQ'O =w

‘E mm
aapyq
‘2 we

wiq

sweul ‘ Ryfatiow, RITATI0® 10 Ny) WO Juglaay
‘P2 ma SWRUL ¢ queds, UIOL 10 NuD UO Buyuuny
WU ¢ Ry3Ialq08, Ryjajioe 10 NdD vo Jujuung
‘22 wm dwmuUl ‘ que3s, ujof 1o Ndd Yo Iutuuny

"985 061%20°0

\\’.\(I).

*995 76T970°'0

—

'998 9//LT0°0

——A

S EVGREN, @

193BD0TTY @

[xe] [£30ues] [151d] fusst) ey

'99S [TT600°0 "985 |1620600°0 "985 [T£6010°0 *995 G8PYO0°0
(—Am
} 4 A\lﬁ,
[T Ritanioe]y o
LN Ryfatzoe o o3
<l Wiy RijAjI0e Ig =
SN R | sesbem———_ I Dinferly o
I 1 1 RitAlow Ig o
LI D) Ryjasioe |2 o
<h w1 RYfAT30w |T P
<ioMoi) [] ['] ulew [o =
6800pT°0 000000°0 1SpUCDIS =
C R ——— |

N Eg B3 W 3] sedh2 Ra 3001es

IFHOT Il "MO[T21803308 L0317 Juewsusdxs
adoosswq-uofINcexe inein sdoosery

@u [ysease.] [adoos] Fink) w1y}

60

153110V Ljod Moy} ul

SUOEDO[[V NSEL ITUL ISe] 23 JO MIIA UI-WO0Z PI'Y

29800970 wa W[} ‘ZLLZBLTQ == w30 ‘OTGTBZ O wm SW[IQ ‘L m=

6QTEIF O == BWINY 0@LT0L 0 ww WD F226£2°0 w= MWiAq ‘9 me

@ 2068E0°0 == WY (TEROTE'0 me WIID 169ITLZTO == SdEIA 7L

POGOPQ’O == W1} ‘TOB0LZ'O we YD 26962270 == WY ‘9

osweuy ’,RyI1ATI0, RITATIOE (0 NGD U0 Fuyuny
. SWEL] ¢,d007, UOTIEUIIT 1O NdD U0 Jujuuny
sweuy ¢, RIEATI08, RATATI00 10 NJD U0 Ju Ny
-s SWRUY ‘,d00T1, WOI€4I3] 10 NdO WO Jujuuny

*295 17860070
A

*098 TLELT0°0
\'%)

* 098]

*298 0Zg810°0 1 K19a009Y AHHV

\\Il\/ll/

%29600°0
}

1938 977600°0 "3822@

A

[T i Ratalioe It o
<l w1y A3tatave |9 o=
<M1 Ryfajioe o
AICIE A3)ajaoe |y o
o 1) JIAIIOE 1T (=]
<l omo i) JpAEIOCE 12 (=]
<Lom 4D FIATOC R 1 [we]
<i W i) 8D l.|||.|||.l.|||.||||||||“_ i Glew [0 ©
BLLYOL"Q \ 6290 0 15PUOOIS
[[wm] |

—
@\annu!mwﬁﬂ_-uﬂﬁ_ﬁ-u

B2 WE (3 14983 Ra 300108
A0 Id MO AFRIOE 1[I IUSW] xS
OO INQ-UGTINIOXE SMeTA sdODSETd

(=] Sisues) [519) [50z) [1553) (ema1n) Bareseq] sa3] o) [Hiey)

61

lew o
VU e

IS9PV Ljuoug Mo ay3 ut

SNOA-ZIpU3Y] YL ISTE] Y} JO MIA UI-WO007 ST’V

®

6B80Z0°0 =» W]} ‘0GOGTP O == SWIYe ‘TITHEE' O ww SHIIG ‘GZ we SwEU] ¢, 3838, H20[Q 10 NgI Uo Bufuuny
6PLEOTO me SUIYY ‘LLITENTO mm SWIND ‘QITHGE'O wa SUIAG ‘TT wa SwwUT ‘300 AW, HOOLQ 10 Nd) U Auyuuny
96202070 wm IWTIY ‘CPPTIC’O ww WIS “£QUAFE'O == MWIAG ‘L2 mm JWRUL ¢ 3.8, HOOIQ 310 NJI uo Juyuuny
£02890°'0 == W}y [6PI06E"Q =m BT ‘IPPZEL O mm SWIA ‘G ww JueUY 7,300 AW, HOO[G 19 NgD U0 Jujuuny

*998 6605000

'995 600%20°0

:£12A009Y @

\l/.\rl\/
298 $01900°0 935 9/6£00°0 "985 [Q%€00°0 :Snoa-zapuay @
~A, A o)
RIjATIoe]t o=
II8TISe o o
VIAT0% g =
TR =
N EYEECE =
] N I EEDN EA =
*_r [T e) Ayfatioe |1
fTTT3 FTTH —— e utew o
B908LP°0 9921280 ispuoOes o
| —— L —— .

EH@Q!@EQE@@@Q%EI@Q iedhiy Ra 3081es
N*hyfwog L TREL ZEY SRR Y Y 238 AW Jadxe
edodsseq-uoy3noaxe imetA adoosery

Eixe] [B300er] 1013 frocz] fiey) [mata) Fiveased] foos) [rine] [51eg)

62

1S LPY Ljoud Moy
UI SNOA-ZIPUY Y] ISeT] Y} JO MIIA Ul-W00Z 91V

£GTT2Z0'0 == SWi3) "ZTO00L 0 we SWINS ‘GGBBLI"0 ws WY ‘E£f we SWEUT ¢, 3483%, XO0|Q 10 NdI YO Jujuuny

BOT9LO°0 wm #4101 ZPGORLTO mm WIS ‘GATHLP'O mm WWIIAA ‘6T wm SwAUL <, 308 A, #OO(4 10 NdD Lo Buruunyg

@ (BOT20°0 == SWi12 ‘00G6TI°0 we WIS ‘ETFB6Q°0 we SW1AQ ‘IL == SWEUR ¥, 3.83%, HOO[Q [0 NJD UO Bujuuny
H £6829L0°0 w= 3WIYY ‘pZBOLITO == WIS ‘TpOP6P QO == SWINQ LT ww SwRUL 4,208 Ruw, HOOIG 10 NdD U0 Auguuny

*0as 9g(wy0° 0 *098 ZE9S%0°0 1 £18n009Y @

\\llllll|l>!llll\\lllJ A

295 9¢9%00°0 *08$ 00S%00°0 *09s 7/E%00°0

©

:SnoA-z2puay

PN e

A
i omo4> [RIfAT30®

<1 | [1 I1ATOR
a N 9 1AJ 308
i Ratnj3oe
<i R §n}30W
< [EYISEED
) R3TATa0e

i>
i
i>
i>
(B4

pooooeoao

xIx{xixix|xgx

<4 a8 =[] uyew |

i> — AR
IPp2e9’ 0 1Spucoes oo

4re89L° 0

l

EB@QQEQI@EE%I&@EI@QZ.‘B fa 3oees

FIPSOFAATMOTTISSIIOC T[T IUSW]IedxS
#dOOT NG-UO[INOOXS IMBTA dODSST

ﬂ [e3oues] [3o14] feooz] quog] [sawya] [yzeayaa] [adoos] [y 1nb] [oiey]

63

1S3 LY ALOLJ MO 313 JO MAIA NdD LT’V

29800G°0 =m WYY “ZLEZHL O ww SWIIP OTQIBT O w= SWIG ‘¢ mew
20668070 == JWIYY ‘TEUOTL O == 2UIID “GRITLZ O == WWIAG ‘¢
BATEPH O == WYY ‘OBELROL O == WIS ‘T226E2°0C am W] ‘9 =m
¥O60F0°0 mm W13 ‘TOQOLZ'Q =a WD ‘LEQ6ZT O mm WIYG ‘9

surut ‘ AITAT08, R3ITATIOE 30 NdD U0 Bufuuny
me JHEUT Y, G007, UOIIRUIIT 10 NdD U0 Bujuuny
PURLUY RITATI08, RATATI0R 30 NdD WO BujLuny
== JWEUT ‘4000, UOTIEUII) 10 NdD Yo Jujuuny

¥eeL90° T

Q00000 0 I3PUCOIS O

|

(G5753) WG : uorrvo
A RIFL0IIATMO [T IB IO T[T JusW]Uedxe
2d0>840-Ndd (Metn edloosety

mw [e30uss] [s10100] [wooz] [ucy] [sme1n) fyseaje4] [adoas) {a1nb} [@yey]

64

High Priority ActTest

Figure A.18, notation 1: The first seven striped blocks indicate the times when main was

allocating the seven subtasks.

Figure A.18, notation 2: The seven cross-hatched blocks (one executed in each subtask)
indicate the times when the subtasks were within the ACCEPT statement in ActTest.

Figure A.18, notation 3: The seven cross-hatched blocks running in main indicate the
times when main was making a call to my.act.start, but before the ACCEPT was
taken.

Figure A.18, notation 4: Note the unusual behavior of activities 3, 5, and 6 after they
have finished their final rendezvous. instead of exiting relatively soon they actually finish
quite a bit later. Figures A.21 and A.22 show that these activities took context switches

which prevented them from exiting when they normally would have.

Figure A.19, notation 1: This view shows a zoom-in on the first four task allocations in
ActTest. The timings indicated by notation 1 are for the amount of time it took between
when the main task called NEW and before the subtask actually began. Note that except
for the allocation of the second subtask, each allocation took more time than the previous

allocation, increasing in linear fashion.

Figure A.19, notation 2: The recovery timings indicated by notation 2 are for the time it
took between when the subtask was context switched out (after entering its ACCEPT)
and before the main task “woke up” from its context switch, which would be the indication
to the main task that the subtask had been created and main could proceed. Unlike the

low priority example, these recovery times are instantaneous.

Figure A.19, notation 3: The precise times are shown for the events used in the timing

calculations in notations 1 and 2.

Figure A.20, notation 1-3: This view shows a zoom-in for the last three task allocations

in ActTest. The timings were calculated the same as in Figure A.19.

Figure A.21, notation 1: This view shows a zoom-in of the first three rendezvous in
ActTest. The timings indicated for notation 1 are for the amount of time it took from
the main tasks call to ACCEPT until the ACCEPT as taken in the subtasks. Note that
each rendezvous took an linearly increasing amount of time. Figure A.21, notation 2: The
recovery timing indicated by notation 2 is for the time it took between when the subtask

was context switched out (after finishing its ACCEPT and completing its wotk) and

65

before the main task “woke up” from its context switch, which would be the indication

to the main task that the subtask had finished its rendezvous and main could proceed.

Figure A.21, notations 3-4: Note that these Tecovery times probably would have been
instantaneous (as in Figure A.19, notation 2) except for the context switches that occurred
in activity 3 before it exited. As a result, the recovery was interfered with by activity 3

performing extra execution.

Figure A.21, notation 5: The precise times are shown for the events used in the timing

calculations in notations 1 and 2.

Figure A.22, notations 1-4: This view shows a zoom-1in for the last three task allocations
in ActTest. The timings were calculated the same as in Figure A.21. Note that the
recoveries after activities 6 and 7 finish are interfered with by the extraneous context
switching at the end of activities 5 and 6. The recovery after activity 8 is done is again

instantaneous.

Figure A.23, notations 1-2: This view shows CPU utilization as in Figure A.17. With far
less context switching than in the low priority example, the calculated CPU utilization
was 96.38% for the high priority ActTest.

66

[

1S3 1Y Ljuoud YSiy 81V

LLTLLTO == W] ‘OBEBTZTOT == dWild ‘LOZTPO’OT == SWI3IA “Z == BusU} < ,RaInfr0e, RIjAjqoe 1(Snon3jque) 0 NdD UC Jujuuny

IPTT20°0 == 8w} ‘ITTITZ 0T == 3Wi}d “GLEPET OT mu SWIYG ‘9Z == dweuy ‘, JSEIS, HOO(q 1¢snondjque) o NdJ uo 3ujuuny
OLEIEQ’Q == WD ‘LQBIZT 0T == SWIS “L8POGT 0T == WIIQ ‘2T == duweuj ‘,q0m~Fm, Moold l(snondjawe) o NdI uo Jujuuny

0GLETO'O == W3 “£B2GPO°OT == SWI3S “L6PTEO°OT == WG ‘p == Sweuj ‘4007, UOFIEUdIY j(snondique) 0 NdJ U0 3ujuuny

<

1>

i

1>

<i

i>

/ Ryini3oe
i / haiag3oe
] / hitarjoe

<

B \

] / RAypatyoe

<i

i \

/ Ryp1ataoe

<i

i> N\

| / h3jAaT3oe

<i

1] R31AE30@

i

<i

<i

xfxixix]xjxixfxix

i | B

- A
4> [Srrrenrne[llssrnvei[R il

FEERTOIEE CTEOCER RTRECE A CLFITED | GITTA I B A N> $€ 3 ~ @S0 [OUd
] ujew

goooooooad

698G8p ' 0OF

2L2ITO 0T 1spuooadg o

[

—

3340 dTYITYTFFRIOC 12313 FIUSW]UIdxe
adoosJeq-uor3noaxa im3in odoosdty

[xa] [a30ues] [3014] [wooz] Quoy] fsmaia] [yseaye.] [adoos] [R1nk] [d1ey)

AN
Q%) i) B3 (30) IS0 17 D (0)) M) B 653 IS 30 ey o ot

67

! Lo g [v

1RV AQuoud ySiy sy ut
SUOHEIO[[Y YSel INoJ ISILJ Y3} JO MIIA UI-WO007Z 6L’V

PETOZZO ==

26EPTO°O
@ LLTLLTO =3
06L£10°0

Wi}
== WYY

‘09PL6Z 0T ==
‘894978007

== dWl33 “£82GPO° 0T

BUEYS ‘IZELLOCOT == WG ‘b == SweU| ¢
== QWD ‘99TL90°0T == SWIIY ‘9 zm SWEU
dWil} ‘QBEBTZ'OT == WIS “FOZTIFO'OT == SWIIY “Z == Sweu]
== OWIYd “L6PILO°OT =x SW[Iq ‘p == dweu

HFIIn1aoe, Rytnijoe 10 NdD vo Buruuny
¥ ‘,d007, uorjedusll 10 NdI uo Jupuuny
FIIr1I0e, Ratatrioe 10 Ndd uo Jujuuny

¥ ‘,d00), Uotljeual] 10 NdI U0 Bujuuny

~ AW

*995 Z8EONI0TO0

085 (09101070

v 4

b9S £€6600'0 *9PS 90.600°0

-

Sno’vurjuElISU]

193BJ0 TV @

A

\llf } . Ay

i »w i> Ratatryoe js o
<L w D R3IATRoR ¢ &
i M > R31AT30% |9 =
<CEox > N %t R3tntaoe g
i * i) 3 i A31ATI2% [p
<iom Q> H — — > ﬁ Ry1AT308 |§f =
¥ 0> 1 ERR— — I T Ryiat3oe |2 =
<ioMo 1> IB.E [T T[T, S Se—— 1111111 BHSe3"dS0[0Ud IT
Giow iy ulRWw {0

OPB660° 0T Z960L0 0T spuoces
[[])

E@E@Q@Eﬂug@a%g B3] Wo] [s99Ra Ag q0ates

IS0 T YIFYTISRIF0C ([T JUSWfusdxe

2d00SURA-UOTINOEXD MR A odoosaty

[dxa] [a30uss] Fo1d] [wooz] [jucy] [sna1n] [Useusay) [adoos] [ink] [d1ey]

68

1S9 LPV Auoud Y3y i ut

SUOLIEIO[Y dST.L ATYL 158 Y} JO MIIA U-WO0Z 0TV

ZT00ZE 0 == 2Wl13 ‘980LLP'OF == SWI3Id ‘6YOLGT 0T =x SWIAQ “§ == aweup ¢, R31ATI0E, RITATIOE 10 Nd] wo Bujuuny
£89020°0 == SWI3Y ‘909/GT'OT =x WIIS ‘LIOLET OV == WG ‘0T == Sueli 7,4007, WOTIEUBIT 10 NdI ue Bujuuny
A”H”v TEEOTE 0 == SWII] ‘90bGZY OT == SWIId ‘GEGPTT OT == WA 9 == sueup ¢ AIIATI0C, RITATI0E 10 NdI Uo Jujuuny
PEEPTO®0 == AWI3Y ‘O86BTT'OT == SWId 9BELOT'OT == IWi3d '8 == Jwev) ¢,4007, UOT3Iev33T 0 Nd3 U0 ujuuny
= 1PUTL
£13A059Y
5N03aUBIUBISUT

*998 9%0910°0
}

'998 9¢8010°0 *993s 60901070

P, W

<i

i>

<i

i>

<1

1>

<i

i

<i

Ry1atjoe

R3IAT30®

hytAatjoe

<i

<

<i

<i

xIxixixixix|x|x

R3tat3oe
3IAf30€

mv_‘||||||l|||||||||||ll|||||||ll|||||||||||l||ll|llu

$98£91°07F

PBOOOT OT IspuUoOas o

CHNMTOOWHNR

tUOT3IBDOTTY @

gooonooood

I

J

Foe) (7S) B0 (5 690 IS0 I) 60 (D) 0 M) B B M (3 229 P oot
N*AR IO~ YITY 3E8330¢ 191313 W | uddxd
#doosURG-UO T INOIXS IMAEA SdOOSIY

E [s30uss] E [ooz] [zuog] [fmetn] [ssazed] [adoos] [Firk] [d124]

69

12 LY Ajuoud YySrH ayi
Ul SNOA-ZIPUIY 3] ISILI 3Y} JO MIIA UI-WU00Z [TV

B89ETZ0°0 == SWIAY “OBLIEE’OT mx W[I® ‘ZTOGIE’OT == SWIIq ‘ZE mm SWRUL ‘,3ue3S, HOO[Q 10 NdD UO Jujuuny
9EILEOTO =x BWIIY “TTLLPE OT == SWIID ‘QLOOTE 0T == SWi3g ‘8T == dweu] ‘,308Rw, »OOIY 10 NdD uo Fujuuny

@ TPITZO°0 == SWIYY ‘ITTITZ'OT =m WIS ‘GLGPGT OT mx SUEIG 19T mm SWRUL ¢, 3uR3S, HOOTQ 10 NI U0 Jujuuny
ﬁonanO.o E® OWYIY “LGBIZTOT == WIS ‘LBPOGT 0T mm SWIRY ‘2T w= dueuy ‘. 3087Rw, Ho01q 10 NdI uo Iujuuny

AX9Aa009y L12a009y L13A009y
paiiajyaajug peaiasjaajug snoauevjuvlsu]
P N U o Mo o
LE6%00°0 998 68(%00°0 298 1%9%00°0 995 88YH00°(Q :sSnoa-zapusy @
~3 AN } }
<iowo QD> M) Ryynigoe g o
HIEND - R) FalATIoR |0 o
TS e ———————— = Aot le o
G w1 | I [| I — 11 Aitntoe lg o
i Mo LD : — 1T RYIATIOR |p =3
i w i> iR -] R3jAT30€ |8 =
<iow 1>] Rylnizoelz o
W i e m— 1]][] 20ZR Mise3 - eso(ous [T 1
<iow i — o uiew lo o
9925¢E ‘0T ’ OFPIBT 0T Ispuooss
| .13]

3340 T ud YTy~ 3se330€ 3811} JUIW DX

[] B3 W6l (3] :9dR3 Rq jo0eres

9d00FURQ-UOFINVAXS IMOTA 2doOSE |y

[ixe] [s30uss] Ro1d] [wooz]

o2 (rne1n] fisesse3) baoos] (rirk] [irag

70

1910V Ajouyd

yS1H 9Y3 UT SNOA-ZIpudy MY ISeT] 3 JO U-WO00Z TT'Y

I16920°0 == 2wW]3] ‘8IE0LP°OT == BW[AS ‘LGBEPPOT == dWilq ‘8F == dWeU} “,J4€33, 5O01q 0 NdD uo Bujuuny

£LTBEO'O == WYY ‘SE£IILP°OT == WIS “GIpBEL 0T == WA ‘P2 =z dueu} c, 308 AW, HOO1q 0 Nd) WO Bujuuny

A”HHV Nu ZT90£0°0 == 3WII3 “BLT82P° 0T == WIS “998L6E QT == W] ‘9L == Sweu] 7,343, HO01q 10 NdD uo Bujuuny
GGOZPO°0 =3 Wl ‘BLEPEP QT == duWl3e ‘EZEC6ETQT == dwWlYq ‘ZZ == duweu] “,39e"Au, no01d 10 1d] U0 Buiuuny

AKTTROTITY ATIRUIIY ATIR0IIY
SNoauEIUBISU] pei1ajiaiul @ paixajiaijul @
A N A
1995 76€500°0 098 €%7500°0 *998 060500°0 :SNOA-Z3pUdy @
lamta)
o~y A
I : a S RitrTioe s =
i M 1> TR A3AT3oR |2
<iw 1> \ R.WW“" L N Fatatioe lo e
HIEEETD N\ 1 1] A3IA130% |6 =3
IR N— N R31At130¢ |p 2
<iow 0> } Y Toemn] R3fat3oe Jl¢
i M 0> _ Rrintyor |z ™
<i % /Wi — 1R EEL 2] (1T T o —— NBDEC___15e3 950(0ud |T =
CGowoi | FSRR— | utew jo o
8TrOBP°OT £IELEL QT IspuUcOes =4
e]

ey [11%) I3 (0 B K0 @03 A B 10 B50) 8] BEE) 53 WSl (30 so9ia Pa qoetes
N*AIIA0 Tl YITYT3SB3308 (@[F IUSW]43dXe
9040084 G-UOTIN0IXE (Mmaln odoosaty

l [30uas) [3o1d] [uooz] Ruoy] [smeva] fuseuse.] [adoos] [31nk] [dray]

71

1I9LPV Ljoud YSIH 2yl Jo Mol NdD €TV

EEVBTO'0 == SWIIY “BBELTZP 0T == WIS “GGEZ6E 0T == BWI3Q ‘¢ =s dweuj ‘Ajnjjoe
£9G620°0 == WYY} ‘PEETBL 0T w= SWIId ‘TLHZGE’OT == WY ‘9 == aweu] ‘A3jajjoe
PELOEQ'O == BWIYY ‘TppTPE 0T m= JUEID LOLOTE'OT == BW]Iq ‘G == aweu] ‘R3jajioe
199G20°0 == BW]3} “BEEIBT QT == w38 TL4999T 0T == dwi3q ‘T == dweul ‘RyjAjjoe

i W i | N S] S S SR I | S B G] anN 5 Saa O e A N . o nNdJjo ex
6L6695° 0T 6T9000° 0T !spucces
[]

[5153] W) suoado
AR Fuoud=yITyT3s03308 9313 JUIMN | UddX e
BA0OFIRA-NdD {1M3TA odoosat g

[230uas] [s40700) fwooz] [uoy] [smata] [Fauged] [adoos] [y1nb] [ayay]

72

Report Documentation Page

Natona Seronautics ang
Sodace Aol 3ion

1. Report No.
NASA CR-4340

2. Government Accession No.

3. Recipient's Catalog No.

4. Title and Subtitle

Validation Environment for AIPS/ALS:
and Results

Implementation

5. Report Date

November 1990

6. Performing Organization Code

7. Author(s)

Zary Segall, Daniel Siewiorek, Eddie Caplan,
Alan Chung, Edward Czeck, and Dalibor Vrsalovic

8. Performing Organization Report No.

9. Performing Organization Name and Address

10. Work Unit No.
506-46-21-05

Carnegie-Mellon University

Electrical and Computer Engineering Department
Schenley Park

11. Contract or Grant No.

NAG1-190

Pittsburgh, PA 15213

12. Sponsoring Agency Name and Address
National Aeronautics and Space Administration

13. Type of Report and Period Covered
Contractor Report
11/88-11/90

Langley Research Center
Hampton, VA 23665-5225

14. Sponsoring Agency Code

15. Supplementary Notes

Langley Technical Monitor:
Final Report

Peter A. Padilla

16. Abstract

This is the final report of work done under contract NAG-

AIPS system. The PIE co

are required for the implementation of the FIAT environment
fault-free validation of the AIPS system was performed.

language. A special

implementation under various éystem conditions.

1-190. This document presents the work
performed in porting the FIAT and PIE validation tools, developed at Carnegie-Mellon University, to the
AIPS system in the context of the ALS application, as well as an initial fault-free validation of the availabie
mponents implemented on AIPS provide the monitoring mechanisms required
for validation. These mechanisms represent a substantial portion of the FIAT system. Moreover, these
on AIPS. Using these components an initial

This report describes the implementation of the FIAT/PIE system, configured for fauit-free validation of the
AIPS fault-tolerant computer system. The PIE components have been modified to support the Ada
purpose AlPS/Ada runtime monitoring and data collection has been implemented. A
number of initial Ada programs running on the PIE/AIPS system have been implemented. The
instrumentation of the Ada programs was accomplished automatically inside the PIE programming
environment. PIE's on-line graphical views show vividly and accurately the performance characteristics of
Ada programs, AIPS keme! and the application's interaction with the AIPS kernel. The data collection
mechanisms were written in a high-level language, Ada, and provide a high degree of flexibility for

17. Key Words (Suggested by Author(s)) 18. Distribution Statement
AI§S Unclassified-Unlimited
IAT
IE Subject Cat 62
gaEIS Tglerance 3 egory
a ation
Fa it fnsertion
18. Security Classif. {of this report) 20. Security Classif. {of this page} 21. No. of pages 22. Price
Unclassified Unclassified 80 A05

NASA FORM 1628 0CT 8¢

For sale by the National Technical Information Service, Springfield, Virginia 22161-2171

NASA-Langley, 1990

