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1 Introduction

Taylor’s formula shows how to approximate a certain class of functions by
polynomials. The approximations have two nice properties. They are ar-
bitrarily good in some neighborhood whenever the function is analytic and
they are easy to compute. Our goal is to give an efficient algorithm to ap-
proximate a neighborhood of the configuration space of a dynamical system
by a nilpotent, explicitly integrable dynamical system. For a class of dynam-
ical systems analogous to the analytic functions, this approximation will be
arbitrarily good in some fixed neighborhood and easy to compute.

In [2], we give an algorithm which given a rank r yields two vector fields
E; and E; on R¥ with the properties

1. The vector fields E; and E, generate a Lie algebra isomorphic to the
free, nilpotent Lie algebra on 2 generators of rank r. Let n denote the
dimension of this Lie algebra.

2. If E;, for i = 1,...,n denotes the vector fields corresponding to the
Hall basis of a free nilpotent Lie algebra, i.e. E3z = [E3, Ey], E4 =
[E3, Er), Es = [E3, E3, elc., then

i)
8z;’
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3. The trajectory t — y(t) satisfying
9(t) = wEr(y(1)) + () E2(y(t), ¥(0) =y’ €R"

can be written explicitly in terms of quadratures involving the func-
tions t — u(t).

Let £ denote the configuration space for this system. We sometimes refer
to this system as the model system.
Suppose we are given an arbitrary system of the form

£(t) = w(t)F1(z(1)) + ua(t) F2(z(t)),

where z(t) € R, Fy and F; are vector fields on RF, and t — u;(¢) are given
measurable controls. Let F denote the configuration space for this system.
In order to approximate this control system to mt*-order, we compute the
iterated Lie brackets F; corresponding to the Hall basis E;, obtained by
substituting F; and F; for E; and E;.

Our main construction is an approximating map A which maps the con-
figuration space £ of the nilpotent model to the space F with the property
that the images under X of trajectories in £ with measurable, bounded con-
trols stay close to their counterparts in F, provided that the F; satisfy a kind
of analyticity. The exact analyticity we require is described at the beginning
of § 3.

The map A turns out to be a polynomial map from R" to R*. It depends
only upon the vector fields E; and F; and not upon the particular controls
u;(t). For this reason, it can be precomputed and used to compute efficiently
a tubular neighborhood of trajectories around a given reference trajectory
z(t).

Nilpotent Lie algebras have been an important tool in control systems
beginning with the work of Krener and Hermes, see [7], [4], [5], and [1]. The
point of view of these papers was to use nilpotent Lie algebras in order to
obtain theoretical results about properties of control systems. The point
of view here is to focus on the some of the computational aspects of using
nilpotent normal forms. In particular, we give an efficient algorithm to
compute the map A mapping trajectories of a model nilpotent system to
a given system and an algorithm to integrate a tubular neighborhood of
trajectories around a given fixed reference trajectory.

Section 2 defines the approximating map A. Section 3 defines the an-
alyticity required for our algorithm. Sections 4 and 5 state and prove the



main theorem. Section 6 shows how to apply the main theorem to integrate
simultaneously many trajectories around a given fixed reference trajectory.
The final section contains some examples. The appendix contains the Math-
ematica code we used to compute the examples.

For unexplained terminology involving Lie algebras and Hall bases, see

[3] and [6].

2 An approximating map

We begin with an informal description of the main idea. The vector fields E;
define a map ®g:R" — R”™ by (s1,...,8,) — exp(Xiv; siE;). This takes
the tangent space T(R") and flows it out into R*. ®p:R" — R is defined
similarly, by exponentiating 3_ s; F;. The lambda map is then @pod)gl. The
map &g is always invertible, so X is always defined. But since ®f may be
non-invertible, for instance, if ¥ < n, then A may also be non-invertible.

Computing ®F is usually just as hard as solving for an arbitrary trajec-
tory, so we take approximations of ®r instead. Since our approximation is
supposed to be good to order m, we use m applications of a Picard iteration
scheme. To 0 order, z° is 0. Substituting this into z'(r) = ¥ 5;F;(0) we
get the first order approximation z!(r) = r Y s;F;. Next, we would like to
solve £2(r) = ¥ si Fi(z!(r)). This is not usually solvable explicitly, but as
we're only interested in a second order approximation to the solution, we
can take a first order power series expansion in the flow parameter r. Thus,
we solve £2(r) = ag(t) + a1(t)r. We repeat this process and, eventually, get
z™(1) to agree with & to order m.

More precisely, to state and prove our main theorem requires the follow-
ing four definitions.

Definition 1 For fized sy, ...,5n, wrile z(r; 51, ...,55) for the solution z(r)
of 2(r) = Y si Fi(z(r)), z(0) =0, and define operators ¥, ¥’ by

/Qr Zs;F;(z(r; S1,---,5¢)) dr

W(z(r; s1,..-,5n))

‘I’j(z(r;sl,---,sn)) _ /OrTj(Zs.-Fi(z(r;sl,...,Sn)))dr,

where T? represents the j**-order Taylor approzimation with respect to the
variable r.



Definition 2 The trajectories z(r;sy,...,5,) are defined inductively:
2%(r;51,...,80) = 0, 2 (r;81,...,80) = Wiz (r; 51, ., 5n))

Definition 3 The map ®F(s1,...,5n): R — R"is defined as the time one
flow of the trajectory z™, namely z™(1;51,...,5n)-

Definition 4 The mt*-order approzimation fo the A map, A™, is defined by

- -1
A™ = & o BF.

3 The generalized Baker-Campbell-Hausdorff formula

Proving convergence of the algorithm, requires generalizing the Baker-Camp-
bell-Hausdorfl formula (BCH). The BCH formula writes the product of two
exponentials (the composition of two flows) as the exponential of a series
in the brackets (a constant flow involving the higher order brackets of the
vector fields). A trajectory in a control system is a limit of compositions of
piecewise constant flows, and we can use the BCH to derive a constant flow
involving a series in the higher brackets which arrives at the same point. At
the formal level and for systems whose vector fields generate nilpotent Lie
algebras, BCH holds exactly, providing computable “geodesic normal coor-
dinates”. To approximate trajectories in other control systems, we must
assume that BCH converges for them as well. We give an example later
where BCH does not converge, but the vector fields are not analytic. To our
knowledge, no general criteria are known which imply convergence of BCH.

We now introduce the analyticity requirement we need in order to prove
convergence of our algorithm. We say that two vector fields are BCH analytic
in case there is a 8§, with 0 < 6 < 1, such that any Lie algebra elements X,
and X in the Lie algebra generated by the F; of the form |X;| < [X3] < 6,
satisfy the following estimate

|eX2eX1 _ ecl(X;,X2)+...+cm(X1,X2)I < am’xlulem, (1)

where c;(X1, X3) are all the terms of weight i in the BCH formal expan-
sion and a is a positive constant depending on the Lie algebra. The term
a™|X;||X2|™ comes from combining the fact that a converging series is geo-
metric in a smaller ball, and hence a bound on the next term is comparable
to the error, and the fact that every non-vanishing Lie element of weight
> m has at least one X; (the smaller) factor in every term.



Varadarajan [8] shows that the estimate |[[X,Y]| < M|X||Y|,forall X, Y
in the Lie algebra generated by Fy and F3, implies Condition (1). Note that
this estimate holds if F} and F, generate a finite dimensional Lie algebra.

Lemma 5 Given a positive integer m, let n be the dimension of the free
nilpotent Lie algebra of rank m on two generators. Given u;(t) and [0,7
as above, then there exist constants s1,...,s, such thal given vector fields
Fi and F, as above, and the higher brackets F3, ..., F, corresponding to the
Hall basis elements, then the trajeclories

#(t) = w(t)Fi(z) + u12(t) Fa(z), z(0) =0

and

zt)=s1F1(2)+...+ s Fn(z), y(0)=0
satisfy |z(T) — y(T)| < («T)™*L.

Note that the s; depend only on the u; and not on the F;. The case u;(t) =
uz(t) = T = 1 is the standard BCH formula.
Proof. Let 1(t) and vy(t) be step-function approximations to u;(t) and
uz(t), respectively, chosen well enough so that the trajectory with the v;(t)
as controls stays t™+! close to z(t) over the interval [0, T]. Suppose that the
v;(t) are constant except at the times (#3,...,tn). To start, consider the flow
z1(t) with controls v;(t) on the time interval [0,%]. Trivially, there is a flow
w! (t) with constant coefficients T ; s! F; such that w'(t1) = z'(#1), namely
s} = v;. The flow 2z2(t) is the flow w!(t) for t € [0,11] followed by the flow
with controls v;(t) for t € (t1,12). By the BCH convergence condition (1),
there is a flow w?(t) with different constant coefficients 37, s?F; such that
|w?(t1)—22(t1)] < (t2—t1)(aT)™. At stage j, theerror is < (tj41—t;)(aT)™,
and so the total error is < (aT)™ Y (tj+1 — t;) = (aT)™+! as desired. B
Since the BCH formula holds exactly in the configuration space E, the
trajectory z(t) is exactly A(y(t)) in this case.

4 The Picard-Taylor Method

Recall that the map ®F is the easily computed Picard-Taylor approximation
of the exponential map ®z(s) = Y_ s;F;. In this section, we prove that the
error introduced by using ®F is O(s™*!), just as in Taylor’s theorem.

The convergence of a Picard iteration scheme depends on a bound B and
a Lipschitz constant L for the vector fields: |F;(p)| < B and |F;(p)-Fi(¢g)} <



Llp — gq| for p and g in some ball about the origin. The choice of ball
determines B, L and a fixed time 7", such that the approximate trajectories
do not leave the ball where these estimates hold.

Lemma 6 Given F, as above, there is a constant 63 > 0 and a positive
constant C such that |(®F — ®r)(s)| < Cls|™*! whenever |s| < ;.

Proof. Let 2%(r;s1,...,8,)) = 0 and 2+ (r;s,...,50)) = ¥(2). Exam-
ine the convergence of z-’(l 81,.-.,8n) to ®p(s) = exp(3, 5:F;) as j — oo.
Assume, as an induction hypothesxs that z}(r; s) and z}(r;s) are two tra-
jectories which are close in the sense that |z](r;s) — z’(r s)| < e(r|s]y for

r € [0,1]. Then
() - WA < [ 1 slFilE ) = Bl o)l dr

< e(rlsFILIG+ 1),
and so there is some fixed constant C such that
|27 (1;8) — Br(s)| < ClsP*,
as desired. In particular, we have
=™(1,5) — ®r(s)] < Clsl™*!.
It remains to estimate |27t1(r;s) — z7t1(r;5)|. Let
|20(r; 8) — 2%(r;5)| = 0, 2t (r;5) = W (2 (r;5)).
Assuming that |z7(r; s) — 23(r; s)| < C(r|s|y+?, we estimate
|27 (r;5) = 27 (rys)] = (2 (ri6)) — W(2 (3 8))]
< W (2 (r;s)) - W((r;9)]
+W (22 (r; 8)) — ¥(* (5 6))]

<[ T (&) = T T il i)l
+ [ (TS sibi i) = sy

< [ 1T sRerio) - Rl )l dr
+/0' IC'zi:s,-rj*Hdr

< s’

j+2



In particular, we have
lz™(1,5) — z™(1,5)| < ClsP*.

Since ®7(s) = z™(1;s), the lemma follows. n

5 The main theorem

In this section, we combine the lemmas of the two previous sections to prove
that the easily computed approximating map A™ maps trajectories of the
explicitly integrable system £ to trajectories of the arbitrary system F with
error O(s™+1).

Theorem 7 . Given a positive constant M and 6, a positive integer m,
and a positive time T, there erists a posilive constant C such that, given
measurable controls uy(t) and uz(t) satisfying |ui(t)] < M for all t € [0,T1,
vector fields Fy and Fy salisfying the BCH analyticily condition (1), and
solutions z(t) and y(t) of

z(t) = wi(t)F(z(t)) + uv2(t)Fa(2(t)), =2(0)=0

i) = wOED)+w@E®), ¥(0) =0te,T],

then N™(y(t)) — =(1)| < (CO™ fort € [0,7].

Proof. It is sufficient to show that the estimate holds at time T. Applying
Lemma 5 twice, once to the system £ and once to the system F shows that

[2(T) — A(y(T))| € («T)™*1.
Also, we know from Lemma 6 that
[z™(1;5) — z(1;s)| < Cls|™ .

Since A™(y(T)) = z™(1;s) and |s| < constant - T', the theorem follows. &

6 Simultaneous Integration of Trajectories

In this section, we describe an algorithm to integrate simultaneously a neigh-
borhood of trajectories around a given fixed trajectory. Fix controls u; and
uz and an initial condition z° € F, and let z(¢) denote the corresponding
trajectory of the system £. We give an algorithm yielding p trajectories in
a tubular neighborhood around the fixed reference trajectory z(t).



Step 1. Solve the equation A(y) = z° for y. Let y® € F denote the root.

Step 2. For points y', ..., ¥° in a neighborhood of y°, compute the trajec-
tory y’(t) satisfying

§(t) = m(t) By + uw2(t)E2, y(0) =y

Step 3. For each point 7 (t) along the trajectory, compute the correspond-
ing point A™(y’(t)), for j =1, ..., p.

The following theorem follows immediately from Theorem 7.

Theorem 8 For points y’ sufficiently close to y° and small enough time
t, the trajectories A”‘(yi(t)) all lie within a fized tubular neighborhood of
the reference trajectory z(t). These trajectories can be computed by simply
evaluating the map A™, which can be precomputed, at different points.

7 Examples

We begin by showing why we require a condition such as BCH analyticity
for the vector fields F;.
bt d ) 0
X-'a—z_l'l Y—a_z;_¢(tl)x2)a;7

where ¢(z1,z2) is identically 1 if |zy — z2| > 1/4, and it is smooth and
between 0 and 1 elsewhere, positive away from the diagonal, and vanishing
to infinite order on the diagonal. Now the z3 coordinate of exp(aY )oexp(aX)
is negative for all a > 0. But all brackets of X and Y vanish on the diagonal.
Therefore, no formula of the form exp{aX )oexp(aY) = ezp(X +Y + brackets
in X and Y can be valid.

Figures 1 and 2 contain the Mathematica code we used to test the al-
gorithm. Figure 3 contains the vector fields E; and F; and the A™ map.
Note that the map A™ is a polynomial map. Figure 4 contains the result
of flowing along the explicitly integrable flow in the £ space, applying the
map A™, and comparing the result to flowing in the ¥ space using a Runge
Kutta flow.



Brac[v_,v_]:=BlockI{i, j},Table[Sum[v{[i]] DIv[[j13,x[i]]
-wl[i]] DIv([313,x[il],{i,Length[¥v]1}] ,{j,Lengthlv]}] ]

Flowlp_,v_,{rt_,r0_,r1_}]:= Block[{xt,v1,x1,i,j,n},
n=Length[p];
vi=y;
xt=p;
vil[[1]]=v[[11];
For[i=1,i<n,i++,
xt[[i]] = Integratelvi[[ill,xrt]+p[[il];
v1[[i+1]] = v[[i+1]]/.Table[x[j3->xt[[3]1].{j.1.,i}]
1;
xt[[n]] = Integrate[vi[[n]],xt]+plInl];
(xt/.{xrt->r1})-(xt/.{rt->ro})
]
Flowlp_,v_,{rt_,r1_}]:=Flowlp,v,{rt,0,ri}]
Flow[p_,v_,{rt_}]:=Flow[p,v,{rt,0,1}1]
Flow[p_,v_]:=Flowlp,v,{rt,0,1}]

Figure 1: Mathematica code to compute brackets and integrable flows.



Picard[f_,m_]:=Block[{a,i,j,r,n},

n=Length[f]; (¢ n = dimension *)
a=f/.Table[x[i]->0,{i,n}]; (* substitue x=0 #)
For[j=1, j<=m, j++, (s Loop through = times... %)

a=Integratefa,r];
a=f/.Table[x[i]->al[[il],{i,n}]; (» substitue )
(* approximate by something integrable *)
(+ at increasing accuracy *)
a=Table[Normal[Series[a[[il],{r,0,j-1}]1]1,{i,n}]

1;

Integrate[a,{r,0,1}] (» Get the final ansver *)

]

Lambdale_,f_,n_,»_]:=Block[{i,phiF,t,phiE,phiEInv},

(» e, f are functions whose values are vector fields #)

(* n is the number of vf’s, m iz the degree of approx. *)

(* Get the F flow by Picard iteration s)

phiF=Picard [Sum[t[i]£[i],{i,n}],m];

(* Get the E flow by symbolic integration #)

phiE=Flov[Table[0,{i,n}] ,Sum{t[iJe[i],{i,n}1];

(* Invert the E flow symbolically =)

phiEInv=Solve[Table[b[il==phiE[[i]],{i,n}],
Table[t[il,{i,n}1J[[11];

(* Form the composition *)

phiF/.phiEInv

Figure 2: Mathematica code to compute the map A™.
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e[1]={1,0,0}

e[2]={0,1,-x[1]}
e[3]=Brac[e[2],e[1]]
£[1]={Sin[x[3]]1,0,x[2]Cos [x[3]]}
£[2]={0,Cos{x[3]1],x[1]1Sin[x[3]]}

f[3]=Brac[£[2],£[1}]
L3=Lambdale,f,3,3];
2
b[1] bl2] bl1] ®[1] b[2] + 2 b[3])
{ + ,
6 4
2
bl[2] (b[1] b[2] + 2 b[3])
bl2] + ’
24
3
bl1] b[2] bl1] bl[2] + 2 b[3] (b[1] b[2] + 2 b[3D
+ - }
2 2 12

Figure 3: The vector fields and the A™ map.

Flov[{0,0,0}, (14t+t"2+1"3)e[1]+(Sin[20t])e[2],{t,.1}]
{0.105358, 0.0708073, -0.0045167}
L3/.Table[b[3i]->%[[i1],{i,3H

{0.0000895593, 0.0708073, 0.00294345}

RungeKuttaHiD[Join[{1}, (1+t+t~2+t~3)£[1]+(Sin{20t]1) f[2]],
{t,x[1],x[2],x[3]},{0,0,0,0},0.02,5]

{0.1, 0.0000842708, 0.0708076, 0.00294349}

Figure 4: Comparing the map A™ and a Runge Kutta flow.
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